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Abstract

This paper is concerned with the development and analysis of an iterative solver
for high-dimensional second-order elliptic problems based on subspace-based low-rank
tensor formats. Both the subspaces giving rise to low-rank approximations and cor-
responding sparse approximations of lower-dimensional tensor components are deter-
mined adaptively. A principal obstruction to a simultaneous control of rank growth
and accuracy turns out to be the fact that the underlying elliptic operator is an iso-
morphism only between spaces that are not endowed with cross norms. Therefore, as
central part of this scheme, we devise a method for preconditioning low-rank tensor
representations of operators. Under standard assumptions on the data, we establish
convergence to the solution of the continuous problem with a guaranteed error reduc-
tion. Moreover, for the case that the solution exhibits a certain low-rank structure
and representation sparsity, we derive bounds on the computational complexity, in-
cluding in particular bounds on the tensor ranks that can arise during the iteration.
We emphasize that such assumptions on the solution do not enter in the formulation
of the scheme, which in fact is shown to detect them automatically. Our findings are
illustrated by numerical experiments that demonstrate the practical efficiency of the
method in high spatial dimensions.

Keywords: Low-rank tensor approximation, adaptive methods, high-dimensional
elliptic problems, preconditioning, computational complexity

Mathematics Subject Classification (2000): 41A46, 41A63, 65D99, 65J10,
65N12, 65N15

1 Introduction

The approximate solution of high-dimensional linear diffusion problems is not only of
intrinsic interest, but occurs also frequently as a subproblem in solvers for other classes
of high-dimensional problems, e.g. via operator splitting. Written as operator equations,
such diffusion problems are of the form

Au = f, (1.1)

where the exact solution u belongs to some energy space V , comprised of functions of d� 1
variables, and f is a given element in the normed dual V ′ of V . A basic model problem
of this type is the high-dimensional Poisson problem with A = −∆ and V = H1

0 ((0, 1)d).
Such spatially high-dimensional problems have been investigated in different communi-

ties from rather different perspectives. One can roughly distinguish the following groups:
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(a) A rich theoretical foundation exists for methods based on variants of hyperbolic
cross approximations and sparse grids, where approximability can indeed be directly re-
lated to the regularity of certain high-order mixed derivatives. Rigorous adaptive methods
for this type of approximations are available, for instance the one proposed in [13]. How-
ever, such approaches turn out to be feasible only for moderate values of d.

(b) Very promising concepts of low-rank tensor approximation have been developed,
for instance, in the works [1, 4, 6, 7, 19, 24–26]. These tools have been successfully applied
in high-dimensional regimes. However, to our knowledge, rigorous error and complexity
bounds for relevant norms are not yet available in this context.

(c) The intrinsic tractability of high-dimensional diffusion problems has been addressed
from the viewpoint of Information Based Complexity, see [35] and the literature cited
there. The central issue there is to determine under which circumstances the curse of
dimensionality can be broken, that is, whether one can find an algorithm whose complexity
does not scale exponentially in the spatial dimension d when realizing a given target
accuracy. In this latter case the problem is called tractable. Favorable rigorous complexity
bounds have been obtained for elliptic Neumann problems under various assumptions on
the right hand side which constrain the dependence on the different variables and ensure
the availability of simple (diagonal) solution operators. However, it is not clear how to
translate these findings into a realistic computational scenario.

The present paper is an attempt to offer a synthesis between (a), (b) and (c). However,
we emphasize from the start that, in contrast to (c), our focus is on the the complexity
of the inversion process—diagonal operator representations not being available—to find
approximations to the solution u, given appropriate approximations to the data f . The
rationale is that even for the simplest type of data, such as a constant function f , the
inversion is completely infeasible for increasing d when using standard techniques under
realistic regularity assumptions.

The approaches listed under (b) can be viewed as seeking suitable solution-dependent
but computationally accessible bases, with respect to which the solution permits good
approximations with relatively few terms. The identification of such bases becomes then
part of the solution process and the resulting parametrizations of approximate solutions
are highly nonlinear, much more so than, for instance, best n-term approximations with
respect to an a priori given fixed background basis as in (a).

The rationale in (b) as well as in the present work for employing dictionaries with
tensor structure is that the Laplacian is a sum of rank-one operators and the problem is
formulated on a product domain. Thus one hopes that functions with tensor structure
can best exploit structural properties of u, while separation of variables is known to help
in computationally dealing with a large number of variables. The adaptive method we
put forward in this work iteratively finds basis functions with tensor structure that are
adapted to the approximand u. In the simplest case d = 2, for instance, the algorithm

yields univariate basis functions U
(1)
k , U

(2)
k and coefficients ak such that

u(x1, x2) ≈
r∑

k=1

ak U
(1)
k (x1)U

(2)
k (x2) (1.2)

where the value of r is near-minimal—in a sense to be made precise later—for achieving
a certain error tolerance in the V -norm by a tensor expansion of this form. To achieve
a similar result for large d, we build on recent progress in high-dimensional tensor repre-
sentations, and find approximations in the hierarchical tensor format [22]. The iterative
scheme used to find these approximations is based on a perturbed Richardson iteration
that works directly on the continuous problem, but approximates all quantities by finite
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approximations with suitable error tolerances. Our objective is to control the solution
error in an appropriate norm—here, the V -norm—and at the same time to control the
complexity of the complete numerical scheme.

1.1 State of the Art and Main Obstructions

A first question is why one would expect a substantial gain in making the additional effort
of finding, as part of the solution process, a suitable dictionary for representing approxima-
tions. Indeed, many well-studied techniques for approximating high-dimensional functions
rely on sparsity with respect to a judiciously chosen but fixed tensor product background
basis for the spatially high-dimensional space. However, under realistic assumptions the
resulting methods usually cannot avoid an exponential scaling of the computational com-
plexity in d. For instance, the adaptive solver for certain problems of the type (1.1)
constructed in [13] builds on anisotropic tensor product wavelet bases, and is shown to
have optimal complexity (also with respect to its d-dependence) in relation to the corre-
sponding best n-term approximation of u. But, as the results for the Poisson problem
given there demonstrate, even the best n-term approximations in such bases become in-
feasible in high dimensions. This indicates that, in order to arrive at a feasible scheme
under realistic regularity assumptions, one has to give up on n-term approximations in
terms of fixed background bases and needs to modify the type of approximation.

As mentioned earlier, this is indeed the common theme in the works grouped under (b)
above. However, an essential distinction from the present work is that—except for [3]—all
methods known to us require as a first step the a priori choice of a fixed discretization of the
continuous problem, and subsequently aim at solving this discrete problem approximately
in an efficient way using tensor formats for high-dimensional Euclidean spaces. In many
cases of interest, e.g. for the Laplacian, the corresponding discretizations of the underlying
operator have simple explicit representations in such tensor formats. However, to motivate
the subsequent developments, it is important to understand the shortcomings of such a
strategy.

First, accuracy considerations are detached from the underlying continuous problem.
In fact, since accuracy is measured in terms of the Euclidean norm of discretization coef-
ficients, it is unclear what this means for the computed approximation in a function space
norm such as the energy norm. Second, since the resolution is fixed for each variable, even
if the discretized problem was solved exactly, the spatial resolution of the tensor factors
may be insufficient for warranting a desired target accuracy. Furthermore, in the case of
non-zero order operators such as the Laplacian, this cannot be controlled by a posteriori
error indicators: due to the mapping properties of such operators, Euclidean residuals do
not faithfully reflect solution accuracy. Moreover, refinement of the discretization renders
the discrete problem more and more ill-conditioned.

This also becomes apparent in the upper bounds for tensor approximation ranks for
solutions of linear systems obtained in [27]. These are applicable, in particular, to dis-
cretizations of second-order elliptic operators, but not to the corresponding continuous
problems: although the bounds depend only weakly on d, they may grow strongly with
discretization refinement due to the influence of condition numbers. Since this leads to
gross overestimates of the increase of ranks relative to the total solution error (compared
e.g. to the numerical results in Section 7), this underscores the necessity of preconditioning
in the context of low-rank approximations.

Preconditioning means to approximate the inverse as a mapping from V ′ to V . Unfor-
tunately, when A has non-zero order neither V nor V ′ are endowed with cross norms, that
is, norms with the property that the norm of a rank-one function equals the product of the
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norms of the lower-dimensional factors. As a mapping between such spaces V , V ′ with-
out simple tensor product structure, the inverse of A has infinite rank, which intrinsically
obstructs the control of rank growth when increasing accuracy. As illustrated in Section
2.3, this is an inherent consequence of the spectral properties of such elliptic operators.

In the method studied in [8], this problem manifests itself in applying the inverse of a
certain Riesz map. However, again only the case of V endowed with a cross norm, where
both this Riesz map and its inverse are of rank one, is considered in detail. Although in
other works, preconditioners for low-rank tensor methods for second-order problems have
been proposed, e.g. in [1, 4, 23, 26], these have not been analyzed in their overall effect on
the complexity of the solution process. The central objective of the present work is to put
forward several new conceptual ingredients to address these intrinsic obstructions.

1.2 New Conceptual Ingredients

To overcome the above obstructions one has to account for the following points. First, to
be able to achieve arbitrarily good approximations to the solution of the continuous prob-
lem, one has to intertwine finding good low-rank approximations with finding sufficiently
accurate basis expansions for lower-dimensional tensor components. In the example (1.2)
for d = 2 this means to keep, for a given target accuracy ε, the rank r = r(ε) as small

as possible, while the involved low-dimensional tensor factors U
(i)
k (xi) need to be resolved

with an increasingly better accuracy as well. Second, to properly balance both levels of
approximation as well as monitor the deviation from the continuous solution, we need to
relate solution errors to residuals. This inevitably requires taking into account that the
operator A is an isomorphism from V onto its normed dual V ′. Third, we need to use
tensor formats with similar stability properties as the singular value decomposition, while
respecting the norms imposed on us by the spaces V and V ′.

This has led to the framework proposed in [3]. With the aid of a suitable background
basis such as a tensor product wavelet basis on Ω = (0, 1)d the problem (1.1) is transformed
into an equivalent problem on the infinite dimensional sequence space `2(∇d) with entries
indexed by elements of the Cartesian product ∇d of low-dimensional wavelet index sets.
Hence, sequences can be viewed as tensors of order d, and the spectral theorem allows
one to carry over the results on stable tensor formats to `2(∇d). Moreover, when A is
a zero-order operator or when A acts on only a fixed small number of variables as an
operator of nonzero order, as in the case of parametric PDEs, suitable spaces V are tensor
product Hilbert spaces with tensor product Riesz bases. As a consequence, the wavelet
representation A still has low rank and the transformed problem is well-conditioned on
`2(∇d), so that solution errors indeed become equivalent to residuals. It is shown in [3]
how to formulate under these circumstances an iterative scheme that approximates the
true solution with near-optimal complexity. Note that the resulting tensor expansions as
in (1.2) can then still be interpreted as an expansion with respect to a tensor product

wavelet basis {ψ(1)
ν1 ⊗· · ·⊗ψ

(d)
νd }, but whereas, for example in [13], the coefficients for such

a basis are represented directly as a sparse vector, in our setting these coefficients are now
in turn expanded into sums of tensor products of sparse vectors.

In the present work we build on the concepts in [3], but focus on the essential ob-
structions encountered when V and V ′ are not endowed with cross norms. Specifically,
we consider second order elliptic equations as a prototypical scenario, but remark that
the results carry over to more general situations of analogous nature. In accordance with
the previously mentioned problems with preconditioning discretizations of elliptic oper-
ators, the necessary rescaling of an L2-orthonormal tensor product wavelet basis for the

4



corresponding representation A to be well conditioned on `2(∇d) causes A to have infinite
rank. A major contribution of this work is an adaptive rescaling scheme embedded in
a perturbed Richardson iteration that, depending on the current approximate solution,
causes only a moderate controllable rank growth. It is based on a refined result on the
relative accuracy of exponential sum approximations derived from sinc quadrature for the
function t 7→ t−1/2. In particular, using the mapping properties of A in this manner allows
us to adjust error tolerances for the iteration in such a way that tensor ranks—which
have a strong impact on numerical efficiency—grow only gradually as the scheme pro-
gresses. We eventually arrive at a solver that performs well also for large d, and—under
model assumptions that hold, in particular, for the high-dimensional Poisson problem—
can be proven to produce approximate solutions with an overall complexity that grows
sub-exponentially in d. We invest a considerable effort in analyzing the influence of the
spatial dimension d, and a number of resulting findings are perhaps of interest in their
own right. Our numerical experiments for a high-dimensional Poisson problem show that
the complexity of the method exhibits in fact only a low-degree polynomial growth in d.

The proposed scheme and its analysis apply also to problems with a more general
structure than such Poisson problems, e.g. to elliptic operators with non-diagonal dif-
fusion matrices. Even when considering finite-dimensional discretized problems, in such
cases methods based on approximating the inverse by exponential sums as in [16] are not
applicable, since the operator then no longer has a suitable structure. In fact, since the
variables are now coupled more strongly, one expects a somewhat stronger rank growth
with increasing accuracy. We quantify this by some first experiments.

The paper is organized as follows. In Section 2 we sketch a road map for the subsequent
developments and explain in more detail the issue of the interaction of mapping properties
on Sobolev spaces and low-rank structure. In Section 3, for the convenience of the reader
we collect some prerequisites needed for the remainder of the paper. This includes a
short introduction to the hierarchical Tucker format and near-optimal recompression and
coarsening concepts, which are crucial for the iterative scheme outlined already in Section
2. Section 4 is devoted to the central task, namely the adaptive application of rescaled
low-rank operators. A precise formulation of the adaptive solver is given in Section 5 along
with the main convergence and complexity results. This theorem is proved in Section 6.
We conclude with some numerical experiments in Section 7.

We shall use the notation a . b to express that a is bounded by a constant times b,
where this constant is independent of any parameters a and b may depend on, unless such
dependencies are explicitly stated; moreover, a ∼ b means that a . b and b . a.

2 The Road Map

In this section, we give an overview of our basic strategy. To this end, we also recapitulate
for the convenience of the reader a few relevant facts from [3].

2.1 An Equivalent `2-Problem

We consider an operator equation
Au = f, (2.1)

where A : V → V ′ is an isomorphism of some Hilbert space V onto its dual V ′. We shall
always assume that we have a Gelfand triplet

V ⊂ H ≡ H ′ ⊂ V ′,
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in the sense of dense continuous embeddings, where we assume that H is a tensor product
Hilbert space, that is,

H = H1 ⊗ · · · ⊗Hd, ‖g1 ⊗ · · · ⊗ gd‖H =
d∏
i=1

‖gj‖Hi , (2.2)

with lower-dimensional Hilbert spaces Hi. In this paper we focus on the case

H = L2(Ω) = L2(Ω1)⊗ · · · ⊗ L2(Ωd) ,

i.e., for Ωi ⊆ Rdi , for some di ∈ N, the high-dimensional domain Ω is a product domain
Ω := Ω1 × · · · × Ωd and L2(Ω) is a tensor product Hilbert space. When A stands for an
elliptic operator of non-zero order the corresponding energy space V is typically of the
form V ⊆ Hs(Ω), s 6= 0, where the case of a strict subspace is given when certain essential
homogeneous boundary conditions are imposed on the trial space. Note that for s > 0,

V = Hs(Ω) =

d⋂
i=1

L2(Ω1)⊗ · · · ⊗Hs(Ωi)⊗ · · · ⊗ L2(Ωd) ,

and the norm on Hs(Ω) is not a cross norm in the sense of (2.2).
It is well-known that the numerical solution of discrete approximations to (2.1) is

severly hampered by the fact that A as a mapping from H to H is unbounded, and
preconditioning exploits that A as a mapping from V to V ′ is boundedly invertible. Much
of what follows results from the conflict:

The topologies for which A has favorable mapping properties are not “tensor-
friendly”;
for those topologies for which A has a “tensor-friendly” structure, it has unfa-
vorable mapping properties.

In one way or the other one has to pay for this conflict. In [3] we have chosen to work in
topologies for which A becomes an isomorphism, since this seems to be the only way to
warrant a rigorous error analysis.

To implement this strategy our basic assumption is that we have Riesz bases for each
component Hilbert space Hi = L2(Ωi) (see (2.2)), which we denote by {ψHiν }ν∈∇Hi . We
may assume without loss of generality that all ∇Hi are identical, denoted by ∇. To
simplify our discussion, we shall always call d the spatial dimension, which amounts to the
assumption that di = 1 for i = 1, . . . , d; indeed, everything that follows is applicable also
in the case that the actual spatial dimension d1 + . . . + dd of Ω is larger than the tensor
order d, but we will make only the dependence on d explicit.

In principle, regardless of the structure of∇, one can transform (2.1) into the equivalent
infinite dimensional system

Tu◦ = g, where T =
(
〈Ψν , AΨµ〉

)
ν∈∇d , g :=

(
〈Ψν , f〉

)
ν∈∇d , (2.3)

where u◦ =
(
〈Ψν , u〉

)
ν∈∇d is the coefficient sequence of the solution u with respect to Ψ.

Note that for s > 0, the operator T is unbounded. However, when the low-dimensional
basis functions ψHiν are chosen to be sufficiently regular wavelets, the infinite-dimensional
operator (2.3) can be conveniently preconditioned. In this case, one can specify the struc-
ture of ∇ and for our purposes it suffices to know that each ν = (j, k) encodes a dyadic
level j = |ν| and a spatial index k = k(ν). The crucial point is that when V = Hs(Ω) is
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a Sobolev space, a simple rescaling of Ψν := ψH1
ν1 ⊗ · · · ⊗ ψ

Hd
νd

by a sequence {ων} with
ων ∼ ‖Ψν‖V yields a Riesz basis {ω−1

ν Ψν} for V ⊆ H as well.
This will now be explained in more detail in the case s = 1, which corresponds to

second-order elliptic problems, and which is the main focus of this work. Furthermore,
we shall assume from now on that {Ψν}ν∈∇d is actually an orthonormal tensor product
wavelet basis of L2(Ω) with Ψν ∈ Hs(Ω) for some s > 1. It is known that, as a consequence,
the family of rescaled basis functions{( d∑

i=1

22|νi|
)− 1

2
Ψν

}
ν∈∇d

forms a Riesz basis of H1(Ω) with dimension-independent condition number [13]. What
matters here are not the specific values appearing in the above scaling weights—slightly
different scaling weights with a comparable asymptotic behavior would serve the same
purpose—but their structure as the Euclidean norm of a vector

ων = ων1,...,νd =
( d∑
i=1

(ω̂i,νi)
2
)1/2

. (2.4)

We refer to the corresponding scaling operator

S =
(
ωνδν,µ

)
ν,µ∈∇d , (2.5)

with ων given by (2.4), and where ω̂i,νi are chosen such that

ω̂i,νi ∼ 2|νi| (2.6)

with uniform constants, as the canonical scaling. In these terms the system (2.3) is equiv-
alent to the preconditioned system

Acuc = fc, Ac := S−1TS−1, fc := S−1g, uc = Su◦, (2.7)

see e.g. [12]. Now we have

c‖v‖ ≤ ‖Acv‖ ≤ C‖v‖, v ∈ `2(∇d), (2.8)

where here and below we write for simplicity ‖v‖ = ‖v‖`2(∇d) =
(∑

ν∈∇d |vν |2
)1/2

. The
constants c = c(A,Ψ), C = C(A,Ψ) thus give an estimate C/c for the condition number
of cond2(Ac).

