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Abstract. We are interested in flows on general networks and derive a kinetic equa-
tion describing general production, social or transportation networks. Corresponding
macroscopic transport equations for large time and homogenized behavior are obtained
and studied numerically. This work continues a recent discussion [20] and provides ad-
ditionally explicit equilibrium solutions, second–order macroscopic approximations as
well as numerical simulations on a large-scale homogenized network.
AMS 58F15, 58F17, 53C35
Keywords. Network dynamics, kinetic theory, asymptotic analysis.

1. Introduction

This paper is concerned with models for agent flows on general networks. The inves-
tigation of flows on networks is motivated by production, social or traffic flow networks
where on a given graph dynamics on arcs and at vertices are prescribed. Flows on struc-
tured media have been studied widely in the literature and we refer to the review article
[4] and to the textbooks on traffic flow [14, 28] and production processes [2], respectively.
They have also been studied in the context of structured media in the work [10] and [13].

Normally, very little attention is paid to the detailed description of the stochastic
effects on the underlying dynamics on arcs and the modeling of suitable conditions at
the vertices in averaged large time scale models. In the case of large–scale networks
stochastic agent based models involve a tremendous computational effort.

Possible applications are production networks. Here, a good is flowing from a raw
material supplier through a certain number of layers (nodes in the networks) of interme-
diate producers to a final consumer. Due to possible machine breakdowns and service
distributions travel and waiting times of goods maybe described using probability dis-
tributions. Production networks of this type have been introduced originally in [6, 11],
and optimized in [15, 16].

Another application might be air traffic where we consider passengers arriving and
leaving airports. The links are the possible flight routes and waiting times reflect delays
at airports due to for example stochastic weather conditions.

A description of effects of possible network structures in application examples for
traffic and social networks has been studied in [7]. Therein, the so–called small world
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network structure is discussed. Those networks are constructed by a process described in
[5] and the mean connection between nodes grows at most logarithmic with the number
of nodes [30].

Within this paper we want to explore the connection between a simple dynamics
with possible applications in production and air traffic and the structure of the network
more closely. To this end we consider a general mathematical model for transport on
graphs described as a multi–agent model. We apply asymptotic techniques (borrowed
from classical kinetic theory) to derive a simplified model for flows on large networks on
large time scales. This reduces the computational complexity of the study of long time
phenomena in such flows. We develop a kinetic model for flows on arbitrary graphs,
originally proposed in [20], under some simplifying assumptions, which make the large
time scale model practically applicable. The macroscopic model consists of a convection
- diffusion equation for the agent density, posed on a continuum in space, representing
the graph of the network. In order for this model to be ’reasonably smooth’, i.e not to
involve measure valued transport coefficients, it is necessary to locate the nodes of the
graph in a certain way, i.e. to ’draw the graph in R2’ in a special way. Reorganizing the
network this way results in the solution of an optimization problem for the coordinates of
the network nodes. This represents the generalization of an idea, originally proposed in
[7] to higher dimensions. The final macroscopic model is a convection - diffusion equation
for the agent density on the reorganized graph. It allows for the computationally efficient
simulation of large time phenomena on arbitrarily complex networks. The computations
leading to the mean–field equation for the macroscopic variables are purely formal. In
order to proceed we always assume the solution to be as smooth as necessary to allow
for the manipulations in the computations. The best functional analytic setting for the
presented problem is still open and left for future investigations.

This paper is organized as follows: In Section 2 we define the stochastic agent based
model and derive the kinetic equation for the probability distribution of the agent density.
In Section 3 we derive long time averaged equations for the agent density. In order for
the transport coefficients for these equations to be as smooth as possible, we choose the
node coordinates (’draw the graph’) optimally in Section 4. Some of the technically
more involved proofs are given in the Appendix in Section 6.

2. The multi–agent and the kinetic model

We start by formulating a multi–agent model for the transport picture on an arbitrary
network, where agents travel on randomly chosen arcs of a graph. Travel on each arc
takes a randomly chosen time, and the agents spend a random time at each node, waiting
to continue their journey. The final result of this section is the formal theorem 2.1 which
gives a kinetic equation for the probability distribution of the agents, suitable for large
time averaging and homogenization in Sections 3 and 4. All the computations are formal
in the sense that we assume the regularity required to proceed with the computations.

In order to derive the kinetic model, it is necessary to reformulate the multi agent
model below as a Monte Carlo algorithm in Section 2.2.

2.1. The multi–agent model. The general multi–agent model we consider is similar
to [20] and of the following form:
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• We consider an oriented graph G with n = 1, . . . , N nodes. The weighted N ×N

adjacency matrix of the graph G is A. A is a Markov matrix
N∑
m=1

Amn = 1 for all

n.
• Each node n ∈ {1, . . . , N} is assigned a coordinate x = Zn ∈ R2. Given the

coordinates Zn, we introduce as emn = Zm − Zn the edge vectors between two
nodes. The length of arc emn is ‖emn‖2.
• Agents move in R2 between the nodes along the arcs. Each agent has as state

variables the flight time τ in between nodes and the index m of the target node.

The dynamics are described by the following mechanism.

• The agent arrives at time t at position x = Zn
• The agent chooses a waiting time w at the node x = Zn according to a given

probability density W

dP [w = s] = W (s, n)ds

where
∫
W (s, n)ds = 1 for all m. We assume the waiting time w to be always

non–negative and enforce this by assuming that W (s, n) = 0 for s ≤ 0 holds.
• The agent decides on the next node Zm to visit. The decision is random with

probability according to the weighted adjacency matrix A.

P [m = k] = Akn .

• At time t+w the agent leaves node n traveling to node m. The flight time τ to
this node is described by a random variable distributed with probability density
function T

dP [τ = s] = T (s,m, n) ds

where
∫
T (s,m, n)ds = 1 for all m,n, and where T (s,m, n) = 0 for s < 0. Since

we do not model where the agent is located on the arc (n→ m) at any particular
time, we might as well decide on a linear motion with constant velocity during
the time of the flight. For the continuum model in Section 2.3 below this velocity
has to be included in the state space. So, we set the flight velocity v to

v =
em,n
τ

.

• At time t + w + τ the agent arrives at node m (with position x = Zm) and the
process is repeated.

We assume the graph of the network is given which introduces already the arcs and
the nodes as well as the connectivity via the matrix A. The independent state variables
of an agent are its flight time τ , its position x and its target node m. The flight velocity
v is introduced as additional variable for the state space for convenience but is not an
independent variable. It is defined by the arc em,n and the flight time τ. The flight time
τ is supposed to be non–negative. However, we treat the variable as belonging to the
real–line and set the probability T (s,m, n) = 0 for s ≤ 0.

Remark 1. The above model presents a slight simplification over the previous model,
presented in [20], in the following sense. The probability of the next target node m does,
other than in [20], not depend on the node n the agent came from. This simplification
will allow us to explicitly compute transport coefficients in the macroscopic models in
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Section 3. It is motivated by applications to large air traffic networks, where available
data consist usually of flow rates. There, usually the only data available is how many
agents travel from point A to point B per week. In [20] the corresponding data required
would be on how many agents coming from point A , arriving at point B and leaving for
point C would be required. In this sense Amn is independent of the origin of the agent,
it only depends on its current position n and the target node m. Similarly, the waiting
time W in this model does not dependent on the target airport or the airport of origin of
the agent, but only on the airport the agent is waiting at. This would cover for example
delays common to all travelers at a given airport. Obviously, the model may be refined
to take into account delays at destination airports leading to W = W (s, n,m).

The restriction x ∈ R2 is not necessary. We may study the problem also in Rd.
However, for the numerical simulations and the homogenization the number of vertices
per volume should be sufficiently large.

