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further show that already the simple diagonal scaling of the stifness matrix
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1 Introduction

Let Ω ∈ R, d = 2, 3, be a polygonal domain that is subdivided in two connected
subdomains Ωi, i = 1, 2. For simplicity we assume that Ω1 is strictly contained in Ω, i.e.,
∂Ω1 ∩ ∂Ω = ∅. The interface between the two subdomains is denoted by Γ = ∂Ω1 ∩ ∂Ω2.
We are interested in interface problems of the following type:

−div(α∇u) = f in Ωi, i = 1, 2, (1.1a)

[[α∇u · n]]Γ = 0 on Γ, (1.1b)

[[βu]]Γ = 0 on Γ, (1.1c)

u = 0 on ∂Ω. (1.1d)

Here n is the outward pointing unit normal on Γ = ∂Ω1, [[·]] the usual jump operator
and α = αi > 0, β = βi > 0 in Ωi are piecewise constant coefficients. In general one has
α1 6= α2. If β1 = β2 = 1, this is a standard interface problem that is often considered in
the literature [7, 5, 4, 20]. For β1 6= β2 this model is very similar to models used for mass
transport in two-phase flow problems [2, 1, 16, 17, 11]. Without loss of generality we
assume βi ≥ 1. The interface condition in (1.1c) is then usually called the Henry interface
condition. Note that if β1 6= β2, the solution u is discontinuous across the interface. If
β1 = β2 and α1 6= α2 the first (normal) derivative of the solution is discontinuous across
Γ. In the setting of two-phase flows one is typically interested in moving interfaces and
instead of (1.1) one uses a time-dependent mass transport model. In this paper, however,
we restrict to the simpler stationary case.

In the past decade, a combination of unfitted finite elements (or XFEM) with the
Nitsche method has become a popular discretization method for this type of interface
problems. This development started with the introduction and analysis of this Nitsche-
XFEM technique in the paper [7]. Since then this method has been extended in several
directions, e.g., as a fictitious domain approach, for the discretization of interface problems
in computational mechanics, for the discretization of Stokes interface problems and for
the discretization of mass transport problems with moving interfaces, cf. [3, 8, 9, 13, 14,
15, 10]. Almost all papers on this subject treat applications of the method or present
discretization error analyses. Efficient iterative solvers for the discrete problem is a topic
that has hardly been addressed so far. In general, solving the resulting discrete problem
efficiently is a challenging task due to the well-known fact that the conditioning of the
stiffness matrix is sensitive to the position of the interface relative to the mesh. If the
interface cuts elements in such a way that the ratio of the areas (volumes) on both sides
of the interface is very large, the stiffness matrix becomes (very) ill-conditioned.

Recently, for stabilized versions of the Nitsche-XFEM method condition number bounds
of the form ch−2, with a constant c that is independent of how the interface Γ intersects
the triangulation, have been derived [3, 10, 20]. In [10] an inconsistent stabilization
is used to guarantee LBB-stability for the pair of finite element spaces used for the
Stokes interface problem. This stabilization also improves the conditioning of the stiffness
matrix, leading to a ch−2 condition number bound. In [20] a stabilized variant of the
Nitsche-XFEM for the problem (1.1) is considered. For this method an ch−2 condition
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number bound is derived.
In this paper we consider the original Nitsche-XFEM method from [7] for the discretiza-

tion of (1.1), without any stabilization. In [7] for this method optimal discretization
error bounds are derived. We prove that after a simple diagonal scaling the condition
number is bounded by ch−2, with a constant c that is independent of how the interface Γ
intersects the triangulation. We prove that an optimal preconditioner, i.e. the condition
number of the preconditioned matrix is independent of h and of how the interface Γ
intersects the triangulation, can be constructed from approximate subspace corrections.
If in the subspace spanned by the continuous piecewise linears one applies a standard
multigrid preconditioner and in the subspace spanned by the discontinuous finite element
functions that are added close to the interface (the xfem basis functions) one applies a
simple Jacobi diagonal scaling, the resulting additive subspace preconditioner is optimal.
The latter is the main result of this paper. The analysis uses the very general theory of
subspace correction methods [18, 19]. Our analysis applies to the two-dimensional case
(d = 2), but we expect that a very similar optimality result holds for d = 3. This claim is
supported by results of numerical experiments that are presented.

The results derived in this paper also hold (with minor modifications) if in (1.1b),
(1.1c) one has a nonhomogeneous right-hand side. In such a case one has to modify the
right-hand side functional in the variational formulation, but the discrete linear operators
that describe the discretization remain the same.

The outline of this paper is as follows. In section 2 the Nitsche-XFEM method from
[7] for the discretization of (1.1) is described. In section 3 we study the direct sum
splitting of the XFEM space into three subspaces, namely a subspace of continuous
piecewise linears, and two subspaces of xfem functions on both sides of the interface. In
Theorem 3.3, which is the main result of this paper, we prove that this is a uniformly
stable splitting. Following standard terminology (as in [18, 19]) we introduce an additive
subspace preconditioner in section 4. Based on the stable splitting property the quality
of the preconditioner (i.e., the condition number of the preconditioned matrix) can easily
be analyzed. In section 5 we present results of some numerical experiments, both for
d = 2 and d = 3.

2 The Nitsche-XFEM discretization

In this section we describe the Nitsche-XFEM discretization, which can be found at
several places in the literature [7, 4].

Let {Th}h>0 be a family of shape regular simplicial triangulations of Ω. A triangulation
Th consists of simplices T , with hT := diam(T ) and h := max{hT | T ∈ Th}. The
triangulation is unfitted. We introduce some notation for cut elements, i.e. elements
T ∈ Th with Γ ∩ T 6= ∅. The subset of these cut elements is denoted by T Γ

h := {T ∈
Th | T ∩ Γ 6= ∅}. To simplify the presentation and avoid technical details we assume that
for all T ∈ T Γ

h the intersection ΓT := T ∩ Γ does not coincide with a subsimplex of T (a
face, edge or vertex of T ). Hence, we assume that ΓT subdivides T into two subdomains
Ti := T ∩ Ωi with measd(Ti) > 0. We further assume that there is at least one vertex of
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T that is inside domain Ωi, i = 1, 2. In the analysis we assume that T Γ
h is quasi-uniform.