While the canonical scaling S with appropriately chosen ω̂i,νi can ensure a favorable
conditioning, which is addressed in more detail in Section 2.4, we shall see that the struc-
ture (2.4) is unfavorable concerning the control of ranks. It will therefore be important
to exploit some flexibility in choosing the scaling by using substitute scaling operators
S̃ = diag(ω̃ν), which are equivalent to the canonical scaling S in the sense that

‖SS̃−1‖ ∼ 1 (2.9)

with constants independent of d, but for which the yet equivalent system

Au = f , A = S̃−1TS̃−1, f = S̃−1g, (2.10)

while still well-conditioned, offers a better angle at controlling ranks.
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Clearly, finding the coefficient sequence u in (2.10) (for any S̃ satisfying (2.9) of our
choice) is equivalent to finding the solution u of (2.1), and the algorithm put forward
below aims at solving the variant (2.10) for a suitable S̃. This in turn will be based on
the fact that in the transformed version (2.10) or (2.7), due to (2.8), errors and residuals
are comparable with respect to the same norm, that is,

‖u− v‖V ∼ ‖u− v‖ ∼ ‖f −Av‖ ∼ ‖f −Av‖V ′ , v ∈ V,

and for a suitable damping factor ω, depending on C/c, the iteration

uk+1 = uk + ω(f −Auk), k = 0, 1, 2, . . . (2.11)

converges with a fixed error reduction per step, i.e., ‖uk+1 − u‖ ≤ ρ‖uk − u‖ holds for
some fixed ρ < 1, see [11].

Note that it would be highly desirable to keep ρ, that is the error reduction, indepen-
dent of d which requires that cond2(A) be independent of d. We will take this up again
below in Section 2.4.

Rather than exploiting this fixed error reduction by devising perturbed iterations in
such a way that the iterates essentially match the rates of best N -term approximations
with respect to the given background basis Ψ (see e.g. [11,13]), we follow the approach in [3]
which also uses a perturbed version of the ideal iteration (2.11) but aims at generating
approximations of low ranks in a stable tensor format where the tensors are not taken from
a given dictionary but are solution dependent and have to be found during the solution
process. To this end, following [3], we view each entry uν = uν1,...,νd of the coefficient
sequence u as the entry of a tensor of order d. The perturbed iteration then takes the
form

uk+1 = Cε2(k)

(
Pε1(k)(uk + ω(f −Auk))

)
, k = 0, 1, 2, . . . , (2.12)

where Pε1(k), Cε2(k) are certain reduction operators and the εi(k), i = 1, 2, are suitable
tolerances which decrease for increasing k so as to still guarantee the convergence of the
iterates in `2.

For such an iteration to produce low-rank approximants, it is of course important that
the (approximate) application of A does not increase the ranks of uk too strongly. As
we will explain next, it is this point where a price has to be paid for the discretization-
independent convergence and rigorous error control ensured by preconditioning. Although
we consider this directly for the continuous problem, analogous effects can be observed
with fixed discretizations and different types of preconditioning, see [1].

2.2 A Scaling Trap

As a guiding example consider Ω := (0, 1)d, H = L2(Ω), V = H1
0(Ω) and

A : H1
0(Ω)→ H−1(Ω) , u 7→ −

d∑
i,j=1

aij∂i∂ju , (2.13)

where (aij) ∈ Rd×d is symmetric positive definite; hence, A is a symmetric elliptic op-
erator. In order to avoid adding another layer of technicality we assume for simplicity
that the coefficients aij in the diffusion matrix are constants. Hence, its conservative rep-
resentation Au = −div(a∇u), which is used in the weak formulation below involves the
same coefficients. Also, all subsequent results carry over to sufficiently smooth variable
but separable coefficients aij(x) = ai(xi)aj(xj).
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The operator has a low-rank structure, i.e., it is a relatively short sum of tensor product
operators. This is inherited by its representation with respect to an L2-orthonormal basis
Ψ comprised of separable functions, i.e., of rank-one tensors. For T given by (2.3), one
obtains

T =
∑

1≤n1,...,nd≤R
cn1,...,nd

⊗
i

T(i)
ni , (2.14)

with a certain rank parameter R. In fact, in this case we have

T
(i)
1 := T1 =

(
〈ψν , ψµ〉

)
µ,ν∈∇ = id , T

(i)
2 := T2 :=

(
〈ψ′ν , ψ′µ〉

)
µ,ν∈∇ , (2.15)

T
(i)
3 := T3 :=

(
〈ψ′ν , ψµ〉

)
µ,ν∈∇ , T

(i)
4 := T4 :=

(
〈ψν , ψ′µ〉

)
µ,ν∈∇ = −T∗3 (2.16)

i.e., R = 4, where the coefficients cn1,...,nd are given by

c2,1,...,1 = a11, c1,2,1,...,1 = a22, . . . , c1,...,1,2 = add ,

c3,4,1,...,1 = c4,3,1,...,1 = a12, . . . , c1,...,1,3,4 = c1,...,1,4,3 = ad−1,d

c3,1,4,1,...,1 = c4,1,3,1,...,1 = a13, . . . , c1,...,3,1,4 = c1,...,4,1,3 = ad−2,d , (2.17)

. . . ,

. . . , c3,1...,1,4 = c4,1...,1,3 = a1d ,

and cn = 0 for all further n ∈ Nd. We use in what follows for multiindices in Nt
0, t ∈ N,

the notational convention k = (k1, . . . , kt), n = (n1, . . . , nt), r = (r1, . . . , rt), and so forth,
and for convenience define

R := (R, . . . , R) ∈ Nd .

Moreover, defining for a given r ∈ Nd
0

Kd(r) :=

{
Śd

i=1{1, . . . , ri} if min r > 0,
∅ if min r = 0 ,

we see that the minimal value of R ∈ N such that cn = 0 if n /∈ Kd(R) is in the above case
R = 4 in general, or R = 2 when the matrix of diffusion coefficients is diagonal.

Hence, applying T to a rank-one tensor v = v1 ⊗ · · · ⊗ vd gives rise to a sequence

Tv =
∑

n∈Kd(R)

cn

⊗
i

T(i)
ni vi

which has Tucker or multilinear rank R, see below for general definitions. This fact is also
heavily used in all previously known tensor methods for discretized operator equations.

However, as mentioned before, T is an unbounded operator and its preconditioned
version A is used in the iterations (2.11) and (2.12). Whether employing the canonical
scaling from (2.4) or any other equivalent one (in the sense of (2.9)), the scaling weights
are not separable, reflecting the fact that neither V nor its dual V ′ are endowed with tensor
product norms.

Remark 2.1. While T has low rank in the sense of (2.14), the rank of A is infinite.

Hence, each application of A in (2.12) yields a tensor of infinite rank, again in a sense
to be made precise below. It is therefore a pivotal issue of this paper to develop and
analyze low-rank approximations to A that remain well-conditioned. This is why finding
a suitable substitute S̃ for the canonical scaling S is crucial.
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2.3 A Simple Example

One might think that the pitfall expressed by Remark 2.1 is a particular feature of the
background wavelet basis. The following simple example shows that this is not the case,
but that the problem is rather a direct consequence of the spectral properties of A. To
see this, note that for D2 : C2(0, 1) → C(0, 1) defined by D2g(t) = g′′(t), a complete
L2-orthonormal system of eigenfunctions is given by en(x) = c0 sin(πnx), n ∈ N, where

c0 =
√

2
π . The corresponding eigenvalues are given by λn = (πn)2, n ∈ N. One easily

checks that then the rank-one tensors en(x) := cd0 sin(πn1x1) · · · sin(πndxd) form a complete
system of eigenfunctions of the Laplacian

−∆ = −
d∑
i=1

idx1 ⊗ · · · ⊗ idxi−1 ⊗D2
xi ⊗ idxi+1 ⊗ · · · ⊗ idxd

with eigenvalues λν = λν1 + · · ·+λνd , ν ∈ Nd. Representing −∆ with respect to this basis
yields

T :=
(
〈eν , (−∆)eµ〉

)
ν,µ∈Nd =

(
λνδν,µ

)
ν,µ∈Nd .

The ideal scaling matrix turning T into an operator with bounded spectral condition, in
this particular case into the identity, is in analogy to the previous considerations S :=(
λ

1
2
ν δν,µ

)
ν,µ∈Nd , because then S−1TS−1 = id. Thus, we face the same problem: λ

− 1
2

ν =

(λν1 + · · · + λνd)
− 1

2 as an inverse of the square root of a sum is not separable. In fact,
suppose that

f(x) =

d⊗
i=1

( ∑
νi∈Γi

fi,νic0 sin(πνixi)
)

is a rank-one tensor where each tensor factor fi(xi) =
∑

νi∈Γi
fi,νic0 sin(πνixi) is a finite

linear combination of one-dimensional eigenfunctions. Clearly, the solution u of −∆u = f
is given by

u =
∑
ν∈Nd

λ−1
ν 〈f, eν〉eν =

∑
ν∈×di=1Γi

λ−1
ν

( d∏
i=1

fi,νi

)
eν =

∑
ν∈×di=1Γi

uν (λ−1/2
ν eν),

where uν := λ
−1/2
ν

∏d
i=1 fi,νi . Here we have scaled the coefficients uν such that approximat-

ing u in H1 by a restriction of the above expansion to any finite set S ⊂ ×di=1Γi amounts

to approximating the array (uν)ν in `2. Due to the multiplication by λ
−1/2
ν neither are

the uν any longer separable, nor do the λ
−1/2
ν eν have rank one, and the actual rank of

the order-d tensor (uν) in general depends on the highest frequencies occurring in the sets
Γi. Thus, it is a priori not clear whether u can be approximated well by low-rank tensor
expansions. With the present choice of eigenfunction basis, even the separable function
f ≡ 1 would have an infinite expansion.

A central objective of the remainder of this paper is to quantitatively approximate
rescaled operators of the form (2.10) by low-rank operators, which can then be incorpo-
rated in an adaptive iteration of the form (2.12).

2.4 Problem Class and “Excess Regularity”

Throughout the remainder of the paper we confine the discussion to operators of the form
(2.13), i.e., V = H1

0(Ω), s = 1. Moreover, we require that the diffusion matrix (aij) be

10



diagonally dominant with uniformly bounded diagonal elements, that is,∑
j 6=i
|aij | ≤ |aii| ≤ C, i = 1, . . . , d, (2.18)

with C independent of d.
We emphasize that the restriction to this problem class is made to keep the presentation

accessible, but is not essential for the subsequent developments. As shown in [2], different
operators, for instance Coulomb potentials, can also be treated in this framework, but since
this leads to additional technicalities—particularly in the interaction with the rescaling
operator S—this is not addressed here.

In addition we make an assumption regarding some additional coordinatewise regular-
ity, which concerns f and the regularity of the Ψν . To formulate these, we need two types
of additional scaling operators that act on single coordinates.

For ω̂i,νi as in (2.4), for τ ∈ R and for i = 1, . . . , d, we define on the one hand the

coordinatewise scaling operators Sτi : R∇
d → R∇

d
by

Sτi v :=
(
ω̂τi,νivν

)
ν∈∇d and Si := S1

i (2.19)

and on the other hand, the corresponding low-dimensional scaling operators Ŝτi : R∇ →
R∇ by

Ŝτi v̂ :=
(
ω̂τi,νi v̂νi

)
νi∈∇

and Ŝi := Ŝ1
i . (2.20)

We now assume that there exists a t > 0 such that for i = 1, . . . , d, the operators

Ŝ−1+t
i T2Ŝ

−1−t
i , ŜtiT3Ŝ

−1−t
i , Ŝ−1+t

i T4Ŝ
−t
i . (2.21)

map `2(∇) boundedly to itself, and that

‖Stf‖2 =
d∑
i=1

‖Stif‖2 <∞. (2.22)

We shall refer in what follows to the above assumptions (2.21) and (2.22) as excess reg-
ularity assumptions of order t > 0. Here t can be arbitrarily small but fixed, and is
only used in the complexity estimates but not required for the computation, so that these
assumptions are not very impeding.

Remark 2.2. The condition (2.21) holds if the wavelets Ψν are sufficiently regular to
satisfy, after rescaling, a norm equivalence also for H1+t(Ω) and, by our orthonormality
requirement, also for the same range of dual spaces. The condition (2.22) then means that
f needs to have Sobolev regularity slightly higher than H−1(Ω).

When trying to assess the computational complexity of methods based on (2.12) for
problems of the form (2.13) with an eye on the role of the spatial dimension d, one has to
take into account the d-dependence of cond2(Ac) = ‖Ac‖‖A−1

c ‖, where Ac = S−1TS−1.
To this end, note first that since {2−|ν|ψν : ν ∈ ∇} is a Riesz basis of H1

0(0, 1) and because

of (2.6), for each i there exist λ
(i)
1 , λ

(i)
1 > 0 such that

λ
(i)
1 ‖Siv‖

2 ≤
∥∥∥∑
ν∈∇d

vν ∂iΨν

∥∥∥2

L2(Ω)
≤ λ(i)

1 ‖Siv‖2 . (2.23)

Moreover, by our assumptions, λ1 := mini λ
(i)
1 and λ1 := maxi λ

(i)
1 are independent of d.

The proof of the following proposition, based on the arguments in [13, Section 2], is
given for the convenience of the reader in Appendix A.
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Proposition 2.3. Let λa and λa denote the smallest and largest eigenvalue of (aij),
respectively. Then, one has

cond2(Ac) ≤
λaλ1

λaλ1

, (2.24)

i.e., this condition number can depend on d only via λa/λa = cond2(aij). Moreover, when
(aij) is diagonal the choice ω̂i,νi ∼

√
aii2

|νi| for the scaling weights yields

cond2(Ac) ≤
λ1

λ1

, (2.25)

regardless of cond2(aij).

Note that the L2-orthonormality of {ψν} that we have assumed from the outset is a
crucial requirement here, since otherwise the condition numbers in (2.24), (2.25) would
necessarily exhibit an exponential dependence on d.

Working now towards formulating a numerically implementable version of (2.12) and
analyzing its complexity requires two further essential prerequisites: On the one hand, we
need to fix the specific tensor formats to be used in such iterations. More importantly, we
need to specify the concrete form of the reduction operators in terms of tensor recompres-
sion and coarsening and characterize their precise approximation properties. Here we build
on known results on tensor calculus from the literature (see e.g. [15,17,18,20,22,28–30,33]).
The relevant results on the analysis of the reduction operators, restated for convenience
in the following section, are taken from [3]. On the other hand, we need to formulate a
procedure for the approximate application of a suitably preconditioned version A of the
representation T. This requires some essentially new ingredients, which will be developed
in Section 4.

3 Some Prerequisites

For the convenience of the reader we recall first some basic facts about tensor formats and
fix related notation. We then proceed with the precise formulation of recompression and
coarsening operators along with establishing their near-optimality in a sense to be made
precise. These results are taken from [3].

3.1 Tensor Formats

As indicated before, we regard u as a tensor of order d on ∇d =
Śd

i=1∇. We begin with
considering tensor representations of the form

u =

r1∑
k1=1

· · ·
rd∑

kd=1

ak1,...,kd U
(1)
k1
⊗ · · · ⊗U

(d)
kd

. (3.1)

Here the order-d tensor a = (ak1,...,kd)1≤ki≤ri:i=1,...,d is referred to as core tensor. The

matrix U(i) =
(
U

(i)
νi,ki

)
νi∈∇di ,1≤ki≤ri

with column vectors U
(i)
k ∈ `2(∇di), k = 1, . . . , ri, is

called the i-th mode frame, where we admit ri =∞, i = 1, . . . , d. When writing sometimes

for convenience (U
(i)
k )k∈N, although the U

(i)
k may be specified through (3.1) only for k ≤ ri,

it will always be understood to mean U
(i)
k = 0, for k > ri. Note that in a representation

of the form (3.1), by modifying a accordingly, one can always orthogonalize the columns

of U(i) so as to obtain 〈U(i)
k ,U

(i)
l 〉 = δkl, i = 1, . . . , d. We refer to U(i) with the latter

property as orthonormal mode frames.
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If a is represented directly by its entries, (3.1) corresponds to the so-called Tucker
format [33, 34] or subspace representation. The hierarchical Tucker format [22], as well
as the special case of the tensor train format [30], correspond to representations in the
form (3.1) as well, but use a further structured representation for the core tensor a.
To this end, Dd will always denote a fixed binary dimension tree of order d, singletons
{i} ∈ Dd are referred to as leaves, 0d := {1, . . . , d} as root, and elements of I(Dd) :=
Dd \

{
0d, {1}, . . . , {d}

}
as interior nodes. The set of leaves is denoted by L(Dd), where we

additionally set N (Dd) := Dd \ L(Dd) = I(Dd) ∪ {0d}. The functions

ci : Dd \ L(Dd)→ Dd \ {0d}, ci(α) := αi , i = 1, 2 ,

produce the “left” and “right” children of a non-leaf node α ∈ N (Dd).
For a family of matrices B(α,k) ∈ `2(N × N) for α ∈ N (Dd), k ∈ N, we denote by

ΣDd({B(α,k)}) ∈ `2(Nd) the corresponding core tensor a which is represented in hierarchi-
cal form by the B(α,k), or explicitly,

a =
(

ΣDd
(
{B(α,k)}

))
(kβ)β∈L(Dd)

:=
∑

(kγ)γ∈I(Dd)

∏
δ∈N (Dd)

B
(δ,kδ)
(kc1(δ),kc2(δ))

.

Considering for each node α in the given (fixed) dimension tree the corresponding ma-

tricization T
(α)
u , obtained by rearranging the entries of the tensor into an infinite ma-

trix representation of a Hilbert-Schmidt operator using the indices in ∇α as row indices,
the dimensions of the ranges of these operators yield the hierarchical ranks rankα(u) :=

dim rangeT
(α)
u for α ∈ Dd. Except for α = 0d, where we always have rank0d(u) = 1, these

are collected in the hierarchical rank vector rank(u) = rankDd(u) := (rankα(u))α∈Dd\{0d}
and give rise to the hierarchical tensor classes

H(r) :=
{
u ∈ `2(∇d) : rankα(u) ≤ rα for all α ∈ Dd \ {0d}

}
.

In the case of singletons {i} ∈ Dd, we use the simplified notation ranki(u) := rank{i}(u).

We denote by R ⊂ (N0 ∪ {∞})Dd\{0d} the set of hierarchical rank vectors for which H(r)
is nonempty.

There is an analogous format for operators. In fact, (2.14) represents the second order
operator in (2.13) in the Tucker format. To apply such an operator efficiently to a tensor
in hierarchical representation, we additionally need an analogous hierarchical structure for
the core tensor c in the representation of the operator as in (2.14), that is,

c = ΣDd
(
{C(α,ν) : α ∈ N (Dd), ν = 1, . . . , Rα}

)
(3.2)

for suitable Rα. We now give two examples of such decompositions. In both examples, we
consider the linear dimension tree

Dd =
{
{1, . . . , d}, {2, . . . , d}, . . . , {d− 1, d}, {1}, . . . , {d}

}
. (3.3)

Example 3.1. When the diffusion matrix (ai,j)
d
i,j=1 in (2.13) is the identity matrix, i.e.,

the operator is the Laplacian, we obtain a hierarchical decomposition with

C(0d,1) =

(
0 1
1 0

)
, C(α,1) =

(
1 0
0 0

)
, C(α,2) =

(
0 1
1 0

)
, α ∈ I(Dd) .

Thus, the Laplacian can be represented in hierarchical format with rank bounded by two
for each node, which coincides with the value R = 2 in (2.14) for this case.
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Example 3.2. A slightly more involved example is the tridiagonal diffusion matrix with
values 2 on the main diagonal and −1 on the two secondary diagonals, where R = 4 in
(2.14) arising in kinetic models for dilute polymers, see [5]. In this case, one has the
following hierarchical decomposition: for the root node,

C(0d,1) =
(

2(δ(i,j),(1,2) + δ(i,j),(2,1))− (δ(i,j),(3,4) + δ(i,j),(4,3) + δ(i,j),(1,5))
)
i=1,...,4
j=1,...,5

.

For each α ∈ I(Dd) \ {{d− 1, d}}, we have C(α,ν) ∈ R4×5 for ν = 1, . . . , 5, with values in
{0, 1}, where the value 1 occurs at the following positions: entry (1, 1) of C(α,1), entries
(1, 2), (2, 1) of C(α,2), (3, 1) of C(α,3), (4, 1) of C(α,4), and (3, 4), (4, 3), (1, 5) of C(α,5). For
α = {d− 1, d}, the matrices C({d−1,d},ν) ∈ R4×4 are defined in the same manner, but with
each last column dropped1.