2.2. A Monte Carlo algorithm. In the next section we will formulate a kinetic equa-
tion for the probability density that the agent is at certain point in space x at a given
time t. To do so, we first reformulate the recipe in Section 2.1 as a Monte Carlo (MC)
algorithm. This gives rise to a minor complication, since neither of the probability
densities W and T can be assumed to be exponential, and MC algorithms are usually
formulated for Markov processes, i.e. for exponential distributions of the time between
events. In general a MC algorithm is governed by a event frequency ω. So, to change
a state q of a system, we ’toss a coin’ at each infinitesimal time step ∆t and evolve the
state q according to

(1) q(t+ ∆t) = (1− ξ)q(t) + ξp(q(t)), ξ ∈ {0, 1}, P [ξ = 1] = ∆tω(q(t)) .

So, with probability ∆tω(q) (’heads’) we choose a new state p(q) and with probability
1 −∆tω(q) (’tails’) we keep the old state. Taking the limit ∆t → 0 and some straight
forward calculations give that the time a(q) to the next change of state is distributed
according to the exponential distribution

dP [a(q) = t] = ω(q)e−tω(q) dt .

So, a Markov process of the form (1) leads to an exponential distribution of the times a
between changes of state. To include non - Markov processes into the model, we have to
include memory in the form of adding the time elapsed since the last change of state to
the state variable, i.e. we imbed a non-Markov process into a Markov process of higher
dimension. Defining the time elapsed since the last change of state as η, we reformulate
the above process by making the frequency ω dependent on the elapsed time η:
(2)
q(t+∆t) = (1−ξ)q(t)+ξp(q(t)), η(t+∆t) = (1−ξ)(η(t)+∆t), P [ξ = 1] = ∆tω(η(t), q(t)).

So, the elapsed time η is advanced by ∆t as long as ξ = 0 holds, and reset to η = 0 as
soon as the state q changes if ξ = 1 holds. This gives the discrete probability P [η = n∆t]
as

P [η = n∆t] = ∆tω(n∆t, q)[1−∆tω(0, q)][1−∆tω(∆t, q)]...[1−∆tω((n− 1)∆t, q)]

≈ ∆tω(n∆t, q) exp[−
∫ n∆t

0
ω(s, q) ds]
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and, in an obvious limit n→∞, ∆t→ 0, n∆t = t, the continuous version dP [η = t] =

ω(t, q) exp[−
∫ t

0 ω(s, q) ds] dt. To match the above to a given distribution of scattering
times W (t, q) dt between changes of state, we choose the scattering frequency ω(t, q) in

(2) such that ω(t, q) exp[−
∫ t

0 ω(s, q) ds] = W (t, q) holds. This relation can be inverted
to express ω(t, q) as

(3) ω(t, q) =
W (t, q)∫∞

t W (s, q) ds
.

We note that, if W (t, q) is an exponential distribution, i.e. if W (t, q) = α(q)e−tα(q)

holds, formula (3) reduces to ω(t, q) = α(q). So, in this case ω(η, q) in the Monte Carlo
algorithm (2) is independent of η, and , consequently, so is the evolution of the state
q. Therefore, the algorithm (2) represents a generalization of a classical Monte Carlo
procedure to non - Markov processes with arbitrarily distributed scattering times. This
’imbedding trick’ is, to our knowledge, due to E. Larsen and coworkers [22],[25] and has
also been applied in [20].
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We now reformulate the multi–agent model in Section 2.1 for a continuous spatial
variable x and a discrete time step ∆t. All variables

• If η(t) < τ, then the agent is in free flight on the arc n → m. In this case we
advance the position x and the elapsed time η and leave the rest of the state
unchanged:

(4) x(t+ ∆t) = x(t) + ∆tv, η(t+ ∆t) = η(t) + ∆t .

The velocity vector v is then given by the current edge vector divided by the free
flight time: v = emn

τ .
• If η(t) ≥ τ , then the agent is waiting at the node at x = Zm. In this case we

leave x unchanged and start to update the other variables with the frequency ω
as defined in equation (3).

(5) (a) x(t+ ∆t) = x(t), η(t+ ∆t) = (η(t) + ∆t)(1− ξ)

(b)m(t+∆t) = m(t)(1−ξ)+ξm′, n(t+∆t) = n(t)(1−ξ)+ξm(t), τ(t+∆t) = τ(t)(1−ξ)+ξτ ′

with the frequency ω and the ’heads or tails variable’ ξ chosen, according to (2),
as

(6) P [ξ = 1] = ∆tω(η − τ,m), P [ξ = 0] = 1−∆tω(η − τ,m),

ω(η, n) =
W (η, n)∫∞

η W (s, n) ds

and the new state values chosen randomly from to the probability distributions

(7) P [m′ = k] = Akm, dP [τ ′ = s] = T (s,m′,m) ds, v =
em′m
τ ′

Note, that we have retarded the argument η for the frequency ω in (6) by the value τ,
due to the fact that, arriving from the free flight phase, we already start the waiting
process with η = τ . The above algorithm is equivalent to the one in Section 2.1 and a
simplification of the algorithm stated in [20]. We rewrite the algorithm combining both
phases. Note, that the distribution W (t, n) vanishes for t < 0 (i.e. the waiting times are
always nonnegative). Therefore also the frequency ω(η, n) vanishes for η < 0.

(8) (a) x(t+ ∆t) = x(t) + ∆tH(τ − η)v, η(t+ ∆t) = (η(t) + ∆t)(1− ξ),

(b)m(t+∆t) = m(t)(1−ξ)+ξm′, n(t+∆t) = n(t)(1−ξ)+ξm(t), τ(t+∆t) = τ(t)(1−ξ)+ξτ ′

(c) P [ξ = 1] = ∆tω(η−τ,m), P [ξ = 0] = 1−∆tω(η−τ,m), ω(η,m) =
W (η,m)∫∞

η W (s,m) ds
,

(d) P [m′ = k] = Akm, dP [τ ′ = s] = T (s,m′,m) ds, v(t+ ∆t) = v(t)(1− ξ) + ξ
em′m
τ ′

So, for η < τ we have ω = 0 and ξ = 0 with probability one, and we recover phase 1
from above, whereas for η > τ we have x(t+ ∆t) = x(t) and we recover phase 2.

In order to define the process for continuous spatial variables we define interpolants.
We note that the probability distributions A, T and W in (7) and (8) are only used for
η > τ , when the position x equals Zm. To reduce the dimension of the state variable
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space we define the interpolants A(k, x),T(t,m′, x),W(t, x), e(m′, x) for x ∈ R2 and
such that

A(k, Zm) = Akm, T(t,m′, Zm) = T (t,m′,m), W(t, Zn) = W (t, x), e(m′, Zm) = em′m

With these definitions (8) reads

(9) (a) x(t+ ∆t) = x(t) + ∆tH(τ − η)v, η(t+ ∆t) = (η(t) + ∆t)(1− ξ),

(b)m(t+∆t) = m(t)(1−ξ)+ξm′, n(t+∆t) = n(t)(1−ξ)+ξm(t), τ(t+∆t) = τ(t)(1−ξ)+ξτ ′

(c) P [ξ = 1] = ∆tω(η − τ, x), P [ξ = 0] = 1−∆tω(η − τ, x), ω(η, x) =
W(η, x)∫∞

η W(s, x) ds

(d) P [m′ = k] = A(k, x), dP [τ ′ = s] = T(s,m′, x) ds, v(t+∆t) = v(t)(1−ξ)+ξ
e(m′, x)

τ ′

2.3. The kinetic equation for the probability density. In this section we derive
an equation for the probability density f(x, v, η, τ,m, t) dxdvdηdτ . Note, that the prob-
ability density is independent of the state n since the dynamics is independent of this
state.