Let Vh ⊂ H1
0 (Ω) be the standard finite element space of continuous piecewise linears

corresponding to the triangulation Th with zero boundary values at ∂Ω. Let {xj | j =
1, . . . n}, with n = dimVh, be the set of internal vertices in the triangulation. The index
set is denoted by J = {1, . . . , n}. Let (φj)j∈J be the nodal basis functions in Vh, where
φj corresponds to the vertex with index j. Let JΓ := { j ∈ J | |Γ∩supp(φj)| > 0 } be the
index set of those basis functions the support of which is intersected by Γ. The Heaviside
function HΓ has the values HΓ(x) = 0 for x ∈ Ω1, HΓ(x) = 1 for x ∈ Ω2. Using this,
for j ∈ JΓ we define an enrichment function Φj(x) := |HΓ(x)−HΓ(xj)|. We introduce
additional, so-called xfem basis functions φΓ

j := φjΦj , j ∈ JΓ. Note that φΓ
j (xk) = 0 for

all j ∈ JΓ, k ∈ J . Furthermore, for j ∈ JΓ and xj ∈ Ω1, we have supp(φΓ
j ) ⊂ Ω̄2 and

for xj ∈ Ω2, we have supp(φΓ
j ) ⊂ Ω̄1. Related to this, the index set JΓ is partitioned

in JΓ,2 := {j ∈ JΓ | xj ∈ Ω1} and JΓ,1 := JΓ \ JΓ,2 = {j ∈ JΓ | xj ∈ Ω2}. Hence, for
j ∈ JΓ,i the xfem basis function φΓ

j has its support in Ω̄i, i = 1, 2. The XFEM space is
defined by

V Γ
h := Vh ⊕ V x

h,1 ⊕ V x
h,2 = Vh ⊕ V x

h with V x
h,i := span{φΓ

j | j ∈ JΓ,i }, (2.1)

and V x
h := V x

h,1 ⊕ V x
h,2.

Remark 2.1. The XFEM space V Γ
h can also be characterized as follows: vh ∈ V Γ

h if and
only if there exist finite element functions v1, v2 ∈ Vh such that (vh)|Ωi

= (vi)|Ωi
, i = 1, 2.

From this characterization one easily derives optimal approximation properties of the
XFEM space for functions that are piecewise smooth, cf. [7, 12].

In the literature, e.g., [7, 4], discretization with the space V Γ
h is also called an unfitted

finite element method.
An L2-stability property of the basis (φj)j∈J ∪ (φΓ

j )j∈JΓ
of V Γ

h is given in [12].
For the discretization of the equation (1.1) in the XFEM space we first introduce some

notation for scalar products. The L2 scalar product is denoted by (u, v)0 :=
∫

Ω uv dx.
Furthermore we define

(u, v)1,Ω1,2 := (∇u,∇v)L2(Ω1) + (∇u,∇v)L2(Ω2), u, v ∈ H1(Ω1,2) := H1(Ω1 ∪ Ω2),

with the semi-norm denoted by |·|1,Ω1,2 = (·, ·)
1
2
1,Ω1,2

and norm ‖·‖1,Ω1,2 := (‖·‖20+|·|21,Ω1,2
)

1
2 .

On the interface we introduce the scalar product

(f, g)Γ :=

∫
Γ
fg ds (2.2)

and the mesh-dependent weighted L2 scalar product

(f, g) 1
2
,h,Γ := h−1

∫
Γ
fg ds. (2.3)
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The Nitsche-XFEM discretization of the interface problem (1.1) reads as follows:
Find uh ∈ V Γ

h such that

(αβuh, vh)1,Ω1,2 − ({{α∇uh · n}}, [[βvh]])Γ − ({{α∇vh · n}}, [[βuh]])Γ

+ (λ[[βuh]], [[βvh]]) 1
2
,h,Γ = (βf, vh)0 for all vh ∈ V Γ

h .
(2.4)

Here we used the average {{w}} := κ1w1 + κ2w2 with an element-wise constant κi = |Ti|
|T | .

This weighting in the averaging is taken from the original paper [7]. The stabilization
parameter λ ≥ 0 should be taken sufficiently large, λ > cλ max{αi}i=1,2, with a suitable
constant cλ only depending on the shape regularity of T ∈ Th.

Discretization error analysis for this method is available in the literature. In [7] optimal
order discretization error bounds are derived for the case β1 = β2 = 1. The case β1 6= β2

is treated in [15].
For the development and analysis of preconditioners for the discrete problem, without

loss of generality we can restrict to the case β1 = β2 = 1. This is due to the following
observation. We note that (also if β1 6= β2) we have βvh ∈ V Γ

h iff vh ∈ V Γ
h . Thus, by

rescaling the test functions vh and with α̃ := αβ−1 the problem (2.4) can be reformulated
as follows: Find ũh = βuh ∈ V Γ

h such that

(α̃ũh, vh)1,Ω1,2 − ({{α̃∇ũh · n}}, [[vh]])Γ − ({{α̃∇vh · n}}, [[ũh]])Γ

+ (λ[[ũh]], [[vh]]) 1
2
,h,Γ = (f, vh)0 for all vh ∈ V Γ

h .
(2.5)

The stiffness matrices corresponding to (2.4) and (2.5) are related by a simple basis
transformation. In the remainder of the paper we only consider the preconditioning
of the stiffness matrix corresponding to (2.5). Via the simple basis transformation the
solution to (2.5) directly gives a solution to (2.4).

Remark 2.2. In certain situations it may be (e.g., due to implementational aspects)
less convenient to transform the discrete problem (2.4) into (2.5). If one wants to
keep the original formulation, it is easy to provide an (optimal) preconditioner for it,
given a preconditioner for the transformed problem (2.5). We briefly explain this. Let
(ψj)1≤j≤m denote the basis for V Γ

h , and A, Ã the stiffness matrices w.r.t. this basis of the
problems (2.4) and (2.5), respectively. Let T be the matrix representation of the mapping
vh → β−1vh, for vh ∈ V Γ

h , i.e., the i-th row of T contains the coefficients ti,k such that
β−1ψi =

∑m
k=1 ti,kψk. Then the relation Ã = TATT holds. Given a preconditioner C̃

for Ã, we define C := TT C̃T as preconditioner for A. Due to the equality of spectra,
σ(CA) = σ(C̃Ã), the quality of C as a preconditioner for A is the same as the quality
of C̃ as a preconditioner for Ã.

