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ON THE MACH-UNIFORMITY OF LAGRANGE–PROJECTION

SCHEME

HAMED ZAKERZADEH

Abstract. In the present work, we show that the Lagrange–projection scheme

presented in Coquel et al.’s paper (Math. of Comp. 79.271 (2010): 1493–
1533), is asymptotic preserving for isentropic Euler equations, i.e. at the dis-

crete level it preserves the incompressible limit, satisfies the div-free condition

as well as the asymptotic expansion for the density in the continuous level.
Moreover, we prove that the scheme is positivity-preserving, L∞-stable and

entropy-admissible under some Mach-uniform restrictions. The analysis is sim-

ilar to what has been presented in the original paper, but with the emphasis
on the uniformity regarding the Mach number.

1. Introduction

Studying singular limits of conservation laws (or more generally PDEs), may
result in severe difficulties to be treated either in analysis or numerics. The main
issue is that the type of the equations changes in the limit [29], e.g. when Mach
number approaches zero for Euler equations. This limit is singular, since the sound
speed (the characteristic speed) goes to infinity and the PDE changes to be el-
liptic, in the so-called incompressible limit. So, there are difficulties to show the
convergence of the solution of compressible Euler equations to the incompressible
one (see [24, 29]). Tackling this problem numerically is more complicated, since as
the eigenvalues of the flux Jacobian blow up, the time step should tend to zero due
to Courant–Friedrichs–Lewy (CFL) condition, which leads to very small time steps
and thus huge computational cost. Also it has been shown that in the general case,
the usual numerical schemes, lose their accuracy in the limit for under-resolved
mesh size; see [13, 14, 17, 16, 32, 33, 31].

Throughout this paper, we assume that at least in the continuous level, the
solution of compressible flow equations corresponds to Mach number ε, converges
to the solution of the limit equation, as ε→ 0, and try to show that the counterpart
of such convergence also exists (at least formally) in the discrete level. It means
that the asymptotic limit for the computed solution should be analogous to the
limit of continuous system, e.g. the div-free condition holds for the scheme in
the limit, or the zeroth-order term in the asymptotic expansion of the density
should be constant at the discrete level, since as has been shown in [30] (for single
scale analysis, also see [25] for multiple scale analysis), it is the case for the PDE
level. This is so-called Asymptotic Preserving (AP) consistency, which has been
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Figure 1. Illustration of Asymptotic Preserving schemes.

introduced by Jin in [21] for relaxation systems; see also [22] for a general review.
This can be translated to the consistency of the scheme with the underlying PDE
in the limit of the parameter. But to be practically useful, the scheme should also
satisfy AP stability, that the stability of the computed solution is guaranteed, i.e.
the computed solution is bounded in some suitable norm, under some ε-uniform
conditions. We denote that a scheme is AP if it is AP stable and AP consistent.

Figure 1 illustrates this definition; Mε stands for a continuous physical model
with perturbation parameter ε, andMε

∆ is a discrete-level model which provides a
consistent discretization of M. If the stability condition of Mε

∆ is independent of
ε and its limit M0

∆ provides a consistent discretization of M0, then the scheme is
called AP; see [9] .

This property has been studied widely and several AP schemes have been de-
veloped for Euler or shallow water equations; see [9, 12, 18]. The bottom line of
these schemes is mixed implicit-explicit idea, stems from the more general operator
splitting method; to split the flux (or its Jacobian) into two parts and treat one
part explicitly in time and the other one implicitly in time (IMEX schemes). This
approach is definitely necessary to find schemes with ε-uniform CFL conditions.
But as mentioned in [11], it is not sufficient at all to obtain AP stability; see for ex-
ample [1] whence it is shown that for explicit-explicit splitting with Lax–Wendroff
scheme, even if both splitted parts are stable in terms of CFL condition, the result-
ing scheme is unconditionally unstable in L2-norm using Von Neumann stability
analysis. On the other hand, it is shown in [18] that for IMEX splitting if each
part is L2-stable, the overall scheme is L2-stable as well. So, there is a critical gap
between these two cases. Also note that using IMEX splitting schemes, makes the
analysis more delicate compared to explicit splittings; see [4, 5] for some results.

In this paper, the main point is to study the issue of stability of IMEX split-
tings for some specific splitting; the idea comes from Arbitrary Lagrangian-Eulerian
(ALE) approach. ALE nowadays is a classic approach in mechanics, trying to ben-
efit from advantages of Eulerian and Lagrangian formulations simultaneously; see
[19] for a nice introduction. It has been introduced in the analysis of splitting
schemes in [8] for a two-phase model, without any concern about the incompress-
ible limit, and later used in [4, 5] for Euler equations accompanied with a friction
term and two-dimensional Euler equations for all-Mach flows. Considering this ap-
proach, it has been proved in [8] that the Lagrange–projection scheme is positivity
preserving and entropy stable, under some conditions. On the other hand, it is
well-known that Godunov-type schemes (of which Lagrange–projection scheme is a
member) show no accuracy problem for low-Mach one-dimensional problems as long
as the initial condition is well-prepared (see Definition 3.3). The reader can consult
with [13, 32, 14, 33, 5] for more details. This justifies the motivation to investigate
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the results of [8] in the low-Mach limit. In fact here, we show that the stability con-
ditions in [8] are uniform in ε provided that the initial condition is well-prepared.
So, all those stability properties hold without any restriction regarding Mach num-
ber. Also we show that the solution is stable in L∞-norm for well-prepared initial
conditions. There are also some stability results in [5] for unstructured grids, with
the focus on the accuracy problem of Godunov-type schemes in low Mach numbers
but with the modification of Lagrange–projection scheme implied by a careful look
at the truncation error.

