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Abstract

We provide an adaptive strategy for solving shallow water equations with dynamic grid adaptation including a sparse representation
of the bottom topography. A challenge in computing approximate solutions to the shallow water equations including wetting and
drying is to achieve the positivity of the water height and the well-balancing of the approximate solution. A key property of our
adaptive strategy is that it guarantees that these properties are preserved during the refinement and coarsening steps in the adaptation
process.

The underlying idea of our adaptive strategy is to perform a multiresolution analysis using multiwavelets on a hierarchy of
nested grids. This provides difference information between successive refinement levels that may become negligibly small in
regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation
is triggered by the remaining significant coefficients. Furthermore we use the multiresolution analysis of the underlying data as an
additional indicator whether the limiter has to be applied on a cell or not. By this the number of cells where the limiter is applied
is reduced without spoiling the accuracy of the solution.

By means of well-known 1D and 2D benchmark problems, we verify that multiwavelet-based grid adaptation can significantly
reduce the computational cost by sparsening the computational grids, while retaining accuracy and keeping well-balancing and
positivity.

Keywords: Grid adaptivity, Multiresolution analysis, Multiwavelets, Discontinuous Galerkin, Shallow water flows,
Positivity-preserving, Well-balancing, Limiters, Shock detection

1. Introduction

The shallow water equations are a hyperbolic system of conservation laws which have been commonly used to
model shallow free surface water flows. These are given by(

h
hv

)
t
+ ∇ ·

 hv

hv ⊗ v +
1
2

gh2I

 =

(
0

−gh∇b

)
, (1)

where h denotes the water height and v is the velocity vector. The bottom topography is represented by b, g is the
gravitational acceleration and I is the d × d identity matrix, where d is the number of space dimensions.

The shallow water equations have been widely discretized using finite volume (FV) schemes providing good re-
sults, see for instance [1]. First order FV schemes are widely found in the literature [2, 3, 4, 5, 6, 7, 8]. The conceptual
simplicity of first order FV schemes and its rather straightforward implementation and ease for parallelization have
made it very popular. However, the first order FV approach suffers from high sensitivity to the computational mesh
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[9], thus requiring high mesh resolution to ensure accuracy. Higher order FV methods have been attempted to solve
this issue. In many cases they remain at second order [10, 11, 12]. When higher order is achieved [13, 14, 15] they
introduce a new problem, the need to enlarge the computational stencil and thus the loss of local support. In partic-
ular, this requires more data transfer on distributed memory architectures and, thus, affects the efficiency of parallel
implementations.

Discontinuous Galerkin (DG) schemes have been recently applied to the shallow water equations [16, 17, 18, 19,
20, 21]. The DG method generalizes the concept of the FV method, while relying on the Finite Element notion of
projecting the solution onto a space of trial functions, but, without the restriction of keeping the functions continuous.
Therefore, the piecewise discontinuous description of the solution allows to achieve high order accuracy while keep-
ing locality. Furthermore, the discontinuous interfaces at the cell edges requires the solution of Riemann problems
employing approximate Riemann solvers [22] and related techniques [23, 24, 25] that have been widely studied in the
context of FV schemes and shallow water equations.

Important issues relating to shallow water equations must also be addressed. In particular, a DG scheme for the
shallow water equations must be well-balanced [26, 27, 28] and positivity-preserving [29], i.e., it must be able (i) to
keep steady states over non-constant topography, and (ii) to keep positive values of depth, specially near the wet/dry
front. It is also of great importance to have a sufficiently high resolution representation of the topography at very large
gradients [9]. This has led to the need of not only properly discretizing the bed source term, but to build meshes that
can harbor the required information with precision.

The high order nature of DG methods allows for accurate solutions on coarser meshes than first order FV schemes.
However, the computational overhead introduced by the required operations for DG, as well as the increased number
of time steps required due to a lower CFL number can make DG very expensive even compared to a FV approxi-
mation on a fine mesh. Therefore, in order to improve efficiency, adaptive meshes can be designed that will refine
on those regions in which the solution shows large gradients or even discontinuities and coarsen the mesh on those
regions where the solution is smooth. In this way, high accuracy can be obtained while reducing computational effort.
Furthermore, the high order approximation can also be used to represent the topography, thus also reducing the need
of high resolution meshes.

In order to control local grid refinement numerous refinement indicators have been developed, for instance, they
are based on interpolation error estimates of some key quantity using a priori knowledge of the solution. In [30, 31]
Remacle et al. present a second order scheme for shallow water equations with anisotropic grid adaptivity on triangular
meshes, but without adressing well-balancing and positivity-preserving. Since these concepts offer no reliable error
control, a priori as well as a posteriori error estimates have been developed to control the adaptive process, e.g., Bey
and Oden [32], Adjerid et al. [33], Houston et al. [34, 35, 36], Dedner et al. [37], and recently Mavriplis et al. [38].

These approaches are aiming at estimating the error of the solution. Since there are in general no rigorous error
estimates available for nonlinear systems of conservation laws, the concept of multiresolution-based grid adaptation
has been developed in the context of FV schemes [39, 40]. The idea of a multiresolution representation of data
originates from the field of wavelets [41, 42, 43, 44]. The starting point for a multiresolution analysis is a hierarchy of
nested grids at different resolutions. Consider two different levels of resolution in this hierarchy, the cell averages on
the finer level can be represented as a combination of the cell averages on the coarser level and of detail coefficients
encoding the difference between the two levels. Since detail coefficients may become negligibly small in regions
where the underlying data are locally smooth one can locally decide if the additional resolution of the finer mesh is
needed. If these details are sufficiently small the solution can be represented on the coarser grid without significant
loss of accuracy. Therefore the size of these details is a good indicator for adaptivity.

Multiscale-based mesh adaptivity has been quite successful with FV solvers for compressible fluid flow, cf. [45,
46, 47, 48]. In recent years the concept was extended to the framework of DG schemes. Originally in [49, 50]
the concept was analytically and numerically investigated for the one-dimensional scalar case. The method was
then extended to the Euler equations [51] and later on to the multi-dimensional case [52]. We track this idea and
apply it to shallow water equations and add modifications in order to address common problems in solving shallow
water equations, i.e., make sure that the presented grid adaptation is well-balanced and positivity-preserving. In [53]
multiresolution-based mesh adaptation for shallow water flows in the context of FV schemes is discussed. Additionally
we address the problem of wetting and drying. For shallow water modeling, the mesh must adapt to both the solution
and the topography, since the latter affects significantly the first. This is also treated in the method proposed herein. In
addition, we use the multiresolution analysis of the data in the grid adaptation as an additional indicator for limiting
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to avoid limiting in areas, where the solution is smooth.
This paper is structured as follows. Section 2 provides a brief description of the DG method. Well-balancing

and positivity-preserving is described in Section 3. In Section 4 we introduce the multiresolution analysis using
multiwavelets and describe the grid adaptation process. Section 5 shows numerical results for six benchmarks and test
cases. We present several one-dimensional and two-dimensional test cases. A summary of conclusions is presented
in Section 6.

2. A review of the reference DG scheme

In this section we briefly summarize the main ideas of the Runge-Kutta DG (RKDG) schemes applied on a fixed
grid, in Section 4 we will combine these methods with our dynamic grid adaptation. For this purpose the shallow
water equations (1) are written in conservative form

∂u
∂t

+ ∇ · f(u) = s(x,u) (2)

in the space-time domain Ω × (0,T ) with Ω ⊂ Rd, d = 1, 2, and T > 0 describing the evolution of the quantities
u : Ω× [0,T ]→ Rm with the flux f : Rm → Rm×d, m = d +1, and suffering forcing by the source term s. This problem
has to be supplemented with initial data

u(x, 0) = u0(x), x ∈ Ω

and suitable boundary conditions, e.g., periodic conditions or Dirichlet conditions at the inflow part.

2.1. Weak formulation
The entropy solution is approximated by a DG scheme following the idea of the method of lines: for the spatial

discretization a DG method is used and the resulting system of ordinary differential equations in time is solved by
a Runge-Kutta (RK) scheme. A detailed description can be found in [54] and [55]. Since computations are only
performed on bounded domains, we consider in the following a finite discretization. For this purpose we discretize
the domain Ω by a finite number of cells Vλ such that

Ω =
⋃
λ∈I

Vλ, with Vλ ∩ Vµ = ∅, λ , µ ∈ I.