In order to simplify the notation, we will denote with q = (q1, q2, q3, q4) the microscopic
variables of the state

q = (τ,m, v, η).

Here v is in R2 and η, τ are in R, whereas the index m = 1 : N is discrete. Note that
due to the assumption on T we have that there is zero probability for τ < 0. Similarly,
by definition of the dynamics of η we have η ≥ 0. Therefore, provided the initial data
for η, τ is non–negative the values for η, τ will always be non–negative even so η, τ ∈ R.

With a slight abuse of notation we will write
∫
f(x, q, t) dq for

∑N
m=1

∫
f(x, v, η, τ,m, t) dvdηdτ

in the following. We have

Theorem 2.1 (Formal). Let f(x, q, t) dxq be the probability density that the agent oc-
cupies the state (x, q) = (x, v, η, τ,m) at time t. The density f satisfies the equation
(10)

∂tf(x, q, t)+H(τ−η)v ·∇xf+∂ηf+ω(η−τ, x)f−Γ(x, q)

∫
ω(η′−τ ′, x)f(x, q′, t) dq′ = 0

with the probability density Γ(x, q) dq given by

Γ(x, v, η, τ,m) = δ(
e(m,x)

τ
− v)δ(η)T(τ,m, x)A(m,x)

Formal computation leading to Theorem 2.1. According to the algorithm (9)
in Section 2.2, we have for the transition probability P(x′, q′, x, q) that the state x, q
changes to the state x′, q′

P(x′, q′, x, q) =

∆tω(η − τ, x)δ(x+ ∆tH(τ − η)v − x′)δ(e(m′, x)

τ ′
− v′)δ(η′)T(τ ′,m′, x)A(m′, x)

+[1−∆tω(η− τ, x)]δ(x+ ∆tH(τ − η)v− x′)δ(v− v′)δ(η + ∆t− η′)δ(τ − τ ′)δ(m−m′) ,
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where the first term denotes the case ξ = 1 (with probability ∆tω and the second
term denotes the case ξ = 0 (with probability 1 − ∆tω) and q = (v, η, τ,m) and q =
(v′, η′, τ ′,m′) holds. Therefore the evolution of f in a time step ∆t is given by

f(x′, q′, t+ ∆t) =

∫
P(x′, q′, x, q)f(x, q, t) dxdq

Integrating against a smooth compactly supported test function ψ(x′, q′) gives∫
ψ(x′, q′)f(x′, q′, t+∆t) dx′dq′ =

∑
m′

∫
ψ(x′, v′, η′, τ ′,m′)P(x′, q′, x, q)f(x, q, t) dxdqdx′dv′dη′dτ ′

=
∑
m′

∫
∆tω(η−τ, x)ψ(x+∆tH(τ−η)v,

e(m′, x)

τ ′
, 0, τ ′,m′)T(τ ′,m′, x)A(m′, x)f(x, q, t) dxdqdτ ′

+

∫
[1−∆tω(η − τ, x)]ψ(x+ ∆tH(τ − η)v, v, η + ∆t, τ,m)f(x, q, t) dxdq

Expanding this in ∆t and neglecting second order terms gives∫
ψ(x′, q′)f(x′, q′, t) dx′q′ + ∆t

∫
ψ(x′, q′)∂tf(x′, q′, t) dx′dq′

=
∑
m′

∫
∆tω(η − τ, x)ψ(x,

e(m′, x)

τ ′
, 0, τ ′,m′)T(τ ′,m′, x)A(m′, x)f(x, q, t) dxdqdτ ′

+

∫
ψ(x, q)f(x, q, t) dxdq+

∫
∆tH(τ−η)v·∇xψ(x, q)f(x, q, t) dxdq+

∫
∆t∂ηψ(x, q)f(x, q, t) dxdq

−
∫

∆tω(η − τ, x)ψ(x, q)f(x, q, t) dxdq +O(∆t2)

Interchanging the primed and unprimed variables, dividing by ∆t and ∆t→ 0 gives the
relation ∫

ψ(x, q)∂tf(x, q, t) dxdq =

∑
mm′

∫
ω(η′−τ ′, x)ψ(x,

e(m,x)

τ
, 0, τ,m)T(τ,m, x)A(m,x)f(x, v′, η′, τ ′,m′, t) dxdv′dη′dτdτ ′

+

∫
H(τ − η)v · ∇xψ(x, q)f(x, q, t) dxdq +

∫
∂ηψ(x, q)f(x, q, t) dxdq

−
∫
ω(η − τ, x)ψ(x, q)f(x, q, t) dxdq

for all test functions ψ. This represents the weak formulation of (10).
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3. Large time asymptotic

After re - scaling and formulating the dimensionless version of the kinetic equation
from Section 2.3 in Section 3.1, we derive a convection - diffusion equation for the
macroscopic agent density ρ(x, t) =

∫
f(x, q, t) dq, in the limit for large times and

large networks where the state q = (v, η, τ,m) . To do so, we employ a well known
methodology, the so called Chapman - Enskog expansion (see c.f. [9]). We summarize
the general idea of this procedure, adapted to our problem, in Section 3.2. To make the
result practically applicable, it is necessary to compute the transport coefficients, i.e. the
convection velocity and the diffusion matrix, from the microscopic model parameters in
Section 2. Not surprisingly, this turns out to be quite elaborate, and is done in Section
3.3, with the final result of this section being Theorem 3.4.

3.1. Scaling and dimensionless formulation. We now consider the solution of the
transport equation (10) for large time and spatial scales. That is we consider a large
graph (N >> 1) over long periods of time. We assume that the nodes Zn, n = 1 : N are
located in a domain Ω ⊂ R2 and choose units such that the area of Ω equals unity, i.e.
we set x = Lxs with L2 =

∫
Ω 1 dx. We scale the probability distributions T and W such

that their mean is O(1) in scaled variables, setting T(τ,m, x) = 1
τ0

Ts(
τ
τ0
,m, xs) and

W(η, x) = 1
τ0

Ws(
η
τ0
, xs). We scale the state variables η and τ by η = τ0ηs and τ = τ0τs.

Correspondingly, we have to scale the scattering frequency ω as ω(η, x) = 1
τ0
ωs(ηs, xs) =

Ws(ηs,xs)
τ0

∫∞
ηs

Ws(t,xs) dt
. Finally we choose a time scale t0 and scale t = t0ts and v = L

t0
vs. This

gives for the scaled probability density fs(xs, vs, ηs, τs,m) =
Lτ20
t0
f(x, v, η, τ,m) in (10)

(11) ∂tsfs(xs, qs, ts) +∇xs ·
(
H(τs − ηs)vsfs

)
+
t0
τ0
∂ηsfs

+
t0
τ0
ωs(ηs − τs, xs)fs −

t0
τ0

Γs(xs, qs)

∫
ωs(η

′
s − τ ′s, xs)fs(xs, q′s, ts) dq′s = 0

with the scaled probability density Γs(xs, qs) dqs given by

Γs(xs, vs, ηs, τs,m) = δ(
es(m,xs)

τs
−vs)δ(ηs)Ts(τs,m, xs)A(m,xs), es(m,xs) =

e(m,x)t0
τ0L

We next want to study scenarios where the average flight time τ0 is small compared
with the characteristic time t0 and the network size L is large compared with the average

flight time. Therefore, we introduce the small dimensionless parameter ε = e(m,x)
L << 1

since L is supposedly large. Assume also that the typical time–scale as t0 = τ0
ε . Then,

Lτ0
t0

= O(1) and es(m,xs) = O(1).