The plan of the paper is as follows: In section 2 we introduce the ALE split-
ting, after a brief explanation on ALE formalism and relaxation schemes. Then,
in section 3, we launch the numerical analysis of the scheme, starting from AP
property, continuing with positivity preserving, stability and entropy stability. We
then conclude the discussion with some immediate extensions and future works.

2. Lagrange–projection scheme: Continuous PDE level

In this section, we introduce the splitting to be used, so-called ALE splitting,
implied by classic Lagrange–projection scheme (see [15]). Let us suppose isentropic
Euler equations. One natural way to split the waves, is to split them into acoustic
and transport waves. The high speed acoustic waves are formulated in Lagrangian
framework and slow transport waves in Eulerian one. The framework has been
introduced in [15, Chapter III, section 2.2] as Lagrange–projection scheme, which
consists of solving Riemann problems in the Lagrangian formulation, and then
projecting the computed solution into the fixed Eulerian grid. Thus there are
two steps, Lagrangian and the projection. The former is usual Lagrangian form of
isentropic Euler equations, and the latter is actually the projection of the computed
solution; see [15, Chapter III, section 2.5].

It has been shown in [8] that such a scheme can also be conceived in ALE
framework, to write the equations in referential coordinates χ which are necessarily
neither spatial (Eulerian) x nor material (Lagrangian) X. Referential frame has a
relative velocity v seen from spatial frame, which is arbitrarily chosen. Note that
the Lagrange–projection scheme is a special case of ALE, in which the velocity v
is chosen such that after completing each step, the domain is the same as fixed
Eulerian one. Intending not to be lengthy, we refer the reader to [8, Section 3.3]
for more details.

Now, consider the system of isentropic Euler equations:

∂tρ+ ∂x(ρu) = 0,(2.1)

∂t(ρu) + ∂x(ρu2 + p) = 0,(2.2)

when p(ρ) = κργ with κ > 0 and γ > 1 is the isentropic pressure law. As an
entropy function, we chose the total energy of the solution ρE which can be shown
to be strictly convex with respect to the conservative variables. The total energy

density is written as E = E + u2

2 where E(ρ) := κ
γ−1ρ

γ−1 is internal energy density

(see [27]).
Then, the Lagrange–projection idea is to approximate the solution of the original

system, (2.1)-(2.2), using the Lie splitting idea and to solve the following acoustic
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and transport subsystems, successively:

∂tρ+ ρ∂xu = 0,(2.3)

∂t(ρu) + ρu∂xu+ ∂xp = 0,(2.4)

and

∂tρ+ u∂xρ = 0,(2.5)

∂t(ρu) + u∂x(ρu) = 0.(2.6)

Simply by using Taylor expansion it can be seen that this splitting is in general
(globally) first-order accurate in time. We refer the reader to [20] for more details
about the operator splitting methods.

Note that the acoustic part can be rewritten in Lagrangian formulation using

the material derivate D(·)
Dt . So the equations (2.3) and (2.4) change to Dρ

Dt = 0

and D(ρu)
Dt + ∂xp = 0, respectively . The transport part is simply a transport of

conservative variables (ρ, ρu) with the velocity field u.

2.1. Lagrangian step. In the Lagrangian coordinates, the frame moves with the
velocity field. So, what the observer sees is the acoustic part, (2.3)-(2.4). It is not
difficult to show that they can also be written as

τt − uz = 0,(2.7)

ut + pz = 0,(2.8)

where τ is specific volume (the reciprocal of ρ) and z := ρdx is the mass coordinate.
This is exactly the classical form of isentropic Euler equations in the Lagrangian
framework. To obtain non-dimensionalized equations, we set

τ̂ := τρ◦, û :=
u

u◦
, p̂ :=

p

p◦
, p◦ := ρ◦c

2
◦,

where c◦ is the reference sound speed, defined as c◦ :=

√
κγργ−1

◦ . Thus, after

suppressing hats, the equations become

τt − uz = 0,(2.9)

ut +
pz
ε2

= 0.(2.10)

Assuming a one-dimensional torus as spatial domain Ω := T, i.e. periodic boundary,
we define the domain of solutions as ΩT := T×R+ in space and time. So, we are left
with a Cauchy initial value problem which needs solution of the Riemann problems.
To ease the situation, we relax the system so that all characteristic fields would be
linearly degenerate, which is easy to solve the Riemann problem for. We actually
substitute the source of genuine nonlinearity p(ρ) with some variable π, called
relaxation pressure and add another equation for π. This is the heart of so-called
relaxation schemes; we refer the reader to [2, 28, 6, 23] for more details.