As can be seen in the second example, the representation ranks Rα for interior nodes
α ∈ I(Dd) may be larger than R.

3.2 Recompression, Contractions, and Coarsening

We proceed describing next the coarsening and recompression operators appearing in
(2.12).

Near-optimal Recompression. Essential advantages offered by subspace based tensor
formats like the hierarchical Tucker format are that best approximations of given rank
always exist, and that near-best approximations from the classes H(r) are realized by
truncation of a hierarchical singular value decomposition (HSVD), cf. [17]. As in [3], for a
given v ∈ `2(∇d) we denote by PU(v),r v the result of truncating a HSVD of v to ranks r.

Moreover, we have computable error bounds λr(v) for this truncation. See [17] for a
proof of the following result and [3] for a detailed discussion tailored to the present needs.

Remark 3.3. For any rank vector r ≤ rank(v), r ∈ R, one has

‖v − PU(v),r v‖ ≤ λr(v) ≤ κP min
rank(w)≤r

‖u−w‖, κP =
√

2d− 3 .

In order to quantify what we mean by tensor sparsity, for r ∈ N0 let

σr(v) = σr,H(v) := inf
{
‖v −w‖ : w ∈ H(r) with r ∈ R, |r|∞ ≤ r} .

This allows us to consider corresponding approximation classes. To this end, giving a
positive, strictly increasing growth sequence γ =

(
γ(n)

)
n∈N0

with γ(0) = 1 and γ(n)→∞,
as n→∞, we define

A(γ) = AH(γ) :=
{
v ∈ `2(∇d) : sup

r∈N0

γ(r)σr,H(v) =: |v|AH(γ)<∞
}

and ‖v‖AH(γ) := ‖v‖+ |v|AH(γ). We call the growth sequence γ admissible if

ργ := sup
n∈N

γ(n)/γ(n− 1) <∞ ,

which corresponds to a restriction to at most exponential growth.
Rather than seeking (near-)best approximations for a given rank vector, we ask for

approximations meeting a given target accuracy with (near-)minimal maximum ranks.

1Note that for homogeneous Dirichlet boundary conditions, an additional simplification is possible,
since then T3 ⊗T4 = T4 ⊗T3.
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Remark 3.4. In this regard we have the following way of reading v ∈ AH(γ) in mind: a
given target accuracy ε can be realized at the expense of ranks of the size γ−1(|v|AH(γ)/ε)
so that a rank bound of the form γ−1(C|v|AH(γ)/ε), where C is a constant, marks a
near-optimal performance.

Evaluating the bounds λr(v) allows one to determine near-minimal ranks

r(u, η) ∈ arg min
{
|r|∞ : r ∈ R, λr(u,η)(u) ≤ η

}
,

that ensure the validity of a given accuracy tolerance η > 0. Given v ∈ `2(∇d), this, in
turn, gives rise to a computable near-minimal rank approximation

P̂η v := PU(v),r(v,η) v ,

from H(r). In fact, we have by definition

‖v − P̂η v‖ ≤ λr(v,η)(v) ≤ η, |rank(P̂η v)|∞ = |r(v, η)|∞.

Coarsening and Contractions. In addition to such a near-optimal tensor recompres-
sion operator we need in addition a mechanism to approximate the columns in a given
mode frame by finitely supported sequences, again in a way that preserves a given accu-

racy tolerance. To this end, we define for any d̂ ∈ N and Λ ⊂ ∇d̂ the restriction of a given

v ∈ `2(∇d̂) to the index set Λ by

RΛ v := v � χΛ , v ∈ `2(∇d̂) ,

i.e., all entries with index ν 6∈ Λ are replaced by zero. For each N ∈ N0, the errors of best
N -term approximation are then given by

σN (v) := inf
Λ⊂∇d̂
#Λ≤N

‖v − RΛ v‖ .

The compressibility of v can again be described through approximation classes. For s > 0,

we denote by As(∇d̂) the set of v ∈ `2(∇d̂) such that

‖v‖As(∇d̂)
:= sup

N∈N0

(N + 1)sσN (v) <∞ .

Endowed with this (quasi-)norm, As(∇d̂) becomes a (quasi-)Banach space. When no

confusion can arise, we shall suppress the index set dependence and write As = As(∇d̂).
The following concept, which allows us to relate a hidden low-dimensional sparsity of

v ∈ `2(∇d) to the joint sparsity of associated mode frames, was introduced first in [2], see
also [3]. To this end, for any vector x = (xi)i=1,...,d and for i ∈ {1, . . . , d}, we employ the
notation

x̌i := (x1, . . . , xi−1, xi+1, . . . , xd) , x̌i|y := (x1, . . . , xi−1, y, xi+1, . . . , xd) (3.4)

to refer to the corresponding vector with entry i deleted or entry i replaced by y, respec-
tively. In a slight abuse of terminology we define for u ∈ `2(∇d) and for i ∈ {1, . . . , d},
using the notation (3.4),

π(i)(u) =
(
π(i)
νi (u)

)
νi∈∇

:=

((∑
ν̌i

|uν |2
) 1

2

)
νi∈∇

∈ `2(∇) , (3.5)
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briefly referred to in what follows as ith contraction.
For later purposes we record some basic facts from [3]. Let u,v ∈ `2(∇d), ν ∈ ∇ and

i ∈ {1, . . . , d}. Then we have ‖u‖ = ‖π(i)(u)‖ as well as

π(i)
ν (u + v) ≤ π(i)

ν (u) + π(i)
ν (v), (3.6)

and for each η > 0,
π(i)
ν (P̂η u) ≤ π(i)

ν (u). (3.7)

The contractions can easily be computed using the hierarchical singular value decom-

position: let in addition U(i) be mode frames of an HSVD of u, and let (σ
(i)
k ) be the

corresponding sequences of singular values of the matricizations T
({i})
u , then

π(i)
ν (u) =

(∑
k

∣∣U(i)
ν,k

∣∣2∣∣σ(i)
k

∣∣2) 1
2
.

To quantify the actual number of nonzero entries on components of tensor representa-
tions, the notation

suppi(u) := supp
(
π(i)(u)

)
will be useful.

As a first important application of the sequences (3.5), we identify next near-best N -
term approximations to an order-d tensor without considering all entries, but using instead
only its contractions. To this end, consider a non-increasing rearrangement

π
(i1)

νi1,1
(u) ≥ π(i2)

νi2,2
(u) ≥ · · · ≥ π(ij)

νij ,j
(u) ≥ · · · , νij ,j ∈ ∇, (3.8)

of the entire set of contractions for all tensor modes,
{
π

(i)
ν (u) : ν ∈ ∇, i = 1, . . . , d

}
. Next,

retaining only the N largest from the latter total ordering (3.8) and redistributing them
to the respective dimension bins Λ(i)(u;N) :=

{
νij ,j : ij = i, j = 1, . . . , N

}
, i = 1, . . . , d,

the product set

Λ(u;N) :=
d

ą

i=1

Λ(i)(u;N)

can be obtained at a cost that is roughly d times the analogous low-dimensional cost. By
construction, one has

d∑
i=1

#Λ(i)(u;N) ≤ N

and
d∑
i=1

∑
ν∈∇\Λ(i)(u;N)

|π(i)
ν (u)|2 = min

Λ̂

{ d∑
i=1

∑
ν∈∇\Λ̂(i)

|π(i)
ν (u)|2

}
, (3.9)

where Λ̂ ranges over all product sets
Śd

i=1 Λ̂(i) with
∑d

i=1 #Λ̂(i) ≤ N .

Proposition 3.5 (cf. [2, 3]). For any u ∈ `2(∇d) one has

‖u− RΛ(u;N) u‖ ≤
( d∑
i=1

∑
ν∈∇\Λ(i)(u;N)

∣∣π(i)
ν (u)

∣∣) 1
2

=: µN (u) , (3.10)

and for any Λ̂ =
Śd

i=1 Λ̂(i) with Λ(i) ⊂ ∇ satisfying
∑d

i=1 #Λ̂(i) ≤ N , one has

‖u− RΛ(u;N) u‖ ≤ µN (u) ≤
√
d‖u− RΛ̂ u‖ .
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Again we switch from near-best approximations for a given budget (here N) to approx-
imations realizing a given target accuracy with near-minimal cost. To this end, we define
N(v, η) := min

{
N : µN (v) ≤ η

}
, where µN is defined in (3.10), as well as the thresholding

procedure
Ĉη(v) := RΛ(u;N(v;η)) .v ,

As a consequence of (3.10), we have

‖v − Cv,N v‖≤ µN (v) ≤ κC min∑
i # suppi(w)≤N

‖u−w‖, κC =
√
d.

In [3], we have obtained the following result concerning a combined reduction tech-
nique, both with respect to ranks as well as sparsity of the mode frames, with near-optimal
performance.

Theorem 3.6. Let u,v ∈ `2(∇d) with u ∈ AH(γ), π(i)(u) ∈ As for i = 1, . . . , d, and
‖u− v‖ ≤ η. Let κP =

√
2d− 3 and κC =

√
d. Then, for any fixed α > 0,

wη := ĈκC(κP+1)(1+α)η

(
P̂κP(1+α)η(v)

)
,

satisfies
‖u−wη‖ ≤ C(α, κP, κC) η , (3.11)

where C(α, κP, κC) :=
(
1 + κP(1 + α) + κC(κP + 1)(1 + α)

)
, as well as

|rank(wη)|∞ ≤ γ−1
(
ργ‖u‖AH(γ)/(αη)

)
, ‖wη‖AH(γ) ≤ C1‖u‖AH(γ), (3.12)

with C1 = (α−1(1 + κP(1 + α)) + 1) and

d∑
i=1

# suppi(wη) ≤ 2η−
1
s dα−

1
s

( d∑
i=1

‖π(i)(u)‖As
) 1
s
,

d∑
i=1

‖π(i)(wη)‖As ≤ C2

d∑
i=1

‖π(i)(u)‖As ,

(3.13)

with C2 = 2s(1 + 3s) + 24sα−1
(
1 + κP(1 + α) + κC(κP + 1)(1 + α)

)
dmax{1,s}.

Remark 3.7. Both P̂η and Ĉη require a hierarchical singular value decomposition of their
inputs. For a compactly supported v given in hierarchical format, the number of opera-
tions required for obtaining such a decomposition is bounded, up to a fixed multiplicative
constant, by d|rank(v)|4∞ + |rank(v)|2∞

∑d
i=1 # suppi v.

4 Adaptive Application of Rescaled Low-Rank Operators

The remaining crucial issue for a numerical realization of the iteration (2.12) is the adaptive
application of a suitably rescaled version A of a given operator T of finite hierarchical rank.
Throughout the remainder of the paper we concentrate on T given by (2.14) with low-
dimensional components given by (2.15) and (2.16). Specifically, we wish to construct
for a given v ∈ `2(∇d) with finite hierarchical ranks and any target tolerance η > 0 an
approximation wη ∈ `2(∇d), satisfying ‖wη −Av‖ ≤ η, where wη has as low hierarchical
ranks and as small lower-dimensional supports suppi wη as possible.

We have already pointed out that scaling operators of the form S with weights from
(2.4) cause the preconditioned operator to have infinite rank and obstruct the understand-
ing of low-rank approximations. The first major issue is therefore to identify equivalent
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scalings (in the sense of (2.9)) that better support finding such approximations in a quan-
tifiable sense.

The second issue is representation sparsity of the generated mode frames which will be
addressed by directly exploiting known results for low-dimensional wavelet methods. In
this context we continue employing at times the canonical scaling S, since it allows us to
use corresponding low-dimensional results on matrix compression in the most convenient
way.

4.1 Near-Separable Scaling Operators

The central objective of this section is to identify a scaling operator S̃ which is equivalent
to the canonical scaling S in the sense of (2.9), but can be approximated by separable
operators in an efficient and quantifiable way. The main tool is the following result, whose
proof is deferred to Section 6.

Theorem 4.1. Let α(x) := ln2(1 + ex), w(x) := 2π−1/2(1 + e−x)−1. For an arbitrary but
fixed δ ∈ (0, 1) choose some

h ∈
(

0,
π2

5(|ln(δ/2)|+ 4)

]
,

and set
n+ = n+(δ) := dh−1 max{4π−

1
2 ,
√
|ln(δ/2)|}e. (4.1)

Then, defining

ϕh,n(t) :=
n+∑

k=−n
hw(kh) e−α(kh) t , ϕh,∞(t) := lim

n→∞
ϕh,n(t) , (4.2)

one has ∣∣∣∣ 1√
t
− ϕh,∞(t)

∣∣∣∣ ≤ δ√
t

for all t ∈ [1,∞). (4.3)

For any η > 0 and T > 1, provided that n ≥ dh−1(ln 2π−
1
2 + |ln(min{δ/2, η})|+ 1

2 lnT )e,
one has in addition∣∣t− 1

2 − ϕh,n(t)
∣∣ ≤ δ√

t
and

∣∣ϕh,∞(t)− ϕh,n(t)
∣∣ ≤ η√

t
for all t ∈ [1, T ]. (4.4)

To define the modified scaling operator and its approximations the values δ ∈ (0, 1),
h, n+ = n+(δ) will be kept fixed according to Theorem 4.1. Furthermore, let

ω̂min := min
ν∈∇

min
i
ω̂i,ν , ωmin := min

ν∈∇d
ων ≥

√
d ω̂min .

For any n ∈ N, we define now

S̃nv =
(
ω̃n,ν vν

)
ν∈∇d , where ω̃n,ν := ωmin

[
ϕh,n

(
(ων/ωmin)2

)]−1
,

where the ων are defined by (2.5).

Remark 4.2. As a consequence of this definition the operator S̃−1
n can be represented as a

sum of 1 +n+(δ) +n separable terms. In the limit n→∞, we obtain the reference scaling

S̃v :=
(
ω̃ν vν

)
ν

where ω̃ν := lim
n→∞

ω̃n,ν = ωmin

[
ϕh,∞

(
(ων/ωmin)2

)]−1
. (4.5)
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We can now rephrase the statement (4.4) in terms of the approximations S̃n. Since
the role of t is played by (ων/ωmin)2, it will be important to identify the set of indices in
∇d for which (4.4) applies, namely

ΛT :=
{
ν ∈ ∇d : (ων)2 ≤ (ωmin)2T

}
. (4.6)

Moreover, the larger T and hence the scale of indices covered by ΛT , the more summands
are needed to replace the reference scaling by a finite expansion with a desired relative
precision. More precisely, let

M(η;T ) := dh−1(ln 2π−
1
2 + |ln(min{δ/2, η})|+ 1

2 lnT )e ,

M0(T ) := M(δ/2, T ) .
(4.7)

Then, whenever n ≥M(η;T ), one has for any η > 0 and T > 1 both |ων(ων
−1− ω̃−1

n,ν)| ≤ δ
and |ων(ω̃−1

ν − ω̃−1
n,ν)| ≤ η for ν ∈ ΛT . In other words,

‖S(S−1 − S̃−1
n ) RΛT ‖ ≤ δ and ‖S(S̃−1 − S̃−1

n ) RΛT ‖ ≤ η . (4.8)

Note furthermore that as an immediate consequence of (4.3),

1− δ ≤ ω̃−1
ν ων ≤ 1 + δ, ν ∈ ∇d.

Since by definition,
ω̃−1
n,ν ≤ ω̃−1

ν , n ∈ N, ν ∈ ∇d, (4.9)

we also obtain ω̃−1
n,νων ≤ 1+δ, n ∈ N, ν ∈ ∇d. The lower estimate 1−δ ≤ ω̃−1

n,νων , however,
holds only under additional restrictions: by (4.4),

1− δ ≤ ω̃−1
n,νων ≤ 1 + δ, whenever ν ∈ ΛT , n ≥M0(T ), (4.10)

For later record we summarize these observations as follows.

Remark 4.3. For the diagonal operators S, S̃, S̃n, we have

‖SS̃−1
n ‖, ‖SS̃−1‖ ≤ 1 + δ, n ∈ N, ‖S̃S−1‖ ≤ (1− δ)−1, (4.11)

and in particular, the spectral condition of S̃S−1 is bounded by (1 + δ)/(1− δ). Moreover,
for any T > 1 and n ≥M0(T ),

(1− δ)‖S−1v‖ ≤ ‖S̃−1
n v‖ ≤ (1 + δ)‖S−1v‖ when supp (v) ⊆ ΛT .

Low-rank approximations based on sinc quadrature have been constructed previously
e.g. in [21]. Theorem 4.1, however, has two new features that are particularly useful for
our purposes here. First, our choice of parameters yields a relative error estimate, which
leads to a substantially better dependence on the range parameter T than with standard
constructions. Second, adjustments of the finite rank scalings S̃−1

n can be done by simply
adding terms to the expansion.

In fact, keeping δ ∈ (0, 1) and a corresponding h fixed, for any given finitely supported
v and any target accuracy η > 0, we can determine the number n of terms in the series
ϕh,∞ so that the finite rank scaling S̃−1

n replaces, for this v, the reference scaling S̃−1

with accuracy η in the sense of (4.8). To determine this n we adjust T so that supp v ⊆
ΛT , which via (4.7) yields a lower bound for n. We shall see in Section 6 that under
certain minimal Sobolev regularity assumptions, this requires lnT ∼ maxν∈suppv maxi|νi|.
Roughly speaking, this means that for solution accuracy ε, we need lnT ∼ |ln ε| and hence
a number of terms proportional to |ln ε|. Using known exponential sum approximations
as in [21] or [9] would instead lead to a number of terms growing like |ln ε|2.
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Remark 4.4. A related problem with preconditioning for a fixed discretization in the
context of tensor representations is addressed in [1], where a BPX-type preconditioner
is approximated in the hierarchical tensor format. There, approximations of a rescaling
sequence similar to ω−1

ν are constructed numerically in a preparation step, based on direct
evaluation and subsequent approximation based on Remark 3.3, or alternatively based on
heuristic black-box approximation. Unfortunately, these approaches do not seem to offer
any direct control of relative errors and resulting condition numbers, and are therefore
not suitable for our purposes. The numerical results given in [1, Table 3.1], however,
are consistent with maximum ranks scaling linearly in the maximum discretization level,
analogously to our construction.

4.2 Low-Rank Adaptive Operator Compression

We wish to solve the variant (2.10) with S̃ given by (4.5). What keeps us from applying
the results from [3] directly is the lack of a concrete low-rank approximation of A. The
objective of this section is to devise such a low-rank approximation based on the operators
S̃n introduced above.

Aside from controlling ranks we have to exploit the near-sparsity of the preconditioned
versions A to eventually ensure representation sparsity of the mode frames. For low-rank
operators this has been done in [3]. Again the non-separability of the scaling operators
requires additional new concepts.

Nevertheless, a central idea is to exploit the fact that appropriately rescaled versions

of the low-dimensional components T
(i)
ni of T are compressible in the following sense.

Definition 4.5. Let Λ be a countable index set and let s∗ > 0. An operator B : `2(Λ)→
`2(Λ) is called s∗-compressible if for any 0 < s < s∗, there exist summable positive
sequences (αj)j≥0, (βj)j≥0 and for each j ≥ 0, there exists Bj with at most αj2

j nonzero
entries per row and column, such that ‖B − Bj‖ ≤ βj2

−sj . For a given s∗-compressible
operator B, we denote the corresponding sequences by α(B), β(B). Furthermore, we
say that the Bj have level decay if there exists γ > 0 such that ||ν| − |µ|| > γj implies
Bj,νµ = 0.

Note that one can always scale down one of the two sequences α(B), β(B) at the
expense of the other one. It will be convenient to always assume in what follows that

‖β(B)‖`1 ≤ ‖B‖. (4.12)

Standard wavelet representations of many operators relevant in applications are known to
be s∗-compressible for some s∗ > 0, see [10, 11, 32]. The level decay property is satisfied
for each of these examples. For our model problem, we shall rely in particular on the
construction and analysis for spline wavelets given in [32] where s∗ is shown to exceed the
order of the trial functions.