Introducing the small dimensionless parameter ε (and dropping the subscript s from
here on) we write (11) as

(12) ∂tf(x, q, t) +∇x ·
(
H(τ − η)vf

)
+

1

ε
C[f ] = 0

with the collision operator C and the probability density Γ given by

(13) (a) C[f ] = ∂ηf + ω(η − τ, x)f − Γ(x, q)

∫
ω(η′ − τ ′, x)f(x, q′, t) dq′,
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(b) Γ(x, v, η, τ,m) = δ(
e(m,x)

τ
− v)δ(η)T(τ,m, x)A(m,x),

3.2. Formal asymptotic. In zero order the solution of equation (12) obviously has to
satisfy C[f ] = 0. On the other hand, the operator C has unity as an integral invariant.
In other words,

∫
C[f ] dq = 0, ∀f holds. Noting that the operator C does not act on the

x, t variables, is dependent on x, but independent of the time t, we first consider the
equilibrium problem

(14) C[G](x, q) = 0,

∫
G(x, q) dq = 1 ∀x.

G(x, q) is sometimes referred to as the Gibbs measure of the collision operator C. As-
suming that the problem (14) has a unique solution, a solution of C[f ] = 0 will therefore
be of the form f(x, q, t) = ρ(x, t)G(x, q) for an arbitrary density function ρ(x, t) with∫
f(x, q, t) dq = ρ(x, t). This leads to the definition of the projection operator

Π[f ](x, q, t) = G(x, q)

∫
f(x, q′, t) dq′ = G(x, q)ρ(x, t)

Π is a projection operator, Π2 = Π holds, and conserves the integral dq,
∫

Π[f ] dq =∫
f dq, ∀f holds. Since the Gibbs measure is the solution of (14), and

∫
C[f ] dq = 0, ∀f

holds, Π and C satisfy the left and right annihilation properties Π ◦ C = C ◦Π = 0.
We split the solution of the transport equation (12) into

f = f0 − εf1, f0 = Π[f ], εf1 = Π[f ]− f ,
where we have already re - scaled the component −εf1 of the solution f , belonging to
the orthogonal complement of the null space of C, to order O(ε). Further, note that with
the previous splitting

∫
f1dq = 0. Applying the operators Π and id−Π to equation (12)

gives the split equations

(15) (a) ∂tf0 + Π[∇x ·
(
H(τ − η)v(f0 − εf1)

)
] = 0

(b) − ε∂tf1 + (id−Π)[∇x ·
(
H(τ − η)v(f0 − εf1)

)
]− C[f1] = 0 .

The large scale approximation now consists of retaining only the O(1) terms in equa-
tion (15)(b) and solving (15)(a) and

(16) (b) C[f1] = (id−Π)[∇x ·
(
H(τ − η)vf0

)
] .

which gives, since we have committed an O(ε) error in (15)(b), an order O(ε2) error in
(15)(a). Note that the operator in equation (16) involves the spatial derivative of f0.
Therefore, we assume that G has the required spatial regularity in order to obtain a
well-defined operator C[f1].

Integrating (16)(a) w.r.t. the microscopic variables q, and using the projection prop-
erty

∫
Π[f ] dq =

∫
f dq gives

(17) (a) ∂tρ(x, t) +∇x ·
( ∫

H(τ − η)v(ρG− εf1) dq
)

= 0

(b) (id−Π)∇x · [H(τ − η)vρG] = C[f1] .

So, the process of deriving the approximate macroscopic equation consists of computing
the Gibbs measure G in (14), solving the constitutive relation (17)(b) for f1 in terms
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of f0 = ρG, and inserting the solution into (17)(a). This produces (17)(a) as a closed
conservation law for the density ρ on the O(1) time scale t.

In order to carry out the above general recipe, we need the following assumption,
which has to be verified for a particular collision operator C:

Assumption 3.1 (Gibbs measure and pseudo inverse). The problem (14) for the Gibbs
measure G(x, q) has a unique solution. Furthermore, the problem

(18) (a) C[f ] = g, (b)

∫
f(x, q) dq = 0, ∀x

has a unique solution for all right hand sides g(x, q) satisfying
∫
g(x, q) dq = 0, ∀x, if

the additional condition (18)(b) is imposed. That is, C has a pseudo inverse C+ on the
subspace of all functions satisfying

∫
f dq = 0.

The averaged conservation law (17)(a) will be of a convection - diffusion type with an
O(ε) diffusion term. After computing the Gibbs measure and the pseudo-inverse of C,
we obtain an equation of the form

(19) ∂tρ+∇x ·
(
(V − εp)ρ− εD∇xρ

)
= 0

with the mean velocity V (x), the diffusion matrix D, and the velocity correction vector
p given by

(20) (a) V (x) =

∫
H(τ − η)vG(x, q) dq,

(b) D(x)∇xρ+ p(x)ρ =

∫
H(τ − η)v(C+ ◦ (id−Π))[∇x ·

(
H(τ − η)vρG

)
] dq

The diffusion matrix D(x) is given by D =
∫
H(τ−η)v(C+◦(id−Π))[

(
H(τ−η)vTG

)
] dq,

and the first order correction p to the mean velocity V arises from the fact that we are
dealing with a highly nonhomogeneous medium, i.e. the Gibbs measure G is dependent
on the spatial variable x as well.

3.3. Transport Coefficients. We now apply the methodology from Section 3.2 to the
specific collision operator C given by the definition (13), and compute the transport
coefficients V,D and p in (19). The final result of this section is Theorem 3.4, giving
the transport coefficients in the macroscopic diffusion convection equation. The formal
proofs for this section consist of lengthy exercises in integration, and are deferred to the
Appendix in Section 6.

Since the operator C, although dependent on x, does not act on x and t, we will
drop the dependence on the variables x and t occasionally for the rest of this section for
notational convenience.

As in [20] we decompose the operator C into C = B ◦ A with A and B given by

A[f ](q) = ∂ηf + ω(η − τ)f, B[f ](q) = f − Γ(q)

∫
f(q′) dq′ .

The operator A has an inverse (given essentially by using an integrating factor), and
the operator B is a simple relaxation operator, whose kernel and pseudo inverse are easy
to compute. We introduce the antiderivative U(η) =

∫∞
η W(t) dt (the probability that
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w > η holds), and write ω as ω(η) = −∂ηU
U . Solving the problem A[f ] = g gives (using

the integrating factor 1
U)

∂η[
f(q)

U(η − τ)
] =

g(q)

U(η − τ)

which gives the inverse of A as

(21) A−1[g](q) = f(q) =

∫
H(η − η′) U(η − τ)

U(η′ − τ)
g(v, η′, τ,m) dη′ .

The null space of B consists obviously of multiples of the measure Γ since
∫

Γ(q)dq = 1.
The pseudo inverse B+ on the subspace of functions {f :

∫
fdq = 0} of B reduces to the

identity operator.

Definition 3.1. We define expectations of quantities with respect to the measure Γ as

E[w](x) =

∫ ∞
0

ηW(η, x) dη, E[τ ](x) =
∑
m

A(m,x)

∫ ∞
0

τT(τ,m, x) dτ,

E[e](x) =
∑
m

A(m,x)e(m,x) ,E[τe](x) =
∑
m

A(m,x)e(m,x)

∫ ∞
0

τT(τ,m, x) dτ .