In the non-dimensionalized form, the Suliciu relaxation system [2, 7] reads as

τt − uz = 0,(2.11)

ut + Πz = 0,(2.12)

Πt + α2uz = Λ(p− π),(2.13)
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with the definitions

Π :=
π

ε2
, α :=

a

ε
, Λ :=

λ

ε2
,

where a is a constant to be specified and λ is the relaxation parameter. At least
formally, one can observe that in the asymptotic regime λ→∞, π tends to p and the
original system would be recovered. Now, one can easily check that the relaxation
system only has linearly-degenerate characteristic fields. To use the feature of
linear degeneracy, at first we solve the problem out of equilibrium, setting λ = 0,
and then we project the out-of-equilibrium solution to the equilibrium manifold, cf.
[8]. Interestingly, it is also shown in [8] that the choice of λ = 0 maps the solution
onto the equilibrium manifold, due to the Lagrangian coordinates.

In order to prevent this relaxation system from instabilities (to enforce dissipa-
tivity of Chapman–Enskog expansion, see [6, 28]), a must be chosen sufficiently
large, according to the so-called sub-characteristic or Whitham stability condition

a2 > max(−pτ ),(2.14)

see [3] for the proof.
Since the relaxation system with λ = 0 is strictly hyperbolic with eigenvalues

given by 0,±a—compared to exact eigenvalues 0,±c for original system—the sub-
characteristic condition means that information propagates faster in the relaxation
model. Also linear degeneracy of the fields allows us to analytically solve the
Riemann problem when λ = 0. This property justifies by itself the introduction of
the proposed relaxation model and its simplicity [5].

So, for λ = 0, one can simply put the relaxation system (2.11)-(2.13) into an
equivalent form like [4, eq. (12)]

τt − uz = 0,(2.15)

⇀
wt + α

⇀
wz = 0,

⇀
w := Π + αu =

π

ε2
+
a

ε
u,(2.16)

↼
wt − α

↼
wz = 0,

↼
w := Π− αu =

π

ε2
− a

ε
u.(2.17)

Note that
⇀
w and

↼
w are two of Riemann invariants of the relaxation system; the

third one is I := Π + α2τ . So, instead of the (2.15) one can use It = 0.

Remark 2.1. Note that the naturally-splitted systems (2.3)-(2.4) and (2.5)-(2.6) is
not conservative in Eulerian coordinates, so to avoid the complications coming with
non-conservative products (see [10] for example) and also for solving Riemann prob-
lems with more ease and efficiency, we have changed the coordinates to Lagrangian,
which provides a conservative formulation.

2.2. Projection step. Like the acoustic part, (2.5)-(2.6) can be written in La-
grangian coordinates which provides a conservative form. In fact, since we remap
the values into the Eulerian grid, at the end of each step, the referential and spa-
tial (Eulerian) coordinate should coincide. So following the notation in [8], the
projection step can be summarized as

(2.18) ∂tU + u∂xU = 0,

where U :=
(
ρ, ρu

)T
stands for conservative variables. For further details on the

derivation of the splitted systems, the reader can consult with [8]
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3. Lagrange–projection scheme: Discrete numerical level

As mentioned above, for linearly-degenerate systems, it is easy to solve the Rie-
mann problem. Moreover in this case, after writing the equations in terms of
Riemann invariants, it would be in fact trivial since along each characteristic line,
one of the Riemann invariants remains constant. In this way, there are just a set of

two symmetric scalar linear advection equations to be solved for
⇀
w and

↼
w, I does

not change at all.
At the beginning of Lagrange (acoustic) step from n to n†, the Eulerian and

Lagrangian coordinates coincide with each other, also pnj = πnj . The Lagrange step
reads as

τn†j = τnj +
∆t

∆zj

(
ũn†j+1/2 − ũ

n†
j−1/2

)
.(3.1)

⇀
w
n†
j =

⇀
w
n

j −
a∆t

ε∆zj

(⇀
w
n†
j −

⇀
w
n†
j−1

)
,(3.2)

↼
w
n†
j =

↼
w
n

j +
a∆t

ε∆zj

(↼
w
n†
j+1 −

↼
w
n†
j

)
,(3.3)

where ∆z := ρnj ∆x and j ∈ S denotes cell indices when S is a periodic set (the

discretization of Ω). Also ũn† comes from solving a simple Riemann problem for
the relaxation system with characteristic 0,±aε (see [8]), and it is

ũn† :=
1

2aε

(a
ε

(uL + uR)− πR − πL
ε2

)
=

1

2aε

(
aε(uL + uR)− (πR − πL)

)
.

So, the interface velocity would be defined as

ũn†j+1/2 =
unj + unj+1

2
− 1

2aε

(
πnj+1 − πnj

)
.(3.4)

Note that there are several (equivalent) variants of the scheme (3.1)-(3.3), in differ-
ent coordinates or with/without using the Riemann invariants; see [8] for further
details.

In the next step, the projection step from n† to n + 1, we map updated values
onto the fixed Eulerian gird. There are 4 cases based on upwind direction [4, eq.
(34)]:

• ũn†j−1/2 < 0, ũn†j+1/2 < 0 : Un+1
j = Un†j +

∆t

∆x
ũn†j+1/2

(
Un†j − Un†j+1

)
• ũn†j−1/2 < 0, ũn†j+1/2 > 0 : Un+1

j = Un†j

• ũn†j−1/2 > 0, ũn†j+1/2 > 0 : Un+1
j = Un†j +

∆t

∆x
ũn†j−1/2

(
Un†j−1 − Un†j

)
• ũn†j−1/2 > 0, ũn†j+1/2 < 0 : Un+1

j = Un†j +
∆t

∆x

(
ũn†j+1/2

(
Un†j −U

n†
j+1

)
+ũn†j−1/2

(
Un†j−1−

Un†j
))

This step, projects the values in updated grid to the fixed Eulerian one. Adding
these two steps to each other is what one calls Lagrange–projection scheme.