Here the index set I characterizes the numbering of the cells. We call G := {Vλ}λ∈I the computational grid. On this
grid we introduce the DG space

S := { f ∈ L2(Ω) : f |Vλ ∈ Πp−1(Vλ) ∀ λ ∈ I}, (3)

where Πp−1(V) denotes the space of polynomials on the element Vλ of total degree less than p. For the discretization
space S we introduce a set of basis functions Φ := {ϕλ,i}λ∈I,i∈P, which are orthonormalized with respect to L2 and are
compactly supported, i.e., supp ϕλ,i = Vλ, i ∈ P, where P characterizes the numbering of the degrees of freedom of
Πp−1. We assume that the zeroth basis function is constant, i.e., ϕλ,0 = 1/

√
|Vλ|. The global degrees of freedom are

characterized by IS := I × P, hence, we may write Φ = {ϕi}i∈IS .
For the semi-discretization of (2), we now assume that the approximate solution uh = (hh, (hv)h)t can be written

as an expansion of the basis Φ, i.e.,

uh(·, t) :=
∑
i∈IS

ui(t)ϕi(·) ∈ S m, where ui(t) = 〈uh(·, t), ϕi〉Ω. (4)

Here 〈 f , g〉Ω :=
∫

Ω
f (x) g(x) dx denotes the standard L2-inner product. Due to the orthogonality of the basis functions

the cell average uλ on Vλ is given by

uλ :=
1
|Vλ|

∫
Vλ

uh dx =
uλ,0
√
|Vλ|

= uλ,0ϕλ,0. (5)
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In order to derive an evolution equation for the coefficients ui we first rewrite (2) in a weak formulation. For this
purpose we multiply (2) by a test function wh ∈ S m and integrate over a cell Vλ. Then we perform integration by
parts and introduce numerical fluxes f̂ approximating the flux f · ~n in direction ~n. This results in the semi-discrete
DG-formulation:
Find uh(·, t) ∈ S m, t ∈ [0,T ], such that for all wh ∈ S m and λ ∈ I:∫

Vλ

∂uh

∂t
· wh dx −

∫
Vλ

f(uh) : ∇wh + s(x,uh) · wh dx +

∫
∂Vλ

f̂(u+
h ,u

−
h , ~nλ) · wh dS = 0, (6)

where a ·b, a,b ∈ Rm denotes the standard inner product and for A,B ∈ Rm×d we define the product A : B :=
∑
i, j

Ai jBi j.

Here u+
h denotes the inner and u−h the outer value of uh at the boundary of Vλ. Furthermore ~nλ is the outward pointing

unit normal vector corresponding to the boundary of Vλ. In our computations we choose the local Lax-Friedrichs flux
[55] for reasons of simplicity and low computational cost:

f̂(u+,u−, ~n) :=
1
2

(
f(u+)~n + f(u−)~n

)
− αλ

(
u+ − u−

)
,

where αλ is the maximum of the largest eigenvalue of f ′(u+) · ~n and f ′(u−) · ~n, where f ′ is the Jacobian of f.
By choosing the basis functions in Φ for the test functions in (6) we obtain a system of ordinary differential

equations in time for the coefficients ui in the basis representation (4) of the solution uh. To obtain a fully-discrete
method, we have to discretize this system in time. For this purpose we use strong-stability-preserving Runge-Kutta
methods [56] in our computations in Section 5. Thus, at time level tn we may write

un(x) :=
∑
i∈IS

un
i ϕi(x) := uh(x, tn)

and un = (hn, (hv)n)t.
Finally we have to apply a limiter to un

i to avoid instabilities near discontinuities. Here the limiting is performed
on the local characteristic variables to avoid spurious oscillations [57]. In each direction we apply the TVB limiter
by Cockburn and Shu [58]. The idea behind this limiter is based on the assumption, that spurious oscillations only
occur in the approximate solution if they occur in its Π1-part. Therefore, the limiting is only applied on the Π1-part of
the solution. If the solution is limited all higher order coefficients will be set to zero after limiting the slopes from its
Π1-part. In the adaptive case we add a multiresolution based indicator to this limiting strategy.

3. Well-balancing and positivity-preserving

A common problem in discretizing shallow water equations with bottom topography is to preserve quiescent flow
conditions, or the so-called lake at rest, where

h + b = const and v = 0.

A scheme that can deal with this situation is said to satisfy the exact C-property according to Bermúdez and Vázquez
[26]. It is well-known that a straightforward discretization of the equations (1) leads to non-physical oscillations
caused by spurious waves traveling in the solution, thus, the discretization cannot preserve quiescent flow conditions.
Therefore, the DG scheme has to be modified to preserve the exact C-property.

Furthermore also steady state flows are of interest. When the numerical scheme can satisfy this, it is said to be
well-balanced [27, 28] in the sense that fluxes and source terms are properly balanced to keep steady states. In order
to get a well-balanced scheme we follow the idea of Xing and Shu [59]. For this purpose we modify the numerical
fluxes in (6) and project the bottom topography on the DG space, i.e., bh ∈ S . The numerical fluxes are replaced by
the modified flux ∫

∂Vλ

f̂λ(u+
h ,u

−
h , b

+
h , b

−
h , ~nλ) · wh dS ,
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which is defined by

f̂λ(u+,u−, b+, b−, ~n) := f̂(u+
m,u

−
m, ~n) +

g
2

(
(h+)2 − (h+

m)2
) (0
~n

)
. (7)

The modified values are defined by

u±m := (h±m, (h
±
mv±))t, where h±m := max(0, h± + b± −max(b+, b−)).

In case of a fixed grid, Xing and Shu proved in [59] that the resulting scheme fulfills the exact C-property.
An additional crucial problem in discretizing shallow water equations is the treatment of wetting and drying. For

that matter one has to make sure that the water height h remains positive during the computation. In order to ensure
positivity we follow the ideas of Xing et al. [60] and Gandham et al. [61]. Xing et al. showed that applying a positivity
correction for high order coefficients with a linear scaling around the cell average un

λ := 1
|Vλ |

∫
Vλ

un dx = un
λ,0 ϕλ,0 after

each forward Euler step is sufficient to guarantee positivity. This scaling is defined by

ũn(x) :=
∑
λ∈I

θλ

 ∑
i∈P\{0}

un
λ,iϕλ,i(x)

 + un
λ, (8)

where θλ is defined by

θλ := min

1,
h

n
λ

h
n
λ − hmin,λ

 and hmin,λ := min
xi∈Xλ

hn(xi). (9)

Since in the DG scheme flux integrals over the cell volume and the cell interfaces have to be computed with suitable
quadrature rules, we use these (volume and surface) quadrature points for the control points xi ∈ Xλ. By this we
can make sure that h remains positive in all control points involved in the flux computations. Furthermore, a cell is
considered to be dry if the mean value of h is smaller than the dry tolerance Tol. Note that for cells which are dry and
all of its neighbours are dry as well no update in the DG scheme has to be performed.

Since the local projection limiter has to be applied after each stage in the Runge-Kutta scheme, we can simply
add this positivity correction to the limiting procedure. In order to maintain the well-balancing property we apply the
limiter in the local characteristic variables in non-dry areas, i.e., hmin,λ > Tol, on (h + b, hv) instead of (h, hv). In dry
or nearly dry areas, i.e, hmin,λ < Tol, the limiting is performed on h, hv in the conserved variables itself instead of
local characteristic variables. In the following algorithm we summarize the limiting procedure:

Algorithm 1. (Limiting including positivity correction)
For each cell Vλ, λ ∈ I, the limiting step consists of the following two steps:

(i) If (minxi∈Xλ hn(xi) > Tol)
apply TVD limiter in the local characteristic variables from [58] on (h + b, hv)t

else
project u|Vλ to Π1 and apply the TVD limiter in the conserved variables from [58] on (h, hv)t with Shu constant
M = 0 on this cell.

(ii) Compute θλ and apply the positivity correction (8), i.e., multiply θλ to the higher order coefficients to ensure
non-negative water height at all quadrature nodes.

