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In this publication, we consider IMEX methods applied to singularly perturbed ordinary dif-
ferential equations. We introduce a new splitting into stiff and non-stiff parts that has a direct
extension to systems of conservation laws, and investigate analytically and numerically its perfor-
mance. We show that this splitting can in some cases improve the order of convergence, showing
that the phenomenon of order reduction is not only a consequence of the method but also of the
splitting.

1. Introduction

The computation of extremely stiff ordinary differential equations has been the subject of extensive research
over the last decades, see for example the standard textbook [19]. Our interest in stiff ordinary differential
equations stems from the approximation of compressible fluid flows [I, 35] using appropriate spatial dis-
cretization, such as for example the finite volume [16, 17, 28, 27] or the discontinuous Galerkin [10, 9, 8, 7]
method. In particular, we are interested in the approximation of flows in the nearly incompressible regime,
i.e., at very low Mach numbers ¢ [26]. This does not only lead to stiffness induced by the discretization
parameter (Az, say), but also to stiffness induced by the singular perturbation problem that constitutes the
transition from compressible to incompressible flows [24, 32].

It has been recognized that in many cases, it might be beneficial to separate stiff (w.r.t. €) from non-stiff
terms and treat them implicitly and explicitly, respectively. Examples in the context of computational fluid

dynamics can be found, e.g., in [25, 11, 14, 18, 29]; other examples, for instance from linear or elliptic
equations can be found in [13, 33]. It has been recognized in [34] that decomposing the equations into stiff
and non-stiff terms is not trivial. Even if both parts are stable independently, this does not necessarily
mean that the overall algorithm is stable. For linear equations, the authors in [34] have found a uniformly

stable scheme based on characteristic decomposition. This, however, can not easily be extended to nonlinear
equations. To this end, we investigate a new, more general splitting based on the solution of the unperturbed
(’incompressible’) solution in this paper. This splitting has a direct extension to systems of conservation
laws.

Splitting methods lead to implicit / explicit (IMEX) time integration routines. Famous integrators include
IMEX multistep methods, see, e.g., [12, 2, 20] and IMEX Runge-Kutta methods [3, 4, 5, 31]. We focus on
IMEX-BDF methods (to be explained in Sec. 3) and IMEX-RK methods (to be explained in Sec. 4).

In this work, we consider the ordinary differential equation



where, for € > 0,

£

w = (y, 2), f(w) = (9(5@)) :

We assume that 0,¢(y, z) is different from zero in the vicinity of the solution and that it is (at least) in
class C%(R?). This guarantees that the limit equation for ¢ — 0 is a differential algebraic equation (DAE)
of index one. One particular instance of (1) is van der Pol equation, defined by

9(y, z) == (1 — y2) z— . (2)
Our interest is in the case as ¢ — 0. Expanding w in terms of ¢ formally as
w(t) = w(o) (t) + 5w(1)(t) + 52w(2) (t) + 0(63)

reveals that w(g) = (y(0), 2(0)) fulfills the DAE

Wy =20 90 20) = 0. -

(Please note that a subscript “0” refers to initial conditions, while a subscript “(0)” refers to asymptotic
expansion. We refer to wg) as the reference solution.) Obviously, only carefully crafted initial conditions
induce a well-posed DAE for w(g), and the same holds true for any w;. Initial conditions wq that ’survive’
the limit as € — 0 are called well-prepared. One particular set of initial conditions for van der Pol equation
from literature [19], that we are going to use in the sequel, is given by
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We note that, unlike for systems of conservation laws, the question of a suitable splitting for ordinary
differential equations has usually not been discussed in literature. This is probably because for ordinary
differential equations, there is a 'naive’ splitting that can be applied in a stable way, namely,

flw) = <g> + (g(gg,z)> ; (4)

where the second part is treated implicitly. In this sense, this paper can be understood as a proof of concept,
with obvious extension to more complex problems.

It is well-known that zero-stable IMEX-BDF methods (up to six stages) are both uniformly stable and
uniformly consistent, i.e., independent of the relation between the perturbation parameter £ and the time
step At, the error converges with the correct order in At to zero. The same is not true for general IMEX-RK
methods [41] (with the exception of the specifically designed Runge-Kutta method by Boscarino [5]). This
means that for At > e, the error seems to exhibit some kind of degradation in convergence in general.
In this work, we present some comparisons between the naive splitting and the newly developed splitting,
showing that order reduction is also a phenomenon of the splitting and not only the temporal integration.