3.1. Numerical analysis of the scheme. Considering the Lagrange–projection
scheme introduced in the previous section, one can obtain the main theorem of this
article, which includes the stability results.

Theorem 3.1. The Lagrange–projection scheme satisfies the following properties.
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(i) It can be expressed in the locally conservative form.
(ii) The scheme is AP consistent, which means that it preserves the div-free con-

dition for zero-Mach limit and correct asymptotic expansion for the computed
solution in terms of [30].

(iii) For well-prepared initial data and under some ε-uniform CFL constraint (3.20)
the scheme is positivity preserving, i.e. ρn+1

j > 0 provided that ρnj > 0 for all
j ∈ S. Moreover the density is bounded away from zero for finite time, i.e.
there exists some % > 0 such that ρn+1

j ≥ % for all j ∈ S.

(iv) For well-prepared initial data and under constraint (3.20), the solution (den-
sity and velocity) is stable, i.e. it is bounded in L∞-norm, uniformly in ε.

(v) Under (3.20) and sub-characteristic condition (3.36), the solution fulfills the
local (cell) entropy (energy) inequality, i.e.(

ρE
)n+1

j
−
(
ρE
)n
j

∆t
+

(
ρEũ+ π̃ũ

)n†
j+1/2

−
(
ρEũ+ π̃ũ

)n†
j−1/2

∆x
≤ 0,(3.5)

which is consistent with

∂t
(
ρE
)

+ ∂x
(
ρEu+ pu

)
≤ 0.

Now, let us analyze the properties of this scheme in the subsequent subsections.
Note that the locally conservative form of the scheme is proved in [8] and it is not
that difficult; so we skip it here.

3.1.1. Proof of AP consistency (ii). Now, we show that the scheme is consistent
with the PDE in the limit ε → 0, i.e. the both have constant density up to the
second order of asymptotic expansion, and the zeroth-order velocity component is
divergence free (solenoidal). This coincides with the asymptotic analysis results of
[30]. Considering [30], assume for the step n that

ρnj (x) = ρn0c + ε2ρn(2)j ,(3.6)

pnj (x) = πn0c + ε2πn(2)j ,(3.7)

unj (x) = un0c + εun(1)j ,(3.8)

where ρn0c, π
n
0c and un0c are constant values. Here, we want to show that the scheme

(3.1)–(3.3) preserves these properties from step n to the intermediate step n† and
then to the next time step n + 1; to show that the acoustic and its remapped
solutions are consistent with the PDE as ε→ 0.
Lagrange step. We start with the mass equation:

1

ρn†j
=

1

ρnj
+

∆t

ρnj ∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

)
,(3.9)

and

ρnj = ρn†j

(
1 +

∆t

∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

))
= ρn†j

(
1 +

∆t

2a∆x

(πn†j+1 − 2πn†j + πn†j−1

ε
+ a
(
un†j+1 − u

n†
j−1

)))
.

So,

O(1/ε) : πn†(0)j+1 − 2πn†(0)j + πn†(0)j−1 = 0 =⇒ πn†(0)j is a linear function over j ∈ S,

and due to periodic B.C. πn†(0)j = πn†(0) which is constant in space.
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Since π and ρ are two independent variables at this level, we cannot conclude
immediately that the same is true for the density. It is shown in [8, eq. (4.7)] that
one can find another equation from (3.1)–(3.3), that is

ρnj
πn†j − πnj

∆t
+

a2

∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

)
= 0.(3.10)

If one combines it with continuity, it yields

a2
(
τn†j − τ

n
j

)
+
(
πn†j − π

n
j

)
= 0,(3.11)

and

a2
(
ρn†j − ρ

n
j

)
= ρnj ρ

n†
j

(
πn†j − π

n
j

)
.

So,

O(1) : a2
(
ρn†(0)j − ρ

n
(0)j

)
= ρn(0)jρ

n†
(0)j

(
πn†(0)j − π

n
(0)j

)
,

which gives that

ρn†(0)j

(
a2 − ρn0c

(
πn†(0) − π

n
0c

))
= a2ρn0c =⇒ ρn†(0)j = ρn†(0) const. in space

Then, due to periodic B.C. and (3.9), by a spatial summation it can be found out

that ρn†(0)j is constant in time as well, i.e. ρn†(0)j = ρn0c. Also from conservation

equation for relaxation pressure π, (3.10), and again periodic B.C. and spatial
summation, the numerical fluxes cancel out with each other and it turns out that

πn†(0)j = πn0c, constant in both time and space.

Next, let us continue with momentum equation (there is no difference between
⇀
wj and

↼
wj in this regard).

ρnj
(πn†j
ε2

+
a

ε
un†j
)

= ρnj
(πnj
ε2

+
a

ε
unj
)
− a∆t

ε2∆x

(πn†j − πn†j−1

ε
+ a
(
un†j − u

l
j−1

))
.