Note that the order in which the cells are limited does not matter, since the limiter relies only on the mean values of
the neighbouring cells that are not changed by the limiter or the positivity correction. Additionally we set v to zero if
h < Tol, since there should be physically no high velocity in almost dry areas. Otherwise the velocity might become
very large because of division by a small value for h. In order to ensure the convergence of the scheme, we have to
make sure that Tol→ 0 for maxλ∈I |Vλ| → 0.
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4. Multiresolution analysis and grid adaptation

The DG discretization typically works on an array of coefficients of the polynomial representation of the solution.
In order to realize a certain target accuracy at the expense of a possibly low number of degrees of freedom, viz. a
possibly low computational effort, one should keep the size of the cells large wherever the data exhibit little variation,
reflecting a high regularity of the searched solution components. Our analysis of the local regularity behavior of
the data is based on the concept of multiwavelets, cf. [62]. Here we will briefly summarize the basic ideas of the
MRA concept, for details we refer to [52]. The core ingredients are (i) a hierarchy of nested grids, (ii) (orthogonal)
multiwavelets and (iii) the multi-scale decomposition.

4.1. Nested grid hierarchy

The starting point for the multiresolution analysis is a coarse mesh G0 with N0 cells. Then the cells of the mesh
G0 are subdivided recursively and we obtain grids G` for increasing number of refinement levels `:

G` := {Vλ}λ∈I` with Ω =
⋃
λ∈I`

Vλ, ` ∈ N0,

Obviously, the resulting grid hierarchy is nested:

Vλ =
⋃
µ∈Mλ

Vµ, ∀ λ ∈ I`, ` ∈ N0, (10)

where Mλ ⊂ I`+1 denotes the refinement set of cell Vλ. The concept we present in this section can be applied to
general nested grid hierarchies. For the two-dimensional computations in Section 5 we use on each level a uniform
quadrilateral grid with |Mλ| = 4. By h` we denote the length of the minimum side of the rectangles on level `. For
more general grids h` can be chosen as the minimum diameter of cells Vλ on level `.

4.2. Multiresolution analysis

Similar to (3) we introduce for each grid G` the discretization space

S ` := { f ∈ L2(Ω) : f |Vλ ∈ Πp−1(Vλ) ∀ λ ∈ I`}, ` ∈ N0

of piecewise polynomial functions of total degree less than p. To this multiresolution sequence we apply the concept
of multiresolution analysis [41]. Due to the nestedness of the grid hierarchy these spaces form a multiresolution
sequence S which is a nested sequence of closed linear subspaces of L2(Ω), i.e.,

S 0 ⊂ S 1 ⊂ . . . ⊂ S ` ⊂ S `+1 ⊂ . . . ⊂ L2(Ω) (11)

such that S is dense in L2(Ω). The nestedness of the discretization spaces implies that there exist orthogonal comple-
ment spaces W` such that S `+1 = S ` ⊕W`. Recursively applying this two-scale relation we obtain:

S L = S 0 ⊕W0 ⊕ ... ⊕WL−1 (12)

for arbitrary but fixed highest refinement level L ∈ N0. This multi-scale relation is the core ingredient of our adaptation
strategy, because the complement spaces reveal insight into the local regularity behavior of the solution that can be
exploited to trigger the grid refinement process.

To perform the multi-scale decomposition of the single-scale space S L in (12) we need to specify a bases for the
single-scale spaces S ` and the complement spaces W`. Then the multi-scale decomposition corresponds to a change
of basis. With regard to an efficient transformation we assume that the basis functions are compactly supported and
orthonormal. We may write these spaces as

S ` = span
i∈IS

`

ϕi and W` = span
i∈IW

`

ψi
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with index sets IS
`

:= I` × P and IW
`

:= I` × P∗ corresponding to the global degrees of freedom of S ` and W`,
respectively. P and P∗ characterize the local degrees of freedom of S ` and W`, respectively. The functions ϕi and ψi
are referred to as scaling functions and multiwavelets, respectively.

By definition of the complement spaces W` the wavelets are orthogonal to the scaling functions:

〈ψi, ϕj〉Ω = 0 i ∈ IW
` , j ∈ IS

` , ` ∈ N0. (13)

The scaling functions can be constructed by the Gram-Schmidt process. The wavelets can be constructed with Alpert’s
general construction principle [63]. For a detailed description of the construction of multi-dimensional wavelets we
refer to [52]. The following proposition summarizes the properties of the basis functions:

Proposition 1. (Properties of the basis)
For i, j ∈ IS

`
, i′, j′ ∈ IW

`
, λ ∈ I`, i ∈ P and i′ ∈ P∗ there holds:

(i) Orthonormality:

〈ϕi, ϕj〉Ω = δij, 〈ψi′ , ψj′〉Ω = δi′j′ and 〈ϕi, ψi′〉Ω = 0. (14)

(ii) Vanishing moments:

〈ψi′ , P〉Ω = 0 ∀ P ∈ Πp−1(Ω). (15)

(iii) Compact support:

supp(ϕλ,i) = Vλ and supp(ψλ,i′ ) = Vλ. (16)

(iv) The zero order basis function is constant:

ϕλ,0 = 1/
√
|Vλ|. (17)

(v) Due to the nestedness of the spaces there exist the following two-scale relations:

ϕλ,i =
∑
µ∈Mλ

∑
j∈P

〈ϕµ, j, ϕλ,i〉Vµ ϕµ, j, ψλ,i′ =
∑
µ∈Mλ

∑
j∈P

〈ϕµ, j, ψλ,i′〉Vµ ϕµ, j (18)

and

ϕµ,i =
∑
j∈P

〈ϕλ, j, ϕµ,i〉Vµ ϕλ, j +
∑
j′∈P∗
〈ψλ, j′ , ϕµ,i〉Vµ ψλ, j′ , µ ∈ Mλ. (19)

4.3. Multi-scale transformation

In order to exploit the potential of data compression we make use of the multi-scale transformation (12), and
determine the relation between the coefficients in the single-scale and the multi-scale representation of u ∈ (S L)m:

u =
∑
i∈IS

L

uiϕi =
∑
i∈IS

0

uiϕi +

L−1∑
`=0

∑
i∈IW

`

diψi. (20)

From the orthonormality of the basis (14) we conclude that the single-scale coefficients ui and the detail coefficients
di are determined as the inner products of u with the basis functions, i.e.,

ui = 〈u, ϕi〉Ω and di = 〈u, ψi〉Ω. (21)

7



Recursively, the array of single-scale coefficients corresponding to the finest discretization level

UL := (ui)i∈IS
L

can be transformed into a sequence of coarse grid data U0 and details Dl

U0 := (ui)i∈IS
0
, D` := (di)i∈IW

`
, ` = 0, . . . , L − 1,

where the arrays of the details represent the successive update from a coarser resolution to a finer resolution. We
refer to this transformation as the multi-scale transformation determined by the multi-scale operator ML : UL −→

(U0,D0, . . . ,DL−1). The inverse multi-scale transformation is described by the inverse multi-scale operator M−1
L :

(U0,D0, . . . ,DL−1) −→ UL. From the two-scale relations for the basis functions (18) and (19) we can derive simi-
lar relations for the coefficients: the multi-scale transformation can be implemented very efficiently by recursively
applying:

uλ,i =
∑
µ∈Mλ

∑
j∈P

〈ϕµ, j, ϕλ,i〉Vµ uµ, j, λ ∈ I`, i ∈ P (22)

and

dλ,i =
∑
µ∈Mλ

∑
j∈P

〈ϕµ, j, ψλ,i〉Vµ uµ, j, λ ∈ I`, i ∈ P∗ (23)

proceeding from fine to coarse, i.e., ` = L − 1, ...., 0. The inverse multi-scale transformation can be implemented
analogously by recursively applying:

uµ,i =
∑
j∈P

〈ϕλ, j, ϕµ,i〉Vµ uλ, j +
∑
j′∈P∗
〈ψλ, j′ , ϕµ,i〉Vµ dλ, j′ , µ ∈ Mλ, λ ∈ I`, i ∈ P (24)

proceeding from coarse to fine, i.e., ` = 0, ..., L− 1. In the case of Cartesian grids the inner products of the basis func-
tions in the transformations, e.g., 〈ϕµ, j, ϕλ,i〉Vµ , can be computed on a reference element once before the computation
and stored to reduce the computational cost of these transformations. Therefore the computation of the transformation
can be done very efficiently. For a detailed description we refer to [52].

4.4. Thresholding and grid adaptation
We call a detail coefficient di significant if it is larger than a level-dependent threshold value:

dmax
i := max

1≤k≤m

|(di)k | ‖ψi‖L∞(Ω)

umax
k

> ε`(i), (25)

where `(i) denotes the level of the cell corresponding to the index i. In order to account for the different orders of
magnitude of the conserved quantities it is scaled with umax

k := max(maxλ∈Gn |(uλ)k |, 1), where uλ is the mean value of
u on Vλ according to (5).