We introduce a compact notation for the symmetric bilinear form used in (2.5). For
convenience we write α instead of α̃, and we assume a global constant value for λ:

ah(u, v) := (αu, v)1,Ω1,2 − ({{α∇u · n}}, [[v]])Γ − ({{α∇v · n}}, [[u]])Γ + λ([[u]], [[v]]) 1
2
,h,Γ. (2.6)

5



This bilinear form is well-defined on V Γ
h × V Γ

h . For the analysis we introduce the bilinear
form and corresponding norm defined by

|||u|||2h = |u|21,Ω1,2
+ λ‖[[u]]‖21

2
,h,Γ

, u ∈ V Γ
h . (2.7)

In [7] it is shown that, for λ sufficiently large, the norm corresponding to the Nitsche
bilinear form is uniformly equivalent to ||| · |||h:

ah(u, u) ∼ |||u|||2h for all u ∈ V Γ
h . (2.8)

Here and in the remainder we use the symbol ∼ to denote two-sided inequalities with
constants that are independent of h and of how the triangulation is intersected by the
interface Γ. The constants in these inequalities may depend on α and λ. We also use .
to denote one-sided estimates that have the same uniformity property. In the remainder
we assume that λ > 0 is chosen such that (2.8) holds.

3 Stable subspace splitting

We will derive an optimal preconditioner for the bilinear form in (2.6) using the theory
of subspace correction methods. Two excellent overview papers on this topic are [18, 19].
The theory of subspace correction methods as described in these overview papers is a very
general one, with applications to multigrid and to domain decomposition methods. We
apply it for a relatively very simple case with three disjoint spaces. We use the notation
and some main results from [19]. It is convenient to adapt our notation to the one of the
abstract setting in [19]. The three subspaces in (2.1) are denoted by W0 = Vh, Wi = V x

h,i,
i = 1, 2. Thus we have the direct sum decomposition

S := V Γ
h =W0 ⊕W1 ⊕W2. (3.1)

Below u = u0 + u1 + u2 ∈ S always denotes a decompositon with ul ∈ Wl, l = 0, 1, 2. For
the norm induced by the bilinear form ah(·, ·) we use the notation

‖u‖h := ah(u, u)
1
2 , u ∈ S.

Recall that this norm is uniformly equivalent to ||| · |||h, cf. (2.8). In theorem 3.3 below we
show that the splitting in (3.1) is stable w.r.t. the norm ‖ · ‖h.

The result in the next theorem is the key point in our analysis. We show that the
splitting of S into W0 and the subspace spanned by the xfem basis functions W1 ⊕W2 is
stable. For this we restrict to the two-dimensional case d = 2. We use a transformation
of certain patches to a reference patch on [0, 1]2. We first describe this transformation.
We construct a subdivision of T Γ

h into patches {ωk} as follows, cf. Figure 3.1. We first
define a subset E of all edges that are intersected by Γ. Consider an edge E1 which is
intersected by Γ such that one vertex V1 is in Ω1 and the other, V ∗1 , is in Ω2. We define
this edge as the first element in E . Now fix one direction along the interface and going in
this direction along Γ we get an ordered list of all edges intersected by Γ. As last edge
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in this list we include the starting edge E1. As the next edge E2 ∈ E we take the first
one after E1 (in the list) that has no common vertex with E1. As E3 ∈ E we take the
first one after E2 that has no common vertex with E2, etc.. To avoid technical details
we assume that the final edge ENE included in E coincides with E1. By construction we
get a numbering of certain vertices as in the left part of Figure 3.1: edge Ej has vertices
Vj ∈ Ω1, V ∗j ∈ Ω2. The elements between two edges Ek, Ek+1 ∈ E form the patch ωk.

V1

V2

V3

V4

V ∗1

V ∗2

V ∗3

V ∗4

subdivision

V1

V2

V ∗1

V ∗2

V1 V2

V ∗1 V ∗2

Γ̂1

y = 1

y = 0

ωe1

ω̂e1

Φ1

V2

V3

V ∗2
V ∗3

V2 V3

V ∗2 V ∗3

Γ̂2

y = 1

y = 0

ωe2

ω̂e2

Φ2

V3

V4

V ∗3

V ∗4

V3 V4

V ∗3 V ∗4

Γ̂3

y = 1

y = 0

ωe3

ω̂e3

Φ3

Figure 3.1: Sketch of the partitioning of T Γ
h (and neighboring elements) into (extended)

patches ωek and their transformations to a reference configurations.

The patches {ωk}1≤k≤Nω , with Nω = NE − 1, form a disjoint partitioning of T Γ
h . We

define the extended patch ωek by adding the neighboring elements which are not in T Γ
h ,

i.e., ωek := ωk ∪ {T ∈ Th \ T Γ
h | T has a common edge with a T ′ ∈ ωk}. The part of the

interface Γ contained in ωek is denoted by Γk. The triangulation (and corresponding

domain) formed by the union of the extended patches ωek is denoted by T Γ,e
h . Note that

every element T ∈ T Γ,e
h can appear in at most two patches ωek. Further note that the

number of elements within each extended patch ωek is uniformly bounded due to shape
regularity of Th. For each extended patch ωek there exists a piecewise affine transformation
Φk : ωek → R2 such that Φk(ωk) = [0, 1]2. Accordingly we denote a transformed patch by
ω̂ and ω̂e.

Theorem 3.1. Take d = 2. The following holds:

‖u0‖2h + ‖w‖2h . ‖u0 + w‖2h for all u0 ∈ W0, w ∈ W1 ⊕W2. (3.2)
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Proof. Due to norm equivalence the result in (3.2) is equivalent to:

|||u0|||2h + |||w|||2h . |||u0 + w|||2h for all u0 ∈ W0, w ∈ W1 ⊕W2.