So,

O(1/ε2) : ρn0cπ
n†
(0)j = ρn0cπ

n
0c −

a∆t

∆x

(
πn†(1)j − π

n†
(1)j−1 + a

(
un†(0)j − u

n†
(0)j−1

))
,

which yields

πn†(1)j − π
n†
(1)j−1 + a

(
un†(0)j − u

n†
(0)j−1

)
= 0.(3.12)

So, there is the possibility that both πn†(1)j and un†(0)j be constant in space. To show

it, note that from O(1) terms in continuity equation, one gets

ρn(0)j =ρn†(0)j

(
1 +

∆t

2a∆x

(
a
(
un†(0)j+1 − u

n†
(0)j−1

)
−
(
πn†(1)j−1 − 2πn†(1)j + πn†(1)j+1

)))
− ∆t

2a∆x
ρn†(1)j

(
πn†(0)j−1 − 2πn†(0)j + πn†(0)j+1

)
.

So,

a
(
un†(0)j+1 − u

n†
(0)j−1

)
−
(
πn†(1)j−1 − 2πn†(1)j + πn†(1)j+1

)
= 0(3.13)

Combining (3.13) and (3.12) yields that πn†(1)j = πn†(1) and un†(0)j = un†(0). So,

div un†(0) = 0.(3.14)
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Again, similar to the zeroth order, one can show that ρn†(1)j is constant in space and

even πn†(1)j and ρn†(1)j are constant in time, i.e.

πn†(1)j = πn1c, ρn†(1)j = ρn1c.(3.15)

Hence, it turns out that the Lagrangian step is AP consistent.
Projection step. Now, we move on to the projection step. We show AP property

for the first case, ũn†j−1/2 < 0 and ũn†j+1/2 < 0. The other cases can be done in a very

similar way.

ρn+1
j = ρn†j −

∆t

2a∆x

(
ρn†j+1 − ρ

n†
j

)(
−
πn†j+1 − π

n†
j

ε
+ a
(
un†j+1 − u

n†
j

)
.

So,

O(1) : ρn+1
(0)j = ρn†(0)j −

∆t

2a∆x

[
−
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
πn†(1)j+1 − π

n†
(1)j

)
−
(
ρn†(1)j+1 − ρ

n†
(1)j

)(
πn†(0)j+1 − π

n†
(0)j

)
+ a
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
un†(0)j+1 − u

n†
(0)j

)]
,

and thus

ρn+1
(0)j = ρn†(0)j = ρn0c(3.16)

and as a result pn+1
(0)j = pn0c; it is constant as well. Similarly, one can find that the

first order components are also constant in time and space; if they do not exist in
the initial condition, so at the time tn+1 there is no pressure fluctuation of order ε:

O(ε) : ρn+1
(1)j = ρn†(1)j −

∆t

2a∆x

[
−
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
πn†(2)j+1 − π

n†
(2)j

)
−
(
ρn†(1)j+1 − ρ

n†
(1)j

)(
πn†(1)j+1 − π

n†
(1)j

)
−
(
ρn†(2)j+1 − ρ

n†
(2)j

)(
πn†(0)j+1 − π

n†
(0)j

)
+ a
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
un†(1)j+1 − u

n†
(1)j

)
+ a
(
ρn†(1)j+1 − ρ

n†
(1)j

)(
un†(0)j+1 − u

n†
(0)j

)]
,

and

ρn+1
(1)j = ρn†(1)j = ρn0c = 0.(3.17)

To show the div-free condition, one can consider O(1) terms of the momentum
equation:

ρn+1
(0)j u

n+1
(0)j = ρn†(0)ju

n†
(0)j −

∆t

2a∆x

[
−
(
ρn†(0)j+1u

n†
(0)j+1 − ρ

n†
(0)ju

n†
(0)j

)(
πn†(1)j+1 − π

n†
(1)j

)
−
(
ρn†(1)j+1u

n†
(0)j+1 − ρ

n†
(1)ju

n†
(0)j

)(
πn†(0)j+1 − π

n†
(0)j

)
−
(
ρn†(0)j+1u

n†
(1)j+1 − ρ

n†
(0)ju

n†
(1)j

)(
πn†(0)j+1 − π

n†
(0)j

)
+ a
(
ρn†(0)j+1u

n†
(0)j+1 − ρ

n†
(0)ju

n†
(0)j

)(
un†(0)j+1 − u

n†
(0)j

)]
.

Thus,

un+1
(0)j = un†(0)j = un0c,(3.18)
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and the zeroth order component of velocity filed is solenoidal. Hence, combining
the AP results for Lagrange and projection steps together, it is obvious that the
limit properties is satisfied, and the scheme is AP.

3.1.2. Proof of density positivity, and stability (iii,iv). In this section, we show that
for well-prepared initial data the density is positive due to an ε-independent time

restriction. Also we show that the solution vector
(
ρ, ρu

)T
has ε-uniform upper-

bounds, i.e. it lies in
(
L∞(ΩT )

)2
. Finally we show that the density is bounded

away from zero, i.e. there exists some % > 0 such that ρ ≥ %.
From [8, eq. (2.25a)] we first define local acoustic CFL ratios µj , and local

apparent propagation factor ej as

µj :=
a∆t

∆zj
, ej :=

µj/ε

1 + µj/ε
.

Then, one can write (3.2) as

⇀
w
n†
j = ej

⇀
w
n†
j−1 + (1− ej)⇀w

n

j .

So, it is not so difficult to show that as soon as 0 ≤ ej ≤ 1 (which can be satisfied
for all ε uniformly), the scheme satisfies maximum principle, i.e. no new extremum
can be generated, as follows.

