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Abstract

The approximation of tensors has important applications in various disciplines, but it remains an ex-
tremely challenging task. It is well known that tensors of higher order can fail to have best low-rank ap-
proximations, but with an important exception that best rank-one approximations always exists. The most
popular approach to low-rank approximation is the alternating least squares (ALS) method. The conver-
gence of the alternating least squares algorithm for the rank-one approximation problem is analysed in this
paper. In our analysis we are focusing on the global convergence and the rate of convergence of the ALS
algorithm. It is shown that the ALS method can converge sublinearly, Q-linearly, and even Q-superlinearly.
Our theoretical results are demonstrated on explicit examples.

Keywords: tensor format, tensor representation, tensor network, alternating least squares optimisation, or-
thogonal projection method.

1 Introduction

We consider a minimisation problem on the tensor space V =
⊗d

µ=1R
nµ equipped with the Euclidean inner

product 〈·, ·〉. The objective function f : V → R of the optimisation task is quadratic

f(v) :=
1

‖b‖2
[

1

2
〈v, v〉 − 〈b, v〉

]
≥ −1

2
, (1)

where b ∈ V . In our analysis, a tensor u ∈ V is represented as a rank-one tensor. The representation of
rank-one tensors is described by the following multilinear map U :

U : P :=
d×

µ=1

Rnµ → V

(p1, . . . , pd) 7→ U(p1, . . . , pd) :=
d⊗

µ=1

pµ.

We call a d-tuple of vectors (p1, . . . , pd) ∈ P a representation system of u if u = U(p1, . . . , pd). The
tensor b is approximated with respect to rank-one tensors, i.e. we are looking for a representation system
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(p∗1, . . . , p
∗
d) ∈ P such that for

F := f ◦ U : P → V → R (2)

F (p1, . . . , pd) =
1

‖b‖2
[

1

2
〈U(p1, . . . , pd), U(p1, . . . , pd)〉 − 〈b, U(p1, . . . , pd)〉

]
we have

F (p∗1, . . . , p
∗
d) = min

(p1,...,pd)∈P
F (p1, . . . , pd). (3)

The range set U(P ) is a closed in V , see [6]. Therefore, the approximation problem is well defined. The set of
best rank-one approximations of the tensor b is denoted by

Mb := {v ∈ U(P ) : v is a best rank-one approximation of b} . (4)

The alternating least squares (ALS) algorithm [2, 3, 4, 7, 8, 11, 12] is recursively defined. Suppose that the
k-th iterate pk = (pk1, . . . , p

k
d) and the first µ − 1 components pk+1

1 , . . . , pk+1
µ−1 of the (k + 1)-th iterate pk+1

have been determined. The basic step of the ALS algorithm is to compute the minimum norm solution

pk+1
µ := argminqµ∈RnµF (pk+1

1 , . . . , pk+1
µ−1, qµ, p

k
µ+1, . . . , p

k
d).

Thus, in order to obtain pk+1 from pk, we have to solve successively L ordinary least squares problems.

The ALS algorithm is a nonlinear Gauss-Seidel method. The locale convergence of the nonlinear Gauss-Seidel
method to a stationary point p∗ ∈ P follows from the convergence of the linear Gauss-Seidel method applied
to the Hessian F ′′(p∗) at the limit point p∗. If the linear Gauss-Seidel method converges R-linear then there
exists a neighbourhood B(p∗) of p∗ such that for every initial guess p0 ∈ B(p∗) the nonlinear Gauss-Seidel
method converges R-linear with the same rate as the linear Gauss-Seidel method. We refer the reader to Ortega
and Rheinboldt for a description of nonlinear Gauss-Seidel method [10, Section 7.4] and convergence analysis
[10, Thm. 10.3.5, Thm. 10.3.4, and Thm. 10.1.3]. A representation system of a represented tensor is not
unique, since the map U is multilinear. Consequently, the matrix F ′′(p∗) is not positive definite. Therefore,
convergence of the linear Gauss-Seidel method is in general not ensured. However, the convergence of the
ALS method is discussed in [9, 13, 15, 16]. Recently, the convergence of the ALS method was analysed by
means of Lojasiewicz gradient inequality, please see [14] for more details. The current analysis is not based
on the mathematical techniques developed for the nonlinear Gauss-Seidel method neither on the theory of
Lojasiewicz inequalities, but on the multilinearity of the map U .
Notation 1.1 (Nn). The setNn of natural numbers smaller than n ∈ N is denoted by

Nn := {j ∈ N : 1 ≤ j ≤ n}.

The precise analysis of the ALS method is a quite challenging task. Some of the difficulties of the theoretical
understanding are explained following examples.
Example 1.2. The approximation of b ∈ V by a tensor of rank one is considered, where

b =
r∑
j=1

λj

d⊗
µ=1

bjµ︸ ︷︷ ︸
bj :=

, λ1 ≥ · · · ≥ λr > 0, ‖bjµ‖ = 1, (5)

Bµ := (bjµ : 1 ≤ j ≤ r) ∈ Rmµ×r (1 ≤ µ ≤ d),

2



and BT
µBµ = Id, see the example in [9, Section 4.3.5]. Let us further assume that vk = pk1 ⊗ pk2 ⊗ . . .⊗ pkd is

already determined. Corollary 2.4 leads to the recursion

pk+1
1 =

 1

‖vk‖2
B1diag

λ2
j

d−1∏
µ=2

〈
bjµ, p

k
µ

〉
‖pkµ‖2

2

j=1,...,r

BT
1


︸ ︷︷ ︸

G1(pk1 ,...,p
k
d):=

pk1 (k ≥ 2), (6)

The linear map G1(pk1, . . . , p
k
d) ∈ Rm1×m1 describes the first micro step pk1 ⊗ pk2 ⊗ . . . ⊗ pkd 7→ pk+1

1 ⊗
pk2 ⊗ . . . ⊗ pkd in the ALS algorithm. The iteration matrix G1(pk1, . . . , p

k
d) is independent under rescaling of

the representation system, i.e. G1(α1p1, . . . , αdpd) = G1(p1, . . . , pd) for 1 =
∏d
µ=1 αµ. Further, we can

illustrate the difficulties of the ALS iteration in higher dimensions. For d = 2, the ALS method is given by the
two power iterations

pk+1
1 =

[
1

‖pk1‖2‖pk2‖2
B1diag

(
λ2
j

)
j=1,...,r

BT
1

]
pk1,

pk+1
2 =

[
1

‖pk+1
1 ‖2‖pk2‖2

B2diag
(
λ2
j

)
j=1,...,r

BT
2

]
pk2.

Clearly, if the global minimum b1 is isolated, i.e. λ1 > λ2, then the ALS method converges to b1 provided that
〈v0, b1〉 6= 0, where v0 = p0

1 ⊗ p0
2 ∈ V is the initial guess. Further, we have linear convergence∣∣∣tan∠[b1µ, p

k+1
µ ]

∣∣∣ ≤ (λ2

λ1

)2 ∣∣∣tan∠[b1µ, p
k
µ]
∣∣∣ (1 ≤ µ ≤ 2).