For a given threshold value ε ≥ 0 we define level-dependent threshold values ε` by ε` := a`−Lε, a > 1. Due to
the cancellation property detail coefficients may become negligibly small whenever the underlying function is locally
smooth, for details we refer to [52]. This gives rise to hard thresholding characterized by the set of cell indices

Dε :=

i ∈
L−1⋃
`=0

IW
` : dmax

i > ε`(i)

 . (26)

We will use this index set to find a sparser approximate representation of u. Therefore we define the approximation

uε :=
∑
i∈IS

0

uiϕi +
∑
i∈Dε

diψi. (27)

8
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Figure 1. Example for coarsening via thresholding.

This approximation may be seen as a projection to a coarser grid ifDε is a tree, i.e.,

(µ, i) ∈ Dε ⇒ (λ, j) ∈ Dε ∀ λ,Vµ ( Vλ and j ∈ P∗.

Thus we determine a locally refined grid Gε from the index set Dε: First of all we modify Dε such that it is a tree.
Then Gε can be determined recursively by traversing through the levels from coarse to fine: if (λ, i) ∈ Dε for some
i ∈ P∗, then the cell Vλ is locally refined:

Gε = {µ ∈ I`, ` ∈ {0, ..., L} : (µ, i) < Dε ∀ i ∈ P∗ and ∃ i ∈ P∗, λ ∈ I`−1, s.t. µ ∈ Mλ and (λ, i) ∈ Dε }.

For an illustration of grid coarsening via hard thresholding see Figure 1. In the following proposition we summarize
the properties of the thresholding.

Proposition 2. (Properties of thresholding)
Let Ω be a bounded domain, u ∈ (S L)m and ε` = a`−Lε with a > 1. Furthermore let uε be the coarsened approximation
corresponding toDε.

(i) The approximation error with respect to the set of significant details Dε is uniformly bounded with respect to
Lq(Ω), q ∈ [1,∞), i.e.,

‖ (u − uε)k ‖Lq(Ω) ≤
umax

k |P∗| |Ω|
1
q

a − 1
ε, 1 ≤ k ≤ m.

(ii) The average value u := 1
|Ω|

∫
Ω

udx is not modified by thresholding, i.e.

u = uε.

(iii) The positivity of the water height in the mean is preserved by the thresholding procedure, i.e.,

hλ ≥ 0, ∀λ ∈ IL ⇒ hλ ≥ 0, ∀λ ∈ Gε,

where uλ = (hλ, (hv)λ)t is the mean value on Vλ according to (5).

Proof: The index set for all detail coefficients is defined by

D :=
L−1⋃
`=0

IW
` .

9



Then the threshold error u − uε is given by

u(x) − uε(x) =
∑

i∈D\Dε

di ψi(x), x ∈ Ω.

By the definition ofDε there holds for x ∈ Vλ, λ ∈ I`:

| (u(x) − uε(x))k | ≤
∑

i∈D\Dε

|(di)k | |ψi(x)| ≤ umax
k

∑
i∈D\Dε

ε`(i) ≤ umax
k

∑
i∈D

ε`(i) ≤ umax
k |P∗|

L−1∑
`=0

ε`.

Furthermore we have
L−1∑
`=0

ε` = εa−L
L−1∑
`=0

a` = ε
1 − a−L

a − 1
≤

1
a − 1

ε.

Property (i) follows directly by combining these two inequalities and the definition of the Lq-norm. Property (ii) holds
true, since we conclude by (15)

u − uε =
1
|Ω|
〈u − uε, 1〉Ω =

1
|Ω|

∑
i∈D\Dε

di 〈ψi, 1〉Ω = 0.

Since the cells in Gε are not smaller than the cells in IL it is sufficient for the proof of (iii) to show

hµ ≥ 0 ∀ µ ∈ Mλ ⇒ hλ ≥ 0, ∀ λ ∈

L−1⋃
`=1

I`.

First we note by (17) that

1 =
√
|Vλ| ϕλ,0(x) =

√
|Vµ| ϕµ,0(x), ∀ x ∈ Vµ ⊂ Vλ. (28)

Then we conclude by (22) and (14) that

hλ,0 =
∑
µ∈Mλ

∑
i∈P

〈ϕµ,i, ϕλ,0〉Vµ hµ,i =
∑
µ∈Mλ

∑
i∈P

√
|Vµ|
√
|Vλ|
〈ϕµ,i, ϕµ,0〉Vµ hµ,i =

∑
µ∈Mλ

√
|Vµ|
√
|Vλ|

hµ,0 ≥ 0.

�
Since we are interested both in a large threshold value resulting in sparse grids and in a small error we choose a = 2
for the computations in Section 5.

4.5. Refinement (prediction)
The multiresolution analysis is used as an indicator to perform local grid adaptation, where due the time evolution

the adaptive grid may dynamically change. At each time step tn the adaptive grid is characterized by an index set

Gn ⊂ {λ : λ ∈ I`, ` = 0, . . . , L}

satisfying Ω =
⋃
λ∈Gn Vλ with Vλ ∩ Vλ′ = ∅ for λ , λ′. At each time step tn associated to this grid there exists a

discretization space S n ⊂ S L. Then any u ∈ (S n)m can be written as

u =
∑

i∈Gn×P

uiϕi =
∑
i∈IS

0

uiϕi +
∑
i∈Dn

diψi,

where the corresponding index set of detail coefficients is given by

Dn :=

i = (λ, i) ∈
L−1⋃
`=0

IW
` : ∃µ ∈ Gn s. t.Vµ ( Vλ

 . (29)

The adaptive grid can be characterized by the set of elements Gn, the set of significant coefficients Dn or the corre-
sponding space S n equivalently. In between two time steps we have to determine the new grid for the next time step
and project the DG-solution to the corresponding space. Thus, the adaptation strategy consists of two steps at each
time step tn:
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• After having performed the update step of the DG-scheme on (S n)m, we apply thresholding and determine a
coarsened grid Gn

ε, the solution is projected to the corresponding space
(
S n,ε

)m.

• Before the next time step we refine the grid Gn
ε to determine Gn+1 and project the DG-solution from

(
S n,ε

)m to
(S n+1)m.

Based on u ∈ (S n,ε)m at the current time step tn we have to predict which details will be significant at the new time
step tn+1 in order to refine the grid and determine Gn+1. The refinement is characterized by the set Dn+1, where we
inflate the setDn

ε corresponding to Gn
ε. For the design of such a prediction set we modify the idea of Harten’s strategy

[39]:

(i) significant details may remain significant within one time step:

Dn
ε ⊂ D

n+1, (30)

(ii) details in a local neighborhood of a significant detail may also become significant within one time step due to
the finite speed of propagation, i.e.,

max
i∈P∗

dmax
λ,i > ε` ⇒ {(λ′, i) : Vλ′ is neighbour of Vλ, i ∈ P∗} ⊂ Dn+1, (31)

(iii) gradients may steepen due to the formation of shocks causing significant details on higher levels, i.e.,

max
i∈P∗

dmax
λ,i ≥ 2M̄+1ε` ⇒ Mλ × P

∗ ⊂ Dn+1 (32)

where M̄ = p is the number of vanishing moments of the multiwavelets,

(iv) Dn+1 is a tree:

(µ, i) ∈ Dn+1 ⇒ (λ, j) ∈ Dn+1 ∀ λ,Vµ ( Vλ and j ∈ P∗. (33)

Analogously to Figure 1 we can determine the adaptive grid for the new time step Gn+1 fromDn+1 after the prediction
step. If the grid is refined in the prediction step we have to project the current solution to (S n+1)m. In general this
can be done by applying a local inverse multi-scale transformation (24), where non-existing detail coefficients are set
to zero. In order to ensure positivity of the mean values in the refined grid Gn+1 we have to modify this projection,
where we split the inverse multi-scale transformation in two parts. Due to (30) we know that Gn

ε is coarser than Gn+1,
therefore we may determine the single-scale representation of u on the grid Gn

ε from the previous time step first and
then take care for the additional refinement added by (31), (32) and (33) in a second step:

First of all, we apply recursively for all λ, which satisfy (λ, i) ∈ Dn
ε for some i ∈ P∗, the inverse multi-scale

transformation (24) from coarse to fine to determine a single-scale representation of u on the grid Gn
ε. In a second step

we take care of the additional refinement. The cells which will be additionally refined are determined by

Rn+1 := {λ : (λ, i) ∈ Dn+1 \ Dn
ε for some i ∈ P∗}.