For w ∈ W1 ⊕W2 we have w = 0 on Ω \ T Γ,e
h , and T Γ,e

h is partitioned into patches ωek.
Hence, it suffices to prove

|||u0|||2h,ωe
k

+ |||w|||2h,ωe
k
. |||u0 + w|||2h,ωe

k
for all u0 ∈ W0, w ∈ W1 ⊕W2. (3.3)

We use the transformation to the reference patch ω̂e described above. On the reference
patch we have transformed spaces Ŵ0 (continuous, piecewise linears) and Ŵ1 ⊕ Ŵ2.
The functions in Ŵ1 (Ŵ2) are piecewise linear on the part of the patch below (above)
the interface Γ̂, zero on the line segment y = 0 (y = 1) and zero on the part of
the patch above (below) the interface Γ̂. The norm |||u|||h,ωe

k
and the induced norm

|||û|||ω̂e
k

=
(
(∇û,∇û)L2(ω̂e

k) + λ([[û]], [[û]])L2(Γ̂k)

) 1
2 , with û = u ◦ Φ−1

k on ω̂ek, are uniformly
equivalent, because the constants in this norm equivalence are determined only by the
condition number of the piecewise affine transformation between ωek and ω̂ek. Note that

neither the spaces Ŵl nor the norm ||| · |||ω̂e
k

depend on h (the h-dependence is implicit
in the piecewise affine transformation). The reference patches ω̂ek all have the same
geometric structure, cf. Figure 3.1. These patches have (due to shape regularity of Th) a
uniformly bounded number of vertices on the line segment that connects the vertices Vi,
Vi+1 (or V ∗i , V ∗i+1). In the rest of the proof a generic reference patch and its extension
are denoted by ω̂ and ω̂e, respectively. The interface segment that is intersected by ω̂ is
denoted by Γ̂. We conclude that for (3.3) to hold it is sufficient to prove

|||u0|||2ω̂e + |||w|||2ω̂e ≤ K|||u0 + w|||2ω̂e for all u0 ∈ Ŵ0, w ∈ Ŵ1 ⊕ Ŵ2, (3.4)

with a constant K that is independent of how the patch ω̂ is intersected by the interface
Γ̂. Note that (∇u0,∇w)L2(ω̂e\ω̂) = ([[u0]], [[w]])L2(Γ̂) = 0 for u0 ∈ Ŵ0 and w ∈ Ŵ1 ⊕ Ŵ2.
Hence,

|||u0 + w|||2ω̂e = |||u0|||2ω̂e + |||w|||2ω̂e + 2(∇u0,∇w)L2(ω̂), u0 ∈ Ŵ0, w ∈ Ŵ1 ⊕ Ŵ2

holds. Thus it suffices to prove the strengthened Cauchy-Schwarz inequality

(∇u0,∇w)L2(ω̂) ≤ C∗|||u0|||ω̂e |||w|||ω̂e for all u0 ∈ Ŵ0, w ∈ Ŵ1 ⊕ Ŵ2, (3.5)

with a uniform constant C∗ < 1. The proof of (3.5) is divided into three steps, namely a
strengthened Cauchy-Schwarz inequality related to the x-derivative, a suitable Cauchy-
Schwarz inequality related to the y-derivative and then combining these estimates.
Step 1. The following holds:

|(ux, wx)L2(ω̂)| ≤ c0‖ux‖L2(ω̂e)‖wx‖L2(ω̂) for all u ∈W0, w ∈ Ŵ1 ⊕ Ŵ2, (3.6)

with a uniform constant c0 < 1. From the Cauchy-Schwarz inequality we get |(ux, wx)L2(ω̂)| ≤
‖ux‖L2(ω̂)‖wx‖L2(ω̂). Within the patch ω̂ = {Ti} the x-derivative ux is piecewise con-
stant and ux|Ti = ux|Ti,N for the neighboring triangle Ti,N ∈ ω̂e \ ω̂. This implies
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‖ux‖L2(Ti) ≤ ĉ‖ux‖L2(Ti∪Ti,N ), with ĉ < 1 depending only on shape regularity. Thus we
obtain ‖ux‖L2(ω̂) ≤ c0‖ux‖L2(ω̂e), with a uniform constant c0 < 1, which yields (3.6).
Step 2. The following holds:

|(uy, wy)L2(ω̂)| ≤ min{c1‖ux‖L2(ω̂), ‖uy‖L2(ω̂)}‖wy‖L2(ω̂)

+ c2‖uy‖L2(ω̂)‖[[w]]‖L2(Γ̂) for all u ∈W0, w ∈ Ŵ1 ⊕ Ŵ2,
(3.7)

with suitable uniform constants c1, c2.
Let {Ti} be the set of triangles that form ω̂ and let these be ordered such that

meas1(Ti ∩ Ti+1) > 0. We denote the interior edges by ei = Ti ∩ Ti+1. To show (3.7) we
start with partial integration∣∣∣ ∫

ω̂
uywy dx

∣∣∣ =
∣∣∣∑
Ti

∫
∂Ti

nTi,y uyw ds+

∫
Γ̂Ti

nΓ,y uy[[w]] ds
∣∣∣

≤
∑
ei

∣∣∣[[uy]]ei∣∣∣∣∣∣ ∫
ei

w ds
∣∣∣+ ‖uy‖L2(Γ̂)‖[[w]]‖L2(Γ̂)

(3.8)

where for the edges of ∂Ti that lie on ∂ω̂ = ∂[0, 1]2 we used w = 0 for y ∈ {0, 1} and
nTi,y = 0 for x ∈ {0, 1}. To proceed we need technical estimates to bound [[uy]]ei and∫
ei
w ds. For those estimates we exploit propertries of the geometry of ω̂. First consider

u ∈ Ŵ0 along an interior edge ei 6∈ ∂ω̂ and denote the unit tangential vector to ei by
τ = (τx, τy). For τ we have |τy| ≥ 1/

√
2 ≥ |τx|. Due to continuity of u along ei there

holds [[∇u]]ei · τ = 0, which implies

|[[uy]]ei | =
∣∣∣∣τxτy
∣∣∣∣ |[[ux]]ei | ≤

∣∣ux|Ti∣∣+
∣∣ux|Ti+1

∣∣.
Thus we obtain

|[[uy]]ei | ≤ c min{‖ux‖L2(Ti∪Ti+1), ‖uy‖L2(Ti∪Ti+1) }. (3.9)

Next, we consider w = w1 + w2 ∈ Ŵ1 ⊕ Ŵ2 along the interior edge ei. Let Ti be
a triangle adjacent to ei. Without loss of generality we assume that two vertices of
Ti are in Ω̂1 and we thus have (w1)x = 0 on Ti. We denote the vertices of ei by
xi = ei ∩ ∂ω̂ ∩ Ω̂i, i = 1, 2 and the intersection point by xΓ = ei ∩ Γ̂ and define the
distances di = ‖xi − xΓ‖2, i = 1, 2. As w is piecewise linear along ei, zero at x1, and
(w1)x = 0 on Ti, we have w1(xΓ) = ±d1τy(w1)y. Furthermore:∫

ei

w ds =
1

2
d1w1(xΓ) +

1

2
d2w2(xΓ) =

1

2
(d1 + d2)w1(xΓ)− 1

2
d2[[w]](xΓ).