The paper is organized as follows: In Sec. 2, we introduce the new splitting based on what we call the
reference solution wy. In Sec. 3, we combine this splitting with the IMEX-BDF method and show that
this constitutes a reasonable discretization in the sense that for e — 0 and At fixed, it converges toward a
scheme for the limit DAE. This property is frequently called asymptotic preserving, see, e.g., [21, 23, 22].
This analysis is equipped with numerical results. In Sec. 4, we apply the splitting to IMEX-RK schemes
and show numerical results. It seems that for a certain sub-class of those methods, there is no (or less)
order reduction for the new splitting, see Sec. 4.



2. Splitting

In this section, we define the newly-developed splitting. More formally, we introduce ]?and f, such that the
right-hand side f of the ODE (1) can be split into

—~ ~

f(w) = f(w) + f(w),

and we think about f(w) as a ’stiff” contribution to the flux. In (4), we already showed the standard way to
do it. In this publication, we propose a splitting that has an extension to other types of ODEs and is related
to the reference solution (RS) w(gy, i.e., the (formal) limit solution for & — 0, see also (3). The splitting is
consequently called RS-IMEX splitting:

Definition 1. RS-IMEX splitting: We define the following splitting for the right-hand side f of (1):

f(w) = f(w) + f'(we)(w —we),  Flw)=fw) = flw). (5)
There are a couple of remarks in order here:

Remark 1. 1. The motivation of this splitting is that for € close to zero, the term w — wq) is supposed

to be O(g), i.e., small. In particular, f is supposed to be small. Therefore, we can have the hope that
stiffness is reduced.

2. Note that f(w()) = (2(0),0)" and

! — 0 1
) = <2619(w<o>> i@‘zg(w(m)) '

From this, one can conclude that for Aw :=w —w(q) (Ay, Az accordingly), there holds

J(w) = <i (019(w)) Ay + 529(w(0))Az)> ’

0
flw) = <i (9(w) — drg(w(e)) Ay — 829<W(o>)AZ)) '

3. In practice, w is replaced by an approximation w?(%p.
4. Because wgy depends on t, both f and ]7 depend on t as well. Most of the time, we will omit this
dependence for the sake of simplicity.

We note once again that this splitting is universal in the sense that for any singular perturbation problem,
such a splitting is - at least formally - possible. Based on this splitting, we can introduce IMEX schemes in
the next sections.

3. IMEX-BDF
In this section, we couple the splitting defined in Section 2 to an IMEX-BDF scheme [20]. It is well-known
that BDF schemes belong to the class of linear multistep schemes and are constructed in such a way that

the update wZJ{l is given by the expression

S
3 ajuwp? = Atf(wiih).
j=—1



Remark 2. 1. BDF schemes are zero-stable up to s = 5.

2. Computing the coefficients is easily possible using the relation Ad = (0,1,0,...,0)T ford = (a_1,...,
G=n*
G-11

The so-called extrapolated BDF scheme can be construced to be

and matriz A with A;j = —

> aguwing? = ALB; f(wirg?),
=0

j=—1
obviously, they are explicit.

Remark 3. Again, the B; fulfill a linear system of equations: g = (Bo, - - ., Bs)T fulfills Bg = (1,0,0,...,0)
1

for matriz B with B;j = (—1)"—1(17
Based on a splitting of f as in (5) it is obvious to construct the IMEX-BDF scheme as

S S
Z ajwr,’ = Atf(w%rl) + At Z Bif(wix,”)- (6)
j=—1 Jj=0

Those schemes are usually indexed by their convergence order s + 1. We are now ready to show the main

theorem, namely, that the algorithm is asymptotic preserving, to be explained in the sequel.

3.1. Asymptotic Preserving Property

We start this section with a definition:

Definition 2. An algorithm for the computation of a solution to (1) is called asymptotic preserving (AP)
if the discrete limit (w.r.t. € — 0) algorithm is a stable approximation to (3).

An illustration that is frequently shown in this context [22] can be seen in Fig. 1. If the diagram commutes
(i.e., the order of limits At — 0 and € — 0 can be changed) the algorithm is asymptotic preserving.

n+1 e—0 n+1

Wy WAt (0)
At — 0 At — 07 AP
w e—=0 w(o)

Figure 1: Illustration of the AP property. If wZﬁo) converges toward wg) for At — 0, the algorithm is
asymptotic preserving (AP).

Theorem 1. The algorithm (6) is asymptotic preserving with correct order s + 1.

Proof. Let w}, be expanded in terms of ¢ as

WA; = WAy 0) T EWAL 1) + O(e?)