Note that in this example the angle ∠[b1µ, p
k
µ] is a more natural measure of the error than the usual distance

‖b1µ − pkµ‖. For d ≥ 3, the factor
∏d−1
µ=2

〈
bjµ, p

k
µ

〉2
/‖pkµ‖2 from Eq. (6) describes the behaviour of the ALS

iteration. Let 1 ≤ j∗ ≤ r. We say that a term bj∗ from Eq. (5) dominates at vk = pk1 ⊗ . . .⊗ pkd if

d−2

√
λ2
j∗

〈
bj∗µ, p

k
µ

〉2
> d−2

√
λ2
j

〈
bjµ, p

k
µ

〉2
(7)

for all j ∈ Nj∗ := {j ∈ N : 1 ≤ j ≤ r and j 6= j∗} and all µ ∈ Nd. If bj∗ dominates at vk, then the recursion
formula (6) leads to

∣∣∣tan∠[bj∗ 1, p
k+1
1 ]

∣∣∣ ≤ maxj∈Nj∗

(
λj
∏d−1
µ=2

〈
bjµ, p

k
µ

〉)2

(
λj∗
∏d−1
µ=2

〈
bj∗µ, pkµ

〉)2

︸ ︷︷ ︸
<1

∣∣∣tan∠[bj∗ 1, p
k
1]
∣∣∣ , (8)

i.e. the first component of the representation system pk+1
1 is turned towards the direction of bj∗ 1. Note that for

r = 2 the bound for the convergence rate is sharp, i.e.

∣∣∣tan∠[bj∗ 1, p
k+1
1 ]

∣∣∣ =
maxj∈Nj∗

(
λj
∏d−1
µ=2

〈
bjµ, p

k
µ

〉)2

(
λj∗
∏d−1
µ=2

〈
bj∗µ, pkµ

〉)2

∣∣∣tan∠[bj∗ 1, p
k
1]
∣∣∣ (r = 2). (9)

The inequality

d−2

√
λ2
j∗

〈
bj∗ 1, p

k+1
1

〉2
=

1

‖vk‖4
λ4
j∗

d−1∏
µ=2

〈
bj∗µ, p

k
µ

〉4

‖pkµ‖4
d−2

√
λ2
j∗

〈
bj∗ 1, p

k
1

〉2

>
1

‖vk‖4
λ4
j

d−1∏
µ=2

〈
bjµ, p

k
µ

〉4

‖pkµ‖4
d−2

√
λ2
j

〈
bj 1, p

k
1

〉2
= d−2

√
λ2
j

〈
bj 1, p

k+1
1

〉2
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shows that bj∗ also dominates at the successor pk+1
1 ⊗ pk2 ⊗ . . .⊗ pkd. Further, we have for all j ∈ Nj∗

d−2

√
λ2
j

〈
bj,1, p

k+1
1

〉2

d−2

√
λ2
j∗

〈
bj∗,1, p

k+1
1

〉2 =

d−1∏
µ=2


d−2

√
λ2
j

〈
bjµ, p

k
µ

〉2

d−2

√
λ2
j∗
〈
bj∗µ, pkµ

〉2︸ ︷︷ ︸
<1


2

d−2

√
λ2
j

〈
bj,1, p

k
1

〉2

d−2

√
λ2
j∗
〈
bj∗,1, pk1

〉2
<

d−2

√
λ2
j

〈
bj,1, p

k
1

〉2

d−2

√
λ2
j∗
〈
bj∗,1, pk1

〉2
.

By analogy for the following micro steps, we have

maxj∈Nj∗

(
λj
∏d−1
µ=2

〈
bjµ, p

k+1
µ

〉)2

(
λj∗
∏d−1
µ=2

〈
bj∗µ, p

k+1
µ

〉)2 <
maxj∈Nj∗

(
λj
∏d−1
µ=2

〈
bjµ, p

k
µ

〉)2

(
λj∗
∏d−1
µ=2

〈
bj∗µ, pkµ

〉)2 .

Hence, the ALS iteration converges to bj∗. Now it is easy to see that

lim sup
k→∞

maxj∈Nj∗

(
λj
∏d−1
µ=2

〈
bjµ, p

k
µ

〉)2

(
λj∗
∏d−1
µ=2

〈
bj∗µ, pkµ

〉)2

 = 0.

Therefore, the tangent tan∠[bj∗ µ, p
k
µ] converges Q-superlinearly, i.e.∣∣∣tan∠[bj∗ µ, p

k
µ]
∣∣∣ −−−→
k→∞

0 (Q-superlinearly).

Furthermore, the ALS iteration converges faster for large d. Unfortunately, there is no guarantee that the
global minimum b1 dominates at vk. However, in this example it is more likely that a chosen initial guess
dominates at the global minimum. For simplicity let us assume that r = 2 and λ1 > λ2. see Eq. (5). Since the
Tucker ranks of b are all equal to 2 and the condition from Eq. (7) does not depend on the norm of the vectors
from the representation system, assume without loss of generality that for µ ∈ Nd the representation system of
every initial guess has the following form:

pµ(ϕµ) = sin (ϕµ) bµ,2 + cos (ϕµ) bµ,1,
(
ϕµ ∈

[
0,
π

2

]
, ‖pµ(ϕµ)‖ = 1

)
.

If the global minimum dominates at the initial guess, we have for all µ ∈ Nd

d−2

√
λ2

1 〈b1µ, pµ(ϕµ)〉2 > d−2

√
λ2

2 〈b2µ, pµ(ϕµ)〉2

⇔ tan (ϕµ) < d−2

√
λ1

λ2
.

If we define the angle ϕ∗d, µ ∈
[
0, π2

]
such that

tan
(
ϕ∗d, µ

)
= d−2

√
λ1

λ2
,

then every initial guess with ϕµ ∈ [0, ϕ∗d, µ) converges to the global minimum. Furthermore, we have

tan(ϕ∗d, µ) > 1 ⇔ ϕ∗d, µ >
π

4
,

4



ϕ∗d, µ >
π
4

bµ,1

bµ,2

pµ(ϕµ) = cos(ϕµ)bµ,1 + sin(ϕµ)bµ,2

ϕµ ∈ [0, π2 ]

`d

Figure 1: The angle ϕ∗d, µ describes the slice where the global minimum is a point of attraction. Every initial
guess located under the red line `d will converge to the global minimum. Note that the angle ϕ∗d, µ is larger
then π

4 , but interestingly enough ϕ∗d, µ −−−→
d→∞

π
4 .

i.e. the slice where the global minimum is a point of attraction is more potent then the slice where the local
minimum λ2b2 is a point of attraction, see Figure 1 for illustration. But we have for the asymptotic behavior

tan
(
ϕ∗d, µ

)
= d−2

√
λ1

λ2
−−−→
d→∞

1, ⇔ ϕ∗d, µ −−−→
d→∞

π

4
,

i.e. for sufficiently large d the slices are practically equal potent.
Example 1.3. In the following example a sublinear convergence of ALS procedure for rank-one approximation
is shown. We will consider the tensor bλ ∈ V given by

bλ =
3⊗

µ=1

p+ λ (p⊗ q ⊗ q + q ⊗ p⊗ q + q ⊗ q ⊗ p)

for some λ ≥ 0 and p, q ∈ Rn with ‖p‖ = ‖q‖ = 1 and 〈p, q〉 = 0. Let us first prove the following statement.
Proposition 1.4. Define v∗ :=