• Bound from above: Assume that i is the index of maximum value of
⇀
w
n†
j , that is

⇀
w
n†
i ≥

⇀
w
n†
j , ∀j ∈ S. So,

⇀
w
n†
i ≤ ei

⇀
w
n†
i + (1− ei)

⇀
w
n

i =⇒ ⇀
w
n†
i ≤

⇀
w
n

i =⇒ max
j

⇀
w
n†
j ≤ max

j

⇀
w
n

j .

So, it is bounded from above.
• Bound from below: Assume that k is the index of minimum value of
⇀
w
n†
j , that is

⇀
w
n†
k ≤

⇀
w
n†
j , ∀j ∈ S. So,

⇀
w
n†
k ≥ ek

⇀
w
n†
k + (1− ek)

⇀
w
n

k =⇒ ⇀
w
n†
k ≥

⇀
w
n

k =⇒ min
j

⇀
w
n†
j ≥ max

j

⇀
w
n

j .

So, it is bounded from below.

Hence, the values of
⇀
w
n†
j and

↼
w
n†
j are bounded as

⇀
m
n

j ≤
⇀
w
n

j ≤
⇀

M
n†

j and similarly

for
↼
w
n†
j , and this bound at the end only depends on the initial condition, i.e.

min
j

⇀
w

0

j =:
⇀
m

0
≤ ⇀
w
n†
j ≤

⇀

M
0

:= max
j

⇀
w

0

j ,(3.19)

and Similarly for
↼
w
n†
j .

Now, denoting ·+ := ·+|·|
2 and ·− := ·−|·|

2 , we claim the following theorem.

Theorem 3.2. For some ∆t satisfying

∆t

∆x
≤ 2a/ε

maxj

{(⇀
M

n†

j−1 −
↼
m
n†
j

)+ − (⇀mn†
j −

↼

M
n†

j−1

)−}
≤ 2a/ε(⇀

M
0

− ↼
m

0)+ − (⇀m0
−

↼

M
0)− ,(3.20)
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the Lagrange–projection scheme preserves the positivity of density provided that
ρ0
j > 0 for all j ∈ S.

Proof. In lines of [8], for the Lagrange step to satisfy positivity, one gets from
Piola’s identity that

(3.21)
∆t

∆x

(
ũn†j−1/2 − ũ

n†
j+1/2

)
< 1,

ensures ρn†j > 0 for all j ∈ S. But on the other hand, ∆t should be such that the
projection step is a convex combination, thus

(3.22)
∆t

∆x

((
ũn†j+1/2

)− − (ũn†j−1/2

)+)
< 1,

Thus the stronger condition should be chosen, which is (3.22). Then, based on the

definition of ũn†, we express ∆t in terms of
⇀

M ,
↼

M ,
⇀
m and

↼
m. �

The next goal is to show that this bound for time step, is uniform in ε and it
does not vanish as the Mach number goes to zero. It is possible to show this, for a
well-prepared initial data, with the following definition.

Definition 3.3. For isentropic Euler equation, the well-prepared initial condition
is defined as (see [24, 14])

π
(0)
WP (x) = p

(0)
WP (x) = p0 +O(ε2)p2(x), p2,min ≤ p2(x) ≤ p2,max,(3.23)

u
(0)
WP (x) = u0 +O(ε)u1(x), u1,min ≤ u1(x) ≤ u1,max,(3.24)

with constant p0 and u0.

Then, one can pose the following corollary.

Corollary 3.4. For well-prepared initial data, the time restriction bound (3.20) is
uniform in ε.

Proof. From definition, it is easy to see

⇀

M
0

=
p0

ε2
+O(1)p2,max + a

u0

ε
+O(1)amax

(
|u1,min|, |u1,max|

)
,

⇀
m

0
=
p0

ε2
+O(1)p2,min + a

u0

ε
+O(1)amin

(
|u1,min|, |u1,max|

)
,

↼

M
0

=
p0

ε2
+O(1)p2,max − a

u0

ε
+O(1)amax

(
| − u1,min|, | − u1,max|

)
,

↼
m

0
=
p0

ε2
+O(1)p2,min − a

u0

ε
+O(1)amin

(
| − u1,min|, | − u1,max|

)
.

Thus,

⇀

M
0

− ↼
m

0
=

2au0

ε
+O(1)

(
p2,max − p2,min

)
,

⇀
m

0
−

↼

M
0

=
2au0

ε
−O(1)

(
p2,max − p2,min

)
,

and one gets

∆t

∆x
≤ 2a/ε

O( 1
ε ) +O(1)

≤ C.(3.25)

Hence, the condition (3.20), which provides positivity of the density, is uniform in
ε. �
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Now, let us continue to find a bound for the computed solution to prove stability
of the solution. At first we pose the following lemma.

Lemma 3.5. For the well-prepared initial data, the computed velocity un†j is L∞-
bounded uniformly in ε.

Proof. It is enough to use un†j = ε
2a

(⇀
w
n

j−
↼
w
n

j

)
combined with bounds of

⇀
w
n

j in (3.19).

With straightforward arguments it comes out that un† is bounded in L∞(ΩT ) (uni-
formly in ε) for well-prepared initial data. �

Next, we continue with the stability of density.

Lemma 3.6. For the well-prepared initial data, the computed density ρn†j is L∞-
bounded uniformly in ε. Moreover, it is bounded away from zero in finite time.