)T



for all n. We assume that start values ijt (0)? 0 < j < s are consistent to the right order, i.e., ijt 0
w(o) (tj) = O(Ats+1).
The (formal) limit algorithm for & — 0 is given by

Z %'?JZZ,](O) = Atzgﬁoy (7a)
=1

0= Zﬁg ( wAt 819(w(0))AyZ;%0) - 329(w(0))AZZ;€o)> (7b)

+ 019( wo ))Ay”% o) T 29(w(0) AZAT (o) (7c)

The first equation can be rewritten as

Z ajyz;,j((]) = AtZ(o) (thrl) + AtAzZ-;%O)

j=—1
This means that yz—:%o) = Y(0) (th)—i—(’)(AtSH)—i—(’)(AtAzE'%O)) which implies that Ay""'% 0) = O(AtAz ”“'%0))—1—
O(At**1) for all n. Furthermore, the algebraic equation (7b)-(7c) then implies recursively that AZ”JF%O) =
O(AtsTY). O

3.2. Numerical Results

Validation of the scheme In this section, we show numerical results based on van der Pol equation (see
egs. (1) and (2)) to show that the performed algorithm works as expected. We employ both IMEX-BDF 2
and IMEX-BDF 4, given by

1 ~ ~ ~
gwnﬂ —2w" + §w"*1 = At (f(w”“) +2f(w™) — f(w"fl)) and
25 n+1 n n—1 4 n—2 1 n—3 _ o n+tl o (. n—1 (=2 (0 n—3
Y — 4w" 4 3w —gw —|—Zw = At f(w") +4f(w") —6f (W) +4f (W) — f(w"T?)
respectively.

In Fig. 2, numerical results are shown for IMEX-BDF 2 (left figure) and IMEX-BDF 4 (right figure).
The splitting employed is the one given in Def. 1, the reference solution w(y) is computed exactly. Note
that this is possible for van der Pol’s example analytically. Initial steps needed for this multistep scheme
are computed with a stiff integrator to extremely high precision. From the figures, one can clearly see that
there is no order degradation as € — 0, i.e., both IMEX-BDF schemes converge with their respective order
of two and four uniformly in ¢ until they hit machine zero. Furthermore, and this is obviously a consequence
of the AP property, error curves lie nearly on top of each other, because they only differ by O(e).

Comparison to standard and approximate splitting Obviously, the most straightforward splitting (which,
indeed, is usually employed in literature) is to split as in (4) and treat the e-dependent part implicitly, i.e.,

~ 0
take the stiff part to be f(w) = <g(y,z)). We denote this splitting in short form by Std.

Furthermore, in practical cases, w?o) (needed in (5)) is not readily available, so one has to compute it nu-
merically. This approach, which we call RS-Approximate (or RSApp, for short), has also been implemented
using a BDF discretization (always with corresponding order) of the limit differential algebraic equation. In
Fig. 3, we show numerical results for these approaches in comparison to the splitting given in Def. 1. One
can observe that the RS-IMEX always behaves a little bit better than the other two (which is not surprising,



| Lol Lol Lol ! | Lol Lol Lol
10~4 103 1072 1071 1074 103 1072 107!
Size of At Size of At

Figure 2: Convergence results for van der Pol equation for different values of €, using the RS-IMEX splitting
coupled with IMEX-BDF 2 (left) and IMEX-BDF 4 (right). wg) has been computed analytically;
initial values for multistep scheme stem from a highly resolved (’exact’) numerical approximation.

because there is actually much more information about the limit solution than in, e.g., the naive splitting).
Furthermore, it seems that the RSApp scheme behaves somewhat worse than the standard splitting. Overall,
however, it is interesting to see that quantitatively and qualitatively, they all behave very similarly.

4. IMEX-RK

Similar to BDF schemes, one can also couple implicit and explicit Runge-Kutta methods with the splitting
defined in Def. 1. The following definition gives those schemes, for a more thorough discussion we refer to
[1] and the references therein. We only use diagonally implicit methods.

Definition 3 (IMEX Runge-Kutta Scheme). For every t"*1 =" + At do the following:
1. (Stages) Fori=1,...,s solve

i i—1
w; = w" + Atzgz’,jkj + AtZAi,jlj-
p= =1

with ki = f(w;, t" + &AL and l; = f(wi,t" +¢iAt). (Note that here, the dependence of f and font
is crucial, see also Rem. 1, which is why we make it explicit.)

2. (Update) Finally evaluate
Wt = " + Atzgjkj + Atzgjlj
j=1 g=1

The coefficients of the IMEX-RK method are given by two Butcher tableaux, the one with overhats referring
to the explicit, the other to the implicit method. See also Tbl. 1.