Lemma 3.2 (The Gibbs measure ). Let the expectations of travel and waiting times and
edge vectors be defined as in Definition 3.1. Then the Gibbs measure in problem (14) is
of the form

(22) G(q) =
1

E[w] + E[τ ]
H(η)U(η − τ)δ(

e(m)

τ
− v)T(τ,m)A(m)

and the mean velocity V =
∫
H(τ − η)vG dq in equation (19) is given by

(23) V =
E[e]

E[w] + E[τ ]

Remark 2. The existence of the equilibrium distribution G is given by the explicit
formula (22). Usually, existence of equilibrium distribution may be proven by the Krein–
Rutman theorem [21] that requires a positive compact operator. The integral operator
Γ(x, q)

∫
ω(η′ − τ ′, x)f(x, q′, t)dq′ is a positive and compact operator on some Banach

space X to X under suitable growth conditions on s→ ω(s, x). However, this argument
does not easily give existence of f ≥ 0 for the operator C since f → ∂ηf is not bounded
operator on some Banach space X. Therefore, a careful definition of suitable spaces for
the solution of f is required. We leave this point aside and explicitly compute G in the
appendix. However, those computations are formal.

Lemma 3.3 (The pseudo inverse). Consider the Gibbs measure defined in equation
(22). Then, G is a probability measure with respect to q and the pseudo inverse C+ on
the subspace {f :

∫
fdq = 0} is given by

(24) C+[g](q) = A−1[g](q)− γ[g]G(q), γ[g] =

∫
A−1[g](q) dq

with the operator A−1 defined as in equation (21).
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Theorem 3.4 (Transport coefficients (formal)). The probability density ρ(x, t) =
∫
f(x, q, t) dq

satisfies the convection - diffusion equation

(25) ∂tρ(x, t) +∇x ·
(
ρ(V − εp)− εD∇xρ

)
= 0 ,

where the mean velocity

V (x) =
E[e]

E[w] + E[τ ]

and the diffusion matrix D(x) and the velocity correction p(x) are given by

(26) (a) D =
1

2(E[w] + E[τ ])
{E[eeT ]− V E[τe]T − E[τe]V T +

(
E[τ2]− E[w2]

)
V V T }

(b) p =
1

2
∇x ·

( E[eeT ]

E[w] + E[τ ]

)
− 1

2
V∇x ·

( E[τe]

E[w] + E[τ ]

)
− E[w]V∇x · V

+
(1

2
V E[τ2] +

1

2
V E[w2] + V E[τ ]E[w]− 1

2
E[τe]

) ∇x · V
E[w] + E[τ ]

Remark 3. The presence of the drift term ρV in the equation (25) is due to the fact
that the equilibrium G is space dependent. Another possibility to have the drift term
in the diffusion approximation of the kinetic equation would be the fact that the bulk
velocity of the equilibrium is non–zero.

Also, in the work by E. Larsen and others already investigated the asymptotic regime
of kinetic equation leading to diffusion equations [22, 24, 17]. In particular, it has already
been pointed out that the transport coefficients only depend on mean and standard
deviations of the underlying probability distributions, here, on the ones of T and W,
respectively. This has also been analyzed for numerical schemes for example in [12, 23].

Remark 4. For the macroscopic transport equation to be well–posed, it is necessary
that the diffusion matrix D is positive semidefinite.

Assume that for all z ∈ R2 and z 6= 0 we have

(27) E[‖zT (e− τV )‖2] ≥ E[w2]‖V T z‖2.

Then, D is positive semidefinite. Indeed, we obtain due to equation (26)(a)

zTDz =
1

2(E[w] + E[τ ])
zT
(
E[eeT ]− V E[τe]T − E[τe]V T +

(
E[τ2]− E[w2]

)
V V T

)
z

=
1

2(E[w] + E[τ ])
zT
(E[(e− τV )(e− τV )T ]− E[w2]V V T

2(E[w] + E[τ ])

)
z

=
E[‖zT (e− τV )‖2]− E[w2]‖V T z‖2

2(E[w] + E[τ ])
≥ 0.

We offer the following interpretation of condition (27). In many applications waiting
times are exponentially distributed with mean 1

λ . In this case E(w2) = 1
λ2
. Hence, pro-

vided we have a process with very small average waiting times 1
λ << 1, then we may

fulfill condition (27). Intuitively, the density has ’no time’ to accumulate at the node
and will therefore diffuse.
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4. Network reorganization

Without making any further assumptions on the topology of the graph, the interpo-
lated probability measures A(m,x),T(τ,m, x) and W(w, x) will become measure valued
in the limit ε → 0, that is in the homogenization limit for x = Zn approaching a con-
tinuum variable. One approach would be to assume a certain regularity of the graph
structure, as c.f. proposed in [10] for a more or less rectangular street network. When
discretizing the final convection–diffusion equation on a regular , rectangular grid we
need to interpolate the probabilities leading to possibly large and difficult to estimate
discretization errors.

Therefore, in this paper, we will use a different approach, namely to use the freedom
we still have in choosing the node coordinates Zn ∈ R2, n = 1 : N . So, we will try to
’draw the graph’ in such a way that the probability measures A(m,x),T(τ,m, x) and
W(w, x), and therefore also the transport coefficients V,D, p in equation (25), are pos-
sible to discretize on a regular mesh. This is the subject of the reorganization procedure
described below.

4.1. Reorganization. The basic idea is to choose the coordinates Zn in such a way
that the distance |emn| = |Zn − Zm| is proportional to the expected waiting and travel
time, weighted with the probability Amn that the agent actually travels along this edge
of the graph. This generalizes an idea, originally presented in [7], to higher dimensions.
Ideally, we would choose the coordinates Zn such that

(28) |emn| = |Zm − Zn| =
(
v0(Eτmn + Ewn ) for Amn 6= 0

∞ for Amn = 0

)
holds, with the expectations given by Eτmn =

∫
τT (τ,m, n) dτ and Ewn =

∫
wW (w, n) dw.

So the distance between Zn and Zm is proportional to the expected time spent in waiting
and travel if the edge n → m is actually used. If Amn = 0, then there is no link from
n → m and we indicate this in the function emn by setting its value to infinity. This
value does not appear in the cost functional later on since those are multiplied by Amn.

In equation (28) v0 is an arbitrary parameter, determining the size of the graph.
Enforcing (28) for a general graph for all m,n is of course impossible, leading in the
worst case, to N2 equations for 2N unknowns. We can, however, try to solve (28)
approximately by minimizing the functional

J1(~Z) =
∑
mn

Amn
(
|Zm − Zn| − v0(Eτmn + Ewn )

)2
, ~Z = (Z1, .., ZN ) .

So, we weigh the residual in (28) by the probability, that the path can actually be
taken. It turns out, that just considering the functional J1 is not sufficient. This can
be seen from the simple example of a chain graph, where Amn = δm,n+1 holds, i.e. the
agents travel along a chain with certainty. Any choice of coordinates Zn, which satisfies
|Zn+1 − Zn| = v0(Eτn,n+1 + Ewn ), n = 1 : N − 1, i.e. any curve in R2 with the correct
arclengths, would minimize J1. In view of the discretization of the convection diffusion
equation of the previous theorem we are more interested in reorganizations leading to a
regular rectangular grid like structure.
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We therefore consider not only paths of length one but general paths of length K + 1
through the graph and the corresponding functional

JK+1(~Z) =
∑
m

∑
k1

..
∑
kK

∑
n

Amk1Ak1k2 ..AkK−1kKAkKn×

(
|Zm − Zn| − v0(Eτmk1 + Ewk1 + ...+ EτkKn + Ewn )

)2
, ~Z = (Z1, .., ZN ) .