Proof. From the continuity equation one has

ρnj
(
τn†j − τ

n
j

)
=

∆t

∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

)
,(3.26)

whose right-hand side is bounded by 1 for a time restriction (3.20) which implies
(3.21). It yields

τn†j = τnj

(
1 +

∆t

∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

))
.(3.27)

Thus (3.21) combined with (3.27) shows clearly that the density would be positive.
But the condition (3.22) also provides us with an ε-uniform upper-bound for the
density as

0 < ρn†j <∞,(3.28)

in combination with (3.27). Thus, the density is L∞-bounded. But one can do a

bit better, if one replaces < 1 in (3.21) with < ς, i.e. ∆t
∆x

(
ũn†j−1/2 − ũ

n†
j+1/2

)
< ς,

with ς ≤ 1. Moreover since
∣∣∆t

∆x

(
ũn†j+1/2

)∣∣ should be less than 1, one gets −1 <
∆t
∆x

(
ũn†j+1/2

)
< 1. So,

−ς < ∆t

∆x

((
ũn†j+1/2

)− − (ũn†j−1/2

)+)
< 2.

Thus, for each time step one has

(3.29)
ρnj
3
< ρn†j <

ρnj
1− ς

,

and for the finite time N∆t = T , the density is bounded away from zero by % :=(ρ0
j,min

3

)N
. �

Remark 3.7. Notice that this gives us the boundedness of the density ρn+1
j since the

projection step is designed as a convex combination due to (3.20). This is similarly
the case for the velocity and momentum.

3.1.3. Proof of local energy inequality (v). We show that the solution of the scheme
satisfies the energy inequality under an ε-independent time restriction, as long as
the initial condition is well-prepared.



ON THE MACH-UNIFORMITY OF LAGRANGE–PROJECTION SCHEME 13

Lagrangian step. Based on [8, Theorem 2.3], we define the entropy function for
symmetric advections problem, (2.16)-(2.17), as

η(
⇀
w,

↼
w) := s(

⇀
w) + s(

↼
w), s(w) :=

ε2w2

4a2
.

So

η(
⇀
w,

↼
w) =

1

2

(
u2 +

π2

ε2a2

)
=
(
E − E +

π2

2a2

)
/ε2,(3.30)

since after non-dimensionalization, one gets E = E
ε2 + u2

2 where E(ρ) = κ
γ−1ρ

γ−1.

For later use, we should mention that such a definition of internal energy fulfills
the Weyl’s assumptions as defined below.

Definition 3.8. The Weyl’s assumption for the internal energy function are defined
as (see [8, 34])

E > 0, Eτ = −p < 0, Eττ > 0, Eτττ < 0.

We also define entropy flux function ψ(
⇀
w,

↼
w) as

ψ(
⇀
w,

↼
w) :=

a

ε

(
s(
⇀
w)− s(↼w)

)
=
πu

ε2
.(3.31)

Then, the cell entropy inequality reads as

ηn†j − ηnj
∆t

+
ψn†j+1/2 − ψ

n†
j−1/2

∆zj
≤ 0.(3.32)

Substituting (3.30) and (3.31), one can relate the entropy inequality for symmetric
advections problem, to energy inequality for the isentropic Euler equations, i.e.

ρnj
En†j − Enj

∆t
+

(
πu
)n†
j+1/2

−
(
πu
)n†
j−1/2

∆x
≤ ρnj

[
En†j − E

n
j −

(
πn†j
)2 − (πnj )2

2a2

]
︸ ︷︷ ︸

=:Rn†
j

.

(3.33)

Then, to prove entropy stability of the scheme, one should show that the entropy

residual Rn†j is non-positive. Considering πnj = pnj , let’s rewrite Rn†j as

Rn†j :=En†j − E
n
j −

pnj
a2

(
πn†j − p

n
j

)
−
(
πn†j − pnj

)2
2a2

(due to (3.11)) =En†j − E
n
j + pnj

(
τn†j − τ

n
j

)
− a2

2

(
τn†j − τ

n
j

)2
.

On the other hand from Taylor expansion with integral remainder, one gets

En†j = Enj + Eτ |xj ,tn

(
τn†j − τ

n
j

)
+

∫ τn†
j

τn
j

Eττ (ξ)
(
τn†j − ξ

)
dξ.

Then, Weyl’s assumptions and change of variables in the integral (re-parameterization)
yield that

En†j = Enj − pnj
(
τn†j − τ

n
j

)
+
(
τn†j − τ

n
j

)2 ∫ 1

0

Eττ (τ
n+1/2
j )(1− ζ)dζ,(3.34)
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where τ
n+1/2
j := ζτn†j + (1 − ζ)τnj . So, for the entropy residual to be non-positive,

one gets

Rn†j =
(
τn†j − τ

n
j

)2 ∫ 1

0

(
Eττ (τ

n+1/2
j )− a2

)
(1− ζ)dζ

=
(
τn†j − τ

n
j

)2 ∫ 1

0

(
−pτ (τ

n+1/2
j )− a2

)
(1− ζ)dζ ≤ 0,

and a sufficient condition would be to set the integrand to be negative. Since
pτ = κγρ1+γ it yields

a2 ≥ κγmax
j

max
ζ

((
ρ
n+1/2
j

)γ+1
)

= max
j

((
ρn†j
)γ+1

,
(
ρnj
)γ+1

)
.(3.35)