Remark 4. Example tableaux used in the numerical results can be found in A.

As already pointed out in the introduction, solving singularly perturbed equations can actually lead to the
phenomenon of order reduction. This means that for common schemes and At > ¢, the formal convergence
order is not achieved. In the numerical results section, we compare different IMEX-RK schemes for standard
and IMEX-RS splitting. Again, we use van der Pol equation with both an ’exact’ reference solution wg) and

an approximate reference solution w?(f)p . The computation of this approximation is explained in the sequel.



107! = L — 107! T —

—8— £=10""(Std) —8— ¢=10"" (Std)
10-3 £= 1(1—4 (RS) i 10-3 e = 13—4 (RS) i
——¢=10"" (RSApp) ——¢=10""* (RSApp)
1075 . 1075 i
5 s
= 1077 1 @107 .
1079 | . 1079 | i
10—11 L | 10—11 [ — |
Ll Lol Lol Lol | | Lol Lol Lol |
1074 1073 1072 107! 1074 1073 1072 107!
Size of At Size of At

Figure 3: Convergence results for van der Pol equation and ¢ = 10~* with IMEX-BDF 2 (left) and IMEX-
BDF 4 (right). Three different methods are investigated: (Std) Standard method from literature
with splitting as in (4). (RS) RS-IMEX splitting from Def. 1. (RSApp) RS-IMEX splitting from
Def. 1, but w(g) has been computed using a BDF scheme of order 2 (left) and order 4 (right).

Table 1: Butcher tableaux for an IMEX-RK scheme. Left explicit, right implicit. Actual tableaux can be
found in A.

Approximation of w” Using the IMEX scheme as in Def. 3 with the standard splitting given in (4)
allows to take the formal limit as ¢ — 0. This yields a Runge-Kutta discretization for the differential-
algebraic equation (3). In our numerical experiments, we compute the approximation w?é”p using the same
Runge-Kutta integrator as in the example considered, with exactly the same time steps. ’%he stages of the
computation of w?é’)p are saved and used in the computation of k; and I; needed in Def. 3. Note that it
does not make sense to use the RS-IMEX splitting for this computation, because its use necessitates the

knowledge of w(q).

4.1. Numerical Results

In this section we show the numerical results for van der Pol equation with different IMEX-RK discretiza-
tions, and show some interesting observation which we have not found any explication for so far.

Again, in all the results, we compare standard splitting versus the new RS-IMEX splitting versus a
splitting that uses an approximate version of w) (RSApp, for short). We want to mention already at
this point that there is hardly any difference between RS-IMEX and RSApp splitting in all our numerical
experiments.

Error has been computed as the two-norm of the difference to the solution at end-time 7' = 0.5

Works as expected: ARS-443 with RS-IMEX Our point of departure is the ARS-443 scheme given in [2],
see also the augmented Butcher tableau in Tbl. 3. (443 refers to 4 stages explicit, 4 stages implicit, and third
order convergence.) In Fig. 4, we plot results for the standard splitting (4), the new RS-IMEX splitting
and its approximate version for various €. It can be observed that results are nearly non-distinguishable. In
particular, the order reduction (the non-uniform convergence as ¢ gets increasingly small) can be observed
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Figure 4: Convergence results for van der Pol equation for different values of ¢, using the ARS-443 IMEX-
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical wq)
(middle) and the RS-IMEX splitting with approximate w) (right).
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Figure 5: Convergence results for van der Pol equation for different values of ¢, using the BHR-553 IMEX-
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical wq)
(middle) and the RS-IMEX splitting with approximate w(g) (right).

for both schemes. So far, this is what one would actually expect from our experiences with the IMEX-BDF
scheme, where the choice of splittings did hardly have an influence.

Works better without update step: BHR-553 with RS-IMEX The BHR-553 (5 stages, third order)
scheme has been explicitly designed in [5] to circumvent the order reduction. See Tbl. 5 for the corresponding
Butcher tableau.

In our numerical experiments, see Fig. 5, we can observe uniform third order convergence for both
standard and RS-IMEX splitting. However, it seems that for extremely small values of ¢, and "large’ values
of At, the algorithm becomes unstable for the RS-IMEX, see Fig. 6. We were not able to figure out whether
this is because of a conceptual problem, or due to cancellation errors. Curiously, this effect does not show
up if one chooses w™*! to be ws, i.e., instead of taking an update, the last stage of the Runge-Kutta method
is taken as new update, see Fig. 6. Additionally, third order is recovered, which is peculiar because the last
stage only has a formal consistency of two.