We also have the geometrical information d1 ≤ d1 + d2 ≤
√

2, d1 ≤ c|Ti|
1
2 , |Γ̂Ti | ≤

√
2

and d2 ≤ c|Γ̂Ti |
1
2 . Because [[w]] is linear along Γ̂Ti there also holds |Γ̂Ti |

1
2 |[[w]](xΓ)| ≤

c‖[[w]]‖L2(Γ̂Ti
). Using these results we get∣∣∣ ∫

ei

w ds
∣∣∣ ≤ c‖wy‖L2(Ti) + c‖[[w]]‖L2(Γ̂Ti

). (3.10)
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From (3.9) and (3.10) we obtain∑
ei

∣∣∣[[uy]]ei∣∣∣∣∣∣ ∫
ei

w ds
∣∣∣ ≤ c‖uy‖L2(ω̂)‖[[w]]‖L2(Γ̂) + c‖ux‖L2(ω̂)‖wy‖L2(ω̂). (3.11)

Combining (3.8), (3.11) and the Cauchy-Schwarz inequality
∣∣∣ ∫ω̂ uywy dx∣∣∣ ≤ ‖uy‖L2(ω̂)‖wy‖L2(ω̂)

results in (3.7).
Step 3. The following holds:

|(∇u,∇w)L2(ω̂)| ≤ C∗
(
‖ux‖L2(ω̂e) + ‖uy‖L2(ω̂)

) 1
2
(
‖∇w‖2L2(ω̂) + λ‖[[w]]‖2

L2(Γ̂)

) 1
2 (3.12)

for all u ∈W0, w ∈ Ŵ1 ⊕ Ŵ2, with a uniform constant C∗ < 1.
The proof combines the preceding results. We define αx = ‖ux‖L2(ω̂e), βx = ‖wx‖L2(ω̂),

αy = ‖uy‖L2(ω̂), βy = ‖wy‖L2(ω̂), γ = ‖[[w]]‖L2(Γ̂). Then we have with (3.6), (3.7) and

θ = α2
x

α2
x+α2

y
, α = (α2

x + α2
y)

1
2 and β = (β2

x + β2
y + λγ2)

1
2

|(∇u,∇w)L2(ω̂)| ≤ c0αxβx + min{c1αx, αy}βy + c2αyγ

≤ (c2
0α

2
x + min{c2

1α
2
x, α

2
y}+ c2

2α
2
yλ
−1)

1
2 (β2

x + β2
y + λγ2)

1
2

≤ (c2
0θ + min{c2

1θ, 1− θ}+ c2
2(1− θ)λ−1)

1
2αβ.

One easily sees that c2
0θ + min{c2

1θ, 1 − θ} ≤
c20+c21
1+c21

< 1. For sufficiently large λ (λ >

1+c21
c22(1−c20)

) (3.12) follows for a suitable uniform constant C∗ < 1.

The result (3.12) directly implies (3.5) and thus the estimate (3.2) holds for λ sufficiently
large. For different values λ ≥ λ∗, with λ∗ the critical value for which the norm equivalence
(2.8) holds, the norms ‖ · ‖h (depending on λ) are equivalent, with equivalence constants
depending only on λ. This implies that (3.2) holds for any λ ≥ λ∗.

In the next lemma we derive the stable splitting property of W1 ⊕W2.

Lemma 3.2. The following holds:

‖ul‖h ∼ |ul|1,Ωl
for all ul ∈ Wl and l = 1, 2, (3.13)

‖u1‖2h + ‖u2‖2h . ‖u1 + u2‖2h for all u1 + u2 ∈ W1 ⊕W2. (3.14)

Proof. Take l = 1. We have

‖u1‖2h ∼ |||u1|||2h = |u1|21,Ω1
+ λ‖[[u1]]‖21

2
,h,Γ
∼ |u1|21,Ω1

+ h−1‖u1‖2L2(Γ). (3.15)

This implies |u1|1,Ω1 . ‖u1‖h. Next we show

h−1‖u1‖2L2(Γ) . |u1|21,Ω1
. (3.16)

For this, we represent Γ locally as the graph of a function ψ, with a local coordinate
system (ξ, η) as in Figure 3.2. Then we can write

10



ξ

η

ψ(ξ) ≤ ch

Γ

supp(u1)

u1 = 0

Figure 3.2: Local representation of Γ as a graph.

u1(ξ, ψ(ξ)) = u1(ξ, ψ(0))︸ ︷︷ ︸
=0

+

∫ ψ(ξ)

0

∂u1

∂η
(ξ, η) dη,

and thus

u1(ξ, ψ(ξ))2 =
∣∣∣ ∫ ψ(ξ)

0

∂u1

∂η
(ξ, η) dη

∣∣∣2 ≤ |ψ(ξ)|︸ ︷︷ ︸
≤ch

∫ ψ(ξ)

0
(
∂u1

∂η
(ξ, η))2 dη.

Integration over ξ yields (3.16). In combination with (3.15) this yields ‖u1‖2h . |u1|1,Ω1 ,
which completes the proof of (3.13). We now consider the result in (3.14). Due to
‖ · ‖h ∼ ||| · |||h is suffices to prove

|||u1|||2h + |||u2|||2h . |||u1 + u2|||2h for all u1 + u2 ∈ W1 ⊕W2. (3.17)

The scalar product corresponding to ||| · |||h is denoted by (·, ·)∗, i.e. (u, v)∗ = (u, v)1,Ω1,2 +
λ([[u]], [[v]]) 1

2
,h,Γ. From (u1, u2)1,Ω1,2 = 0 it follows that

|(u1, u2)∗| = |λ([[u]], [[v]]) 1
2
,h,Γ| ≤ λh

−1‖u1‖L2(Γ)‖u2‖L2(Γ).

Using the results in (3.16), (3.13) we get, with a suitable constant c and for arbitrary
δ ∈ (0, 1):

|(u1, u2)∗| ≤ (1− δ)λh−1‖u1‖L2(Γ)‖u2‖L2(Γ) + δcλ|u1|1,Ω1 |u2|1,Ω2

≤ max{1− δ, δcλ}|||u1|||h|||u2|||h.

By choosing a suitable δ, we obtain the strengthened Cauchy-Schwarz inequality

|(u1, u2)∗| ≤ C∗|||u1|||h|||u2|||h for all u1 ∈ W1, u2 ∈ W2,

with a constant C∗ < 1, independent of h and of how the triangulation is intersected by
Γ. This result is equivalent to the one in (3.17).
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As a direct consequence of the stable splitting properties derived above we obtain the
following main result.