The refinement is done recursively from coarse to fine since a cell might be refined again on the next refinement level.
If a cell Vλ, λ ∈ Rn+1, is additionally refined by the prediction step we have to project the DG-solution to its finer
sub-cells µ ∈ Mλ. Since di = 0 for all i ∈ Dn+1 \Dn

ε, the local inverse multi-scale transformation (24) provides us with

uµ,i :=
∑
i′∈P

〈ϕλ,i′ , ϕµ,i〉Vµ uλ,i′ , µ ∈ Mλ, λ ∈ Rn+1. (34)

However, this could result in negative mean values for the height h. Therefore we modify the inverse multi-scale
transformation (34) by adding the following positivity correction to the higher order coefficients:

ũµ,i := 〈ϕλ,0, ϕµ,i〉Vµ ũλ,0 + αλ
∑

i′∈P\{0}

〈ϕλ,i′ , ϕµ,i〉Vµ ũλ,i′ , µ ∈ Mλ, λ ∈ R
n+1, (35)

11



where initially ũλ,i = uλ,i for all λ ∈ Gn
ε and i ∈ P. The local correction factor αλ is defined as

αλ := min(1,
h̃λ,0ϕλ,0
∆hmin

), where ∆hmin := −min
µ∈Mλ

∑
i′∈P\{0}

〈ϕλ,i′ , ϕµ,0〉Vµ
h̃λ,i′√
|Vµ|

. (36)

Note that (35) coincides with (34) for αλ = 1. The step is repeated recursively from coarse to fine until the desired
local refinement level is reached. We summarize the procedure for the refinement including the modified projection
(35) in the following algorithm.

Algorithm 2. (Projection to refined grid via inverse multi-scale transformation)

(0) Initialize: Gn+1 = I0

(1) For ` = 0 to L − 1 do
If (λ, i) ∈ Dn

ε for some i ∈ P∗ then

(i) compute uµ,i, µ ∈ Mλ, i ∈ P, according to (24);

(ii) add µ ∈ Mλ to the set Gn+1;

(iii) remove λ from the set Gn+1.

(2) Initialize ũλ,i := uλ,i for all λ ∈ Gn
ε and i ∈ P.

(3) For ` = 0 to L − 1 do
If (λ, i) ∈ Dn+1 \ Dn

ε for some i ∈ P∗ then

(i) compute ũµ,i, µ ∈ Mλ, i ∈ P, according to (35);

(ii) add µ ∈ Mλ to the set Gn+1;

(iii) remove λ from the set Gn+1.

Finally the modified projection ũ onto the refined grid Gn+1 is defined by ũ :=
∑

i∈Gn+1×P

ũi ϕi.

In the following proposition we summarize the properties of our refinement strategy including the modified pro-
jection.

Proposition 3. (Properties of refinement)
Let Ω be a bounded domain, u ∈ (S n,ε)m. Furthermore let ũ ∈ (S n+1)m be the projection to the refined grid Gn+1 using
the corrected projection (35).

(i) The corrected projection (35) modifies the solution only in dry areas, i.e.,

h(x) ≥ 0 ∀x ∈ Vλ, λ ∈ G
n
ε ⇒ u(x) = ũ(x) ∀ x ∈ Vλ.

(ii) The average value u = 1
|Ω|

∫
Ω

udx is not modified by the refinement including the corrected projection (35), i.e.,

u = ũ.

(iii) The positivity of the water height in the mean is preserved by the refinement, i.e.,

hλ ≥ 0, ∀λ ∈ Gn
ε ⇒ h̃λ ≥ 0, ∀λ ∈ Gn+1,

where uλ = (hλ, (hv)λ)t and ũλ = (h̃λ, (̃hv)λ)t are the mean values according to definition (5).
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Proof: Since the refinement is done locally level-wise from coarse to fine, we assume for simplicity that a cell
Vλ, λ ∈ G

n
ε, is refined only once into its sub-cells Vµ, µ ∈ Mλ. Otherwise we repeat the following arguments recursively

to its sub-cells. In this case, according to (24) and (35), u = (h, hv)t and ũ = (h̃, h̃v)t are defined on Vλ by

u(x) =
∑
i∈P

uλ,iϕλ,i(x), x ∈ Vλ and (37)

ũ(x) =
∑
µ∈Mλ

∑
i∈P

ũµ,iϕµ,i(x), x ∈ Vλ. (38)

Note that due to the refinement assumption ũλ,i = uλ,i for all i ∈ P. Let hµ denote the mean values of h in the sub-cells
Vµ, µ ∈ Mλ. By (37), (17) and (28) we conclude

hµ :=
1
|Vµ|

∫
Vµ

h(x) dx =
1
|Vµ|
〈h, 1〉Vµ = hλ +

∑
i′∈P\{0}

〈ϕλ,i′ , ϕµ,0〉Vµ
hλ,i′√
|Vµ|

, µ ∈ Mλ, (39)

where by (17) and (21) the mean value of h on Vλ is determined by

hλ :=
1
|Vλ|

∫
Vλ

h(x) dx =
1
|Vλ|
〈h, 1〉Vλ = hλ,0ϕλ,0. (40)

By definition (36) and hλ.0 = h̃λ,0 we conclude that

∆hmin = hλ − min
µ∈Mλ

hµ. (41)

In order to show (i) we first note by (34) that for all x ∈ Vλ there holds

u(x) =
∑
µ∈Mλ

∑
i∈P

uµ,iϕµ,i(x), where uµ,i :=
∑
i′∈P

〈ϕλ,i′ , ϕµ,i〉Vµ uλ,i′ , µ ∈ Mλ and i ∈ P. (42)

Since by assumption h(x) ≥ 0, ∀x ∈ Vλ, then hλ ≥ 0 and hµ ≥ 0, ∀µ ∈ Mλ, as well. Thereby we conclude with (41)
that

hλ
∆hmin

=
hλ

hλ − min
µ∈Mλ

hµ
≥ 1.

Note that minµ∈Mλ
hµ ≤ hλ, otherwise all mean values on the sub-cells Vµ ⊂ Vλ would be larger than the mean value of

the cell Vλ. By definition (36) and (40) this implies αλ = 1. Thus, the coefficients ũµ,i in (35) and uµ,i in (34) coincide
and u(x) = ũ(x) for all x ∈ Vλ, respectively.

For (ii) we have to verify that ũλ = uλ. First of all we note by (17) and (14) that∫
Vµ

ϕµ,i(x)dx =

√
|Vµ|〈ϕµ,i, ϕµ,0〉Vµ = 0, ∀ µ ∈ Mλ and i ∈ P \ {0}. (43)

Analogously, we obtain by (10) and (17)∑
µ∈Mλ

〈ϕλ,i′ , ϕµ,0〉Vµ

√
|Vµ| = 〈ϕλ,i′ , 1〉Vλ =

√
|Vλ| 〈ϕλ,i′ , ϕλ,0〉Vλ =

√
|Vλ| δi′0, ∀ i′ ∈ P. (44)

From (43) we conclude with (38), (17) and (16) that

ũλ =
1
|Vλ|

∫
Vλ

ũ(x)dx =
∑
µ∈Mλ

√
|Vµ|

|Vλ|
ũµ,0. (45)
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Replacing the coefficients ũµ,0 by (35) we obtain

ũλ =
∑
µ∈Mλ

√
|Vµ|

|Vλ|

〈ϕλ,0, ϕµ,0〉Vµ uλ,0 + αλ
∑

i∈P\{0}

〈ϕλ,i′ , ϕµ,0〉Vµ uλ,i

 , (46)

where we use that ũλ,i = uλ,i for all i ∈ P. According to (44), the second term in (46) vanishes. For the first term we
conclude with (17), (21) and (44)

ũλ =
uλ,0
√
|Vλ|

= uλ,0ϕλ,0 = uλ.

In order to show (iii) we first note that by (5) the mean value of the modified function h̃ on Vµ is determined by

h̃µ :=
1
|Vµ|

∫
Vµ

h̃(x) dx = ϕµ,0〈h̃, ϕµ,0〉Vµ = h̃µ,0ϕµ,0 =
h̃µ,0√
|Vµ|

.