Let us briefly recall from [10] how s∗-compressibility is used in the low-dimensional
regime. Suppose that J ∈ N and that {Λj}J+1

j=0 is any partition of the index set Λ. Then,
one has for any v ∈ `2(Λ)

Bv =
J+1∑
j=0

B RΛj v =
J∑
j=0

BJ−j RΛj v +
J∑
j=0

(B−BJ−j) RΛj v + B RΛJ+1
v

=: B̃Jv + EJv. (4.13)
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Since for any s < s∗ one has ‖EJv‖ ≤
∑J

j=0 βj(B)2−sj‖RΛj v‖+‖B RΛJ+1
v‖ one obtains

‖EJv‖ ≤ 2s+12−sJ‖v‖As‖β(B)‖`1 + 2−Js‖B‖ ‖v‖As ≤ (2s+1 + 1)2−Js‖B‖ ‖v‖As ,

provided that Λj = supp (v2j −v2j−1), j ≤ J , where vk is a best k-term approximation to
v, and ΛJ+1 := Λ \ ΛJ .

Rather then applying this principle directly to A, as in [13], we apply it to each

component T
(i)
ni in (2.14) and consider first approximations T̃J to T, given by (2.14), in

the form
T̃ = T̃J :=

∑
n∈Kd(R)

cn

⊗
i

T̃(i)
ni ,

where the T̃
(i)
ni will be specified next via the concept of compressibility for the specific

cases T
(i)
ni = Tni from (2.15), (2.16). Recall, however, that compressibility of such low

dimensional operators is only known for properly scaled counterparts.
In fact, for sufficiently regular ψν , and with the low-dimensional scaling matrices Ŝi

defined in (2.20), the operators

A
(i)
2 := Ŝ−1

i T2Ŝ
−1
i , A

(i)
3 := T3Ŝ

−1
i , A

(i)
4 := Ŝ−1

i T4 , (4.14)

are bounded on `2(∇) and s∗-compressible for some s∗ > 0. Note that ‖A(i)
4 ‖ = ‖A(i)

3 ‖.
This means that for any fixed s < s∗

‖Ŝ−1
i (T2 −T2,j)Ŝ

−1
i ‖ ≤ βj(A

(i)
2 ) 2−sj ,

‖(T3 −T3,j)Ŝ
−1
i ‖ ≤ βj(A

(i)
3 ) 2−sj

‖Ŝ−1
i (T4 −T4,j)‖ ≤ βj(A(i)

4 ) 2−sj ,

(4.15)

where Tn,j := ŜiA
(i)
n,jŜi and A

(i)
n,j is the jth compression of A

(i)
n , n = 2, 3, 4, according

to Definition 4.5. Therefore, we construct for any given J ∈ N the T̃
(i)
ni = T̃

(i)
ni,J

by the

principle (4.13). In fact, for a given partition Λ
(i)
ni,[p]

, p = 0, . . . , J + 1, we set

T̃(i,J)
ni = T̃(i)

ni :=
J+1∑
p=0

T
(i)
ni,[p]

R
Λ
(i)
ni,[p]

(4.16)

where as in (4.13)

T
(i)
ni,[p]

:= Tni,J−p, p = 0, . . . , J, T
(i)
ni,[J+1] := 0.

In fact, as above, the sets Λ
(i)
ni,[p]

provide the vehicle for adaptivity and will depend on a

given input sequence v ∈ `2(∇d) as follows. For each i ∈ {1, . . . , d} and for j ∈ N, we

choose Λ̄
(i)
j as the support of the best 2j-term approximation (π(i)(v))2j of π(i)(v) so that,

in particular, Λ̄
(i)
p ⊂ Λ̄

(i)
p+1. If T

(i)
ni = id, we simply set T̃

(i)
ni = id. If T

(i)
ni 6= id, we set

Λ̄
(i)
−1 := ∅ and

Λ
(i)
ni,[p]

(v) = Λ
(i)
ni,[p]

:= Λ
(i)
[p] :=


Λ̄

(i)
p \ Λ̄

(i)
p−1, p = 0, . . . , J,

∇di \ Λ̄
(i)
J , p = J + 1,

∅, p > J + 1,

(4.17)
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As an immediate consequence one has

‖R
Λ
(i)
ni,[p]

π(i)(v)‖ = ‖(π(i)(v))2p − (π(i)(v))2p−1‖ ≤ (1 + 2s)2−ps‖π(i)(v)‖As ,

i.e., with increasing p the successively coarser approximations T
(i)
ni,[p]

are applied to finitely
supported vectors of successively smaller norms.

Of course we will not apply T̃J but the rescaled version ÃJ := S̃−1T̃J S̃−1 which,
however, still has unbounded rank and hence requires a further low-rank approximation
S̃n of S̃. Here n depends on the support of the input vector v in such a way that, in an
appropriate sense, S̃n and S̃ are equivalent on supp v. To make this precise, given any
finitely supported v ∈ `2(∇d) and any J ∈ N, let

T (J ; v) := argmin {T ′ > 0 : supp v ∪ supp T̃Jv ⊆ ΛT ′}. (4.18)

Moreover, define

eJ(v) :=
d∑
i=1

C
(i)
A

[ J∑
p=0

( R∑
n=2

βJ−p(A
(i)
n )
)

2−s(J−p)‖R
Λ
(i)
[p]

π(i)(v)‖

+
R∑
n=2

‖A(i)
n ‖ ‖RΛ

(i)
[J+1]

π(i)(v)‖
]
, (4.19)

where

C
(i)
A := max

{
|aii|, 2

∑
j 6=i
‖A(j)

3 ‖|aij |, 2
∑
j 6=i
‖A(j)

4 ‖|aij |
}
≤ max

{
1, 2 max

j 6=i
n=3,4

‖A(j)
n ‖
}
|aii|. (4.20)

In the last inequality we have used that (aij) is diagonally dominant. In view of (2.18),

C
(i)
A is thus in particular independent of d. Note that for a given finitely supported v, the

a posteriori quantity eJ(v) can be evaluated. It clearly decreases when J increases. This
decay is faster, the faster the errors of 2p-term approximation of the contractions π(i)(v)
decay.

With these prerequisites at hand, for any given tolerance η > 0, which we will always
assume to satisfy η ≤ 2‖A‖‖v‖ – which is natural, since otherwise Av can be approximated
by zero – we set

J(η) := argmin {J ∈ N : (1 + δ)2eJ(v) ≤ η/4}, c(v) η :=
η(1− δ)
4‖A‖‖v‖

, (4.21)

and
m(η; v) := M(c(v)η ; T (J(η); v)), (4.22)

where M is defined in (4.7), to define the procedure apply(v; η) : v→ wη by

wη := S̃−1
m(η;v)T̃J(η)S̃

−1
m(η;v)v. (4.23)

Remark 4.6. The smallest T ′′ for which supp T̃Jv ⊆ ΛT ′′ is usually larger than the smallest
T ′ for which supp v ⊆ ΛT ′ . Thus, the number n′ of terms needed in a viable scaling of
the input vector v in (4.23) need not be equal to m(η; v) but can typically be chosen
as a smaller integer. This should be exploited in a numerical realization, but for ease of
exposition we work with the above “symmetric” version.
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Proposition 4.7. The finitely supported wη defined by (4.23) satisfies ‖Av −wη‖ ≤ η.

We defer the proof of this fact and a further analysis of the procedure apply(v; η),
in particular regarding the sparsity of the corresponding mode frames and the resulting
ranks, to Section 6.

In order to control the ranks of the numerical approximations we shall make use of
the excess regularity discussed in Section 2.4. We shall exploit this through the following
strengthened notion of compressibility.

Definition 4.8. We say that B : `2(∇)→ `2(∇) is s∗-compressible with Sobolev stability
of order t > 0, if there exists Ct > 0 such that ‖Ŝti(B−Bj)Ŝ

−t
i ‖ ≤ Ctβj(B) for i = 1, . . . , d.

5 An Adaptive Algorithm and its Complexity

5.1 Formulation of the Algorithm

As already mentioned in Section 2.3, for the exact right hand side f both the suppi f and
|rank(f)|∞ may be unbounded. In a practical realization of (2.12), we therefore need to
work with approximations, that is, with a procedure rhs which generates for a fixed given
f and any positive tolerance η > 0 an approximation rhs(η) to f in the hierarchical Tucker
format that satisfies

‖f − rhs(η)‖ ≤ η. (5.1)

In our complexity results, we focus on the costs for constructing a solution u for given f ;
we thus assume sufficient knowledge of the data for the explicit construction of a routine
rhs of suitable complexity, which we make more precise in Section 5.2 and Appendix B.

Furthermore, we denote by coarsen(·; η) and recompress(·; η) numerical realizations
of Ĉη and P̂η, respectively, see also [3]. These routines, together with the scheme apply
defined above, are the core ingredients of a numerical realization of the iteration (2.12).

The following adaptive scheme—Algorithm 1—has been proposed in essence in [3], see
also [2] for a predecessor. The main difference in the present work lies in the formulation of
the routine apply which, due to the scaling problem discussed in Section 2.2, poses severe
additional difficulties regarding the complexity and, in particular, concerning tensor rank
bounds for the iterates.

The following fact follows exactly as in [3]. It holds for any fixed choice of the param-
eters κi for i=1,2,3 and β1, β2 subject to the stated constraints. These parameters will
later be further specified for a quantitative complexity analysis.

Proposition 5.1. Let the damping factor ω > 0 in Algorithm 1 satisfy ‖id−ωA‖ ≤ ρ < 1.
Then the intermediate steps uk of Algorithm 1 satisfy ‖uk−u‖ ≤ 2−kε0, and in particular,
the output uε of Algorithm 1 satisfies ‖uε − u‖ ≤ ε.

Remark 5.2. The scheme produces an approximation uε ≈ S̃u◦, with u◦ν = 〈Ψν , u〉 as in
(2.3). Recovering u◦, the coefficients with respect to the original tensor product orthonor-
mal basis {Ψν} of L2(Ω), therefore requires an additional approximate application of S̃−1

based on Theorem 4.1.

5.2 The Main Result

We shall now formulate the main result of this paper, which roughly states the following:
if the data f satisfy certain conditions on tensor structure and representation sparsity,
and if the exact solution satisfies similar conditions, then the computed approximation uε
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Algorithm 1 uε = solve(A, f ; ε)

input

{ω > 0 and ρ ∈ (0, 1) such that ‖id− ωA‖ ≤ ρ,
cA ≥ ‖A−1‖, ε0 ≥ cA‖f‖,
κ1, κ2, κ3 ∈ (0, 1) with κ1 + κ2 + κ3 ≤ 1, and β1 ≥ 0, β2 > 0.

output uε satisfying ‖uε − u‖ ≤ ε.
1: u0 := 0
2: k := 0, I := min{j : ρj(1 + (ω + β1 + β2)j) ≤ 1

2κ1}
3: while 2−kε0 > ε
4: wk,0 := uk, j ← 0
5: repeat
6: ηk,j := ρj+12−kε0

7: rk,j := apply(wk,j ;
1
2ηk,j)− rhs(1

2ηk,j)
8: wk,j+1 := coarsen

(
recompress(wk,j − ωrk,j ;β1ηk,j);β2ηk,j

)
9: j ← j + 1.

10: until (j ≥ I ∨ cAρ‖rk,j−1‖+ (cAρ+ ω + β1 + β2)ηk,j−1 ≤ κ12−(k+1)ε0)
11: uk+1 := coarsen

(
recompress(wk,j ;κ22−(k+1)ε0);κ32−(k+1)ε0

)
12: k ← k + 1
13: end while
14: uε := uk

also exhibits a near-optimal low-rank tensor structure and representation sparsity. Most
importantly, the algorithm does not make use of any a priori information on such approx-
imability properties. Instead these features—referred to as benchmark assumptions—of
the problem and the exact solution, though not known explicitly, will be shown to be
automatically inherited by the numerical approximation.

We formulate next the assumptions under which the main result holds. We begin with
conditions on the data A, f which are natural for low-rank approximate solutions with
sparse factors can be expected to exist.

Assumptions 5.3. Concerning the scaled matrix representation A given by (2.10) and
the right hand side f we require the following properties for some fixed s∗, t > 0:

(i) The lower-dimensional component operators A
(i)
ni as defined in (4.14) are s∗-compressible

with the level decay property and with Sobolev stability of order t.

(ii) The number of operations required for evaluating each entry in the approximations
Tn,j as in (4.15) is uniformly bounded.

(iii) A has a bounded condition, i.e., ‖A‖, ‖A−1‖ <∞.

(iv) We have an estimate cA = ‖A−1‖, and the initial error estimate ε0 overestimates
the true value of ‖A−1‖‖f‖ only up to some absolute multiplicative constant, i.e.,
ε0 . ‖A−1‖‖f‖.

(v) The contractions of f are compressible, i.e., π(i)(f) ∈ As, i = 1, . . . , d, for any s with
0 < s < s∗.

(vi) The problem (2.1) has excess regularity t as in (2.21), (2.22).

We state next the assumptions concerning the procedure rhs for approximating the
right hand side f that will be used in the subsequent complexity analysis. We refer to the
appendix for scenarios where these assumptions can be realized.
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Assumptions 5.4. The procedure rhs is assumed to have the following properties:

(vii) There exists an approximation fη := rhs(η) such that (5.1) and

‖π(i)(fη)‖As ≤ Csparse‖π(i)(f)‖As ,∑
i

# suppi(fη) ≤ Csupp d η−
1
s

(∑
i

‖π(i)(f)‖As
) 1
s
,

|rank(fη)|∞ ≤ Crank
f |ln η|bf ,

hold, where Csparse, Csupp, Crank
f > 0, bf ≥ 1 are independent of η, and Csparse, Csupp

are independent of f .

(viii) The number of operations required for evaluating rhs(η) is bounded, with a constant

Cops
f (d), by ops(fη) ≤ Cops

f (d)
[
|ln η|3bf + |ln η|bf η−

1
s

]
.

(ix) rhs preserves the excess regularity of the problem, that is, there exists Creg
f > 0

independent of η such that
‖Stifη‖ ≤ C

reg
f ‖S

t
if‖ . (5.2)

Remark 5.5. Recalling that f = S−1g, we can obtain (vii) and (viii) from Proposition B.1
in Appendix B, where bf = bg + 1; in particular, if bg is independent of d, so is bf .

Under the above conditions on the data and their processing we are primarily interested
to see now whether the adaptive algorithm produces in a quantifiable way low-rank sparse
approximate solutions if the exact solution permits such approximations. We state now
our precise benchmark assumptions on the solution u.

Assumptions 5.6. Concerning the approximability of the solution u, we assume:

(x) u ∈ AH(γu) with γu(n) = edun
1/bu

for some du > 0, bu ≥ 1.

(xi) π(i)(u) ∈ As for i = 1, . . . , d, for any s with 0 < s < s∗.

The rationale of Assumptions 5.6(x) is to assess the performance of the highly nonlinear
scheme in situations where the solution does admit low-rank approximations, quantified
here by a poly-logarithmic growth of ranks given by γ−1

u , see Remark 3.4.
In order to analyze the dimension-dependence of the complexity of our algorithm, we

would ideally need a reference family of problems exhibiting the same level of difficulty
for each d. Although this is not quite possible, there are problem elements that can be
compared for different values of d, such as for instance the structure of the Laplacian. It is
therefore important to state next exactly how the relevant quantifies relate to the spatial
dimension d.

Assumptions 5.7. In our comparison of problems for different values of d, we assume:

(xii) The following are independent of d: the constants du, bu, Csparse, Csupp, Crank
f ; the

excess regularity index t, and Creg
f in (5.2).

(xiii) The following quantities remain bounded independently of d: ‖A‖ and ‖A−1‖, see
Proposition 2.3; the maximum hierarchical representation rank maxαRα of T; the
quantities ‖π(i)(u)‖As in the benchmark assumptions, ‖π(i)(f)‖As in Assumptions
5.6(vii), and the values ‖Stif‖, each for i = 1, . . . , d.
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(xiv) In addition, we assume that Cops
f (d) as in Assumptions 5.6(viii) grows at most poly-

nomially as d→∞.

Remark 5.8. As a consequence of the d-independent bound on ‖A‖‖A−1‖, the reduction
rate ρ is independent of d and hence the damping parameter ω can be chosen independently
of d.

We have already seen in Proposition 5.1 that Algorithm 1 terminates without any
additional assumptions on u and in that sense converges. The following main result of this
work concerns the complexity of the scheme when u satisfies the benchmark assumptions.

Theorem 5.9. Suppose that Assumptions 5.3, 5.4 hold and that Assumptions 5.6 are
valid for the solution u of Au = f . Let α > 0 and let κP, κC be as in Theorem 3.6. Let
the constants κ1, κ2, κ3 in Algorithm 1 be chosen as

κ1 =
(
1 + (1 + α)(κP + κC + κPκC)

)−1
,

κ2 = (1 + α)κPκ1 , κ3 = κC(κP + 1)(1 + α)κ1 ,

and let β1 ≥ 0, β2 > 0 be arbitrary but fixed. Then the approximate solution uε produced
by Algorithm 1 for ε < ε0 satisfies

|rank(uε)|∞ ≤
(
d−1
u ln

[
2(ακ1)−1ργu ‖u‖AH(γu) ε

−1
])bu . (|ln ε|+ ln d)bu , (5.3)

d∑
i=1

# suppi(uε) . d1+s−1
( d∑
i=1

‖π(i)(u)‖As
) 1
s
ε−

1
s , (5.4)

as well as

‖uε‖AH(γu) .
√
d ‖u‖AH(γu) , (5.5)

d∑
i=1

‖π(i)(uε)‖As . d1+max{1,s}
d∑
i=1

‖π(i)(u)‖As . (5.6)

The multiplicative constant in (5.5) depends only on α, those in (5.4) and (5.6) depend
only on α and s.

If in addition, Assumptions 5.7 hold, then for the number of required operations ops(uε),
we have the estimate

ops(uε) ≤ Cda dcs
−1 ln dd24c ln ln d|ln ε|cs−1 ln d+2 max{bu,bf} ε−

1
s , (5.7)

where C, a are constants independent of ε and d, and c is the smallest d-independent value
such that I ≤ c ln d for I as in line 2 of Algorithm 1. In particular, c does not depend on
ε and s.

Note that the operation count in (5.7) is essentially of the form

ops(uε) . dC1 ln d| ln ε|C2 ln d+2 max{bu,bf} ε−
1
s ,

where C1, C2 are constants independent of d and ε.
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6 Complexity Analysis and Proof of Theorem 5.9

6.1 Analysis of Scaling Operators

Theorem 6.1. Let δ0 ∈ (0, 1) and

h ∈
(

0,
π2

5(|ln δ0|+ 4)

]
. (6.1)

Then with α, w defined as in Theorem 4.1, and ϕh,n and ϕh,∞ as in (4.2) with n+ ≥
dh−1 max{4π−

1
2 ,
√
|ln δ0|}e, we have∣∣∣∣ 1√

t
− ϕh,∞(t)

∣∣∣∣ ≤ δ0√
t

for all t ∈ [1,∞).

Moreover, for any ε > 0 and for all n ≥ dh−1(ln 2π−
1
2 + |ln ε|)e, one has∣∣ϕh,∞(t)− ϕh,n(t)

∣∣ ≤ ε for all t ∈ [1,∞).

An immediate consequence of Theorem 6.1 can be formulated as follows.

Corollary 6.2. Under the assumptions of Theorem 4.1, let in addition δ1 > 0 such that
δ := δ0 + δ1 < 1, and let T > 1. Then for ϕh,∞ and ϕh,n with n+ as in Theorem 6.1 and

n ≥ dh−1(ln 2π−
1
2 + |ln δ1|+ 1

2 lnT )e

we have ∣∣ϕh,∞(t)− ϕh,n(t)
∣∣ ≤ δ1√

t
,
∣∣t− 1

2 − ϕh,n(t)
∣∣ ≤ δ√

t
for all t ∈ [1, T ].