Theorem 3.3. Take d = 2. There exists a constant K, independent of h and of how the
triangulation is intersected by Γ, such that

‖u0‖2h + ‖u1‖2h + ‖u2‖2h ≤ K‖u0 + u1 + u2‖2h for all u = u0 + u1 + u2 ∈ S.

Proof. Combine the result in (3.2) with the one in (3.14).

4 An optimal preconditioner based on approximate subspace
corrections

We describe and analyze an additive subspace decomposition preconditioner using the
framework given in [19]. For this we first introduce some additional notation. Let
Ql : S → Wl, l = 0, 1, 2, be the L2-projection, i.e., for u ∈ S:

(Qlu,wl)0 = (u,wl)0 for all wl ∈ Wl.

The bilinear form ah(·, ·) on S that defines the discretization can be represented by the
operator A : S → S:

(Au, v)0 = ah(u, v) for all u, v ∈ S. (4.1)

The discrete problem (2.5) has the compact representation Au = fQ, where fQ is the
L2-projection of the given data f ∈ L2(Ω) onto the finite element space S. The Ritz
approximations Al :Wl →Wl, l = 0, 1, 2, of A are given by

(Alu, v)0 = (Au, v) = ah(u, v) for all u, v ∈ Wl.

Note that these are symmetric positive definite operators. In the preconditioner we need
symmetric positive definite approximations Bl :Wl →Wl of the Ritz operators Al. The
spectral equivalence of Bl and Al is described by the following:

γl(Blu, u)0 ≤ (Alu, u)0 ≤ ρl(Blu, u)0 for all u ∈ Wl, (4.2)

with strictly positive constants γl, ρl, l = 0, 1, 2. The additive subspace preconditioner is
defined by

C =

2∑
l=0

B−1
l Ql. (4.3)

For the implementation of this preconditioner one has to solve (in parallel) three linear
systems. The operator Ql is not (explicitly) needed in the implementation, since if for a
given z ∈ S one has to determine dl = B−1

l Qlz, the solution can be obtained as follows:
determine dl ∈ Wl such that

(Bldl, v)0 = (z, v)0 for all v ∈ Wl.

The theory presented in [19] can be used to quantify the quality of the preconditioner C.

12



Theorem 4.1. Define γmin = minl γl, ρmax = maxl ρl. Let K be the constant of the
stable splitting in Theorem 3.3. The spectrum σ(CA) is real and

σ(CA) ⊂
[γmin

K
, 3ρmax

]
holds.

Proof. We recall a main result from [19] (Theorem 8.1). If there are strictly positive
constants K1,K2 such that

K−1
1

2∑
l=0

(Blul, ul) ≤ ‖u0 + u1 + u2‖2h ≤ K2

2∑
l=0

(Blul, ul) for all ul ∈ Wl

is satisfied, then σ(CA) ⊂ [K−1
1 ,K2] holds. For the lower inequality we use Theorem 3.3

and (4.2), which then results in

‖u0 + u1 + u2‖2h ≥ K−1
2∑
l=0

‖ul‖2h = K−1
2∑
l=0

(Alul, ul)0 ≥
γmin

K

2∑
l=0

(Blul, ul)0.

For the upper bound we note

‖u0 + u1 + u2‖2h ≤ 3

2∑
l=0

‖ul‖2h = 3

2∑
l=0

(Alul, ul)0 ≤ 3ρmax

2∑
l=0

(Blul, ul)0.

Now we apply the above-mentioned result with K1 = K/γmin and K2 = 3ρmax.

The result in Theorem 3.3 yields that the constant K is independent of h and of how
the triangulation intersects the interface Γ. It remains to choose appropriate operators
Bl such that γmin and ρmax are uniform constants, too.

We first consider the approximation B0 of the Ritz-projection A0. Note that the finite
element functions in W0 = Vh are continuous across Γ. This implies that

(A0u, v) = ah(u, v) = (αu, v)1,Ω1,2 = (α∇u,∇v)0 for all u, v ∈ W0.

Hence, A0 is a standard finite element discretization of a Poisson equation (with a
discontinuous diffusion coefficient α). As a preconditioner B0 for A0 we can use a
standard symmetric multigrid method (which is a multiplicative subspace correction
method). From the literature [6, 18, 19] we know that for this choice of B0 we have
spectral inequalities as in (4.2), with ρ0 = 1 and a constant γ0 > 0 that is independent
of h and of how Γ intersects the triangulation.

It remains to find an appropriate preconditioner Bl of Al, l = 1, 2. For this we
propose the simple Jacobi method, i.e., diagonal scaling as a preconditioner for Al,
l = 1, 2. We first introduce the operator Bl that represents the Jacobi preconditioner.
Recall that Wl = span{φΓ

j | j ∈ JΓ,l}. Elements u, v ∈ Wl have unique representations
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u =
∑

j∈JΓ,l
αjφ

Γ
j , v =

∑
j∈JΓ,l

βjφ
Γ
j . In terms of these representations the Jacobi

preconditioner is defined by

(Blu, v)0 =
∑
j∈JΓ,l

αjβjah(φΓ
j , φ

Γ
j ), u, v ∈ Wl, l = 1, 2. (4.4)

Note that ah(φΓ
j , φ

Γ
j ) are diagonal entries of the stiffness matrix corresponding to ah(·, ·).

The result in the next lemma shows that this diagonal scaling yields a robust preconditioner
for the Ritz operator Al.

Lemma 4.2. For the Jacobi preconditioner Bl there are strictly positive constants γl, ρl,
independent of h and of how the triangulation is intersected by Γ such that

γl(Blu, u)0 ≤ (Alu, u)0 ≤ ρl(Blu, u)0 for all u ∈ Wl, l = 1, 2, (4.5)

holds.

Proof. Take u =
∑

j∈JΓ,l
αjφ

Γ
j ∈ Wl. For each T ∈ T Γ

h we define Tl = T ∩ Ωl, and for

each Tl we denote by V (Tl) the set vertices of T that are not in Ωl. Note that V (Tl) 6= ∅
and V (Tl) does not contain all vertices of T . Using (3.13) and the construction of the
xfem basis functions we get

(Blu, u)0 =
∑
j∈JΓ,l

α2
jah(φΓ

j , φ
Γ
j ) ∼

∑
j∈JΓ,l

α2
j |φΓ

j |21,Ωl

=
∑
T∈T Γ

h

∑
j∈V (Tl)

α2
j |φΓ

j |21,Tl ∼
∑
T∈T Γ

h

∑
j∈V (Tl)

α2
j‖∇(φj)|T ‖22|Tl|.