⊗3
µ=1 p. Then

a) Mb = {v∗}, if λ ≤ 1
2

b) |Mb| = 2 and v∗ /∈Mb, if λ > 1
2

Proof. Let v∗λ ∈ Mb. Since tensor b is symmetric, v∗λ also has to be symmetric. Write v∗λ = Cλ
⊗3

µ=1 pλ,
where pλ = p+ αλq (this is possible, since 〈b, q⊗ q

⊗
q〉 = 0). Now the tuple (Cλpλ, pλ, pλ) is a stationary

5



point of F , therefore
(IdRn ⊗ pλ ⊗ pλ)T b = Cpλ

for some C ∈ R. But
(IdRn ⊗ pλ ⊗ pλ)T b = (1 + λα2

λ)p+ 2λαλq,

hence
2λαλ

1 + λα2
λ

= αλ. (10)

The solutions of (10) are

αλ =

{
0, if λ ≤ 1

2 ,

0,
√

2λ−1
λ or −

√
2λ−1
λ , if λ > 1

2 .

Straightforward calculations show that for λ > 1
2 the solutions αλ = ±

√
2λ−1
λ lead to the same value of F

which is smaller than f(v∗). �

Now let λ ≤ 1
2 and vk = Ckpk1 ⊗ pk2 ⊗ . . . ⊗ pkd, with pkµ = ckµp + skµq, cµ,k2 + skµ

2
= 1 and some Ck ∈ R.

Define γµ,k :=

(
cµ,k
sµ,k

)
. Applying Corollary 2.4, one gets after short calculations the recursion formula

γ1,k+1 = C1,kM1,kM
T
1,kγ1,k

with some C1,k ∈ R and

M1,k =

(
c2,k λs2,k

λs2,k λc2,k

)
.

Then for t1,k :=
s1,k
c1,k

it holds

t1,k+1 =
λ(λ+ 1)c2,kc1,k

s2,k
s1,k

+ λ2

c2
2,k + λ2s2

2,k + λ(λ+ 1)
c2,k
c1,k

c2,ks1,k

s1,k

c1,k
. (11)

Thanks to Corollary 3.16 and Proposition 1.4 we know, that limk→∞ v
k = v∗ for v∗ =

⊗3
µ=1 p, therefore

lim
k→∞

cµ,k = 1 (12)

lim
k→∞

sµ,k = 0 (13)

for µ ∈ N3. From Eq. 12 and 11 one gets

lim sup
k→∞

t1,k+1

t1,k
= λ2 + λ(λ+ 1) lim sup

k→∞

s2,k

s1,k
. (14)

The same way

lim sup
k→∞

t2,k+1

t2,k
= λ2 + λ(λ+ 1) lim sup

k→∞

s3,k

s2,k
(15)

lim sup
k→∞

t3,k+1

t3,k
= λ2 + λ(λ+ 1) lim sup

k→∞

s1,k+1

s3,k
(16)

Furthermore, from Eq. (21) we know that

p2,k+1 = C2,k+1M2,kp1,k+1
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with some C2,k+1 ∈ R and

M2,k =

(
c3,k λs3,k

λs3,k λc3,k

)
.

Simple calculations result in the relation

s2,k+1

s1,k+1
= λ

s3,k

s1,k+1
c1,k+1 + λc3,k,

and hence
lim sup
k→∞

s2,k

s1,k
= λ+ λ lim sup

k→∞

s3,k

s1,k+1
(17)

Now let λ = 1
2 . If lim supk→∞

s2,k
s1,k
≥ 1 , then from Eq. (14) follows lim supk→∞

t1,k+1

t1,k
≥ 1, hence the conver-

gence of p1,k to p can not be Q-linearly. If lim supk→∞
s2,k
s1,k

< 1, then from Eq. (17) lim supk→∞
s1,k+1

s3,k
≥ 1,

so from Eq. (15) lim supk→∞
t3,k+1

t3,k
≥ 1.

Remark 1.5.

a) In fact for λ = 1
2 it holds

lim sup
k→∞

s2,k

s1,k
= lim sup

k→∞

s3,k

s2,k
= lim sup

k→∞

s1,k+1

s3,k
= 1.

b) For λ < 1
2 ALS converges q-linearly with the convergence rate

ρ =
λ

2

(
3λ+ λ2 +

√
(3λ+ λ2)2 + 4λ

)
.

c) The example can be extended to higher dimensions in the following way. Let

bλ =
d⊗

µ=1

p+ λ
d∑

µ=1

µ−1⊗
ν=1

q ⊗ p⊗
d⊗

ν=µ+1

q


with ‖p‖ = ‖q‖ and 〈p, q〉 = 0. Then v∗ =

⊗d
µ=1 p is the unique best rank-one approximation of bλ if

and only if λ ≤ 1
d−1 . Furthermore, ALS converges sublinear for λ = 1

d−1 and Q-linear for λ < 1
d−1 .

Our new convergence results are not obtained by using conventional technics like for the analysis of nonlinear
Gauss-Seidel method or the theory of Lojasiewicz inequalities. Therefore, a detailed convergence approach is
necessary.

2 The Alternating Least Squares Algorithm

In the following section, we recall the ALS algorithm. Where the algorithmic description of the ALS method
is given in Algorithm 1.
Notation 2.1 (L(A,B), Pν,µ). Let A,B be two arbitrary vector spaces. The vector space of linear maps from
A to B is denoted by

L(A,B) := {M : A→ B : M is linear} .
Let µ, ν ∈ Nd with ν 6= µ. We define

Pν,µ := Rn1 × · · · ×Rnν−1 ×Rnν+1 × · · · ×Rnµ−1 ×Rnµ+1 × · · · ×Rnd .

7



Algorithm 1 Alternating Least Squares (ALS) Algorithm
1: Set k := 1 and choose an initial guess p

1
= (p1

1, . . . , p
1
d) ∈ P , p

1, 0
:= p

1
, and v1 := U(p

1
) 6= 0.

2: while Stop Condition do
3: vk, 0 := vk
4: for 1 ≤ µ ≤ d do
5:

pk+1
µ :=

 pk+1
1∥∥∥pk+1

1

∥∥∥2 ⊗ · · · ⊗
pk+1
µ−1∥∥∥pk+1
µ−1

∥∥∥2 ⊗ IdRnµ ⊗
pkµ+1∥∥∥pkµ+1

∥∥∥2 ⊗ · · · ⊗
pkd∥∥pkd∥∥2


T

b (18)

p
k,µ+1

:= (pk+1
1 , . . . , pk+1

µ−1 , p
k+1
µ , pkµ+1, . . . , p

k
L)

vk,µ+1 := U(p
k,µ+1

)

6: end for
7: p

k+1
:= p

k,L
and vk+1 := U(p

k+1
)

8: k 7→ k + 1
9: end while

The following map Mµ,ν from Lemma 2.2 is important for the analytical understanding of the ALS algorithm.
As Corollary 2.4 shows, the map Mµ,µ−1 describes an micro step of the ALS algorithm. Furthermore, there is
an interesting relation between the map Mµ,ν and rank-one best approximations of the tensor b, see Theorem
2.10.
Lemma 2.2. Let µ, ν ∈ Nd, ν 6= µ, and p

ν, µ
= (p1, . . . , pν−1, pν+1, . . . , pµ−1, pµ+1, . . . , pd) ∈ Pν,µ. There

exists a multilinear map Mν,µ : Pν,µ × V → L(Rnν ,Rnµ) such that

Mν,µ(p
ν, µ
, b)gν = (p1 ⊗ . . .⊗ pν−1 ⊗ gν ⊗ pν+1 ⊗ . . .⊗ pµ−1 ⊗ IdRnµ ⊗ pµ+1 ⊗ . . .⊗ pd)T b (19)

for all gν ∈ Rnν . Further, we have Mµ,ν(p
ν, µ
, b) = MT

ν,µ(p
ν, µ
, b).