Choosing δ0 = δ1 = δ/2 in Corollary 6.2 provides the proof of Theorem 4.1. For
the proof of Theorem 6.1, we need the following definition and approximation estimate
from [31].

Definition 6.3. For ζ > 0, let Dζ = {z ∈ C : |Im z| < ζ} and for 0 < ε < 1,

Dζ(ε) = {z ∈ C : |Re z| < ε−1, |Im z| < ζ(1− ε)} .

For v analytic in Dζ let N1(v,Dζ) = limε→0

∫
∂Dζ(ε)|v(z)| |dz| .

Theorem 6.4 (cf. [31], Theorem 3.2.1). Let g be analytic in Dζ with N1(g,Dζ) <∞, then∣∣∣∣∫
R

g(x) dx− h
∑
k∈Z

g(kh)

∣∣∣∣ ≤ e−πζ/h

2 sinh(πζ/h)
N1(g,Dζ) .

Proof of Theorem 6.1. Our starting point is the representation (cf. [21])

1√
t

=
2√
π

∫
R

e−t ln2(1+ex)

1 + e−x
dx .

The integrand is analytic, in particular, in the strip {x + iy : x ∈ R, |y| ≤ π/10}, and in
order to apply Theorem 6.4, we need to estimate the quantity

N1(g,Dζ) =

∫
R

|g(x+ iζ)| dx+

∫
R

|g(x− iζ)| dx ,
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where g(z) := 2√
π
e−t ln

2(1+ez)

1+e−z . Note first that |1 + ex±iζ |2 ≥ 1 + e2x ≥ 1
2(1 + ex)2 for x ∈ R.

Let

rζ(x) := Re ln2(1 + ex±iζ) =
1

4
ln2(1 + 2ex cos ζ + e2x)−

(
arctan

sin ζ

cos ζ + e−x

)2

.

For |ζ| ≤ π
10 , we now prove that rζ(x) ≥ 1

4x
2 for x ≥ 0 and rζ(x) ≥ 1

8e
2x for x ≤ 0. We

first consider x ≤ 0. Using that ln(1 + y) ≥ 1
2y for any y ∈ [0, 2], we obtain

1

4
ln2(1 + 2ex cos ζ + e2x) ≥ 1

4
(ex cos ζ)2 ,

and furthermore(
arctan

sin ζ

cos ζ + e−x

)2

≤
(

sin ζ

cos ζ + e−x

)2

≤ ζ2e2x , x ∈ R .

Hence rζ(x) ≥ 1
4(ex cos ζ)2 − ζ2e2x, and the estimate cos ζ ≥ (1

2 + 4ζ2)
1
2 , which holds for

|ζ| ≤ π
10 , yields 1

4(ex cos ζ)2 − ζ2e2x ≥ 1
8e

2x for x ≤ 0, as claimed.
We now consider x > 0, where we shall repeatedly use∣∣∣∣arctan

sin ζ

cos ζ + e−x

∣∣∣∣ ≤ |ζ| , x ∈ R .

To see that rζ(x) ≥ 1
4x

2 for x ∈ (0, 1), we observe first that 1
4 ln2(1 + 2 cos ζ + 1)− ζ2 ≥ 1

4
holds for ζ = π/10, and hence also for |ζ| ≤ π/10 by monotonicity. Consequently, for
x ∈ (0, 1), one has

rζ(x) ≥ 1

4
ln2(1 + 2ex cos ζ + e2x)− ζ2 >

1

4
ln2(1 + 2e0 cos ζ + e0)− ζ2 ≥ 1

4
>

1

4
x2 .

In the remaining case x ≥ 1, we use the estimate ln(1 + e2x) ≥ 2x to obtain

1

4
ln2(1 + 2ex cos ζ + e2x) ≥ 1

4
ln2(1 + e2x) ≥ 1

4
(2x)2 = x2 ,

and thus rζ(x) ≥ x2 − ζ2. Consequently, rζ(x) ≥ 1
4x

2 follows, since in the latter case
ζ2 < 3

4 ≤
3
4x

2.
In summary, for |ζ| ≤ π/10, we obtain∫

R+

∣∣∣∣e−t ln2(1+ex±iζ)

1 + e−(x±iζ)

∣∣∣∣ dx ≤ 2

∫
R+

e−t rζ(x)

1 + e−x
dx ≤ 2

∫
R+

e−
t
4
x2 dx = 2

√
π t−

1
2

as well as∫
R−

∣∣∣∣e−t ln2(1+ex±iζ)

1 + e−(x±iζ)

∣∣∣∣ dx ≤ 2

∫
R+

e−
t
8
e−2x

1 + ex
dx = 2

∫ 1

0

e−
t
8
ξ2

(1 + ξ−1)ξ
dξ ≤ 2t−

1
2 ,

where we have used the substitution x = − ln ξ.
Theorem 6.4 now yields∣∣∣∣ 1√

t
−
∑
k∈Z

hω(kh)e−α(kh) t

∣∣∣∣ ≤ 8(1 + π−
1
2 )t−

1
2

e−πζ/h

2 sinh(πζ/h)

≤ 16(1 + π−
1
2 ) t−

1
2 e−π

2/(5h) , (6.2)
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where we have used ζ = π/10 and that h ≤ π2/(5 ln 2) by our assumption on h, which in
turn implies e−πζ/h/(2 sinh(πζ/h)) ≤ 2e−2πζ/h. Again by the choice of h as in (6.1), the

right hand side in (6.2) is bounded by 1
2 t
− 1

2 δ0.
The estimates for n+ and n follow from the decay of the integrand on R: on the one

hand, we have∑
k>n+

hω(kh)e−α(kh) t ≤ 2π−
1
2h

∫ ∞
n+

e−t(xh)2 dx ≤ t−
1
2 2π−

1
2

∫ ∞
n+h
√
t
e−x

2
dx ,

and furthermore

2π−
1
2

∫ ∞
n+h
√
t
e−x

2
dx ≤ 2π−

1
2

∫ ∞
n+h

2xe−x
2

n+h
dx ≤ 2π−

1
2
e−(n+h)2

n+h
.

The expression on the right hand side is bounded by 1
2δ0 for n+ ≥ max{4π−

1
2h−1, h−1

√
|ln δ0|},

which leads to the condition on n+ stated in the assertion. On the other hand,∑
k<−n

hω(kh)e−α(kh) t ≤ 2π−
1
2

∫ ∞
nh

e−x dx ≤ 2π−
1
2 e−nh ,

and the expression on the right hand side is bounded by ε for all t ∈ [1, T ] for n ≥
h−1(ln 2π−

1
2 + |ln ε|).

We record next some consequences of Theorem 4.1 and the related definitions from
Section 4.1 that will be required later. First we quantify the equivalence between the two
systems (2.7) and (2.10).

Remark 6.5. For any B ∈ R∇d×∇d and v ∈ `2(∇d),

(1− δ)‖S−1BS−1(SS̃−1v)‖ ≤ ‖S̃−1BS̃−1v‖ ≤ (1 + δ)‖S−1BS−1(SS̃−1v)‖. (6.3)

Proof. We infer from Remark 4.3 that

‖S̃−1BS̃−1v‖ = ‖(S̃−1S)S−1BS−1(SS̃−1v)‖ ≤ (1 + δ)‖S−1BS−1(SS̃−1v)‖ .

The lower bound follows from Remark 4.3 in an analogous fashion.

The significance of (6.3) becomes clear when taking B = T − T̃ where T̃ is an ap-
proximation for T. Here T̃ stands for a “compressed” version of T. Recall that matrix
compression is usually done for the energy scaled version A, not for the L2 representa-
tion T. However, since the process of discarding matrix entries and scaling commutes
and since, in view of (6.21), we can make use of existing results for the lower-dimensional
canonical scaling, we can compare the corresponding variants.

Lemma 6.6. Let v ∈ `2(∇d) and T > 0 such that

supp v ⊆ ΛT , supp(S−1T̃S−1v) ⊆ ΛT , (6.4)

and define D̃ := S̃−1(T̃−T)S̃−1. Then whenever n ≥M(η;T ), one has

‖(S̃−1TS̃−1 − S̃−1
n T̃S̃−1

n )v‖ ≤ ‖D̃v‖+ ‖D̃(id− S̃S̃−1
n )v‖

+
η

1− δ
‖D̃(S̃S̃−1

n v)‖+
2η

1− δ
‖A‖‖v‖. (6.5)
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Proof. Note that

‖(S̃−1TS̃−1 − S̃−1
n T̃S̃−1

n )v‖ ≤ ‖S̃−1(T− T̃)S̃−1v‖+ ‖S̃−1T̃S̃−1v − S̃−1
n T̃S̃−1

n v‖ . (6.6)

The second term corresponds to the deviation of the finite-rank operator S̃−1
n from the

reference S̃−1. Here we obtain

‖(S̃−1T̃S̃−1 − S̃−1
n T̃S̃−1

n )v‖ ≤ ‖S̃−1T̃(S̃−1 − S̃−1
n )v‖+ ‖(S̃−1 − S̃−1

n )T̃S̃−1
n v‖. (6.7)

To bound the second summand on the right hand side of (6.6), we estimate the first
summand on the right hand side of (6.7) by

‖S̃−1T̃(S̃−1 − S̃−1
n )v‖ = ‖S̃−1T̃S̃−1(id− S̃S̃−1

n )v‖
≤ ‖A(id− S̃S̃−1

n )v‖+ ‖S̃−1(T̃−T)S̃−1(id− S̃S̃−1
n )v‖.

Now note that, whenever supp v ⊆ ΛT , n ≥M(η;T ), we infer from Remark 4.3 that∣∣(id− S̃S̃−1
n

)
ν

∣∣ =
∣∣ω̃ν(ω̃−1

ν − ω̃−1
n,ν)
∣∣ ≤ (1− δ)−1

∣∣ων(ω̃−1
ν − ω̃−1

n,ν)
∣∣ ≤ (1− δ)−1η. (6.8)

Hence we obtain

‖S̃−1T̃(S̃−1 − S̃−1
n )v‖ ≤ η

1− δ
‖A‖ ‖v‖+ ‖S̃−1(T− T̃)S̃−1(id− S̃S̃−1

n )v‖.

As for the second summand on the right hand side of (6.7), we argue as above, now using
the second relation in (6.4), to conclude that

‖(S̃−1 − S̃−1
n )T̃S̃−1

n v‖ = ‖RΛT (id− S̃S̃−1
n )(S̃−1T̃S̃−1)(S̃S̃−1

n )v‖

≤ η

1− δ
‖(S̃−1T̃S̃−1)(S̃S̃−1

n )v‖

≤ η

1− δ
(
‖S̃−1(T− T̃)S̃−1(S̃S̃−1

n v)‖+ ‖A‖ ‖v‖
)
,

where we have also used (4.11) and (4.9). Combining both estimates confirms the assertion
(6.5).

As will be seen later the estimates (6.5) can benefit from the fact that the compressed
version T̃ of T depends on the given v so that the quantities ‖S̃−1(T− T̃)S̃−1v‖ are small
and controlled by a posteriori bounds.

We conclude this section interrelating the compressibility of the contractions of solu-
tions to the systems (2.7) and (2.10) which differ only by the rescaling.

Remark 6.7. As before let σN (v̂) denote the error of best N -term approximation of v̂ ∈
`2(∇) and let ṽ := SS̃−1v for any given v ∈ `2(∇d). Then one has

σN (π(i)(ṽ)) ≤ (1 + δ)σN (π(i)(v)), (6.9)

and
σN (π(i)(v)) ≤ (1− δ)−1σN (π(i)(ṽ)). (6.10)

Hence we have in particular

‖π(i)(ṽ)‖As ≤ (1 + δ)‖π(i)(v)‖As ≤
1 + δ

1− δ
‖π(i)(ṽ)‖As , v ∈ `2(∇d), i = 1, . . . , d. (6.11)

Moreover, for ṽ := SS̃−1
n v, (6.9) holds again for all v ∈ `2(∇d), while (6.10) holds in this

case only for supp v ⊆ ΛT when n ≥M0(T ).
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6.2 Analysis of the procedure apply

The following main result of this section collects the relevant properties of the procedure
apply.

Theorem 6.8. Given η > 0, and any finitely supported v ∈ `2(∇d), let wη be defined by
(4.23). Then the following statements hold:

(i) We have the estimates

‖Av −wη‖ ≤ η , (6.12)

# suppi(wη) ≤ ‖α̂‖`1η−
1
s

(
24(2s + 2)R1+s

d∑
i=1

C
(i)
A max

n>1
‖A(i)

n ‖ ‖π(i)(v)‖As
) 1
s
, (6.13)

where α̂ := (α̂k)k∈N and α̂k := maxi∈{1,...,d}maxn>1 αk(A
(i)
n ).

(ii) The outputs of apply are sparsity-stable in the sense that for i ∈ {1, . . . , d},

‖π(i)(wη)‖As ≤
(
Č

(i)
A +

23s+2

2s − 1
‖α̂‖s`1 max

n>1
‖A(i)

n ‖C
(i)
A

)
Rs(1 + δ)2 ‖π(i)(v)‖As , (6.14)

where C
(i)
A is defined in (4.20) and

Č
(i)
A := 12 (d− 1) max

j 6=i
|ajj |

(
max
i,ni
‖A(i)

ni ‖
)2
. (6.15)

(iii) For the hierarchical ranks of wη, we have the bounds

rankα(wη) ≤
(
m̂(η; v)

)2
Rα rankα(v), α ∈ Dd , (6.16)

with Rα as in (3.2), where

m̂(η; v) := 1 + n+(δ) +m(η; v), (6.17)

with n+(δ) given by (4.1) in Section 4.1, and m(η; v) defined in (4.22).

(iv) The number ops(wη) of floating point operations required to compute wη in the hier-
archical Tucker format for a given v with ranks rankα(v) = rα, α ∈ Dd \ {0d}, and
r0d = 1, scales like

ops(wη) .
∑

α∈N (Dd)

(
m̂(η; v)

)6
Rαrα

2∏
q=1

Rcq(α)rcq(α)

+ η−1/s
d∑
i=1

‖α̂‖`1
(
m̂(η; v)

)2
Rri

( d∑
j=1

C
(j)
A R‖π(j)(v)‖As

)1/s
, (6.18)

where the constant is independent of η,v, and d.

(v) Assume in addition that the approximations Tn,j have the level decay property (see
Definition 4.5). Denoting by L(v) the largest coordinatewise level appearing in v,
the scaling ranks m̂(η; v) as defined in (6.17) can be bounded by

m̂(η; v) ≤ C(δ, s,A)
[
1 + L(v) + |ln η|+ ln

( d∑
i=1

‖π(i)(v)‖As
)]
. (6.19)
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The proof of Theorem 6.8 is based on several auxiliary results. We begin with some
useful facts concerning scaling of tensor product operators.

For later reference, we recall the simple fact that for a rank-one operator B = B(1) ⊗
B(2) ⊗ · · · ⊗B(d), one has

B =
(
B(1) ⊗ · · · ⊗B(i−1) ⊗ idi ⊗B(i+1) ⊗ · · · ⊗B(d)

)(
id1 ⊗ · · · ⊗ idi−1 ⊗B(i) ⊗ idi+1 ⊗ · · · ⊗ idd

)
(6.20)

with the canonical interpretation when i = 1, d.

Lemma 6.9. For B,C ∈ R∇×∇ one has∥∥S−1
[
B⊗ id2 ⊗ · · · ⊗ idd

]
S−1

∥∥ ≤ ∥∥Ŝ−1
1 BŜ−1

1

∥∥∥∥S−1
[
B⊗C⊗ id3 ⊗ · · · ⊗ idd

]
S−1

∥∥ ≤ min
{∥∥BŜ−1

1

∥∥∥∥Ŝ−1
2 C

∥∥, ∥∥Ŝ−1
1 B

∥∥∥∥CŜ−1
2

∥∥}, (6.21)

and permuting the variables, analogous relations hold for B at the i-th and C at the j-th
position, with Ŝ1 and Ŝ2 replaced by Ŝi and Ŝj, respectively.

Proof. From the observation that ‖S−1(Ŝ1 ⊗ id2 ⊗ · · · ⊗ idd)‖ ≤ 1, the first relation in
(6.21) is clear. The second inequality follows by an analogous argument.

We proceed now analyzing the adaptive application of rescaled versions of the operator
T first for the canonical scaling S, because this allows us most conveniently to tap results
on matrix compression in the univariate case. To this end, we define the approximation

Ãc,J := S−1T̃JS−1, T̃J =
∑

n∈Kd(R)

cn

d⊗
i=1

T̃(i)
ni . (6.22)

In order to simplify notation in the following error estimates, in analogy to (4.14), we
introduce the abbreviations

Ã
(i)
2 := Ŝ−1

i T̃(i)
ni Ŝ

−1
i , Ã

(i)
3 := T̃

(i)
3 Ŝ−1

i , Ã
(i)
4 := Ŝ−1

i T̃
(i)
4 , i = 1, . . . , d, (6.23)

for the compressed versions of the properly scaled lower dimensional components of T.
Note that by Definition 4.5 and (4.12), we have the uniform bounds

‖Ã(i)
ni ‖ ≤ 2‖A(i)

ni ‖, ni ≤ R, i = 1, . . . , d. (6.24)

The next result, although still formulated for the canonical scaling S, will serve as
a first step towards an adaptive application of A defined by (2.10). Although similar
in spirit to a comparable result in [3], the presence of the scaling operator S requires a
slightly different treatment.

Lemma 6.10. Let Ac = S−1TS−1 be defined by (2.7) and assume that (4.15) holds for
s < s∗. Moreover, let v ∈ `2(∇d) with π(i)(v) ∈ As, i = 1, . . . , d. Then for each J ∈ N
and Ãc,J , defined by (6.22) with the v-dependent partitions (4.17), one has the a posteriori
bound

‖Acv − Ãc,Jv‖ ≤ eJ(v), (6.25)

where eJ(v) is defined by (4.19), as well as the a priori estimate

‖Acv − Ãc,Jv‖ ≤ 2−sJ(2s + 2)

d∑
i=1

C
(i)
A

( R∑
n=2

‖A(i)
n ‖
)
‖π(i)(v)‖As , (6.26)
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where the constants C
(i)
A have already been defined in (4.20). Moreover, one has the support

estimate
# suppi Ãc,Jv ≤ R‖α̂‖`12J , i = 1, . . . , d. (6.27)

Proof. Noting that

d⊗
i=1

B(i) −
d⊗
i=1

C(i) =
d∑
j=1

j−1⊗
i=1

B(i) ⊗ (C(j) −B(j))
d⊗

i=j+1

C(i),

again with the canonical interpretation for j = 1, d, we can write

S−1(T− T̃)S−1

=
∑

n∈Kd(R)

cnS−1
( d⊗
i=1

T(i)
ni −

d⊗
i=1

T̃(i)
ni

)
S−1

=
∑

n1≤R, p∈N
S−1 (T(1)

n1
− T̃

(1)
n1,[p]

) R
Λ
(1)
n1,[p]

⊗
(∑

ň1

cnT(2)
n2
⊗ · · · ⊗T(d)

nd

)
S−1

+ · · ·+
∑

nd≤R, p∈N
S−1

(∑
ňd

cnT̃(1)
n1
⊗ · · · ⊗ T̃(d−1)

nd−1

)
⊗ (T(d)

nd
− T̃

(d)
nd,[p]

) R
Λ
(d)
nd,[p]

S−1.

Using the triangle inequality and recalling that ‖v‖`2(∇d) = ‖π(i)(v)‖`2(∇), we obtain

‖S−1(T− T̃)S−1v‖ ≤
∑
n1,p

ε(1)
n1,p‖RΛ

(1)
n1,[p]

π(1)(u)‖+ . . .+
∑
nd,p

ε(d)
nd,p
‖R

Λ
(d)
nd,[p]

π(d)(v)‖ (6.28)

where

ε(1)
n1,p :=

∥∥∥S−1 (T(1)
n1
− T̃

(1)
n1,[p]

) R
Λ
(1)
n1,[p]

⊗
(∑

ň1

cnT(2)
n2
⊗ · · · ⊗T(d)

nd

)
S−1

∥∥∥
...