Thus, based on the previous section on stability, the bound does not depend on
ε, and hence a can be chosen as

a >

(
‖ρ0‖`∞
(1− ς)

)γ+1

,(3.36)

to satisfy the sub-characteristic condition as well as the energy inequality for the
Lagrangian step.
Projection step. In this part, from projection step, it is clear that due to Jensen’s
inequality the energy inequality holds as

(ρE)n+1
j ≤ ρnjE

n†
j −

∆t

∆x

((
ρEũ

)n†
j+1/2

−
(
ρEũ

)n†
j−1/2

)
.(3.37)

Combining (3.33) and (3.37) we get the energy inequality(
ρE
)n+1

j
−
(
ρE
)n
j

∆t
+

(
ρEũ+ π̃ũ

)n†
j+1/2

−
(
ρEũ+ π̃ũ

)n†
j−1/2

∆x
≤ 0,(3.38)

under a ε-uniform time restrictions (3.20) and sub-characteristic condition (3.36).

3.2. On the relation between entropy inequality and L∞-boundedness. In
this part, we show that energy inequality alone is not enough in order to conclude
stability of the solution, and try to find the suitable further assumption to use. Let
us denote entropy function J := ρE and make a spatial summation on (3.5) to get∑

j

J (Un+1
j ) ≤

∑
j

J (Unj ) =⇒
∑
j

J (Un+1
j ) ≤

∑
j

J (U0
j ) ≤ Cε <∞.

If in addition one assumes positivity, then since J (U) = 1
2

(ρu)2

ρ + κ/ε2

γ−1 ρ
γ is always

positive, it yields

J (Un+1
i ) +

∑
j 6=i

J (Un+1
j ) ≤ Cε

=⇒ 0 < J (Un+1
i ) ≤ Cε −

∑
j 6=i

J (Un+1
j ) =: Cε,i.

Thus, the entropy is bounded from below by zero and from above by Cε,i. This
clearly shows that both ρ and u cannot approach infinitely large values simultane-
ously. As ρ approaches zero, entropy blows up, so this case is excluded for fixed ε
unless m also approaches zero. However since Cε,i blows up as ε → 0, for every ε
this entropy stability analysis provides us with a stability region Ξ0

ε which depends
on the initial condition as well as ε.
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(c) ε = 0.001.
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(d) ε = 0.0001.

Figure 2. Scaled stability region Ξ0 for different ε (yellow area)
with h0 = 0.1 and m0 = 0.1

ε as initial data.

To study the dependence of Ξ0
ε on ε, let us assume that the initial density is

bounded 0 < %
0
≤ ρ0 ≤ %0, and similarly for the initial velocity u0 ≤ u0 ≤ u0. So,

from entropy boundedness one can suppose that for the arbitrary time

ρu2 +
ρ2

ε2
≤ meanj∈S

(
ρ0u

2
0 +

ρ2
0

ε2
)
≤ %0u

2
0 +

%2
0

ε2

and so

ρu2 +
ρ2 − %2

0

ε2
≤ %0u

2
0,

which poses a condition on the domain which ρ and u can live in; so, determines
the stability region Ξ0

ε . In the incompressible limit ε→ 0, it is not possible for the
density to get larger that %0, and we have ρ ≤ %0 in the limit, which is bounded.
But one can see that as the density goes to zero, the momentum blows up to the
infinity for ε� 1; so, this region expands as ε shrinks. One can simply see that in
this case u is of order O( 1

ε ).
Figure 2 shows the level set of the entropy function J with the value Cε (but with

the scaled momentum), which is the boundary between yellow and blue regions. So
due to above discussion, if one scales the momentum with ε, then the scaled region
of stability (denoted by Ξ0) does not expand for the limit ε→ 0 anymore; in Figure
2 all the cases have the same scaled stability region.
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Nonetheless notice that this instability does not occur for the Lagrange–projection
scheme due to time restriction (3.20) (see [8, p. 1515]), since we know that the ve-
locity is bounded for the well-prepared initial data. On the other hand, we know
that density is also bounded away from zero in the finite time1. So again it is
reasonable to expect that such a blow-up does not occur.

Summing up, this discussion implies that the entropy stability along with pos-
itivity can give us ε-dependent stability, i.e. for each ε there is a corresponding
domain Ξ0

ε for the solution to live in. But this domain is going to expand infinitely
as ε → 0. So, positivity and energy inequality are not enough to imply ε-uniform
stability of Un+1. For that, one needs to find a positive lower-bound for the density
as well.

4. Conclusion and future works

We have extended the stability results of the Lagrange–projection scheme pre-
sented in [8], to all-Mach one-dimensional isentropic Euler equations flows. We
have shown that the scheme is AP consistent, i.e. the scheme satisfies the div-free
condition in the zero-Mach number limit, and satisfies the discrete counterpart of
continuous asymptotic expansion. Also we have shown that for the well-prepared
initial data, there exists a Mach-uniform time step which satisfies entropy inequal-
ity, density positivity, as well as stability of the solution in L∞-norm. In other
words, we have extended the results of [8] for all-Mach regime, in the price of
forcing the initial condition to be well-prepared.

The natural next step would be to extend this analysis to full Euler equations,
or to balance laws (with an additional source term like topogrphy for the shallow
water equations), which is a formidable task. Also as done in [26] by compensated
compactness approach, it is of interest to prove the convergence of the scheme to
the unique entropy solution.
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