The functional JK+1 considers all paths n → kK → .. → k1 → m of length K + 1
through the graph, and tries to assign them the arclength proportional to their total
expected travel and waiting times, weighted with the probability Amk1 ...AkK−1kKAkKn
that this path is actually used. It can be easily seen, that considering only J1 + J2

in the example of a linear chain reduces the number of possible minima to straight
lines, albeit with an arbitrary location in R2. For practical implementation, we impose
the additional constraint Z1 = (0, 0) and Z1 − Z2 = |Z1 − Z2|(1, 0), i.e. we fix the
location and the orientation of the graph. Optimizing all possible paths of length 1, .., N
results, in the worst case in an NP complete problem, i.e. the functional JN would
contain possibly O(NN ) nonzero terms. In practice, we will restrict ourselves to paths
of a moderate length (optimizing J1 + .. + JK+1, K + 1 = 3 or 4), noting that the
probabilities Amk1 ...AkK−1kKAkKn decay rapidly with the path length.

To compute a solution to the kinetic equation (10) in Section 2.3 for a given real world
network we would need data on the flow rates. In particular, information on how many
agents per time unit at node n travel to arc m is required to compute Amn. Furthermore,
we would need histograms of the incurred travel and waiting times τmn, wn to compute
the probability densities T (τ,m, n) and W (w, n). This would allow us to compute the
probability density Γ in Theorem 2.1 after we have computed the arc vectors emn from the
above optimization procedure. One of the advantages of an averaged model, as derived
in Section 3.3 is that it requires less detailed information. To compute the transport
coefficients in Theorem 3.4 we only need the means and the standard deviations of the
distributions T and W .

4.2. Diffusive time scales. The macroscopic model equation (25) in Theorem 3.4 is
essentially convective with a small O(ε) diffusive correction. So, the randomness of the
travel and waiting times enters only as an O(ε) term through the diffusion matrix D
and the velocity correction p. This statement holds true unless the mean velocity V (x)
is very small. If, c.f. the mean velocity V were of order O(ε) as well, then (25) would
reduce to a diffusion equation on a much larger t1 = t

ε time scale of the form

(29) ∂t1ρ+∇x ·
(
ρ(V1 − p)−D∇xρ

)
= 0 , V = εV1 .

There is of course no reason that, in the asymptotic regime considered in Section 3.1,
the mean velocity V is of order O(ε). However, we can try to minimize |V | by adding
it to the functionals in the minimization procedure. So we arrange the nodes Zn such
that the functional

(30) J = J1 + ..+ JK + JV
is minimized, with JV given by

JV =
1

N

∑
n

|V (Zn)|
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and V (x) given by the definition (23) as E[e]
E[w]+E[τ ] . That is, we try to arrange the nodes

in such a way that the individual edge vectors cancel out when averaged with the weights
A. This will actually work better for so called ’hubs’, i.e. network nodes with a very
high connectivity. So, we still solve the convection - diffusion equation (25) in Section
3.3 but the local time scale for the evolution will now, roughly speaking, be of the form

t
ε+|V (x)| which is much larger for nodes where |V | << 1 holds. So for network hubs with

many connections the effects of the randomness in the system, entering through the
diffusion term, will be much more pronounced. The stronger diffusion therefore reflects
on a different time scale the many possibilities an agent have to choose new target nodes.

4.3. Some reorganization examples. The rearrangement of nodes produces some
interesting results. To demonstrate the procedure, we first consider a small network of 10
nodes with randomly chosen expected travel times Eτmn ∈ [1, 4] and waiting times Ewn ∈
[1, 2]. The connectivity matrix A is generated by the method of preferred attachment,
creating a small world network. We first arrange the nodes in a circle and then optimize
their location by minimizing the functional J in equation (30) for K = 3. Figure 1
shows the network before and after optimization. In Figure 2 we show the individual
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Figure 1. A small world network with ten nodes. Left and right
panels: before and after optimization of J . The arrows only indicate the
direction of the arcs.

velocity vectors vmn = emn
Eτmn+Ewn

before and after rearrangement. Note, that the vmn
after reorganization are of approximately equal length and the highly connected nodes
have been moved towards the center of the network. The mean velocity V Theorem 3.4
will be small for these nodes, and the solution of equation (25) will evolve on a much
larger time scale. (While already present, this effect is of course not very pronounced
for a network with only ten nodes.) To demonstrate the scalability of the reorganization
approach, we repeat the exercise with 4000 nodes. The left panel in Figure 3 shows
the individual velocity vectors vmn = emn

Eτmn+Ewn
before reorganization. The right panel

shows the mean velocity vectors V (Zn) for the diffusion equation (25). Note, that they
represent a reasonable flow field for a differential equation, i.e. after reorganization the
transport coefficients have become reasonably smooth functions. Note also, that the
mean velocities become much smaller in the center of the reorganized network. That is,



LARGE–TIME BEHAVIOR OF AVERAGED KINETIC MODELS ON NETWORKS 17

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1

2

3

45

6

7

8

9 10

originalall velocities

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

1

2

3

4

5

6

7

8

9 10

reorderedall velocities

Figure 2. Arclength velocities, given by vmn = emn
Eτmn+Ewn

for the 10

node network. Left and right panels: before and after optimization of J .
For nodes in the center the arclength velocities tend to average out to
zero, making the mean velocity V small.

the highly connected ’hubs’ with small mean velocities tend to be placed into the center
of the network.
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Figure 3. Left Panel: Arclength velocities, given by vmn = emn
Eτmn+Ewn

for a network with 4000 nodes. Right panel: Mean velocities V (x) after
reorganization. For nodes in the center the arclength velocities tend to
average out to zero, making the mean velocity V small.

4.4. Numerical solution of the transport equation. Finally, we turn to the solu-
tion of the convection diffusion equation (25) in Section 3.3. This is not a completely
straight forward task. For a randomly generated unstructured network the reorganized
nodes Zn will not be at all uniformly distributed in R2. In particular, there will be
subregions without any nodes present. As outlined above interpolation of the values
of the transport coefficients in these regions is possible. However, this would generate
additional interpolation errors which would be hard to estimate in general. We choose
a different option, discretizing the transport equation (25) by a straight forward finite
volume method on a regular rectangular mesh. This will result in computational grid



18 MICHAEL HERTY AND CHRISTIAN RINGHOFER

cells which do not contain any nodes. For such cells we simply set the computational
fluxes across the cell boundaries equal to zero. The density ρ will therefore remain equal
to zero in these cells for all time, and we essentially solve the transport equation (25)
on a ’domain with holes’. Further, we do not connect the resulting equations to pos-
sibly data from production networks but chose rectangular distributions for all arising
probabilities to simplify the computational effort. An adaption to realistic networks and
waiting and distribution rates will be studied in a forthcoming work.

Figure 4 shows the mean velocities V (x) on the computational grid, where the circles
denote ’holes’ in the domain, i.e. grid cells which will remain empty for all time.
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Figure 4. Mean velocities on the computational grid. The ’◦’s denote
empty gridcells without any network nodes.

We solve the transport equation (25) in space by the finite volume method described
above, and use a standard Cranck - Nicholson discretization in time. We consider the
spread of a perturbation (i.e. a δ− function), starting in one of the outlying nodes
towards the center (where the hubs are placed by the reorganization procedure). The
time scale considered here is such that the dimensionless parameter ε in Section 3.1 has
a value of ε = 0.05. So, in physical units the average travel and waiting times are 20
times smaller than the time scale considered. Figures 5 and 6 show the time evolution
of the density ρ at selected times.

Remark 5. Clearly, due to the reorganization procedure minimizing |V |, the density
ρ evolves on an even larger time scale, at least locally in space. Thus, the transport
equation (25) in Section 3.3 evolves, in unscaled variables, locally on a time scale of
order O( τ0

ε2
), which allows for the study of phenomena, which would be impossible to

consider, based on a direct solution of the multi - agent model in Section 2.