Improved convergence: BPR-353 and DPA-242 with RS-IMEX The last paragraph is devoted to BPR-
353 and DPA-242 schemes, presented in [0] and [15], respectively. Corresponding Butcher tableaux can be
found in Thl. 4 and Thl. 2. Coupled to the standard splitting (4), it is well-known that these methods



10-11 ] - ol e B
L L I L L I L L Ll L ol L Lo L
1073 1072 1073 1072 107!
Size of At Size of At

Figure 6: Convergence results for van der Pol equation for different values of ¢, using the BHR-553 IMEX-
RK scheme coupled with the RS-IMEX splitting. Left: Full BHR-553 scheme which obviously
exhibits instabilities (unplotted values are NaN). Right: Neglecting the update step. w() has
been computed analytically.
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Figure 7: Convergence results for van der Pol equation for different values of €, using the BPR-353 IMEX-
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w/q)
(middle) and the RS-IMEX splitting with approximate w(qg) (right).

exhibit quite severe order loss as can be seen in Figs. 7 and 9 on the left sides. In particular, for the
DPA scheme, this order loss is quite significant. Coupling both methods to the newly developed RS-IMEX
splitting seems to yield uniform convergence in ¢, see Figs. 7 and 9 on the right.

Remark 5. We note that we did also test this on the Pareschi-Russo equation [70]

, ,_y+sin(y;—z (8)

see also Fig. 8, showing that the observed phenomenon is not a feature of van der Pol equation.

Up to now, we do not have a solid explanation for this effect, but we conjecture that it is because of the
Taylor series approach employed in (5), that enforces the numerical solution to be close to w(p)-

5. Conclusion and Outlook

In this publication, we have developed a new splitting based on the reference solution and shown numerical
comparison with the more established standard splitting. We have shown that for IMEX schemes of BDF
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Figure 8: Convergence results for the Pareschi-Russo (8) equation for different values of ¢, using the BPR-
353 IMEX-RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with
analytical w(y) (middle) and the RS-IMEX splitting with approximate wg) (right).
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Figure 9: Convergence results for van der Pol equation for different values of €, using the DPA-242 IMEX-
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w/q)
(middle) and the RS-IMEX splitting with approximate w) (right).
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type, the influence of the splitting is marginal, and we could also show the asymptotic preserving property.
In contrast, for IMEX schemes of Runge-Kutta type, the splitting has indeed a broad influence. We have
shown numerical results demonstrating that it is even possible to obtain faster-converging schemes.

Obviously, in this context, van der Pol equation is not necessarily the most interesting context. Our interest
is in high-order approximation of singularly perturbed conservation laws. The next key step is therefore
to apply the RS-IMEX splitting to the compressible Euler / Navier-Stokes equations. We anticipate that
this will impose more severe problems - although preliminary results already show a satisfactory behavior -
as the discretization of the limit equation will most likely have a much higher influence on the quality and
stability of an overall algorithm. Currently, this is work in progress.

A. Butcher tableaux

For the sake of completeness, we show the augmented Butcher tableaux of the employed IMEX-RK schemes.

o/ 0 0 0 0 /2] 1/2 0o 0 0
1/3/1/3 0 0 0 2/3(1/6 1/2 0 0
1|1 0 0 0 /2 |-1/2 1/2 1/2 0
1 |1/2 0 1/2 0 1| 3/2 -3/2 1/2 1/2

[1/2 0 1/2 0 | 3/2 -3/2 1/2 1/2

Table 2: DPA-242 [15]

0 0 o 0 0 0 ojlo o 0o 0 0
12 12 o o 0 0 1/2/0 1/2 0 0 0
2/3|11/18 1/18 0 0 0  2/3|0 1/6 1/2 0 0
1/2| 5/6 -5/6 1/2 0 0 1/2]|0 -1/2 1/2 1/2 0
1| 1/4 7/4 3/4 -7/4 0 1|0 3/2 -3/2 1/2 1/2

/4 7/4 3/4 -7/4 0 0 3/2 -3/2 1/2 1/2

Table 3: ARS-443 [2]

olo 0 0 0 0 0] 0 o 0 0 0
1|1 0 0 00 1|12 12 0 0 0
2/314/9 2/9 0 0 0  2/3|5/18 -1/9 1/2 0 0
1 |1/4 0 3/4 0 0 1 /12 0 0 1/2 0
1 |1/4 0 3/4 0 0 1| 1/4 0 3/4 -1/2 1/2

1/4 0 3/4 0 0 1/4 0 3/4 -1/2 1/2

Table 4: BPR-353(0]
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