Inserting (35) on the right-hand side we obtain

h̃µ =
1√
|Vµ|

〈ϕλ,0, ϕµ,0〉Vµhλ,0 + αλ
∑

i∈P\{0}

〈ϕλ,i, ϕµ,0〉Vµhλ,i

 ,
where we use h̃λ,i = hλ,i, i ∈ P. By (17) and (40) this simplifies to

h̃µ = hλ + αλ
∑

i∈P\{0}

〈ϕλ,i, ϕµ,0〉Vµ
hλ,i√
|Vµ|

.

By definition (36) of ∆hmin we finally conclude

min
µ∈Mλ

h̃µ = hλ + αλ min
µ∈Mλ

∑
i∈P\{0}

〈ϕλ,i, ϕµ,0〉Vµ
hλ,i√
|Vµ|

= hλ − αλ∆hmin. (47)

Then we distinguish two cases

- (αλ = 1): In this case it holds
hλ

∆hmin
≥ 1

according to (36). Then we conclude by (47)

min
µ∈Mλ

h̃µ = hλ − ∆hmin ≥ 0.

- (αλ =
hλ

∆hmin
): In this case (47) yields

min
µ∈Mλ

h̃µ = hλ − αλ∆hmin = 0.

�

4.6. Grid Adaptation in combination with well-balancing

In order to guarantee that the adaptive scheme is well-balanced as well, we will have to add some modifications to
our adaptation strategy such that coarsening and refinement will not destroy this property. For this purpose we claim
that the following conditions are fulfilled:
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(i) bh ∈ S n for each time step tn.

(ii) Coarsening and refinement indicators are based on h + b and hv instead of h and hv.

(iii) The topography b should be involved in the adaptation process.

One of the key ideas from Xing and Shu [59] to ensure well-balancing besides the flux modification (7) is to project
the bottom topography b to the same space as the solution uh. In the adaptive scheme the grid is changing from time
step to time step and thus the discretization space is changing as well. Therefore we need (i). For efficiency, we use a
static grid for b (not necessarily uniform). To make sure that bh ∈ S n for each time-step tn we determine an adaptive
representation of bh by applying hard thresholding. The corresponding index set Db

ε of significant detail coefficients
of the bottom topography is then added in each time step to Dn

ε as an additional constraint to the coarsening and the
refinement procedure. By this we make sure that the shape of b is involved in the adaptation process, i.e., wherever b
is discontinuous or has a strong gradient the corresponding adaptive grid is refined in this area. Several other strategies
to ensure well-balancing in the reference scheme rely on the continuity of bh [18]. In this case one has only to make
sure that the initial projection of b to its static adaptive grid ensures the continuity.

The coarsening step might destroy the preservation of the still water state h + b = const. This can be prevented
by applying the multiscale transformation, prediction and thresholding on h + b and by adding the constraint Db

ε to
the prediction and the thresholding, i.e., Dn

ε is replaced by Db
ε ∪ D

n
ε. However, the corrected projection (35) in the

refinement is still applied on h.

4.7. Adaptive MR-DG scheme
At the beginning of the computation we have to initialize a suitable adaptive grid. Ideally one could project the

initial data on the finest level and apply thresholding to obtain an adaptive grid. But this leads to the computational
cost and the memory requirement of the reference scheme. We refer to [52] for a more efficient way to initialize
the adaptive grids by a bottom-up strategy instead of the aforementioned top-down strategy. At t = 0 we apply this
initialization to the initial data u0 and to the bottom topography b to obtain adaptive grids for both of them. Next we
apply the multi-scale transformation to the grid of the bottom topography to determineDb

ε.
In Algorithm 3 we summarize the main steps of our scheme. Therein prediction and thresholding are performed

on the multi-scale coefficients, while all the other operations are carried out on the single-scale coefficients.

Algorithm 3. One time-step of the adaptive scheme:

(1) Grid refinement (on (h + b, hv)t):

(a) Apply the multi-scale transformations (22) and (23) to determine the detail coefficients,
(b) perform the prediction according to (30), (31), (32), (33) and the additional constraintDb

ε ⊂ D
n+1,

(c) determine the refined adaptive grid Gn by applying the inverse multi-scale transformation including the
positivity modification (35) according to Algorithm 2.

(d) Apply the positivity correction of high-order coefficients according to (8).

(2) Time evolution (on (h, hv)t):

Perform the Runge-Kutta time evolution using an SSP-RK scheme [56] where at each stage of the RK scheme
the single-scale coefficients corresponding to (h + b, hv)t are limited according to Algorithm 1.

(3) Grid coarsening (on (h + b, hv)t):

(a) Apply the multi-scale transformations (22) and (23) to determine the detail coefficients,
(b) perform thresholding of detail coefficients according to (25) and (26) whereDn

ε is replaced byDb
ε ∪D

n
ε,

(c) determine the adaptive grid by applying the inverse multi-scale transformation (24),
(d) Apply the positivity correction of the high-order coefficients according to (8).

Note that if the evolution step of the DG-scheme is well-balanced and positivity-preserving, the grid refinement and the
grid coarsening will maintain these properties as well according to Proposition 2 and 3. This holds true independently
of the underlying strategy to ensure these properties in the evolution step of the DG scheme, i.e., this strategy can be
applied to other positivity-preserving and well-balancing strategies as well.
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4.8. Choice of the threshold value
The efficiency of the adaptive scheme relies essentially on the appropriate choice of the threshold parameter ε. If

it is chosen too large, the additional error introduced by the thresholding is dominating and spoils the accuracy of the
solution. On the other hand, if ε is chosen too small the grid contains too many cells and efficiency is lost. For the
choice of the threshold value ε we apply here the idea presented in [51] and proceed as follows:

• If the solution is expected to be non-smooth, we choose ε = C hL.

• If the solution is expected to be smooth, we choose ε = C hp
L.

For details we refer to [51]. The choice of C has no influence on the asymptotic behavior of the scheme. However,
the efficiency and quality of the adaptive scheme is influenced by the choice of C, i.e., the size of the smallest features
which are resolved by the adaptive scheme. For instance, if we have a discontinuity of strength εp� 1, e.g.,

u(x, t) :=

1 if x1 < 0,
1 − εp else

,

then, this discontinuity will be resolved in the adaptive scheme provided that ε ≤ εp. In this way the adaptivity acts
like a filter on the data: dependent on the choice of the threshold value small perturbations might be neglected due to a
local coarse grid resolution. We might be interested to refine the grid up to finest level near such a small discontinuity.
Motivated by numerous computations it turned out choosing C ∼ εp triggers refinement up the finest level. In most
cases C = 1 is a suitable choice. If we are interested in resolving very small features we have to adjust C as described
above.

4.9. Limiting in the adaptive scheme
The limiter should only be applied on cells, where the solution contains discontinuities. In order to ensure that the

limiter does not damage the solution in regions where the solution is smooth Cockburn and Shu [58] added the Shu
constant to their limiting strategy. Provided that we have chosen a suitable threshold value the grid is refined up to
the finest level near discontinuities due to the multiresolution analysis. This cannot be proven rigorously but has been
observed in numerous computations. Thus, if the solution is locally smooth we expect the grid not to be refined up to
the finest level in this region. Since the limiting process is local, we can easily use this information as an additional
indicator for the limiting process: the limiter described in Algorithm 1 is only applied in cells on the finest level L.
Therefore, we make sure that a wet/dry interface will be refined. For this purpose we perform the following changes
in the adaptation process.

At each time step tn the cells at the wet/dry interface are characterized by

Gn
Interface := {λ ∈ Gn

ε : hλmax > Tol and hλmin < Tol }, (48)

where the maximum value is defined by the quadrature nodes xi ∈ Xλ and the mean values in the cell and its neighbours

hλmax := max
(
h

n
λ, max

xi∈Xλ
hn(xi), max

µ:Vµ is a neighbour ofVλ
h

n
µ

)
.

The minimum value is defined analogously. Following definition (48) we define

Dn
Interface,1 :=

i = (λ, i) ∈
L−1⋃
`=0

IW
` : ∃µ ∈ Gn

Interface s. t.Vµ ( Vλ


analogously to (29). By this we make sure that the grid near a wet/dry interface will not be coarsened. Since a new
wet/dry interface might appear during the computation, we refine the corresponding cell if not yet resolved on the
finest level, i.e., we inflate this index set by

Dn
Interface,2 := Dn

Interface,1 ∪
{
(λ, i) : λ ∈ Gn

Interface \ IL and all i ∈ P∗
}
.
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The wet/dry interface might move during one time step, therefore we add the indices of the neighbouring cells analo-
gously to (31), i.e.,

Dn
Interface :=

{
(µ, i) : Vµ is neighbour of Vλ, (λ, i) ∈ Dn

Interface,2

}
.