(4.6)

Using (3.13) and the fact that ∇u is a constant vector on each Tl we get, with ‖ · ‖2 the
Euclidean vector norm,

(Alu, u)0 = ‖u‖2h ∼ |u|21,Ωl
=
∑
T∈T Γ

h

‖∇u‖2L2(Tl)
=
∑
T∈T Γ

h

|Tl|‖(∇u)|Tl‖
2
2. (4.7)

Now note that (∇u)|Tl =
∑

j∈V (Tl)
αj(∇φΓ

j )|Tl =
∑

j∈V (Tl)
αj∇(φj)|T . Because V (Tl)

does not contain all vertices of T , the vectors in the set {(∇φj)|T | j ∈ V (Tl)} are
independent and the angles between the vectors depend only on the geometry of the
triangulation Th. This implies that

‖(∇u)|Tl‖
2
2 ∼

∑
j∈V (Tl)

α2
j‖∇(φj)|T ‖22.

Combining this with the results in (4.6) and (4.7) completes the proof.

Remark 4.1. Instead of an optimal multigrid preconditioner in the subspace W0 = Vh,
one can also use a simpler (suboptimal) Jacobi preconditioner, i.e. B0 analogous to (4.4).
For this choice the spectral constants in (4.2) are γ0 ∼ h2 and ρ0 ∼ 1. The three subspaces
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are disjoint and thus if one applies a Jacobi preconditioner in the three subspaces, the
additive subspace preconditioner C in (4.3) coincides with a Jacobi preconditioner for
the operator A. From Theorem 4.1 we can conclude that κ(CA) ≤ ch−2 holds, with a
constant c independent on h and the cut position. Similar uniform O(h−2) condition
number bounds have recently been derived in the literature, cf. [20] and [4]. In these
papers, however, for obtaining such a bound an additional stabilization term is added to
the bilinear form ah(·, ·). Our analysis shows that although the condition number of the
stiffness matrix corresponding to ah(·, ·) does not have a uniform (w.r.t. the interface
cut) bound ch−2, a simple diagonal scaling results in a matrix with a spectral condition
number that is bounded by ch−2, with a constant c that is independent of how Γ is
intersected by the triangulation. We note that adding a stabilization as treated [4] may
have a positive effect not only on the condition number, but also on robustness of the
discretization w.r.t. large jumps in the diffusion coefficient.

Remark 4.2. The assumption d = 2 is essential only in the proof of Theorem 3.1.
Concerning a generalization to d = 3 we note the following. Firstly, it is not obvious how
the subdivision into patches ωk can be generalized to three space dimensions. Secondly,
if d = 2 then for every element within the reference patch ω̂ we know that the local
finite element space on T ∩ Ωi is one-dimensional which is exploited to characterize the
one-sided limit at the interface. In three dimensions the local finite element space can
be two-dimensional on both parts T ∩ Ωi, i = 1, 2 such that it is not obvious how to
generalize the proof of Theorem 3.1.

Nevertheless, we expect that the result of Theorem 3.3, hence also the results on the
additive subspace preconditioner, hold in three space dimensions. This claim is supported
by the results of a numerical example with d = 3, presented in section 5.2.

Remark 4.3. For ease of presentation, all dependencies on α, especially on the jumps
in α, have been absorbed in the constants that appear in the estimates. The results in
neither Lemma 3.2, Theorem 3.1 nor Lemma 4.2 are robust with respect to jumps in α.
We illustrate the dependence of the quality of the subspace preconditioner on the jumps
in α in a numerical example in section 5.1.

Remark 4.4. Instead of the additive preconditioner C in (4.3), one can also use a
multiplicative version, cf. [19]. The optimality of this multiplicative variant, which can
be used as a solver or a preconditioner, can easily be derived using the framework given
in [19] and the results presented above.

5 Numerical experiments

In this section results for different subspace correction preconditioners are presented. We
consider a discrete interface problem of the form: determine uh ∈ V Γ

h such that

ah(uh, vh) = (f, vh)0 for all vh ∈ V Γ
h ,

with ah(·, ·) as in(2.6). We take test problems with d = 2 and d = 3. The resulting
stiffness matrix, which is the matrix representation of the operator A in (4.1), is denoted
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by A. The matrices corresponding to the Ritz approximations A0 (projection on Vh) and
Ax (projection on V x

h ) are denoted by A0 and Ax, respectively. The diagonal matrices
diag(A), diag(A0) diag(Ax) are denoted by DA, D0 and Dx, respectively. Furthermore,
C0 denotes a preconditioner for A0, for instance a multigrid preconditioner or C0 = D0.
We define the block preconditioners

BA :=

(
A0 0
0 Ax

)
, BD :=

(
A0 0
0 Dx

)
, BC :=

(
C0 0
0 Dx

)
. (5.1)

The matrix BA corresponds to an additive subspace preconditioner with exact subspace
corrections, BD has an exact correction in Vh and an approximate diagonal subspace
correction in V x

h , and BC has approximate subspace corrections in all subspaces.
In the following we study the performance of these preconditioners, in particular their

robustness w.r.t. both the variation in the mesh size h and the location of the interface.
We also ilustrate the dependence of the condition numbers on λ and the diffusivity
ratio α1/α2. In section 5.1 we consider a two-dimensional example with a challenging
configuration in the sense that many elements in the mesh have small cuts. This setting
allows for a detailed study of the dependencies on h, α1/α2 and λ. In the second example
in section 5.2 we consider a three-dimensional analog and apply a multigrid preconditioner
C0 for A0.

5.1 Two-dimensional test case

The domain is the unit square Ω = [0, 1]2 with an interface Γ which is a square with
corners that are rounded off. A sketch is displayed in Figure 5.1 (left). The rounded
square is centered around x0, it is denoted as Ω1. We set the dimensions to l = 0.2
and r = 0.05. In the implementation a piecewise linear approximation of Γ is used. To
investigate conditioning of the system, we consider a situation with many small cuts. To

Γ

l lr r

l

l

r

r

x0

x0

Figure 5.1: Setup of example in section 5.1 (left) and the uniform mesh on level L2 with
an interface that generates many small cuts (right).

this end we use a uniform triangulation of Ω and set x0 = (0.5, 0.5) + ε(1, 1) with a “shift
parameter” ε = 2−20. In this configuration almost all cut elements T ∈ T Γ

h have very
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small cuts (cf. right sketch in Figure 5.1). A similar test case has been considered in [3]
as “sliver cut case”. We use four levels of uniform refinement denoted by L1,..,L4.