ε(d)
nd,p

:=
∥∥∥S−1

(∑
ňd

cnT̃(1)
n1
⊗ · · · ⊗ T̃(d−1)

nd−1

)
⊗ (T(d)

nd
− T̃

(d)
nd,[p]

) R
Λ
(d)
nd,[p]

S−1
∥∥∥ .

To derive specific bounds for the quantities ε
(i)
ni,p we exploit the structure of T and how

the global scaling operator S relates to the low-dimensional factors T
(i)
ni . In fact, note that

by (2.17), in each summand at most two tensor factors are different (up to scaling) from
the identity so that we are in the situation of Lemma 6.9. Specifically, for t = 0 we infer
from (6.21) that∥∥S−1

[
(T2 − T̃

(1)
2 )⊗ id2 ⊗ · · · ⊗ idd

]
S−1

∥∥ ≤ ∥∥Ŝ−1
1 (T2 − T̃

(1)
2 )Ŝ−1

1

∥∥ ,∥∥S−1
[
(T3 − T̃

(1)
3 )⊗T4 ⊗ id3 ⊗ · · · ⊗ idd

]
S−1

∥∥ ≤ ∥∥(T3 − T̃
(1)
3 )Ŝ−1

1

∥∥∥∥Ŝ−1
2 T4

∥∥ .
Using these estimates with suitable permutations of coordinates, we obtain

ε
(i)
1,p = 0 , ε

(i)
2,p ≤ |aii|

∥∥Ŝ−1
i (T2 −T2,J−p)Ŝ

−1
i

∥∥ ,
ε

(i)
3,p ≤

∑
j 6=i|aij |max

{∥∥Ŝ−1
j T4

∥∥, ∥∥Ŝ−1
j T̃

(j)
4

∥∥}∥∥(T3 −T3,J−p)Ŝ
−1
i

∥∥ , (6.29)
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as well as an analogous estimate for ε
(i)
4,p. Now, recall that by (6.24)

∥∥Ŝ−1
j T̃

(j)
4

∥∥ ≤
2
∥∥Ŝ−1

j T4

∥∥ which is used in the definition of (4.20). We then combine (6.29) and (4.17)
with (4.15) to infer from(6.28) that

‖Acv − Ãc,Jv‖ ≤
d∑
i=1

C
(i)
A

[ J∑
p=0

( R∑
n=2

βJ−p(A
(i)
n )
)

2−s(J−p)‖R
Λ
(i)
[p]

π(i)(v)‖

+
R∑
n=2

‖A(i)
n ‖‖RΛ

(i)
[J+1]

π(i)(v)‖
]

= eJ(v),

which, in view of(4.19), confirms the bound (6.25). Moreover, on account of the choice of

the sets Λ
(i)
[p] and since π(i)(v) ∈ As, we have ‖R

Λ
(i)
[p]

π(i)(v)‖ ≤ (1+2−s)2−s(p−1)‖π(i)(v)‖As ,
which gives

‖Acv − Ãc,Jv‖ ≤
d∑
i=1

C
(i)
A


J∑
p=0

( R∑
n=2

βJ−p(A
(i)
n )
)

2−s(J−p)(1 + 2−s)2−s(p−1)‖π(i)(v)‖As

+
R∑
n=1

2−sJ‖A(i)
n ‖‖π(i)(v)‖As

}

≤ 2−sJ(2s + 2)

d∑
i=1

C
(i)
A

( R∑
n=2

‖A(i)
n ‖
)
‖π(i)(v)‖As . (6.30)

Finally, as in [3], the estimate

# suppi Ãc,Jv ≤
R∑
n=1

(α̂
(i)
J 2J20 + α̂

(i)
J−12J−121 + . . .+ α̂

(i)
0 202J)

yields (6.27).

The next step is to infer compressibility of A from compressibility of Ac.

Proof of Proposition 4.7. Let for a given v ∈ `2(∇d) the compressed operator T̃ = T̃J(v)
be defined by (6.22). Using (6.3) with B = T− T̃J , we obtain

‖S̃−1(T− T̃J)S̃−1v‖ ≤ (1 + δ)‖S−1(T− T̃)S−1(SS̃−1v)‖
= (1 + δ)‖(Ac − Ãc,J)(SS̃−1v)‖. (6.31)

Since for ṽ := SS̃−1v, by Remark 6.7, one has ‖R
Λ
(i)
[p]

π(i)(ṽ)‖ ≤ (1 + δ)‖R
Λ
(i)
[p]

π(i)(v)‖, we

conclude that for
ÃJ := S̃−1T̃J S̃−1 (6.32)

one has
‖Av − ÃJv‖ ≤ ẽJ(v) := (1 + δ)2eJ(v), (6.33)

where eJ(v) is the bound from (6.25), defined in (4.19). Thus, the same a-posteriori
bounds as in the case of canonical scalings can be used to make ‖Av− ÃJv‖ as small as
necessary by increasing J .

As ÃJ still has infinite rank, the next step is to replace S̃ by S̃n, where n depends on
the support of v. Specifically, given the target accuracy η > 0, we fix

J = J(η), T = T (J(η); v), n = m(η; v) = M(ζ;T ), ζ := c(v)η, (6.34)

34



defined in (4.18), (4.21), (4.22). Invoking Lemma 6.6, (6.5) with η replaced by ζ yields

‖Av − S̃−1
n T̃J S̃−1

n v‖ ≤ ‖(A− ÃJ)v‖+ ‖(A− ÃJ)(id− S̃S̃−1
n )v‖

+
ζ

1− δ
‖(A− ÃJ)(S̃S̃−1

n v)‖+
2ζ

1− δ
‖A‖ ‖v‖

≤ (1 + δ)2
(
eJ(v) + eJ

(
(id− S̃S̃−1

n )v
)

+
ζ

1− δ
eJ(S̃S̃−1

n v)
)

+
2ζ

1− δ
‖A‖ ‖v‖,

where we have used (6.33) in the last step. Since for T as in (6.34), (S̃S̃−1
n )ν ≤ 1, ν ∈ ΛT

and recalling (6.8), we conclude that for n = m(η; v), J = J(η), ζ = c(v)η, defined by
(4.21), (4.22),

‖Av − S̃−1
n T̃J S̃−1

n v‖ ≤ (1 + δ)2eJ(v)
(

1 +
2ζ

1− δ

)
+

2ζ

1− δ
‖A‖ ‖v‖. (6.35)

Note that whenever ζ ≤ (1 − δ)/2, which holds by the condition η ≤ 2‖A‖‖v‖ required
prior to (4.21), we infer from the definition of J = J(η) that the first summand on the right
hand side of (6.35) is bounded by η/2. By definition of ζ in (6.34) and (4.21), the second
summand is also bounded by η/2, which completes the proof of Proposition 4.7.

For the following proof, we introduce additional auxiliary notation, complementing Ŝi
defined in (2.19): we denote by Ši : `2(∇d−1)→ `2(∇d−1) the rescaling operator with the
i-th coordinate omitted, that is,

(
Šiv
)
ν

=
(∑
j<i

(ω̂i,νi)
2 +

∑
j>i

(ω̂i,νi−1)2
) 1

2
vν for v ∈ R∇d−1

, ν ∈ ∇d−1. (6.36)

Proof of Theorem 6.8. The first claim (6.12) of Theorem 6.8 has already been established
above.

To verify (6.13) we make use of (6.26) and the fact that the support of wη is indepen-
dent of the particular scaling and hence is given by ÃJ(η)v. Clearly, in view of (6.30) and
(4.21), one has J(η) ≤ J̄(η) with

J̄(η) := argmin

{
J ∈ N : 2−sJ(2s + 2)R

d∑
i=1

C
(i)
A max

n>1
‖A(i)

n ‖ ‖π(i)(v)‖As ≤
η

4(1 + δ)2

}
,

which yields

J(η) ≤

⌈
log2

(
η−1/s

(
4(1 + δ)2(2s + 2)R

d∑
i=1

C
(i)
A max

n>1
‖A(i)

n ‖ ‖π(i)(v)‖As
) 1
s
)⌉

. (6.37)

Inserting this into (6.27) yields (6.13).
To prove (6.14) we reduce the problem to the setting considered in [3] by appropriate

estimates for the rescaling operators S−1. It suffices to discuss the case i = 1. Note first
that for n, J as in (6.35), as a consequence of (4.10), for ṽ := SS̃−1

n v and ν1 ∈ supp1 wη

we have
π(1)
ν1 (wη) = π(1)

ν1 (S̃−1
n T̃J S̃−1

n v) ≤ (1 + δ)π(1)
ν1 (S−1T̃JS−1ṽ) . (6.38)

We exploit again the specific structure of T given by (2.17), which in particular means

that T
(i)
1 = id and in each summand at most two factors are different from the identity.
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Recalling the notation (3.4) and Š−1
1 as introduced in (6.36), we obtain in view of (6.20)

and (3.6),

π(1)
ν1 (S−1T̃JS−1ṽ) ≤ π(1)

ν1

(
id⊗ Š−1

1

∑
n∈Kd(1,R,...,R)

cn

d⊗
i=2

T̃(i)
ni S

−1ṽ
)

+
R∑
n=2

π(1)
ν1

(
S−1T̃(1)

n ⊗
∑

n∈Kd(1,R,...,R)

cň1|n

d⊗
i=2

T̃(i)
ni S

−1ṽ
)

=: D1,ν1 +
R∑
n=2

Dn,ν1 . (6.39)

To bound D1,ν1 we estimate∥∥∥∥Š−1
1

∑
n∈Kd(1,R,...,R)

cn

d⊗
i=2

T̃(i)
ni Š

−1
1

∥∥∥∥ ≤ ∑
n∈Kd(1,R,...,R)

|cn|
∥∥Š−1

1

d⊗
i=2

T̃(i)
ni Š

−1
1

∥∥ ,
and recall from (2.17) that at most two factors in the tensor products on the right hand
side differ from the identity. Invoking again Lemma 6.9, and bearing (6.24) in mind, we
conclude that∥∥∥∥Š−1

1

∑
n∈Kd(1,R,...,R)

cn

d⊗
i=2

T̃(i)
ni Š

−1
1

∥∥∥∥ ≤ 4 max
i,ni
‖A(i)

ni ‖
2

∑
n∈Kd(1,R,...,R)

|cn| ≤ Č(1)
A ,

where in the last step we have used that (aij) is diagonally dominant. Hence, by (6.20)
and since the entries of the diagonal operators (id⊗ Š1)S−1 are bounded by one, one has

D1,ν1 ≤ Č
(1)
A π(1)

ν1

(
(id⊗ Š1)S−1ṽ

)
≤ Č(1)

A π(1)
ν1 (ṽ) .

Regarding Dn,ν1 for n > 1, we have the estimates

Dn,ν1 ≤



a11 π
(1)
ν1

(
[Ã

(1)
2 ⊗ id⊗ · · · ⊗ id](S1S

−1ṽ)
)
, n = 2 ,∑

j>1

|a1j |π(1)
ν1

(
[Ã

(1)
3 ⊗ id⊗ · · · ⊗ id⊗ Ã

(j)
4 ⊗ id⊗ · · · ⊗ id](S1S

−1ṽ)
)
, n = 3 ,∑

j>1

|a1j |π(1)
ν1

(
[Ã

(1)
4 ⊗ id⊗ · · · ⊗ id⊗ Ã

(j)
3 ⊗ id⊗ · · · ⊗ id](SjS

−1ṽ)
)
, n = 4 .

By (6.20), we obtain for j = 2, . . . , d,

π(1)
ν1

(
[Ã

(1)
3 ⊗ id⊗ · · · ⊗ id⊗ Ã

(j)
4 ⊗ id⊗ · · · ⊗ id](S1S

−1ṽ)
)

≤ ‖Ã(j)
4 ‖π

(1)
ν1

(
[Ã

(1)
3 ⊗ id⊗ · · · ⊗ id](S1S

−1ṽ)
)

as well as

π(1)
ν1

(
[Ã

(1)
4 ⊗ id⊗ · · · ⊗ id⊗ Ã

(j)
3 ⊗ id⊗ · · · ⊗ id](SjS

−1ṽ)
)

≤ ‖Ã(j)
3 ‖π

(1)
ν1

(
[Ã

(1)
4 ⊗ id⊗ · · · ⊗ id](id⊗ Š1)S−1ṽ

)
.

Note next that the entries of the diagonal operators S1S
−1 are bounded by one as well,

and therefore π
(1)
ν (S1S

−1ṽ) ≤ π
(1)
ν (ṽ) for all ν ∈ ∇. We can thus follow the lines of the

proof of [3, Theorem 8] to infer that, in particular,

‖π(1)
(
(Ã(1)

n ⊗ id⊗ · · · ⊗ id)(S1S
−1ṽ)

)
‖As ≤

23s+2

2s − 1
‖α̂‖s`1

(
2‖A(1)

n ‖
)
‖π(1)(ṽ)‖As (6.40)
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for n = 2, 3, 4, where we have made use of (6.24). Moreover, (6.40) holds with S1S
−1ṽ

replaced by (id ⊗ Š1)S−1ṽ as well. For n = 2, 2‖A(1)
2 ‖ appears as a single factor in the

bound for D2,ν1 , while for n = 3, 4 two such factors arise. Recalling the definition of C
(i)
A

in (4.20), we cover all cases by the bound

‖Dn,·‖As ≤ C(i)
A

23s+2

2s − 1
‖α̂‖s`1 max

m>1
‖A(1)

m ‖‖π(1)(ṽ)‖As , n = 2, 3, 4 . (6.41)

We now use (6.39) to combine these estimates, obtaining

‖π(1)
ν1 (S−1T̃JS−1v)‖As ≤ Rs

R∑
n=1

‖Dn,·‖As .

Finally, ‖π(1)(ṽ)‖ ≤ (1 + δ)‖π(1)(v)‖ by Remark 6.7, which we use in (6.41), and with
(6.38) we arrive at the desired bound for i = 1. Analogous bounds for i = 2, . . . , d, are
obtained in the same way, confirming (6.14).

The rank bound (6.16) follows from [3, Theorem 8, (99)], taking into account that
the ranks rankα(v) of S̃−1

m(η;v)v can be bounded by m(η; v) rankα, α ∈ Dd, and that the

application of S̃−1
m(η;v) to T̃J(η)S̃

−1
m(η;v)v causes another multiplication by m(η; v). Likewise,

the estimate (6.18) of the computational complexity follows from the previous observation
combined with (6.13) and [3, Remark 12].

To prove (6.19), we need to estimate L(T̃J(η)ṽ), where ṽ := S̃−1
m(η;v)v. Note that

L(ṽ) = L(v), and by the level decay property of the approximations of lower-dimensional
component operators, we thus obtain L(T̃J(η)ṽ) ≤ L(v) + C1(A, s)J(η). From (6.37) we
know that

J(η) ≤ 1

s

(
|log2 η|+ ln

(
C2(A, s)

d∑
i=1

‖π(i)(v)‖As
))
.

Moreover, we have
ων ≤

√
d max
i=1,...,d

ω̂i,νi ≤ c
√
d max
i=1,...,d

2|νi| ,

where c = maxν∈∇d maxi 2−|νi| ω̂i,νi . Hence, for an index ν ∈ ∇d to belong to ΛT as in
(4.6), since ωmin ≥

√
d ω̂min, it is sufficient that c2 maxi 22|νi| ≤ T (ω̂min)2. Consequently,

ΛT contains T̃J(η)ṽ if

L(v) + C1(A, s)J(η) ≤ 1

2
log2 T + log2 c

−1ω̂min.

The assertion (6.19) now follows from (4.22), which in turn uses (4.7). In the latter, it thus
remains to estimate |ln(min{δ/2, c(v)η})|, where c(v)η = 1

2(1 − δ) min{1, η/(2‖A‖‖v‖)}.
Hence |ln c(v)η| ≤ C3(A, δ) + |ln η|+ max{0, ln‖v‖}, where ‖v‖ = ‖π(i)(v)‖ ≤ ‖π(i)(v)‖As
for i = 1, . . . , d, providing (6.19).

6.3 Control of Rank Growth

The ranks arising in the procedure for applying operators introduced in the previous
section depend on the range of values that the approximate scaling sequence needs to
cover. In the case of wavelet bases, this is directly related to the maximum currently
active wavelet level.

The following lemma gives a bound for the maximum possible active level that can
occur in the output of coarsen(v; ε). It depends both on some additional higher regularity
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(expressed by a bound on the quantities ‖Ŝtiπ(i)(v))‖) and on the sizes of the lower-
dimensional supports suppi(v). This bound will subsequently be used in conjunction with
Theorem 6.8(v).

Lemma 6.11. For given v ∈ `2(∇d), we consider p := (π
(i)
ν (v))(i,ν) as a vector on

I := {1, . . . , d} ⊗ ∇. Assume that

# supp p =

d∑
i=1

# suppi(v) <∞

and that for some t > 0 one has ‖Ŝtiπ(i)(v))‖ < ∞ for all i = 1, . . . , d. Let ε > 0 and

let pε be the vector of minimal support in I such that ‖p − pε‖`2(I) ≤ ε. Let C
(i)
ω :=

supµ∈∇ ω̂
−t
i,µ 2t|µ|. Then for all (i, ν) ∈ supp pε one has

|ν| ≤ t−1 log2

[
ε−1C(i)

ω ‖Ŝtiπ(i)(v))‖
√

# supp p
]
.

Proof. Let Ci := C
(i)
ω ‖Ŝtiπ(i)(v))‖ and N := # supp p. Suppose that (i, µ) ∈ supp pε and

|µ| > t−1(log2Ci
√
N − log2 ε). It follows that

|π(i)
µ (v)| ≤ ‖Ŝtiπ(i)(v))‖ ω̂−ti,µ ≤ Ci2

−t|µ| < Ci(Ci
√
N)−1ε =

ε√
N
.

Let Λ̂ := supp p \ supp pε. Then necessarily, |π(j)
ν (v)| ≤ |π(i)

µ (v)| holds for all (j, ν) ∈ Λ̂
and thus ∑

(j,ν)∈Λ̂∪{(i,µ)}

|π(j)
ν (v)|2 < N

ε2

N
≤ ε2 ,

contradicting the definition of pε.

We shall apply the above lemma to the result of line 8 in Algorithm 1. There the value
of ε in the lemma corresponds to ηk,j = ρj+12−kδ and pε in the lemma is the result of
coarsen in the algorithm. We note that, as a consequence of (3.8) and (3.9), this routine
indeed yields pε with precisely the properties required in Lemma 6.11. In order to obtain
the desired bounds for the maximum active wavelet levels in our iterates wk,j , we still

need suitable bounds for ‖Ŝtiπ(i)(wk,j)‖.

6.4 Control of Higher Regularity

Lemma 6.12. For any t > 0 and η > 0, we have

‖Ŝtiπ(i)(Ĉη v)‖ ≤ ‖Ŝtiπ(i)(v)‖ , ‖Ŝtiπ(i)(P̂η v)‖ ≤ ‖Ŝtiπ(i)(v)‖ , i = 1, . . . , d , (6.42)

for any v ∈ `2(∇d).

Proof. The first inequality in (6.42) is clear, the second is an immediate consequence of
the componentwise estimate (3.7) for π(i)(v).

We now consider the evolution of ‖Ŝtiπ(i)(wk,j)‖, with wk,j defined in Algorithm 1.
Note that by our excess regularity assumptions on A and f , we know that maxi‖Stif‖ <∞
as well as

ξ := max
i=1,...,d
n=2,3,4

‖ŜtiA(i)
n Ŝ−ti ‖ <∞ . (6.43)
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Proposition 6.13. Under the assumptions of Theorem 5.9, the iterates wk,j of Algorithm
1 satisfy

‖Ŝtiπ(i)(wk,j)‖ ≤
γkI+j+1 − 1

γ − 1
C̄f , (6.44)

where

γ := 1 + ω(1 + δ)2
[
Č

(i)
A + C

(i)
A R

(
ξ + Ct‖A(i)

n ‖
)]
, C̄f := ω Creg

f max
i
‖Stif‖ .