5. Summary

We homogenized a recent model for general transport on networks to allow for an
efficient simulation of large scale networks. Under mild simplifications we were able to
derive a Chapman–Enskog expansion of the transport model introduced in [20] to derive
a macroscopic convection–diffusion equation. We re–organized the coordinates of the
nodes in the network in order to allow for a simulation of the macroscopic equation on a
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t=1

t=94

Figure 5. Time evolution: Left Panel: ρ(x, 0). Right Panel: ρ(x, 94).
The kinks in the solution are due to the presence of holes in the domain,
where ρ(x, t) = 0 holds, and interpolation in the graphics routine.

t=187
t=280

Figure 6. Time evolution: Left Panel: ρ(x, 187). Right Panel:
ρ(x, 280). The kinks in the solution are due to the presence of holes
in the domain, where ρ(x, t) = 0 holds, and interpolation in the graphics
routine.

regular grid. The convection and diffusion coefficients include the network structure as
well as the mean and variance of the waiting and travel times of the microscopic model.
The numerical example has been chosen only to highlight to possibility to compute
the meanfield limit but has not yet been applied to a realistic problem. Also, the
presented computations are so far purely formal. A rigorous assessment in terms of
suitable function spaces for kinetic and macroscopic equation will be left for future
work.

6. Appendix

Proof of Lemma 3.2
To solve for the Gibbs measure in problem (14) we have to solve the two problems
B[G1] = 0 and A[G] = G1. The later implies G = 1

cA
−1[Γ]. Here, c is chosen such that
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the solution is normalized, i.e.,
∫
G dq = 1. This results in the formula

G(q) =
1

c

∫
H(η − η′) U(η − τ)

U(η′ − τ)
Γ(v, η′, τ,m) dη′ .

Inserting the distribution Γ given by (13)(b) yields

G(q) =
1

c
H(η)

U(η − τ)

U(−τ)
δ(

e(m)

τ
− v)T(τ,m)A(m) .

Now, W(η) is supported only on η > 0. Therefore, U(η) = 1 for η < 0. Since also
T(τ,m) = 0 for τ < 0 the previous formula simplifies

G(q) =
1

c
H(η)U(η − τ)δ(

e(m)

τ
− v)T(τ,m)A(m) ,

which gives (22). The normalization constant c is computed by

c =
∑
m

∫
H(η)U(η − τ)δ(

e(m)

τ
− v)T(τ,m)A(m) dvdηdτ =

∑
m

∫
H(η)U(η − τ)T(τ,m)A(m) dηdτ

Further, we obtain for each fixed m∫
H(η)U(η−τ)T(τ,m) dτdη =

∫
H(η)U(η)T(τ,m) dτdη+

∫
H(η)H(τ−η)T(τ,m) dτdη =∫

H(η)U(η) dη +

∫
H(τ)τT(τ,m) dτ

Integration by parts gives
∫
H(η)U(η) dη =

∫
H(η)ηW(η) dη and∫

H(η)U(η − τ)T(τ,m) dτη =

∫
H(η)ηW(η) dη +

∫
H(τ)τT(τ,m) dτ

Finally, summation over the index m gives

c =

∫
H(η)ηW(η) dη +

∑
m

A(m)

∫
H(τ)τT(τ,m) dτ

which gives the form of normalization constant as in equation (22). To compute the
mean velocity V we observe

V =

∫
H(τ−η)vG(q) dq =

∑
m

∫
1

c
H(η)H(τ−η)vU(η−τ)δ(

e(m)

τ
−v)T(τ,m)A(m) dvdηdτ

=
∑
m

∫
1

c
H(η)H(τ − η)

e(m)

τ
T(τ,m)A(m) dηdτ

since U(η) = 1, η < 0 holds. Integrating with respect to η gives

V =
∑
m

∫
1

c
τH(τ)

e(m)

τ
T(τ,m)A(m) dτ =

∑
m

1

c
e(m)A(m)

which gives (23)
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Proof of Lemma 3.3
To compute C+[g] we have to solve the problem B ◦ A[f ] = g under the constraint∫
f dq = 0. If

∫
g dq = 0 holds, then f1 = Af is given by f1 = g − cΓ for an arbitrary

constant c, and therefore f is given by f = A−1[g] − cA−1[Γ]. c has to be chosen such

that
∫
f dq = 0 holds. So, we have c =

∫
A−1[g] dq∫
A−1[Γ] dq

. If we define the normalized measure

Γ0 as Γ0[q] = A−1[Γ](q)∫
A−1[Γ](q′) dq′

, we obtain

f(q) = C+[g](q) = A−1[g](q)− γ[g]Γ0(q), γ[g] =

∫
A−1g dq

Using Lemma 3.2 we obtain that in fact Γ0 = G.
To prove Theorem 3.4 we need to evaluate the term

∫
H(τ − η)v(C+ ◦ (id−Π))[∇x ·(

H(τ − η)vρG
)
]. We proceed so by step by step in Propositions 1 and 2.

Proposition 1. Let
∫
g dq = 0 hold. Then the identity

(31)

∫
H(τ − η)vkC+[g](q) dq =

∫
(τ − η)H(τ − η)vkg(q) dq − γ[g]Vk .

holds, with mean velocity V given by equation (23).

Proof: According to Lemma 3.3, we have

(32)

∫
H(τ−η)vkC+[g](q) dq =

∫
H(τ−η)vkA−1[g](q) dq−γ[g]

∫
H(τ−η)vkG(q) dq .

To compute the first term in (32) we have, using the definition (21) of A−1,∫
H(τ−η)vkA−1[g](q) dq =

∫
H(τ−η)vkH(η−η′) 1

U(η′ − τ)
g(v, η′, τ,m) dvdηdτdmdη′

=

∫
(τ−η′)H(τ−η′)vk

1

U(η′ − τ)
g(v, η′, τ,m) dvdτdmdη′ =

∫
(τ−η′)H(τ−η′)vkg(v, η′, τ,m) dvdτdmdη′

(33)

∫
H(τ − η)vkA−1[g](q) dq =

∫
(τ − η)H(τ − η)vkg(q) dq

Due to Lemma 3.2 we obtain

(34)

∫
H(τ − η)vkG(q) dq = Vk

This gives for (32), inserting from (33)∫
H(τ − η)vkC+[g](q) dq =

∫
(τ − η)H(τ − η)vkg(q) dq − γ[g]Vk .

Proposition 2. Let g be given by g = (id − Π)[∇x ·
(
H(τ − η)vρG

)
]. Then γ[g] in

equation (24) is given by

(35) γ[g] =
1

2
∇x ·

(
E[τe]ρ

1

E[w] + E[τ ]

)
+ E[w]∇x ·

(
E[e]ρ

1

E[w] + E[τ ]

)
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−1

2
βE[τ2]

1

E[w] + E[τ ]
− 1

2
βE[w2]

1

E[w] + E[τ ]
− β(E[τ ]E[w])

1

E[w] + E[τ ]

with the constant β arising from the projection as β =
∫
∇x ·

(
H(τ − η)vρG

)
dq =

∇x · (ρV ).

Proof: Now g is given by

g(q) = ∇x ·
(
H(τ − η)vρG

)
− βG(q), β =

∫
∇x ·

(
H(τ − η)vρG

)
dq

We compute the term γ[g] in equation (24) as γ[g] =
∫
A−1[g](q) dq, with A−1 defined

as in equation (21). We have for A−1[g]

A−1[g](q) =

∫
H(η − η′)H(τ − η′)U(η − τ)∇x ·

(
vρG(v, η′, τ,m)

)
dη′

−β
∫
H(η − η′) U(η − τ)

U(η′ − τ)
G(v, η′, τ,m) dη′

and, inserting for G from (22)

A−1[g](q) =∫
H(η − η′)H(τ − η′)H(η′)U(η − τ)∇x ·

(
vρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
dη′

−β
∫
H(η − η′)H(η′)U(η − τ)

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m) dη′−

Integrating with respect to η′ gives

A−1[g](q) =

min{τ, η}H(min{τ, η})U(η − τ)∇x ·
(
vρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
−βηH(η)U(η − τ)

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m).