Finally we replaceDn
ε byDn

ε ∪D
n
Interface in order to incorporate the refinement triggered by the wet/dry interface into

the dynamic grid adaptation. Note that if the limiter is applied to all cells in the grid this is not necessary. Since we
are interested in resolving the wet/dry interface as good as possible, the additional refinement is needed anyway not
alone for limiting purposes. For this reason we refine a wet/dry interface in the initial data up to the finest refinement
level L.

5. Numerical results

In order to show that multiwavelet-based grid adaptation can significantly reduce the computational cost by spars-
ening the computational grids, while retaining accuracy and keeping well-balancing and positivity, we present nu-
merical results for several well-known benchmark problems. First of all, we validate our method performing several
one-dimensional test cases. Then we show results for two two-dimensional test cases.

5.1. One-dimensional results
Simulation parameters, unless stated otherwise were as follows. All one-dimensional cases were performed with

piecewise-quadratic elements, i.e., p = 3. For the computational grid we used a coarsest grid cell number of N0 = 2
and the number of refinement levels L = 8. Since in all test cases the solution is expected to be non-smooth, we have
chosen εL = Chp

L, where the constant C was set to 0.1. For the discretization in time we have chosen the explicit
third-order SSPRK scheme with CFL = 0.2. The Shu constant in the limiter was set to M = 0 for all cases.

5.1.1. Quiescent flow over a bump
This is a standard test case [60, 64] of quiescent flow over a continuous and smooth bed described by

b(x) = max
(
0, 0.25 − 5(x − 0.5)2

)
. (49)

Initial conditions for velocity are v = 0 corresponding to a lake-at-rest condition. We consider the computational
domain Ω = [0, 1]. Two sets of initial conditions are included for h + b. The first describes a fully wet domain, where

h + b = 0.26. (50)

The second initial condition
h + b = max

(
0.2, b

)
(51)

includes a wet/dry boundary which must be preserved by the numerical scheme, while conserving positivity of the h
solution.

Although it is conceptually simple, this test case allows to test several properties of the numerical strategy in-
cluding well-balancing, positivity-preserving and limiting under single-resolution and multi-resolution schemes. This
means that the expected outcome of the simulations is exactly the same initial state with zero velocity, and positive
values of depth. Both cases were run until t = 1 s.

Results for the fully wet initial condition are shown in Figure 2(a), and for the wet/dry case in Figure 2(b). For
clarity in the figures, only adaptive results are shown. The adaptive solution perfectly preserves the well-balanced
properties of the scheme (the uniform mesh results are identical), and zero velocity was verified throughout the
domain. Furthermore, in the wet/dry case, the adaptive solution is verified to be positivity-preserving. Note that the
resolution levels show how the mesh is adapted following the bed, thus producing high resolution cells at kinks and
reducing resolution in the curved and constant regions. In the wet/dry case, the mesh is also adapted to the wet/dry
front, which results in highest-level resolution at the front itself. Note that the adaptive solutions required, at the most,
17 and 44 cells for the fully wet and wet/dry cases, respectively, whereas the uniformly refined grid is composed of
512 cells.
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Figure 2. Quiescent flow: adaptive solutions for (a) the wet/wet case and (b) the wet/dry case. Top: surface h+b and bottom topography b. Bottom:
refinement of the grid after thresholding represented by the level of a cell.
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Figure 3. Dam break over a step: adaptive solution. Top: surface h + b and bottom topography b. Bottom: refinement of the grid after thresholding
represented by the level of a cell.
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5.1.2. Dam break over a step
This test case allows to evaluate the performance of the well-balanced multiresolution strategy in the presence

of shocks, rarefactions and bed discontinuities. It was presented in [7] in the context of benchmarking FV based
methods and further used by [65]. It is a demanding case for well-balancing and for the slope limiter. The geometry
is a frictionless rectangular channel, 100 m long, with a discontinuous bed step at x = 0. The bed is described by

b(x) =

0.05 , if x > 0
0 , if x < 0

(52)

with initial conditions

h(x, t = 0) =

1.0 , if x > 0
0.30179953 , if x < 0

(53)

and v(x, t = 0) = 0.
Results are shown in Figure 3 at time T = 5 s for the adaptive case with 8 refinement levels only. The adaptive

scheme refines to the top level of resolution at two locations: the bed discontinuity (x = 0) and the water surface
discontinuity (x ≈ 14). The left moving rarefaction wave is described by mid-level resolution (l = 4), and with
slightly higher resolution around the continuous but non-smooth regions, for example at the kink (x ≈ −16), where
l = 5 occurs. In the unperturbed region left of the rarefaction (x < −25) refinement is kept very low, at the first level
of resolution. Succinctly, this is the expected outcome of the strategy.

In order to identify the quality of the adaptivity we compare the adaptive solution with a solution computed on
a uniform fully refined grid. Therefore we have computed adaptive and uniform solutions for different numbers of
refinement levels 3 ≤ L ≤ 8. For L = 8 the adaptive grid has at most 53 cells, whereas the uniform grid consists of 512
cells. In order to appreciate the accuracy of the adaptive strategy, in Figure 4 we compare the L1-error of the uniform
and the adaptive scheme at t = 5 s. Here we can observe that the asymptotic behaviour in accuracy of the uniform
scheme is maintained by the adaptive scheme. Thereby the error of the adaptive is non-significantly larger than the
error of the uniform scheme.
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Figure 4. Dam break over a step: Accuracy

In order to examine the efficiency we compare the maximum number of cells in the adaptive grid for different
refinement levels in Figure 5. Both figures eloquently show how the adaptive solutions are able to achieve an error
in the same order as the uniform case of equivalent level but with less cells, for both conserved variables. Efficiency
increases with the number of levels, achieving in the case of the adaptive L = 8 case an error in the order of the
uniform L = 8, but using at the most around 10% of the cells used in the uniform L = 8 case.

5.1.3. Travelling wave
This test was proposed by LeVeque [66]. It consists of an initial perturbation of a quiescent state, which propagates

over a smooth bed. It is well known and has been used extensively for evaluating numerical schemes [17, 20, 53, 67,
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Figure 5. Dam break over a step: Efficiency of the adaptive scheme.

59]. The exact solution is not known, but the qualitative behavior of the solution is well-known.
We consider the computational domain Ω = [0, 1]. The bed is described by

b(x) =


1
4

[cos (5π(2x − 1)) + 1] , if |x −
1
2
| <

1
10

0 otherwise
(54)

with initial conditions

h(x, t = 0) =

1 − b(x) + εp , if
1

10
< x <

1
5

1 − b(x) otherwise
and v(x, t = 0) = 0. (55)

Two cases are commonly simulated with this setup:

1. A large perturbation of the quiescent state with εp = 0.2.
2. A small perturbation of the quiescent state with εp = 0.001.

Following our strategy to choose the threshold value ε in Section 4.8 we have to adjust the constant C in the second
case with the small perturbation. Therefore we choose C = εp = 0.001 in this case. Results for the large and the small
perturbation are shown in Figure 6(a) and 6(b), respectively, in terms of h + b, again for clarity we only present the
adaptive case. Figure 6(b) shows a very narrow scale for h + b, in which b is out-of-scale, so that it is possible to
observe the dynamics of the water surface, given that the perturbation is very small.

The uniform cases were computed with 512 cells. For εp = 0.2, the maximum number of cells was 130, around
25% of the number of cells of the uniform case. The εp = 0.001 case required a maximum of 152 cells, that is, around
30% of the number of cells of the uniform case. The results for both cases reproduce well the expected and well
known solutions.