Proof. Follows directly form the multilinearity of the tensor product and elementary calculations. �

Example 2.3. Let µ, ν ∈ Nd, ν 6= µ, p
ν, µ

= (p1, . . . , pν−1, pν+1, . . . , pµ−1, pµ+1, . . . , pd) ∈ Pν,µ, and b be
given in a subspace decomposition, i.e.

b =

t1∑
i1=1

· · ·
td∑
id=1

β(i1,...,id)

d⊗
µ=1

bµ,iµ (tµ ∈ Nnµ)

A matrix representation of the linear map Mν, µ is given by

Mν,µ(p
ν, µ
, b) =

t1∑
i1=1

· · ·
tν∑
iν=1

· · ·
tµ∑
iµ=1

· · ·
td∑
id=1

β(i1,...,id)

∏
ξ∈Nd\{µ, ν}

〈
bξ,iξ , pξ

〉
bµ,iµb

T
ν,iν

= BµΓ(p
ν, µ

)BT
ν ,

where Bξ =
(
bξ,1, . . . , bξ,tξ

)
∈ Rnξ×tξ for all ξ ∈ {µ, ν} and the entries of the matrix Γ(p

ν, µ
) are defined by

[Γ(p
ν, µ

)](iν ,iµ) =

t1∑
i1=1

· · ·
tν−1∑
iν−1=1

· · ·
tν+1∑
iν+1=1

· · ·
tµ−1∑
iµ−1=1

· · ·
tµ+1∑
iµ+1=1

· · ·
td∑
id=1

β(i1,...,id)

∏
ξ∈Nd\{µ, ν}

〈
bξ,iξ , pξ

〉
.

8



Corollary 2.4. Let µ ∈ Nd, k ≥ 2, and p
k,µ

= (pk+1
1 , . . . , pk+1

µ−1, p
k
µ, p

k
µ+1, . . . , p

k
d) ∈ P form Algorithm 1.

With the matrix from Lemma 2.2, the following recursion formula holds:

pk+1
µ =

1

Gk, µGk, µ−1
Mµ,kM

T
µ,k p

k
µ, (20)

where

Gk, µ :=

µ−1∏
ν=1

∥∥∥pk+1
ν

∥∥∥2
d∏

ν=µ+1

∥∥∥pkν∥∥∥2

Gk, µ−1 :=

µ−2∏
ν=1

∥∥∥pk+1
ν

∥∥∥2
d∏

ν=µ

∥∥∥pkν∥∥∥2
,

Mµ,k := Mµ,µ−1(pk+1
1 , . . . , pk+1

µ−2, p
k
µ+1, . . . , p

k
d, b).

Proof. We have with Eq. (18) and Lemma 2.2

pk+1
µ =

1

Gk, µ
Mµ,µ−1(pk+1

1 , . . . , pk+1
µ−2, p

k
µ+1, . . . , p

k
d, b)p

k+1
µ−1, (21)

pk+1
µ−1 =

1

Gk, µ−1
MT
µ,µ−1(pk+1

1 , . . . , pk+1
µ−2, p

k
µ+1, . . . , p

k
d, b)p

k
µ. (22)

�

Example 2.5. Let vk = pk1 ⊗ pk2 ⊗ . . .⊗ pkd and

b =

t1∑
i1=1

· · ·
td∑
id=1

β(i1,...,id)

d⊗
µ=1

bµ,iµ ,

i.e. the tensor b is given in the Tucker decomposition. From Eq. (18) it follows

pk+1
1 =

1∏d
µ=2

∥∥pkµ∥∥2

t1∑
i1=1

· · ·
td∑
id=1

β(i1,...,id)

d∏
µ=2

〈
bµ,iµ , p

k
µ

〉
b1,i1

=
1∏d−1

µ=2

∥∥pkµ∥∥ ‖pkd‖2
 t1∑
i1=1

td∑
id=1

b1,i1

t2∑
i2=1

· · ·
td−1∑
id−1=1

β(i1,...,id)

d−1∏
µ=2

〈
bµ,iµ , p

k
µ

〉
‖pkµ‖

bTd,id

 pkd
=

1∏d−1
µ=2

∥∥pkµ∥∥ ‖pkd‖2B1Γ1,kB
T
d p

k
d,

where Bµ =
(
bµ,iµ : 1 ≤ iµ ≤ tµ

)
∈ Rnµ×tµ , BT

µBµ = IdRtµ , and the entries of the matrix Γ1,k ∈ Rt1×td
are defined by

[Γ1,k]i1,id =

t2∑
i2=1

· · ·
td−1∑
id−1=1

β(i1,...,id)

d−1∏
µ=2

〈
bµ,iµ , p

k
µ

〉
‖pkµ‖

(1 ≤ i1 ≤ t1, 1 ≤ id ≤ td) .

9



Note that Γ1,k is a diagonal matrix if the coefficient tensor β ∈⊗d
µ=1R

tµ is super- diagonal, see Eq. (6). For
pkd it follows further

pkd =
1∏d−1

µ=1

∥∥pkµ∥∥2

t1∑
i1=1

· · ·
td∑
id=1

β(i1,...,id)

d−1∏
µ=1

〈
bµ,iµ , p

k
µ

〉
bd,id =

1∥∥pk1∥∥2∏d−1
µ=2

∥∥pkµ∥∥BdΓT1,kBT
1 p

k
1

and finally

pk+1
1 =

1∏d
µ=1

∥∥pkµ∥∥2 B1Γ1,kΓ
T
1,kB

T
1 p

k
1.

Let v∗ = λ p1 ⊗ . . . ⊗ pd ∈ Mb be a rank-one best approximation of b. Without loss of generality we can
assume that

‖p1‖ = ‖p2‖ = · · · = ‖pd‖ = 1 and ‖v∗‖ = λ.

Further, let µ, ν ∈ Nd and

p
ν, µ

:= (p1, . . . , pν−1, pν+1, . . . , pµ−1, pµ+1, . . . , pd) ∈ Pν,µ.