Note that under Assumptions 5.7, C̄f as well as the quantities arising in the definition

of γ are independent of d, except for Č
(i)
A , which by (6.15) grows at most linearly in d.

Proof. Note that for each outer loop index k, its inner loop over j can be summarized as

wk,j+1 = Ĉβ2ηk,j P̂β1ηk,j
[
(id− ωÃk,j)wk,j + ωfk,j

]
.

Here, abbreviating η := 1
2ηk,j , we recall that Ãk,j := S̃−1

m(η;wk,j)
T̃J(η)S̃

−1
m(η;wk,j)

, as in (4.23),

and fk,j := rhs(η). Moreover, by step 1 in Algorithm 1, we have ‖Ŝtiπ(i)(u0)‖ = 0, for

each i = 1, . . . , d, and (5.2) implies ‖Ŝtiπ(i)(fk,j)‖ ≤ Creg
f ‖Ŝ

t
iπ

(i)(f)‖. We shall repeatedly

use that ‖Ŝtiπ(i)(v)‖ = ‖Stiv‖ for any v.
Using Lemma 6.12, we obtain

‖Ŝtiπ(i)(wk,j+1)‖ = ‖Ŝtiπ(i)(Ĉβ2ηk,j P̂β1ηk,j [(id− ωÃk,j)wk,j + ωfk,j ])‖

≤ ‖Ŝtiπ(i)(wk,j)‖+ ω‖Ŝtiπ(i)(Ãk,jwk,j)‖+ ω‖Ŝtiπ(i)(fk,j)‖. (6.45)

We define now w̃k,j := SS̃−1
n wk,j and argue, for Ã

(i)
n as in (6.23), in complete analogy to

the estimates following (6.39) to conclude that

π(i)
νi (Ãk,jwk,j)) ≤ Č

(i)
A (1 + δ)2π(i)

νi (wk,j)

+ C
(i)
A (1 + δ)

R∑
n=2

π(i)
νi

(
Sti[id⊗ · · · id⊗ Ã(i)

n ⊗ id · · · ⊗ id](Diw̃k,j)
)
,

where Di = SiS
−1 for n = 2, 3 and D1 = (id⊗ Š1)S−1, . . . ,Dd = (Šd ⊗ id)S−1 for n = 4.

We now add and substract A
(i)
n from (4.14) in the last summands, apply Ŝti, sum over νi,

and use (6.43) as well as Remark (4.3) to obtain

‖Ŝtiπ(i)(Ãk,jwk,j)‖ ≤ (1 + δ)2
(
Č

(i)
A ‖Ŝ

t
iπ

(i)(wk,j)‖+ C
(i)
A Rξ‖Ŝtiπ(i)(wk,j)‖

)
+ C

(i)
A (1 + δ)

R∑
n=2

‖Sti[id⊗ · · · id⊗ (A(i)
n − Ã(i)

n )⊗ id · · · ⊗ id](Diw̃k,j)‖ .

By Definition 4.8 and (4.16),

‖Sti[id⊗ · · · id⊗ (A(i)
n − Ã(i)

n )⊗ id · · · ⊗ id](Diw̃k,j)‖ ≤ Ct‖β(A(i)
ni )‖`1‖Ŝ

t
iπ

(i)(w̃k,j)‖ .

Using in addition (4.12), we thus have

‖Ŝtiπ(i)(wk,j+1)‖ ≤ γ‖Ŝtiπ(i)(wk,j)‖+ C̄f .

Using j ≤ I (see step 2 in Algorithm 1), we arrive at (6.44).
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6.5 Proof of the Main Result

In the following, we make an effort to track the dependence of arising constants on various
parameters, in particular on d; this is necessarily more technical than what would be
needed to present just the essence of the result, which lies mainly in the interplay of
Theorem 3.6, Theorem 6.8, and Lemma 6.11.

Proof of Theorem 5.9. Let εk := 2−kε0. Note that (5.3) and (5.5) follow from (3.12) in
Theorem 3.6, whereas (3.13) yields (5.4) and (5.6). As a consequence of (3.13), we also
have ∑

i

‖π(i)(wk,0)‖As ≤ C1d
1+max{1,s}

∑
i

‖π(i)(u)‖As ,

where C1 is a constant independent of d. In what follows, newly introduced constants are
always independent of d unless stated otherwise. By Theorem 6.8(ii), we have∥∥π(i)

(
apply(wk,j ;

1
2ηk,j

)
)
∥∥
As ≤ C2d

∥∥π(i)(wk,j)
∥∥
As . (6.46)

In this regard, note that R and ‖α̂‖`1 are, by construction, independent of d and that

the same holds, by (4.20) combined with (2.18), for C
(i)
A . Recall that Č

(i)
A grows at most

linearly in d by (6.15). Consequently,

‖π(i)(wk,j+1)‖As ≤ C3d‖π(i)(wk,j)‖As + C4‖π(i)(f)‖As ,

where we may assume without loss of generality that C3d > 1. Hence for all k and j, we
have

d∑
i=1

‖π(i)(wk,j)‖As ≤ (C3d)jC1d
1+max{1,s}

d∑
i=1

‖π(i)(u)‖As

+ C4

(
C3d− 1

)−1(
(C3d)j − 1

) d∑
i=1

‖π(i)(f)‖As . (6.47)

As a further consequence of (3.13) in Theorem 3.6, using κ−1
1 . d, we also know that

d∑
i=1

# suppi(wk,0) ≤ C5 d
1+s−1

(2−kε0)−
1
s

( d∑
i=1

‖π(i)(u)‖As
) 1
s
.

In view of steps 7 and 8 in Algorithm 1, we infer now from Theorem 6.8(i) and Assumptions
5.4(vii) that

d∑
i=1

# suppi(wk,j+1) ≤
d∑
i=1

# suppi(wk,j) + C6d η
− 1
s

k,j

( d∑
i=1

‖π(i)(wk,j)‖As
) 1
s

+ Csupp d η
− 1
s

k,j

( d∑
i=1

‖π(i)(f)‖As
) 1
s
,

where, on account of Assumptions 5.7, Csupp is independent of d. The last summand in
this bound results from (6.13), using the same observations as in (6.46). Thus, for any k
and j, we have

d∑
i=1

# suppi(wk,j) ≤ C5d
1+s−1

(2−kε0)−
1
s

( d∑
i=1

‖π(i)(u)‖As
) 1
s

+

j−1∑
n=0

(ρn+12−kε0)−
1
s

[
C6d

( d∑
i=1

‖π(i)(wk,n)‖As
) 1
s

+ Csuppd
( d∑
i=1

‖π(i)(f)‖As
) 1
s
]
.
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Combining this with (6.47), defining

Cu,f := max
{( d∑

i=1

‖π(i)(u)‖As
) 1
s
,
( d∑
i=1

‖π(i)(f)‖As
) 1
s
}
,

and recalling that ηk,j = ρj+12−kε0, we arrive at

d∑
i=1

# suppi(wk,j) ≤ C7d
p1
(
C3d

) j
s Cu,fη

− 1
s

k,j , (6.48)

where p1 := max{2 + s−1, 1 + 2s−1}.
We are now in a position to invoke Lemma 6.11. Here the requirement that β2 > 0

in Algorithm 1 enters. Combining (6.48) with (6.44) for i = 1, . . . , d, and for each ν ∈
suppi(wk,j) ⊂ ∇, we conclude that

|ν| ≤ Lk,j := t−1 log2

[
C8d

p1 η−1
k,j γ

kI+jC̄f

√
η
− 1
s

k,j

(
C3d

) j
sCu,f

]
. (6.49)

We rewrite this for convenience as

Lk,j = t−1 log2

[
C9(d)C

j
2s
3 dp1+ j

2s η
−1− j

2s
k,j γkI+j

]
, (6.50)

where C9(d) := C8C̄fC
1/2
u,f , which may depend on d via Cu,f ; note that Cu,f ≤ d

1
s Ĉu,f with

Ĉu,f := maxi{‖π(i)(u)‖1/sAs , ‖π(i)(f)‖1/sAs } which, by Assumptions 5.7, is independent of d.
In order to estimate the right hand side in (6.50), we need a suitable estimate for

log2 γ
Ik, which contains the outer iteration index k. We will relate this quantity to the

current tolerance ηk,j . To this end, note that

log2 γ
k =

(
|log2 ηk,j |+ j|log2 ρ|+ |log2 ρε0|

)
log2 γ.

Hence the bound in (6.49) can be rewritten in the form

tLk,j ≤ log2C9(d) +
j

2s
log2C3 +

(
p1 +

j

2s

)
log2 d+

(
1 +

j

2s

)
|log2 ηj,k|

+ I log2 γ
k + j log2 γ

= log2C9(d) +
j

2s
log2(C3d) + p1 log2 d+

(
1 +

j

2s
+ I log2 γ

)
|log2 ηj,k|

+ (log2 γ)
(
j + jI|log2 ρ|+ I|log2(ρε0)|

)
.

To proceed, recall that by Assumptions 5.6 and 5.7, t and ε0 are independent of d. More-
over, by Remark 5.8, ln ρ is bounded from above and below independently of d, see Remark
6.14 for a further discussion of this point. Finally, we know that there exist constants c, C
such that

j ≤ I ≤ c ln d, γ ≤ Cd .

Hence, there exists a constant C10 such that

Lk,j ≤ C10

(
(ln d)2|ln ηk,j |+ (ln d)3 + lnC9(d)

)
. (6.51)

Here and in the following, for simplicity we consider without loss of generality the case
that ln d > 1.
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In the notation of Theorem 6.8(v), we have L(wk,j) ≤ Lk,j . Furthermore, note that

lnC9(d) ≤ s−1 max{1, ln(C8C̄f Ĉ
1/2
u,f )} ln d. From (6.47), (6.51), and (6.19), we thus infer

m̂(ηk,j ; wk,j) ≤ C11

(
(ln d)2|ln ηk,j |+ (ln d)3

)
.

Recall that the decay of best low-rank approximation errors is governed by the inverse
γ−1
u of the growth sequence γu(n) = edun

1/bu
, see Remark 3.4. Under Assumptions 5.6(x),

(3.12) in Theorem 3.6 then yields

|rank(wk,0)|∞ ≤ (d−1
u ln[(κ1α)−1‖u‖AH(γu)ρη

−1
k,0])bu ≤ C(u)(|ln ηk,0|+ ln d)bu ,

where we have used in the last step that κ−1
1 . d. By Theorem 6.8(iii), setting R̄ :=

maxαRα, which by Assumptions 5.7 is bounded independently of d, we now obtain

|rank(wk,j+1)|∞ ≤
(
m̂(ηk,j ; wk,j)

)2
R̄ |rank(wk,j)|∞ + Crank

f |ln ηk,j |bf .

As a consequence, setting b := max{bu, bf}, and using again that I ≤ c ln d and hence

|ln ηk,I | ≤ |ln ηk,0|+ c ln d |ln ρ|,

we conclude that

|rank(wk,I)|∞ ≤ C12d
(ln R̄+2 lnC11)c

(
(ln d)2(|ln ηk,0|+ c ln d |ln ρ|) + (ln d)3

)2I
× (|ln ηk,0|+ c ln d |ln ρ|+ ln d)b

≤ C13d
p2(ln d)b

(
(ln d)2|ln ηk,0|+ (ln d)3

)2I |ln ηk,0|b , (6.52)

where p2 := (ln R̄+ 2 lnC11 + 2 ln(1 + c|ln ρ|))c.
In view of Assumptions 5.6(viii) as well as Theorem 6.8(iv) and (v), the complexity

of each inner loop in Algorithm 1 is dominated by that of the hierarchical singular value
decompositions used in recompress and coarsen (see Remark 3.7). Therefore, it is for
each k, j, in view of (6.48), bounded by

C14

[
d |rank(wk,j)|4∞ + |rank(wk,j)|2∞dp1(C3d)

j
sCu,f η

− 1
s

k,j

]
.

Likewise the number of operations for the outer loop with index k is bounded by

C15

[
dI |rank(wk,I)|4∞ + |rank(wk,I)|2∞dp1(C3d)

I+1
s Cu,f η

− 1
s

k,I

]
.

The total work for arriving at uk is thus bounded by

C16

[
dI |rank(wk−1,I)|4∞k + |rank(wk−1,I)|2∞dp1(C3d)

c ln d+1
s d

1
s Ĉu,f η

− 1
s

k−1,I

]
. (6.53)

We need to express the above bounds in terms of εk. In this regard, note that k =

log2 ε0 − log2 εk, ηk,0 = ρεk, and ηk−1,I = ρI+12εk. The latter relation yields η
− 1
s

k−1,I ≤

(2ρ)−
1
s dcs

−1|ln ρ|ε
− 1
s

k . From (6.52), we now obtain first for the ranks

|rank(wk,I)|∞ ≤ C17d
p2 (ln d)b+6c ln d|ln εk|b+2c ln d .

Using this in (6.53) gives the bound

ops(uk) ≤ C18 (ln d)1+bdp3 (ln d)24c ln d dcs
−1 ln d |ln εk|2b+4c ln d ε

− 1
s

k ,

where p3 := 1 + 2s−1 + cs−1(|ln ρ|+ lnC3) + p1 + 4p2. This completes the proof.
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Remark 6.14. In the present case of a symmetric elliptic operator, an appropriate choice
of ω yields |ln ρ| ∼ [cond2(A)]−1. As a consequence, the bound I for the number of inner
iterations scales linearly in cond2(A). A violation of our assumption of a d-independent
bound on cond2(A) made in Assumptions 5.7 therefore has a considerable impact on the
resulting complexity estimates. In particular, cond2(A) ∼ d2, which is the case in Example
3.2, would in fact lead to a complexity estimate with superexponential dependence on d.

7 Numerical Experiments

7.1 Basic Considerations

There are two basic choices to be made in a practical realization of Algorithm 1: the
dimension tree Dd for the hierarchical tensor format, and the univariate wavelet basis
{ψν}ν∈∇. For Dd, we use the simplest possible choice (3.3).

Concerning the choice of wavelets, the available options are limited by the restriction to
orthonormal bases (cf. Proposition 2.3). A further issue is that, in view of the dependence
of the ranks of the approximations of S̃−1 on the maximum active wavelet levels, the

compressed application of the rescaled lower-dimensional components A
(i)
n should increase

these maximum levels as little as possible. By classical results on wavelet compression
(see, e.g., [10]), the wavelets should therefore have high global regularity. In addition, it is

desirable that the wavelets are piecewise polynomials. The resulting A
(i)
n then have very

favorable s∗-compressibility, exceeding, in particular, the order of the trial functions [32].
For all results presented below, we therefore use orthonormal, continuously differentiable,
piecewise polynomial Donovan-Geronimo-Hardin multiwavelets [14] of polynomial degree2

6 and approximation order 7.

7.2 Improving the Practical Efficiency of apply

In a practical realization of the routine apply we have described above, additional care
needs to be taken to keep the ranks arising in the evaluation as low as possible. We now
describe a practical procedure that achieves this, retaining the guaranteed output error of
the original procedure apply.

We consider the evaluation of apply(v; η), where v =
∑

k ak
⊗

i U
(i)
ki

with a de-
composed further in the hierarchical format. As one-dimensional scaling sequences, we

choose ω̂i,ν :=
√
aiiT

(i)
2,νν . For each i and ni = 2, 3, 4, we first determine the matrix

entriy indices (ν, µ) required for the approximations of A
(i)
ni π

(i)(v) with J(η/2) as de-

fined in (4.21), and precompute all corresponding T̃
(i)
ni,νµ. This gives the components of

T̃J(η/2) =
∑

n cn
⊗

i T̃
(i)
ni such that S̃−1T̃J(η/2)S̃

−1 is a suitable approximation of A. Sim-
ilarly to (4.18), we can now determine two separate values T0 := arg min{T ′ : supp v ⊆
ΛT ′}, T1 := arg min{T ′ : supp T̃v ⊆ ΛT ′} and set m0 := M(c(v)(η/2);T0), m1 :=
M(c(v)(η/2);T0), with M defined in (4.7) and c(v)η/2 as in (4.21). According to Propo-
sition 4.7, wη/2 := S̃−1

m1
T̃J(η/2)S̃

−1
m0

v satisfies ‖Av − wη/2‖ ≤ η/2. Instead of evaluating
wη/2 directly (which, from a practical perspective, could lead to prohibitively high ranks),
it is advisable to control the ranks by additional approximations, which amounts to com-
puting a w̃η/2 such that ‖wη/2 − w̃η/2‖ ≤ η/2. We shall now describe how w̃η/2, which is
subsequently used as the output of apply(v; η), is obtained.

2Note that this is the lowest possible degree for the continuously differentible construction in [14].
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Recall from Section 4.1 that S̃−1
mr , r = 0, 1, can be written in the form

S̃−1
mr =

m̂r∑
`=1

Θ` , Θ` := θ
(1)
` ⊗ · · · ⊗ θ

(d)
` ,

where m̂r := 1 + n+(δ) + mr, and θ
(i)
` = diag(w̃

1/d
` e−α̃`ω̂

2
i,ν )ν with coefficients w̃`, α̃` > 0

given in Theorem 4.1. Note that

wη/2 =

m̂0∑
`0=1

m̂1∑
`1=1

Θ`1T̃J(η/2)Θ`0v ,

where the ranks of each summand Θ`1T̃J(η/2)Θ`0v are bounded by maxα∈Dd Rα|rank(v)|∞.
The additional approximations with total error at most η/2 used in assembling wη/2,

which lead to the final output w̃η/2, are performed as follows. For each i and ni, ki, we

preassemble sparse matrices W
(i)
ni,ki

with entries W
(i)
ni,ki;ν,µ

:= T̃
(i)
ni,νµU

(i)
ki,µ

, and evaluate

τ`0,`1 :=
∥∥∥∑

n,k

cnak

⊗
i

θ
(i)
`1

W
(i)
ni,ki

(θ
(i)
`0
χsuppi v)

∥∥∥ ,
where χsuppi v denotes the characteristic function of suppi v. For each `0, `1, the com-
putation of τ`0,`1 involves the orthogonalization of a hierarchical tensor of relatively low
hierarchical ranks. We now determine a nondecreasing ordering τ̂q, q = 1, . . . , m̂0m̂1, of

these values, with corresponding pairs (ˆ̀
0,q, ˆ̀

1,q) such that τˆ̀
0,q ,ˆ̀1,q

= τ̂q for each q.

We first determine the largest q0 such that
∑q0

q=1 τ̂q ≤
η
4 , and discard the parts of the

tensor corresponding to (ˆ̀
0,q, ˆ̀

1,q) for q = 1, . . . , q0. With q1 := q0 + 1, q2 := m̂0m̂1, it
thus remains to approximate

q2∑
q=q1

∑
n,k

cnak

⊗
i

θ
(i)
ˆ̀
1,q

W
(i)
ni,ki

θ
(i)
ˆ̀
0,q
.

Here our strategy is to sum these parts in the given order, and apply recompress(·; ζq)
to the intermediate result after each summation; that is, ζq denotes the tolerance used for
recompression after adding the term with index q. Various different strategies are possible
for choosing these ζq, with the constraint that

∑q2
q=q1

ζq ≤ η
4 . Since we start the tensor

summation with the smallest contributions, a natural approach for keeping ranks small is
to always recompress with a tolerance proportional to an estimate of the relative size of
the current intermediate result. This is accomplished by the choice

ζq :=
η
∑q

p=q1
τ̂p

4
∑q2

p=q1
(q2 + 1− p)τ̂p

.

Since more complicated choices of ζq (e.g. using additional a posteriori information) did
not yield a further improvement in our numerical tests, the presented results are based on
the above prescription.