Next, we split the integration into η < τ and η > τ as follows:

γ[g] =

∫
A−1[g](q) dq =∫

ηH(η)H(τ − η)∇x ·
(
vρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
dq

+

∫
τH(τ)H(η − τ)U(η − τ)∇x ·

(
vρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
dq

−β
∫
ηH(η)H(τ − η)

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m) dq

−β
∫
ηH(η)H(η − τ)U(η − τ)

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m) dq.
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Because W = −∂ηU the following identities hold true:
∫
H(η − τ)U(η − τ) dη = E[w]

and
∫
ηH(η)H(η − τ)U(η − τ) dη = 1

2E[w2] + τE[w]. The last equality is only true if

η2U(η)→ 0 for η →∞. Applying the previous identities we simplify

γ[g] =

∫
τ2

2
H(τ)∇x ·

(
vρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
dvdτdm

+

∫
τH(τ)E[w]∇x ·

(
vρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
dvdτdm

−β
∫
τ2

2
H(τ)

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m) dvdτdm

−β
∫

(
1

2
E[w2] + τE[w])

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m) dvdτdm

Integration on dv yields

γ[g] =

∫
τ

2
H(τ)∇x ·

(
e(m)ρ

1

E[w] + E[τ ]
T(τ,m)A(m)

)
dτdm

+

∫
H(τ)E[w]∇x ·

(
e(m)ρ

1

E[w] + E[τ ]
T(τ,m)A(m)

)
dτdm

−β
∫
τ2

2
H(τ)

1

E[w] + E[τ ]
T(τ,m)A(m) dτdm

−β
∫

(
1

2
E[w2] + τE[w])

1

E[w] + E[τ ]
T(τ,m)A(m) dτdm

Integrating the remaining variables τ,m gives

(36) γ[g] =
1

2
∇x ·

(
E[τe]ρ

1

E[w] + E[τ ]

)
+ E[w]∇x ·

(
E[e]ρ

1

E[w] + E[τ ]

)
−1

2
βE[τ2]

1

E[w] + E[τ ]
− 1

2
βE[w2]

1

E[w] + E[τ ]
− β(E[τ ]E[w])

1

E[w] + E[τ ]

Using Propositions 1 and 2, the results of Lemmas 3.2 and 3.3 we finally able to state
the proof of Theorem 3.4.

Proof of Theorem 3.4: To compute the diffusion matrix D and the velocity cor-
rection b in (19) we have to set g = (id − Π)[∇x ·

(
H(τ − η)vρG

)
] in Proposition 1,

or

g(q) = ∇x ·
(
H(τ − η)vρG

)
− βG(q), β =

∫
∇x ·

(
H(τ − η)vρG

)
dq = ∇x · (ρV )

this gives for the first term in (31)∫
(τ−η)H(τ−η)vkg(q) dq =

∫
(τ−η)H(τ−η)vk∇x·

(
H(τ−η)vρG

)
dq−β

∫
(τ−η)H(τ−η)vkG(q) dq .

Inserting for the Gibbs measure G from Lemma 3.2, and using the fact that H(τ −
η)U(η − τ) = H(τ − η) holds, gives∫

(τ − η)H(τ − η)vkg(q) dq =
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(τ − η)H(τ − η)H(η)∇x ·

(
vvkρ

1

E[w] + E[τ ]
δ(

e(m)

τ
− v)T(τ,m)A(m)

)
dq

−β 1

E[w] + E[τ ]

∫
(τ − η)H(τ − η)H(η)vkδ(

e(m)

τ
− v)T(τ,m)A(m) dq .

Integrating out η and v gives∫
(τ − η)H(τ − η)vkg(q) dq =∫

1

2
H(τ)∇x ·

(
e(m)ek(m)ρ

1

E[w] + E[τ ]
T(τ,m)A(m)

)
dτdm

−β 1

E[w] + E[τ ]

∫
τ

2
H(τ)ek(m)T(τ,m)A(m) dτdm ,

or

(37)

∫
(τ −η)H(τ −η)vkg(q) dq =

1

2
∇x ·

(
E[eek]

ρ

E[w] + E[τ ]

)
− 1

2
β

1

E[w] + E[τ ]
E[τek] .

Combining (37) with the result (35) in Proposition 2 gives for the term
∫
H(τ−η)vkC+[g] dq =∫

(τ − η)H(τ − η)vkg(q) dq − γ[g]Vk in Proposition 1

(38)

∫
H(τ − η)vkC+[g] dq =

∫
(τ − η)H(τ − η)vkg(q) dq − γ[g]Vk =

1

2
∇x ·

(
E[eek]

ρ

E[w] + E[τ ]

)
− 1

2
β

1

E[w] + E[τ ]
E[τek]

−1

2
Vk∇x ·

(
E[τe]ρ

1

E[w] + E[τ ]

)
− VkE[w]∇x ·

(
E[e]ρ

1

E[w] + E[τ ]

)
+

1

2
βVkE[τ2]

1

E[w] + E[τ ]
+

1

2
βVkE[w2]

1

E[w] + E[τ ]
+ βVkE[τ ]E[w]

1

E[w] + E[τ ]

with β given by β =
∫
∇x ·

(
H(τ − η)vρG

)
dq = ∇x · (ρV ). Rearranging terms in (38)

gives

pkρ+
∑
j

Dkj∂xjρ =

∫
H(τ − η)vkC+[g] dq =

1

2
∇x·

(
E[eek]

ρ

E[w] + E[τ ]

)
−1

2
Vk∇x·

(
E[τe]ρ

1

E[w] + E[τ ]

)
−VkE[w]∇x·

(
E[e]ρ

1

E[w] + E[τ ]

)
+
∇x · (ρV )

E[w] + E[τ ]

(1

2
VkE[τ2] +

1

2
VkE[w2] + VkE[τ ]E[w]− 1

2
E[τek]

)
or, in matrix - vector notation

pρ+D∇xρ =

1

2
∇·
(
E[eeT ]

ρ

E[w] + E[τ ]

)
− 1

2
V∇x ·

(
E[τe]ρ

1

E[w] + E[τ ]

)
−E[w]V∇x ·

(
E[e]ρ

1

E[w] + E[τ ]

)
+
∇x · (ρV )

E[w] + E[τ ]

(1

2
V E[τ2] +

1

2
V E[w2] + V E[τ ]E[w]− 1

2
E[τe]

)
Differentiating out on the right hand side and comparing coefficients of ρ and ∇xρ gives

(E[w] + E[τ ])D =
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(39)
1

2
E[eeT ]−1

2
V E[τe]T−1

2
E[τe]V T−E[w]V E[e]T+

(1

2
E[τ2]+

1

2
E[w2]+E[τ ]E[w]

)
V V T

p =
1

2
∇x ·

( E[eeT ]

E[w] + E[τ ]

)
− 1

2
V∇x ·

( E[τe]

E[w] + E[τ ]

)
− E[w]V∇x ·

( E[e]

E[w] + E[τ ]

)
+
(1

2
V E[τ2] +

1

2
V E[w2] + V E[τ ]E[w]− 1

2
E[τe]

) ∇x · V
E[w] + E[τ ]

Using the fact that E[e] = (E[w] + E[τ ])V holds in (39) gives (26). This finishes the
proof of the theorem.
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