The following two maps are of interest for our analysis:

V̄ : Snν−1 × Snµ−1 → V
(gν , gµ) 7→ V̄ (gν , gµ) := p1 ⊗ · · · ⊗ pν−1 ⊗ gν ⊗ pν+1 ⊗ · · · ⊗ pµ−1 ⊗ gµ ⊗ pµ+1 ⊗ · · · ⊗ pd

and

Ū : Snν−1 × Snµ−1 → V
(gν , gµ) 7→ Ū(gν , gµ) :=

〈
V̄ (gν , gµ), b

〉
V̄ (gν , gµ),

where Sn−1 = {x ∈ Rn : ‖x‖ = 1} denotes the sphere in Rn.
Lemma 2.6. Let µ, ν ∈ Nd, gν ∈ Snν−1 and gµ ∈ Snµ−1. We have

−2f
(
Ū(gν , gµ)

)
=

〈(
Mν,µ(p

ν, µ
, b)
)

︸ ︷︷ ︸
∈L(Rnν ,Rnµ )

gν , gµ

〉2

=
〈
Ū(gν , gµ), b

〉
=
∥∥Ū(gν , gµ)

∥∥2
.

Proof. Let gν ∈ Snν−1, gµ ∈ Snµ−1, and define π(gν , gµ) := V̄ (gν , gµ)(V̄ (gν , gµ))T . It holds Ū(gν , gµ) =
π(gν , gµ)b and

f
(
Ū(gν , gµ)

)
=

1

2

〈
Ū(gν , gµ), Ū(gν , gµ)

〉
−
〈
Ū(gν , gµ), b

〉
=

1

2

〈
π2(gν , gµ)b, b

〉
− 〈π(gν , gµ)b, b〉

=
1

2
〈π(gν , gµ)b, b〉 − 〈π(gν , gµ)b, b〉 = −1

2
〈π(gν , gµ)b, b〉 = −1

2

〈
Ū(gν , gµ), b

〉
= −1

2

〈
π2(gν , gµ)b, b

〉
= −1

2
〈π(gν , gµ)b, π(gν , gµ)b〉 = −1

2

∥∥Ū(gν , gµ)
∥∥2

= −1

2

〈
V̄ (gν , gµ), b

〉2
= −1

2

〈(
Mν,µ(p

ν, µ
, b)
)
gν , gµ

〉2
.

�
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Remark 2.7. Obviously, the minimisation problem from Eg. (3) is equivalent to the following constrained
maximisation problem: Find ṽ =

⊗d
µ=1 pµ such that for all µ ∈ Nd it holds

〈ṽ, b〉 = max
v∈U(P )

〈v, b〉 subject to ‖pµ‖ = 1.

Lagrangian method for constrained optimisation leads us to the following Lagrangian

Lλ(q1, · · · , qd) = 〈U(q1, · · · , qd), b〉+
1

2

d∑
µ=1

λµ
(
1− ‖qµ‖2

)
,

where qµ ∈ Rnµ and λ = (λ1, · · · , λd)T ∈ Rd is the vector of Lagrange multipliers. A rank-one best
approximation v∗ = λ p1 ⊗ · · · ⊗ pd ∈Mb with λ ∈ R and ‖pµ‖ = 1 satisfies

∂

∂pµ
Lλ∗(p1, · · · , pd) = (p1 ⊗ · · · pµ−1 ⊗ IdRnµ ⊗ pµ+1 ⊗ · · · ⊗ pd)T b− λ∗µpµ = 0,

∂

∂λ∗µ
Lλ∗(p1, · · · , pd) =

1

2

(
1− ‖pµ‖2

)
= 0.

For ν ∈ Nd \ {µ} it follows that

λ = 〈p1 ⊗ · · · ⊗ pd, b〉 , λ pµ = Mν,µ(p
ν, µ
, b) pν , λ pν = MT

ν,µ(p
ν, µ
, b) pµ,

where p
ν,µ
∈ Pν,µ is like in Lemma 2.2. Therefore, λ is a singular value of the matrixMν,µ(p

ν, µ
, b) and pν , pµ

are the associated singular vectors.
Proposition 2.8. Let v∗ = λp1 ⊗ · · · ⊗ pd ∈ Mb a best approximation of b with ‖p1‖ = · · · = ‖pd‖ = 1. We
have

f(v∗) = − 1

2 ‖b‖2 ‖v
∗‖2 = − 1

2 ‖b‖2 〈b, v
∗〉 .

Proof. Since v∗ ∈Mb we have that v∗ = Πb, where Π := v∗v∗T

‖v∗‖2 . Furthermore, it holds

〈v∗, v∗〉 = 〈Πb, v∗〉 = 〈b,Πv∗〉 = 〈b, v∗〉 .
The rest follows from the definition of f , see Eq. (1). �

Remark 2.9. From Proposition 2.8 it follows instantly that the global minimum of the best approximation
problem from Eq. (3) has the largest norm among all other ṽ ∈Mb.
Theorem 2.10. Let µ, ν ∈ Nd and v∗ = ‖v∗‖p1 ⊗ . . .⊗ pd ∈Mb be a rank-one best approximation of b with
‖p1‖ = · · · = ‖pd‖ = 1. Then ‖v∗‖ is the largest singular value ofMν,µ(p

ν, µ
, b) and pν , pµ are the associated

singular vectors. Furthermore, if v∗ is isolated, then ‖v∗‖ is a simple singular value of Mν,µ(p
ν, µ
, b).

Proof. Let µ, ν ∈ Nd. From Lemma 2.6 and Remark 2.7 it follows that ‖v∗‖ is a singular value of
Mν,µ(p

ν, µ
, b) and pν , pµ are associated singular vectors. Assume that there is a singular value λ̃ of

Mν,µ(p
ν, µ
, b) and associated singular vectors qν ∈ Rnν , qµ ∈ Rnµ with λ̃ > ‖v∗‖. Let α ∈ [0, 1]

and β ∈ (0, 1] with α2 + β2 = 1. Define further gν(α, β) := gν := αpν + βqν ∈ Rnν and
gµ(α, β) := gµ := αpµ + βqµ ∈ Rnµ . We have ‖gν‖2 = ‖gµ‖2 = α2 + β2 = 1 and with Lemma
2.6 it follows then

−2f(Ū(gν , gµ)) =
〈(
Mν,µ(p

ν, µ
, b)
)
gν , gµ

〉2
=
〈(
Mν,µ(p

ν, µ
, b)
)
αpν + βqν , αpµ + βqµ

〉2

=
〈
α‖v∗‖pν + βλ̃qν , αpµ + βqµ

〉2
=
(
α2‖v∗‖+ β2λ̃

)2

(β 6=0)
>

(
α2‖v∗‖+ β2‖v∗‖

)2
= ‖v∗‖2 =

〈(
Mν,µ(p

ν, µ
, b)
)
pν , pµ

〉2
= −2f(v∗).
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Consequently, it is

f(Ū(gν(α, β), gµ(α, β))) < f(v∗) for all α ∈ [0, 1] and β ∈ (0, 1] with α2 + β2 = 1,

i.e. we can finde a better approximation Ū(gν(α, β), gµ(α, β)) of b which is arbitrary close to v∗. This
contradicts the fact that v∗ ∈Mb.
Additionally, let v∗ be a isolated rank-one best approximation of b. Assume that there is a singular value λ
of Mν,µ(p

ν, µ
, b) and associated singular vectors qν ∈ Rnν , qµ ∈ Rmµ with λ = ‖v∗‖, pν⊥qν , and pµ⊥qµ.