It should be noted that this scheme with additional recompressions always preserves
convergence, since the prescribed error tolerances for apply are preserved, but its effect
on the computational complexity depends on the rank decrease achieved by the additional
truncations. This, however, is not clear a priori, but in practice the additional recompres-
sions are observed to improve efficiency substantially.
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Figure 1: Norms of computed residual estimates (markers) and corresponding error bounds
(lines), in dependence on the total number of inner iterations (horizontal axis), for d =
•4, ∗16, ∗64.
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Figure 2: |rank(wk,j)|∞ (left) and maximum ranks of all intermediates arising in the inner
iteration steps (right), in dependence on current estimate for ‖u−wk,j‖ (horizontal axis),
for d = •2, •4, •8, ∗16, ∗32, ∗64.

7.3 A High-Dimensional Poisson Problem

As a first model example, we consider the Poisson problem −∆u = 1 on (0, 1)d with
homogeneous Dirichlet boundary conditions. We refer to Example 3.1 concerning the
hierarchical tensor representation of T in this case. We are, in particular, interested in
assessing the d-dependence of the computational complexity for achieving a certain H1-
error bound.

Figure 1 shows the evolution of the residuals and the corresponding estimates for
the H1-error in the course of the iterative scheme. Both residuals and errors behave as
expected, with an intermittent increase due to the coarsening and recompression after each
completed inner loop. As shown here for three exemplary values of d, a consequence of
the d-dependence of the choice of the parameter κ1 required in our complexity estimates
is that the number of iterations within each inner loop increases with d. Hence for larger
d, smaller errors are reached within a lower total number of iterations, but these iterations
become increasingly expensive, since the representation complexity of intermediate results
is reduced less frequently by coarsening and recompression steps.

In Figure 2, we compare the dependence of both the maximum ranks of the iterates and
of the intermediate quantities arising in the computation on the H1-error bound for differ-
ent values of d. In view of Remark 3.7, these ranks strongly influence the computational
cost. We observe only a gradual increase of both types of ranks with decreasing H1-error.
Furthermore, for relatively small values of d we observe an increase of the required ranks
with increasing d. This is to be expected on the one hand due to (5.3), on the other hand
as a consequence of the tighter error tolerances e.g. in apply that are required in higher
dimensions. However, for larger dimensions such as d = 16, 32, 64, the differences between
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Figure 3: Operation count in dependence on the error estimate reduction (horizontal axis),
for d = •2, •4, •8, ∗16, ∗32, ∗64.

maximum ranks observed at a certain error tolerance for different values of d diminish.
In Figure 3, the computed estimates for the operation counts3 required to arrive at

a relative error tolerance are compared for the same values of d. For this comparison
we use the reduction with respect to the initial error estimate for comparison because,
as can also be seen in Figure 2, the norms of f , u as well as the corresponding initial
errors decrease slightly with increasing d. For each d, similarly to Figure 1, one observes a
characteristic pattern caused by coarsening and recompression steps, where the iteration
periodically returns to larger error tolerances. It is to be noted in particular that the
number of operations required for a certain error reduction exhibits a polynomial growth
in d. Thus the method in this case performs substantially better in practice than the
theoretical complexity guarantees of Theorem 5.9.

The results can also be compared to those given in [13, Fig. 4] for essentially the same
problem4, which are based on direct best n-term approximation in a d-dimensional tensor
product multiwavelet basis. A comparison of the accomplished accuracies indicates that
such a sparse-grid type approximation becomes computationally intractable for large d.

7.4 A Dirichlet Problem with Tridiagonal Diffusion Matrix

One of the strengths of the proposed method is that, in contrast e.g. to the direct applica-
tion of exponential sum approximations [16], it can still be applied when A does not have a
Laplace-like structure with each summand in the operator acting only on a single variable.
For instance, such a structure is not present for A given by (2.13) with the tridiagonal
diffusion matrix considered in Example 3.2, which has values 2 on the main diagonal and
−1 on the secondary diagonals. Note that although our scheme can be applied also in
this case, the problem does not satisfy the assumptions we have made in our complexity

3The given operation counts are obtained using standard estimates (see, e.g., [20]) for each performed
linear algebra operation, and counting the handling of each matrix entry by quadrature (which is O(1)
in our setting) as a single operation. This simplified counting therefore differs from the true number of
floating point operations by a certain fixed factor, but does reflect the asymptotic behaviour.

4The only difference is that they impose homogeneous Neumann conditions on certain faces of ∂(0, 1)d,
and homogeneous Dirichlet on the remaining ones, resulting in symmetry boundary conditions that yield
the solution û|(0,1)d , where û solves the homogeneous Dirichlet problem −∆û = 1 on (−1, 1)d. By a simple

scaling argument, one verifies that this problem of approximating û on the single orthant (0, 1)d of (−1, 1)d

is (up to a dimension-independent factor) exactly as difficult as the problem that we are considering.
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Figure 4: Tridiagonal diffusion matrix: |rank(wk,j)|∞ (left) and maximum ranks of all in-
termediates arising in the inner iteration steps (right), in dependence on current estimates
for ‖u−wk,j‖ (horizontal axis), for d = •2, •3, •4.
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Figure 5: Tridiagonal diffusion matrix: operation count in dependence on error estimate
reduction (horizontal axis), for d = •2, •3, •4.

analysis. Specifically, as noted in Remark 6.14, we have cond2(A) ∼ d2. In this sense
this example sheds some light on the role of our assumptions and possible effects of their
violation.

The issues encountered with tensor expansions in this problem are indicated by the
following observation. Diagonalizing the diffusion matrix transforms the problem to a
rotated domain (which is no longer of product type), where the diffusion tensor becomes
diagonal with largest entry uniformly bounded and smallest entry proportional to d−2. As
a consequence, we have to expect that in the original coordinates, the solution exhibits
anisotropic structures that are not aligned with the coordinate axes and become more
pronounced with increasing d.

This is reflected in the numerical results, where both ranks (Figure 4) and compu-
tational complexity (Figure 5) show a much more rapid increase than for the Poisson
problem. Besides the larger approximation ranks, the efficiency of the scheme is also af-
fected by the deterioration of the error reduction rate ρ caused by the dimension-dependent
condition number.

However, it also needs to be emphasized that the more rapid rank growth is not solely
caused by the non-diagonal diffusion matrix coupling several variables. In fact, there exist
other tridiagonal matrices, e.g. with 2 on the main diagonal and −α with α ∈ (0, 1) on
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the secondary diagonals, for which the condition number of A remains d-independent. A
more detailed study of such further model cases will be done elsewhere.

8 Conclusion

We have constructed and analyzed an adaptive iterative algorithm for the approximate
solution of second order elliptic boundary value problems on high-dimensional product
domains. The algorithm generates for any given target accuracy ε an approximation of
finite hierarchical rank that meets the target accuracy with respect to the energy norm,
which to our knowledge is the first result of this type. The analysis brings out several
intrinsic obstructions, which originate from the fact the energy norm is not a cross norm.
As a consequence, using corresponding continuity properties to obtain a well-conditioned
problem (e.g. by diagonal rescaling of wavelet coefficients as in our case, or by other
types of preconditioning) destroys existing explicit low-rank structures. Nevertheless, it
is shown that under certain benchmark assumptions of the solution, the scheme nearly
reproduces minimal ranks and tensor representation sparsity, without making use of any
related a priori knowledge of these assumptions. Our analysis carefully tracks the influence
of the spatial dimension d on the computational complexity. In particular, we have made
an effort to formulate the benchmark assumptions in a way that keeps the problems for
different spatial dimensions comparable.

The theoretical findings are illustrated and further quantified by numerical experiments
for spatial dimensions up to d = 64. It can be seen that the actual performance is better
than the theoretical predictions. It should be emphasized that the scheme is not restricted
to Poisson-type problems; however, when dealing with more general diffusion operators,
the ranks are seen to increase significantly faster with decreasing target accuracies.

For simplicity, we have considered in this work the perhaps conceptually simplest
iterative form, a perturbed Richardson iteration for the infinite dimensional problem in `2.
Significant quantitative improvements are expected when using instead nested iterations
of adaptively refined Galerkin problems. This will be considered in forthcoming work.

Acknowledgements. The authors would like to thank Kolja Brix for providing multi-
wavelet construction data used in the numerical experiments.

A Proof of Proposition 2.3

Proof. First note that for the original operator A, we have

λa〈(−∆)v, v〉 ≤ 〈Av, v〉 ≤ λa〈(−∆)v, v〉 , v ∈ H1
0(Ω) .

By our assumptions on {Ψν}, we have on the one hand ‖
∑

ν∈∇d vνΨν‖L2(Ω) = ‖v‖ by
L2(Ω)-orthonormality, and on the other hand, we can now follow the lines of [13, Section
2] and sum (2.23) over i to observe that, by definition ‖Sv‖2 =

∑
i‖Siv‖2, we obtain

λ1 ‖Sv‖2 ≤
〈

(−∆)
(∑
ν∈∇d

vνΨν

)
,
(∑
ν∈∇d

vνΨν

)〉
≤ λ1 ‖Sv‖2.

Consequently, one has

λaλ1 ‖v‖2 ≤
〈
A
(∑
ν∈∇d

ω−1
ν vνΨν

)
,
(∑
ν∈∇d

ω−1
ν vνΨν

)〉
≤ λaλ1 ‖v‖2, v ∈ `2(∇d).
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Since 〈
A
(∑
ν∈∇d

ω−1
ν vνΨν

)
,
(∑
ν∈∇d

ω−1
ν vνΨν

)〉
= 〈S−1TS−1v,v〉 ,

we arrive at (2.24).
As shown in [13], the dependence on λa/λa can in fact be eliminated in the case of

diagonal (aij). In fact, if one chooses ω̂i,νi ∼
√
aii2

|νi|, (2.23) is replaced by

λ
(i)
1 ‖Siv‖

2 ≤ aii
∥∥∥∑
ν∈∇d

vν ∂iΨν

∥∥∥2

L2(Ω)
≤ λ(i)

1 ‖Siv‖2 ,

which holds independently of the diagonal entries aii, and thus summation of these in-
equalities over i directly yields (2.25) in this case.

B Approximation of Right Hand Sides

As a supplementary discussion, we consider approximations of right hand sides f that
satisfy Assumptions 5.4. A first possible model to account for the computational work of
providing such approximations is to assume that f is in fact already given in a finite hier-
archical format with finitely supported mode frames. Then the realization of rhs simply
reduces to applying the reduction operators discussed in Theorem 3.6 with appropriate
target tolerances.

As for a second, perhaps more realistic model, recall that in the problem (2.10) under
consideration, we have f = S̃−1g. A routine rhs for constructing an approximation can
thus be obtained by combining independent approximations of g and S̃−1. Assuming
that we have sufficient knowledge of the coefficients gν = 〈Ψν , f〉, we can use the decay
of the coefficients of S̃−1g and a known low-rank structure of g, combined with some
excess regularity f ∈ H−1+t(Ω), t > 0, to find ñ and g̃ such that ‖S̃−1g − S̃−1

ñ g̃‖ is
sufficiently small. We first make this precise under fairly general assumptions in the
following proposition, and subsequently give some examples for its application.

Proposition B.1. Assume that the excess regularity assumptions (2.21), (2.22) of order
t > 0 hold, and that ‖π(i)(S̃−1g)‖As = ‖π(i)(f)‖As < ∞. Moreover, let g have known
low-rank structure in the following sense: given any finite Λ = Λ(1) × · · · × Λ(d) ⊂ ∇d,
then for each ε > 0, we have at our disposal a gε such that

‖S̃−1(RΛ g − gε)‖ ≤ ε , π(i)
ν (S̃−1gε) ≤ Ĉπ(i)

ν (f) for ν ∈ Λ(i), i = 1, . . . , d, (B.1)

with an absolute constant Ĉ, and |rank(gε)|∞ ≤ Crank
g |ln ε|bg holds for some constants

Crank
g , bg, depending only on g. Then there exists an absolute constant C such that for

any given η > 0, we can construct fη satisfying

‖f − fη‖ ≤ η, ‖π(i)(fη)‖As ≤ C‖π(i)(f)‖As , ‖Stifη‖ ≤ C‖Stif‖, i = 1, . . . , d, (B.2)

as well as

|rank(fη)|∞ ≤ C
[
Cg + |ln η|

]
|ln η|bg ,

d∑
i=1

# suppi fη ≤ dCη−
1
s

(∑
i

‖π(i)(f)‖As
) 1
s
. (B.3)

Proof. Note first that we may assume η < ‖f‖, since otherwise fη := 0 satisfies our re-
quirements. We construct fη with the asserted properties in several steps. First we exploit
the excess regularity (2.22) of order t > 0. In fact, choosing Λk := {ν ∈ ∇d : maxi|νi| ≤ k}
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and defining gk := RΛk g, we have, in view of (2.6), for some constant C depending only
on t,

‖S̃−1(g − gk)‖2 ≤ 2−2kt
∑
ν /∈Λk

22tk(S̃−1g)2
ν ≤ C2−2kt

∑
ν /∈Λk

ω2t
ν (S̃−1g)2

ν

≤ C2−2tk‖Stf‖2.

Thus, for any fixed c1 > 0, to be specified later, we obtain

‖S̃−1(g − gk)‖ ≤ c1η when k ≥ k(η) = d(t ln 2)−1 ln(c1C‖Stf‖/η)e, (B.4)

and set g∗ := gk(η). Given g∗ we can find by assumption (B.1) for any fixed c2 > 0 a gc2η
such that

‖S̃−1(g∗ − gc2η)‖ ≤ c2η, rank(gc2η) . |ln η|bg , (B.5)

with a constant that depends only on g and c2. Furthermore, since

‖π(i)(S̃−1g∗)‖As ≤ ‖π(i)(S̃−1g)‖As = ‖π(i)(f)‖As , i = 1, . . . , d,

we can find Λ̃ = Λ̃(1) × · · · × Λ̃(d) with Λ̃ ⊂ Λk(η), such that

‖S̃−1(RΛ̃ g∗ − g∗)‖ ≤ c3η,
∑
i

# suppi(RΛ̃ g∗) ≤ dC
1
s η−

1
s

(∑
i

‖π(i)(f)‖As
) 1
s
, (B.6)

where C depends only on c3. Defining

fη := S̃−1
n(η) RΛ̃ gc2η, (B.7)

one has

‖f − fη‖ = ‖S̃−1g − S̃−1
n(η) RΛ̃ gc2η‖

≤ ‖S̃−1(g − g∗)‖+ ‖S̃−1(g∗ − RΛ̃ g∗)‖+ ‖S̃−1 RΛ̃(g∗ − gc2η)‖
+ ‖S̃−1 RΛ̃ gc2η − S̃−1

n(η) RΛ̃ gc2η‖

≤ (c1 + c3 + c2)η + ‖(id− S̃S̃−1
n(η))S̃

−1 RΛ̃ gc2η‖.

≤ (c1 + c3 + c2)η + ‖(id− S̃S̃−1
n(η)) RΛ̃‖

(
‖f‖+ c2η),

where we have used (B.4), (B.5), and (B.6). We now fix c1 = c2 = c3 = 1
6 . In order to

bound ‖(id−S̃S̃−1
n(η)) RΛ̃ ‖, we have to choose n(η) large enough to apply (4.8). Specifically,

we have to find a T such that Λ̃ ⊂ ΛT . Recalling that Λ̃ ⊂ Λk(η), the highest level occurring

in Λ̃ is at most k(η) = d(t ln 2)−1 ln(C‖Stf‖/(6η))e. Hence, by (2.6), for all ν ∈ Λ̃ one has

ων ≤ C
√
d2k(η), which by (B.4) means ων ≤

√
d(C‖Stif‖)

1
t η−

1
t , where C depends only on

t. Thus ων ≤
√
dT ω̂min ≤

√
Tωmin holds if

1
2 lnT = ln[ω̂−1

min(C‖Stif‖)
1
t ] + t−1|ln η|.

Note that by (4.11), ‖(id− S̃S̃−1
n(η)) RΛ̃ ‖ ≤ (1− δ)−1‖(id− S̃S̃−1

n(η)) RΛ̃ ‖. In order to ensure

that the latter expression is bounded by 1
2η/(‖f‖ + c2η), on account of (4.7), (4.8), and

η < ‖f‖, it suffices to choose

n(η) ≥M
(

(1− δ)η
2(1 + c2)‖f‖

; ω̂−2
min(C‖StiS̃−1g‖)

2
t η−

2
t

)
,
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with M defined in (4.7). In summary, we therefore conclude that with a constant C =
C(t, δ), depending on t, δ, and a constant Cg, depending only on g, we may take

n(η) :=
⌊
C(δ, t)(Cg + |ln η|)

⌋
(B.8)

to ensure that fη, defined in (B.7), satisfies the first relation in (B.2). The second and
third relation in (B.2) follow with the second part of the assumption (B.1) and with
(S̃S̃−1

n(η))ν ≤ 1 for all ν by (4.9). Since suppi(S̃
−1
n(η)gc2η) ⊆ suppi(RΛ∗ g), the second

relation in (B.3) follows from the second relation in (B.6). The first relation in (B.3) is a
consequence of (B.8) and the second equation in (B.5).

The assumptions of Proposition B.1 cover several possible scenarios which we outline
next.

Example B.2. Proposition B.1 applies if rank(g) < ∞ and ‖π(i)(S̃−1g)‖As < ∞. This

holds in particular if f can be written in the form f =
∑r

k=1 f
(1)
k ⊗ · · · ⊗ f (d)

k and the

coefficients 〈f (i)
k , ψν〉, ν ∈ ∇, have sufficient decay. In our numerical tests, we consider

f ≡ 1, where this is the case, but the treatment of functionals with f /∈ L2 is possible as
well. For instance, for functionals f corresponding to inhomogeneous Neumann boundary

data, if we prescribe constant values c
(i)
0 , c

(i)
1 ∈ R, i = 1, . . . , d, on the 2d faces of (0, 1)d

we obtain

f =
d∑
i=1

(
c

(i)
0 tr{xi=0}+c

(i)
1 tr{xi=1}

)
.

Since each arising trace operator tr has the form of a point evaluation in a single variable
tensorized with the identity in the remaining variables, the resulting coefficients g can be
represented with hierarchical rank 2 similarly to Example 3.1. Non-constant Neumann
boundary data can be treated similarly, provided that they have suitable tensor structure.

Example B.3. If f is such that the corresponding coefficients g are not of finite rank, we
additionally need some means to generate low-rank approximations on given finite sets of
basis indices. In principle, given a suitable index set Λ, if we can only evaluate the coeffi-
cients gν for ν ∈ Λ, one could use HSVD truncation of the resulting full tensor f = S̃−1g
on Λ to directly construct fη satisfying (B.2), (B.3) (where the second inequality in (B.2)
follows from (3.7)). Due to the costs of computationally constructing a HSVD of a full
tensor, this strategy is practically applicable only in the special situation that such a de-
composition can be obtained more cheaply by some different (e.g. semi-analytical) means.
In case that an HSVD of f is not practically available, one may need to resort to more
problem-specific low-rank approximations gε that possibly do not have such orthogonality
properties; for instance, for a number of important classes of functions, suitable approxi-
mations can be obtained by exponential sum expansions similarly to those considered for
different purposes in Section 4.1. In this case, one needs to ensure by construction of gε
that ‖π(i)(S̃−1gε)‖As ≤ Ĉ‖π(i)(f)‖As is satisfied, in other words, the low-rank approxi-
mation should not destroy the approximate sparsity of g. A sufficient condition for this
to hold is that each entry gν for ν ∈ Λ is approximated with a bounded relative error
tolerance.

Remark B.4. If the coefficients in the tensor representation of gε in Proposition B.1 can
be produced directly at unit cost, for instance based on analytical knowledge of f , the
number of operations required to construct fη can be estimated by

ops(rhs(η)) . d
[(
Cg + |ln η|

)
|ln η|bg

]3
+ d

(∑
i

‖π(i)(f)‖As
) 1
s (
Cg + |ln η|

)
|ln η|bgη−

1
s .
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