5.1.4. Dam break over a sloping bed
This test case describes a dam break over a slope in such a way that water will advance upslope. It includes no

drying, therefore it is interesting to show wet front tracking capabilities of the adaptive scheme. The bed topography
is described by

b(x) = tan
(
π

60

)
x. (56)

Initial conditions for the water height are h(x, t = 0) = max(1 − b(x), 0).
Figure 7(a) shows results for the test case at T = 2 s. The adaptive process results in high resolution cells tracking

the wetting front and the kink moving upstream. Furthermore, in the dry regions the resolution quickly drops to low
levels, as it does also in the unperturbed upstream side.
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Figure 6. Travelling wave with perturbation: adaptive solution. Top: surface and bottom topography. Bottom: refinement of the grid after
thresholding represented by the level of a cell.
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Figure 7. Adaptive results and position of the wet/dry front for small dam break over a sloping bed.
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Figure 7(b) shows the position of the wet/dry front in time. The exact position of the front follows [60]

x f (t) = 2t

√
g cos

(
π

60

)
−

1
2

gt2 tan
(
π

60

)
, (57)

where g is gravitational acceleration. The numerical wet/dry front was obtained by identifying the first integration
point (from left to right) that showed a depth under a threshold value of 10−4. Observe how the numerical solutions
approximately track the advance of the wet/dry front (with an accuracy comparable to [60]), but more importantly,
how they resemble each other. This means that the adaptive process is able to track the wet/dry front with the same
accuracy as the uniform, fixed mesh solution. Additionally we performed an adaptive computation with L = 10
refinement levels. The position of the wet/dry interface of the finer adaptive computation (L = 10) is closer to the
exact position as expected due to grid convergence. The uniform case (L = 8) was computed with 512 cells, while the
adaptive solution reached a maximum of 71 cells.

5.2. Two-dimensional results
In order to show that our adaptive strategy works in the two-dimensional case as well we show results for two

well-known test cases. The first test case focuses on well-balancing and the second test case includes wetting and
drying.

5.2.1. A Small perturbation of steady-state water
In this test case we consider a small perturbation from a steady-state water. This test case was proposed by

LeVeque [68]. We consider a rectangular computational domain Ω = [−2, 2] × [−1, 2] with the bottom topography

Figure 8. Small perturbation form steady-state water: Bottom shape and initial adaptive grid

b(x) = 0.8e−5(x1−0.9)2−50(x2−0.5)2
.

The initial surface is given by

h(x, t = 0) =

1 − b(x) + 0.01 if 0.05 ≤ x1 ≤ 0.15
1 − b(x) otherwise

and the initial velocity is set to zero:
v(x, t = 0) = 0.

Starting from the initial perturbation two waves are propagating. One of these waves is moving towards the bump in
the bottom topography and is interacting with it. A complex wave structure is generated. The difficulty of this test
case is that the waves are very small in comparison to average values of the quantities.

We choose 4 × 3 cells on the coarsest mesh G0 and consider L = 8 levels of refinement. This corresponds to a
uniform grid with 786, 432 cells in the non-adaptive case. The Shu constant in the limiter is chosen as M = 0. Since
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(a) t = 0.12

(b) t = 0.24

(c) t = 0.36

Figure 9. Small perturbation form steady-state water: Adaptive solution (h + b) and grids at different times t.
23



the bottom topography is smooth but includes strong gradients we choose cubic polynomials, i.e., p = 4, and for the
time discretization we choose CFL number 0.08 and the explicit fourth-order SSP-RK(5,4) method. Since the solution
contains discontinuities, we choose ε = C hL. The constant C is chosen as 0.01 since the perturbation in the initial
surface is in the same order of magnitude and we want to resolve all effects coming from this perturbation. In Figure
8 the shape of the bottom topography and the initial grid are shown. The initial adaptive grid is moderately refined
in the surrounding area of the bed bump and is refined up to the finest level at the discontinuities of the initial water
surface. The solution is computed up to T = 0.6. The maximum number of cells in the adaptive computation was
about 59511 cells. This is only 7.6% of the reference mesh. In Figure 9 the adaptive solution and the corresponding
grid are shown for different times, thereby we focus on the interaction of the perturbation with the bump in the bottom
topography.

5.3. Two dimensional oscillating lake
We consider a parabolic bowl on the squared domain Ω = [−2, 2] × [−2, 2] with the bottom topography b(x) =

x2
1+x2

2
10 . The initial states are given by

h(x) = max
(
0,

1
20

(2x1 − 0.5) + 0.1 − b(x)
)
, u(x) = 0 and v(x) =

ω

2
,

with the frequency ω =

√
g
5 . The water is circling around in the bowl and after one period the initial position is

reached again. This test case was proposed by Gallardo et al [29] with the goal to test positivity-preserving and
limiting of numerical schemes. The analytical solution is given by

h(x, t) = max
(
0,

1
20

(2x1 cos(ωt) + 2x2 sinωt − 0.5) + 0.1 − b(x)
)
, u(x, t) = −

ω

2
sin(ωt) and v(x, t) =

ω

2
cos(ωt).

Since the boundary remains dry during the computation we can choose any boundary conditions, for simplicity we
have chosen reflecting boundary conditions. We choose 2 × 2 cells on the coarsest mesh G0. The Shu constant in the
limiter is chosen as M = 0.1. We choose quadratic polynomials, i.e., p = 3, and for the time discretization we choose
CFL number 0.01 and the explicit third-order SSPRK(3,3) method. We consider several maximum refinement levels
3 ≤ L ≤ 7. The threshold value is chosen as εL = hL. The tolerance in the wetting and drying is chosen dependent on
the number of refinement levels L: TolL = Ch2

L, where C is determined such that Tol7 = 6.25 · 10−7 for L = 7.
For the different levels of refinement we have computed adaptive solutions up to T = 4.5, such that one period is

completed. Exemplarily we present the adaptive solution and the corresponding grid for L = 7 in Figure 11.
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Figure 10. Two dimensional oscillating lake: Accuracy and efficiency of the adaptive scheme.

Our goal is to preserve the accuracy of the uniform scheme asymptotically with the adaptive method. In order
to verify this, we compare in Figure 10(a) the error of the adaptive scheme with the error of the reference scheme
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(a) t = 0.0

(b) t = 1.5

(c) t = 3.0

Figure 11. Oscillating lake (L = 8): Adaptive solution and grids and grid different times t. Contour: height h, shape: total surface h + b
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for different refinement levels to verify that the asymptotic behaviour of the uniform scheme is maintained by the
adaptive scheme. We observe that accuracy of the uniform scheme is not only maintained in the adaptive scheme,
but the error of the adaptive scheme is smaller than the error of the uniform scheme. This is a surprising result. This
effect might be explained by the fact that adaptivity can be understood as a filter, where small perturbations in the
solution are discarded when the grid is coarse. We note that the adaptive and the uniform scheme show the same
asymptotic behaviour. In Figure 10(b) we compare the maximum number of cells in the adaptive computation with
the number of cells in the uniform computation. Thereby we note that the computational cost is reduced significantly
by the adaptivity while the accuracy of the uniform scheme is maintained.

6. Conclusion

We have applied the multiwavelet-based grid adaptivity procedure to shallow water equations. In order to address
well-balancing and positivity-preserving we have added some modifications to the adaptive strategy. For these mod-
ifications we were able to proof that positivity-preserving and well-balancing are maintained by the adaptivity. The
general nature of these properties and their proof leads to the conclusion that, it is not relevant how these properties are
achieved in the reference scheme. But if they are present in the reference scheme, the proposed adaptive strategy will
preserve them across the scales and throughout the multiresolution analysis. Therefore our proposed adaptive strat-
egy can be combined with other well-balancing and positivity-preserving strategies. Additionally we intertwined the
multiwavelet-based grid adaptation with the limiting strategy. Based on a multiresolution analysis of the underlying
data the limiter is only applied to cells on the finest refinement level.

The benchmark tests verify that the multiresolution DG scheme is capable of accurately solving the shallow water
equations. They also show that high accuracy can be achieved with the adaptive strategy, in the same order as very
fine uniform meshes, but with significantly smaller cell numbers. The adaptive strategy allows to incorporate source
term effects (such as bed discontinuities) accurately as well as to accurately track discontinuities in the solution and
wet/dry fronts.

The adaptive strategy relies only on one parameter: the threshold value ε. For the choice of this parameter we
present a reliable strategy. Since all considered benchmark test cases are expected to have a non-smooth solution, we
have chosen the threshold value as ε = ChL, with a constant C and the grid size hL on the finest refinement level L.
The choice of C was observed to be of minor importance. It was found that, although C is case-dependent, only the
order of magnitude matters, i.e., it should be chosen in the same order of magnitude as the size of the features, e.g.,
strength of discontinuities, which are of interest. Then a proper detection of the significant details in the solution is
ensured.
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