Almost like above, let α, β ∈ [0, 1] with α2 + β2 = 1 and consider again gν(α, β) = αpν + βqν ∈ Rnν ,
gµ(α, β) = αpµ + βqµ ∈ Rnµ . With Lemma 2.6 it follows

−2f(Ū(gν , gµ)) =
(
α2‖v∗‖+ β2λ

)2
= ‖v∗‖2 =

〈(
Mν,µ(p

ν, µ
, b)
)
pν , pµ

〉2
= −2f(v∗),

i.e. we have

f(Ū(gν(α, β), gµ(α, β))) = f(v∗) for all α, β ∈ [0, 1] with α2 + β2 = 1.

Therefore, we can finde a approximation Ū(gν(α, β), gµ(α, β)) of b which is arbitrary close to v∗ and
f(Ū(gν(α, β), gµ(α, β))) = f(v∗). This contradicts the fact that v∗ is isolated. �

Remark 2.11. The proof of Theorem 2.10 shows that if we have two different best approximations of
b which differ only in two arbitrary components of the representation systems and f(v∗) = f(v∗∗),
then there is a complete path between v∗ and v∗∗ described by Ū(gν(α, β), gµ(α, β)) such that
f(v∗) = f

(
Ū(gν(α, β), gµ(α, β))

)
.

3 Convergence Analysis

In the following, we are using the notations and definitions from Section 2. Our convergence analysis is mainly
based on the recursion introduced in Corollary 2.4 and the following Lemma 3.1.
Lemma 3.1. Let k ∈ N, µ ∈ N, and vk,µ = pk+1

1 ⊗ · · · ⊗ pk+1
µ−1 ⊗ pkµ ⊗ · · · ⊗ pkd from Algorithm 1. Then

Πk,µ :=
pk+1

1

(
pk+1

1

)T
∥∥∥pk+1

1

∥∥∥2 ⊗ · · · ⊗
pk+1
µ−1

(
pk+1
µ−1

)T
∥∥∥pk+1

µ−1

∥∥∥2 ⊗ IdRnµ ⊗
pkµ+1

(
pkµ+1

)T∥∥∥pkµ+1

∥∥∥2 ⊗ · · · ⊗
pk+1
d

(
pk+1
d

)T
∥∥∥pk+1

d

∥∥∥2

is a orthogonal projection and
vk,µ+1 = vk,µ + Πk,µrk,µ,

where rk,µ := b− vk,µ.

Proof. Obviously, Πk,µ is a orthogonal projection. Straightforward calculations show that vk,µ = Πk,µvk,µ
and vk,µ+1 = Πk,µb. Hence we have vk,µ + Πk,µrk,µ = Πk,µb = vk,µ+1. �

Lemma 3.2. Let k ∈ N, µ ∈ NL. We have

f(vk, µ)− f(vk,µ+1) =
1

2

〈Πk,µrk,µ, rk,µ〉
‖b‖2 (23)
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Proof. It follows with Lemma 3.1 that

f(vk,µ+1) =
1

‖b‖2
[

1

2
〈vk,µ + Πk,µrk,µ, vk,µ + Πk,µrk,µ〉 − 〈b, vk,µ + Πk,µrk,µ〉

]
= f(vk,µ) +

1

‖b‖2
[

1

2
〈Πk,µrk,µ,Πk,µrk,µ〉+ 〈vk,µ,Πk,µrk,µ〉 − 〈b,Πk,µrk,µ〉

]
= f(vk,µ) +

1

‖b‖2
[

1

2
〈rk,µ,Πk,µrk,µ〉 − 〈rk,µ,Πk,µrk,µ〉

]
= f(vk,µ)− 1

2

〈Πk,µrk,µ, rk,µ〉
‖b‖2 ,

i.e. f(vk, µ)− f(vk,µ+1) = 1
2
〈Πk,µrk,µ,rk,µ〉

‖b‖2 . �

Corollary 3.3. There exists α ∈ R such that f(vk) −−−→
k→∞

α.

Proof. Let k ∈ N and µ ∈ NL. From Lemma 3.2 and Lemma 3.1 it follows that

f(vk+1)− f(vk) = f(vk,d)− f(vk,0) =
d∑

µ=1

f(vk, µ)− f(vk,µ−1)

= − 1

2‖b‖2
d−1∑
µ=0

‖Πk,µrk,µ‖2 ≤ 0,

This shows that (f(vk))k∈N ⊂ R is a descending sequence. The sequence of function values (f(vk))k∈N is
bounded from below. Therefore, there exist an α ∈ R such that f(vk) −−−→

k→∞
α. �

Remark 3.4. From the definition of the ALS method it is already clear that (f(vk,µ))µ∈Nd,k∈N is a descending
sequence.
Lemma 3.5. Let (vk,µ)k∈N,µ∈Nd ⊂ V be the sequence from Algorithm 1. We have

f(vk,µ) = − 1

2‖b‖2 〈vk,µ, b〉 = − 1

2‖b‖2 ‖vk,µ‖
2 (24)

for all k ∈ N, µ ∈ Nd.

Proof. Let k ∈ N and µ ∈ Nd. With Lemma 3.1 it follows

〈vk,µ, vk,µ〉 = 〈Πk,µ−1b,Πk,µ−1b〉 =
〈
Π2
k,µ−1b, b

〉
= 〈Πk,µ−1b, b〉 = 〈vk,µ, b〉 .

The rest follows from the definition of f , see Eq. (1). �

Corollary 3.6. Let (vk,µ)k∈N,µ∈Nd ⊂ V be the sequence of represented tensors from the ALS algorithm.
Further, let µ ∈ Nd and k ∈ N. The following statements are equivalent:

(a) f(vk,µ+1) ≤ f(vk,µ)

(b) ‖vk,µ+1‖2 ≥ ‖vk,µ‖2

(c) ‖pk+1
µ ‖2 ≥ ‖pkµ‖2

(d) cos2(ϕk,µ+1) ≥ cos2(ϕk,µ), where cos2(ϕk,µ) :=
〈Πk,µb,b〉
‖b‖2 .
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Proof. Follows direct from Lemma 3.5 and

‖vk,µ+1‖2 ≥ ‖vk,µ‖2 ⇔ Gk,µ‖pk+1
µ ‖2 ≥ Gk,µ‖pkµ‖2

where Gk,µ > 0 is defined in Corollary 2.4. �

Lemma 3.7. Let (vk)k∈N ⊂ V be the sequence of represented tensors from the ALS method. It holds

‖vk+1 − vk‖ −−−→
k→∞

0.

Proof. Let k ∈ N. We have

‖vk+1 − vk‖2 =

∥∥∥∥∥∥
d∑

µ=1

vk,µ − vk,µ−1

∥∥∥∥∥∥
2

≤

 d∑
µ=1

‖vk,µ − vk,µ−1‖

2

≤ d
d−1∑
µ=0

‖vk,µ+1 − vk,µ‖2 . (25)

Since vk,µ+1 − vk,µ = Πk,µrk,µ, see Lemma 3.1, it follows further with Eq. (23) and (25) that

‖vk+1 − vk‖2 ≤ 2d‖b‖2
d−1∑
µ=0

(f(vk,µ+1)− f(vk,µ)) .