The diffusion parameters are fixed to (α1, α2) = (1.5, 2). Note that we consider
β1 = β2 = 1, but the problem is equivalent to every combination of Henry and diffusion
parameters which fulfill (α1/β1, α2/β2) = (1.5, 2). The Nitsche stabilization parameter is
set to λ = 4ᾱ with ᾱ = 1

2(α1 + α2) = 1.75. As a right-hand side source term we choose
f = 1 in Ω1 and f = 0 in Ω2.

In the tables below we present results for the spectral condition number of the precon-
ditioned matrix. We also include the iteration number of the CG method, applied to the
preconditioned system, needed to reduce the starting residual by a factor of 106.

L1 L2 L3 L4

κ(B−1
A A)(its.) 4.98× 100(13) 4.95× 100(13) 4.82× 100(12) 4.82× 100 (11)

κ(B−1
D A)(its.) 5.12× 100(13) 5.06× 100(13) 4.94× 100(12) 4.94× 100 (11)

κ(D−1
A A)(its.) 2.78× 101(22) 1.11× 102(40) 4.42× 102(73) 1.77× 103(127)

Table 5.1: Condition number and iteration counts of CG method (λ = 4ᾱ, α1/α2 = 0.75).

In Table 5.1 the condition numbers corresponding to the block preconditioners BA,
BD and DA are displayed for four different levels of refinement. The condition number
of A is above 107 and the number of CG iterations without preconditioning is above
2000 on all four levels. We observe that the condition numbers of BA and BD are
essentially independent on the mesh size h. From further experiments we observe that
the condition number of A severely depends on the shift parameter, the results for the
block preconditioners however remain essentially the same. This is in agreement with
the results derived in section 4. Also the Jacobi preconditioner DA behaves as expected.
With decreasing mesh size h, for the condition number we observe κ(D−1

A A) ∼ h−2.

λ/ᾱ 4× 100 4× 101 4× 102 4× 103

κ(B−1
A A)(its.) 4.95× 100(13) 2.50× 100 (9) 2.29× 100 (7) 2.27× 100 (6)

κ(B−1
D A)(its.) 5.06× 100(13) 2.14× 101(13) 2.07× 102(14) 2.07× 103(15)

κ(D−1
A A)(its.) 1.11× 102(40) 9.49× 101(36) 2.07× 102(38) 2.07× 103(44)

Table 5.2: Condition number and iteration counts of CG method (level L2, α1/α2 = 0.75).

For these preconditioners, with a fixed mesh (level L2) the dependence on λ is shown in
Table 5.2. The results suggest that the estimate in Theorem 3.1 is essentially independent
on λ. The condition number κ(B−1

A A) even slightly decreases for increasing λ. The
diagonal preconditioning of the xfem block Ax, however, results in a linear dependence on
λ. Hence, diagonal preconditioning of Ax is not robust w.r.t. λ. Despite the increasing
condition number, the CG iteration counts seem to stay almost constant. A similar

17



behavior can be observed for the Jacobi preconditioner DA.

α1/α2 7.5× 10−1 7.5× 100 7.5× 101 7.5× 102

κ(B−1
A A)(its.) 4.95× 100(13) 1.13× 101(20) 5.54× 101(26) 5.21× 102(28)

κ(B−1
D A)(its.) 5.06× 100(13) 1.29× 101(20) 9.87× 101(28) 9.61× 102(26)

κ(D−1
A A)(its.) 1.11× 102(40) 6.33× 102(45) 5.90× 103(50) 5.86× 104(72)

Table 5.3: Condition number and iteration counts of CG method (level L2, λ = 4ᾱ).

In Table 5.3 we illustrate the behavior of the preconditioners for increasing diffusivity
ratios. We observe that for all three preconditioners the corresponding condition number
has a roughly linear dependence on α1/α2. We conclude that the stability estimate in
Theorem 3.1 is not robust with respect to variation in α1/α2. The increase of the CG
iteration counts, however, is only very mild.

5.2 Three-dimensional test case

We consider a setup in three dimensions very similar to the one used in section 5.1.
The domain is the unit cube Ω = [0, 1]3 with a cube that is rounded off as the dividing
interface. The cube, denoted as Ω1, is centered around x0 = (0.5, 0.5, 0.5) + ε(1, 1, 1) with
a small “shift parameter” ε = 2−20. The dimensions of the cube are chosen as in section
5.1 (l = 0.2, r = 0.05) and a uniform triangulation of Ω is used. We use seven levels of
uniform refinement denoted by L0,..,L6 where the coarsest level (L0) is a 2×2×2-grid.

The diffusion parameters are fixed to (α1, α2) = (1, 3). Note that we consider β1 =
β2 = 1. The Nitsche stabilization parameter is set to λ = 5ᾱ with ᾱ = 1

2(α1 + α2) = 2.
As a right-hand side source term we choose f = 1 in Ω1 and f = 0 in Ω2.

We investigate the performance of the CG method preconditioned with BC, cf. (5.1).
For the preconditioner C0 of A0 we use a standard multigrid method. In this multigrid
preconditioner we apply one V-cycle with a damped Jacobi (damping factor 0.8) iteration
as pre- and post-smoother. In Table 5.4 the iteration counts that were needed to reduce
the initial residual by a factor of 106 for the levels L2 to L6 are shown. On level L6 we
have approximately two million unknowns.

L2 L3 L4 L5 L6

CG iterations 22 25 27 29 32

Table 5.4: Iteration counts of multigrid-preconditioned CG method (λ = 5ᾱ, α2/α1 = 3).

We observe that the iteration counts stay essentially bounded such that the effort for
solving the linear systems is O(N) with N the number of degrees of freedom, i.e. BC

is an optimal preconditioner. The mild increase in iteration numbers further decreases
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if the Jacobi preconditioner Dx used in the subspace V x
h is replaced by a symmetric

Gauss-Seidel preconditioner. For this choice we obtain the numbers 21,23,23,25,27 for
the levels L2 to L6.
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