With Corollary 3.3 we have (f(vk,µ+1)− f(vk,µ)) −−−→
k→∞

0, hence ‖vk+1 − vk‖ −−−→
k→∞

0. �

Definition 3.8 (A(vk), critical points). Let (vk)k∈N ⊂ V be the sequence of represented tensors from Algo-
rithm 1. The set of accumulation points of (vk)k∈N is denoted by A(vk), i.e.

A(vk) := {v ∈ V : v is an accumulation point of (vk)k∈N} . (26)

The set M of critical points of the optimisation problem from Eq. (2) is defined as follows:

M :=
{
v ∈ V : ∃p ∈ P : v = U(p) ∧ F ′(p) = 0

}
. (27)

Proposition 3.9. The sequence of parameter (pµ,k)µ∈Nd,k∈N from the ALS algorithm is bounded.

Proof. From the definition of f and Lemma 3.5 it follows that

−1

2
≤ f(vk,µ) = −1

2

‖vk,µ‖2
‖b‖2 ⇔ ‖vk,µ‖ ≤ ‖b‖,

i.e. the sequence (‖vµ,k‖)µ∈Nd,k∈N ⊂ Range (U) is bounded. The sequence (‖vµ,k‖)µ∈Nd,k∈N is the product
of the following d sequences (‖pkµ‖)k∈N ⊂ Rnµ . According to Corollary 3.6 the sequences (‖pkµ‖)k∈N are
monotonically increasing. Since the product ‖vµ,k‖ is bounded and all sequences (‖pkµ‖)k∈N are monotonically
increasing, it follows that all (pkµ)k∈N are bounded. This means the sequence (pµ,k)µ∈Nd,k∈N is bounded. �

The following statements are proofed in a corresponding article about the convergence of alternating least
squares optimisation in general tensor format representations, please see [5] for more informations regarding
the proofs.
Lemma 3.10 ([5]). We have

max
0≤µ≤L−1

∥∥∥F ′µ(pkµ)
∥∥∥ −−−→

k→∞
0.
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Corollary 3.11 ([5]). Let (p
k
)k∈N be the sequence from Algorithm 1 and F : P → R from Eq. (2). We have

lim
k→∞

F ′(p
k
) = 0.

Theorem 3.12 ([5]). Let (vk)k∈N be the sequence of represented tensors from the ALS method. Every accu-
mulation point of (vk)k∈N is a critical point, i.e. A(vk) ⊆M. Further, we have

dist (vk,M) −−−→
k→∞

0.

Let v̄ ∈ M be a critical point and N :=
∏d
µ=1 nµ ∈ N. Further, let (p

k,µ
)k∈N,µ∈Nd ⊂ P be the sequence

of parameter from the ALS algorithm and R ∈ RN×N−1 be a matrix with RTR = IdRN−1 and span(v̄)⊥ =
Range (R), i.e. the column vectors of R build an orthonormal basis of the linear space span(v̄)⊥. Then the
block matrix

V :=
[
v R

]
∈ RN×N , ( v := v̄/‖v̄‖ ) . (28)

is orthogonal, i.e. the columns of the matrix V build an orthonormal basis of the tensor space V . The following
matrix Nk,µ ∈ RN×N is imported in order to describe the rate of convergence for the ALS method:

Nk,µ :=

µ−1⊗
ν=1

Id⊗
(

1

Gk, µGk, µ−1
Mµ,kM

T
µ,k

)
⊗

d⊗
ν=µ+1

Id,

where the matrix 1
Gk, µGk, µ−1

Mµ,kM
T
µ,k is from Corollary 2.4. Further, it follows from Corollary 2.4 that for

the ALS micro step the following equation:

vk,µ+1 = Nk,µvk,µ (29)

holds. The tensor vk,µ and the matrix Nk,µ are represented with respect to the basis V , i.e

vk,µ = V V T vk,µ =
[
v R

]


vT vk,µ︸ ︷︷ ︸
ck,µ:=

RT vk,µ︸ ︷︷ ︸
sk,µ:=

 =
[
v R

]( ck,µ
sk,µ

)

and

Nk,µ = V
(
V TNk,µV

)
V T =

[
v R

] [ vTNk,µv vTNk,µR
RTNk,µv RTNk,µR

] [
v R

]T
.

The recursion formula (29) leads to the recursion of the coefficient vector(
ck+1,µ

sk+1,µ

)
=

[
vTNk,µv vTNk,µR
RTNk,µv RTNk,µR

](
ck,µ
sk,µ

)
=

(
vTNk,µv ck,µ + vTNk,µR sk,µ
RTNk,µv ck,µ +RTNk,µR sk,µ

)
.

Without loss of generality we can assume that ‖sk,µ‖ 6= 0 and |ck,µ| 6= 0. Therefore, the following terms are
well defined:

q
(s)
k,µ :=

∥∥RTNk,µv ck,µ +RTNk,µR sk,µ
∥∥

‖sk,µ‖
,

q
(c)
k,µ :=

∣∣vTNk,µv ck,µ + vTNk,µR sk,µ
∣∣

|ck,µ|
.
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This preconsideration gives a recursion formula for the tangent of the angle between v̄ and vk,µ+1. We
have

tan2∠[v̄, vk,µ+1] =

〈
RRT vk,µ+1, vk,µ+1

〉
〈vvT vk,µ+1, vk,µ+1〉

=
‖RT vk,µ+1‖2
(vT vk,µ+1)2 =

‖sk,µ+1‖2
(ck,µ+1)2

=

(
q

(s)
k,µ

)2

(
q

(c)
k,µ

)2

‖sk,µ‖2
(ck,µ)2

=

q(s)
k,µ

q
(c)
k,µ

2

‖RT vk,µ‖2
(vT vk,µ)2 =

q(s)
k,µ

q
(c)
k,µ

2

tan2∠[v̄, vk,µ].

Remark 3.13. Obviously, if the sequence of parameter (p
k
)k∈N ⊂ P is bounded, then the set of accumulation

points of (p
k
)k∈N is not empty. Consequently, the set A(vk) is not empty, since the map U is continuous.

Theorem 3.14 ([5]). If one accumulation point v̄ ∈ A(vk) ⊆M is isolated, then we have

vk −−−→
k→∞

v̄.

Furthermore, we have for the rate of convergence of an ALS micro step

|tan∠[v̄, vk,µ+1]| ≤ qµ |tan∠[v̄, vk,µ]| ,

where

qµ := lim sup
k→∞

∣∣∣∣∣∣q
(s)
k,µ

q
(c)
k,µ

∣∣∣∣∣∣ .
If qµ = 0, then the sequence (|tan∠[v̄, vk,µ]|)k∈N converges Q- superlinearly. If qµ < 1, then the sequence
(|tan∠[v̄, vk,µ]|)k∈N converges at least Q- linearly. If qµ ≥ 1, then the sequence (|tan∠[v̄, vk,µ]|)k∈N con-
verges not Q-linearly.
Remark 3.15. The calculation from Example 1.2 shows that

lim sup
k→∞

∣∣∣∣∣∣q
(s)
k,µ

q
(c)
k,µ

∣∣∣∣∣∣ = 0 for all µ ∈ Nd.

Hence, the ALS algorithm converges here Q-superlinearly. Furthermore, in Example 1.3 we showed for λ < 1
2

lim sup
k→∞

∣∣∣∣∣∣q
(s)
k,µ

q
(c)
k,µ

∣∣∣∣∣∣ =
λ

2

(
3λ+ λ2 +

√
(3λ+ λ2)2 + 4λ

)
< 1 for all µ ∈ Nd.

Hence, we have here Q-linear convergence.
Corollary 3.16 ([5]). If the set of critical points M is discrete,1 then the sequence of represented tensors
(vk)k∈N from the ALS method is convergent.

In the following example it will be shown, that the ordering of the indices may play an important role for the
convergence of ALS procedure.
Remark 3.17. Let b =

⊗3
µ=1 b1µ + λ

⊗3
µ=1 b2µ, with 0 < λ < 1, ‖b1µ‖ = ‖b2µ‖ = 1 and 〈b1µ, b2µ〉 = 0 for

µ ∈ N≤d. Let further v0 = C
⊗d

µ=1 p
0
1 for some C ∈ R and

p0
µ = b1µ + αµb2µ (30)

1In topology, a set which is made up only of isolated points is called discrete.
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for some αµ ∈ R. Assume after each ALS micro step the parameters pkµ are rescaled to the form (30) (obviously,
a scaling of parameters has no effect on the future behavior of the ALS method). After the first four micro steps
one gets

p1
1 = b11 + λα2α3b21

p1
2 = b12 + λ2α2α

2
3b22

p1
3 = b13 + λ4α2

2α
3
3b23

p2
1 = b11 + λ7α3

2α
5
3b21

So for v2
1 := p2

1 ⊗ p1
2 ⊗ p1

3 one gets

v2
1 = Ĉ(b11 + λ7α3

2α
5
3b21)⊗ (b13 + λ2α2α

2
3b23)⊗ (b12 + λ4α2

2α
3
3b22)

with some Ĉ ∈ R. Now assume the order of the directions for ALS optimization is changed from (1, 2, 3) to
(1, 3, 2), i.e. after optimizing the first component p1

1 we optimize the third one (i.e. p1
3) and only then the second

one (i.e. p1
2). The same number of micro steps will result in a tensor

ṽ2
1 = C̃(b11 + λ7α5

2α
2
3b21)⊗ (b13 + λ4α3

2α
2
3b23)⊗ (b12 + λ2α2

2α3b22)

with some C̃ ∈ R. Now if α2 and α3 satisfy

α2 ≥ 1 ≥ α3,

α3
2α

2
3 ≥

1

λ5
≥ α2

2α
3
3,

then it is not difficult to check, that v2
1 satisfies the dominance condition from Eq. (7) for j = 1, whereas ṽ2

1

satisfies the dominance condition for j = 2. Thus, with the same starting point v0 ALS iteration will converge
to the global minimum

⊗d
µ=1 b1µ for one ordering of the indices and to local minimum λ

⊗d
µ=1 b2µ for another

ordering. Note that v0 did not fulfil the dominance conditions, but depending on the ordering of the ALS micro
steps v0 leads to different dominance conditions.

4 Numerical Experiments

In this subsection, we observe the convergence behavior of the ALS method by using data from interesting
examples and more importantly from real applications. In all cases, we focus particularly on the convergence
rate.

4.1 Example 1

We consider an example introduced by Mohlenkamp in [9, Section 4.3.5]. Here we have

b = 2

(
1
0

)
︸ ︷︷ ︸
e1:=

⊗
(

1
0

)
⊗
(

1
0

)
︸ ︷︷ ︸

b1:=

+

(
0
1

)
︸ ︷︷ ︸
e2:=

⊗
(

0
1

)
⊗
(

0
1

)
︸ ︷︷ ︸

b2:=

,

see Eq. (1). The tensor b is orthogonally decomposable. Although the example is rather simple, it is of
theoretical interest. Since the ALS method converges superlinear, cf. the discussion in Section 1. The tensor

17



b has only two terms, therefore the upper bound for convergence rate from Eq. (8) is sharp, cf. Eq. (9). Let
τ ≥ 0, we define the initial guess of the ALS algorithm by

v0(τ) :=

(
τ
1

)
⊗
(
τ
1

)
⊗
(
τ
1

)
.

Since

4

〈(
1
0

)
,

(
τ
1

)〉2

= 4τ2 and
〈(

0
1

)
,

(
τ
1

)〉2

= 1,

we have for τ < 1
2 that the initial guess v0(τ) dominates at b2. Therefore, the ALS iteration converge to b2. If

τ > 1
2 , then v0(τ) dominates at b1 and the sequence from the ALS method will converges to b1. In the first test

the tangents of the angle between the current iteration point and the corresponding parameter of the dominate
term bl (1 ≤ l ≤ 2) is plotted, i.e.

tanϕk,l =

√
1− cos2 ϕk,l

cos2 ϕk,l
, (31)

where cosϕk,l =
〈pk1 ,el〉
‖pk1‖

. To illustrate the superlinear convergence of the ALS method, we present further
plots for the quotient

qk,l :=
tanϕk+1,l

tanϕk,l
. (32)
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Figure 2: The tangents tanϕk,2 from Eq. (31) is plotted for τ ∈ {0.4, 0.495, 0.4999}.

4.2 Example 2

Most algorithms in ab initio electronic structure theory compute quantities in terms of one- and two-electron
integrals. In [1] we considered the low-rank approximation of the two-electron integrals. In order to demon-
strate the convergence of the ALS method on an example of practical interest, we use the order 4 tensor for the
two-electron integrals of the so called AO basis for the CH4 molecule. We refer the reader to [1] for a detailed
description our example. In this example the ALS method converges Q-linearly, see Figure 4.
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(a) qk,1 is plotted for τ ∈ {0.5001, 0.505, 0.6}. Here the
term b1 dominates at every iteration point.
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(b) qk,2 is plotted for τ ∈ {0.4999, 0.495, 0.4}. Here the
term b2 dominates at every iteration point.

Figure 3: qk,l from Eq. (32) is plotted for l ∈ {1, 2} and different values for τ .

4.3 Example 3

We consider the tensor

bλ =
3⊗

µ=1

p+ λ (p⊗ q ⊗ q + q ⊗ p⊗ q + q ⊗ q ⊗ p)

from Ex. 1.3. The vectors p and q are arbitrarily generated orthogonal vectors with norm 1. The values of

tan(ϕ1
k) are plotted, where ϕ1

k is the angle between p1
k and the limit point p (i.e. tanϕ1

k =
〈p1k,q〉
〈p1k,p〉 , for k ≥ 2).

For the case λ = 0.5 the convergence is sublinearly, whereas for λ = 0.2 it is Q-linearly.
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Figure 5: The approximation of b from Example 1.3 is considered. The tangents of the angle between the
current iteration point and the limit point with respect to the iteration number is plotted. For λ = 1/2, we have
sublinear convergence. But for λ = 0.2 < 1/2 the sequence converges Q-linearly.
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