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A HIGHER ORDER FINITE ELEMENT METHOD FOR PARTIAL
DIFFERENTIAL EQUATIONS ON SURFACES

JÖRG GRANDE∗ AND ARNOLD REUSKEN†

Abstract. A new higher order finite element method for elliptic partial differential equations
on a stationary smooth surface Γ is introduced and analyzed. We assume Γ is characterized as the
zero level of a level set function φ and only a finite element approximation φh (of degree k ≥ 1) of φ
is known. For the discretization of the partial differential equation, finite elements (of degree m ≥ 1)
on a piecewise linear approximation of Γ are used. The discretization is lifted to Γh, which denotes
the zero level of φh, using a quasi-orthogonal coordinate system that is constructed by applying a
gradient recovery technique to φh.

A complete discretization error analysis is presented in which the error is split into a geometric
error, a quadrature error, and a finite element approximation error. The main result is a H1(Γ)-
error bound of the form c(hm + hk+1). Results of numerical experiments illustrate the higher order
convergence of this method.
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1. Introduction. In the past decade the study of numerical methods for PDEs
on surfaces has been a rapidly growing research area. The development of finite
element methods for solving elliptic equations on surfaces can be traced back to the
paper [8], which considers a piecewise polygonal surface and uses a finite element space
on a triangulation of this discrete surface. This approach has been further analyzed
and extended in several directions, see, e.g., [9, 10] and the references therein. Another
approach has been introduced in [4] and builds on the ideas of [2]. The method in
that paper applies to cases in which the surface is given implicitly by some level set
function and the key idea is to solve the partial differential equation on a narrow
band around the surface. Unfitted finite element spaces on this narrow band are used
for discretization. Another surface finite element method based on an outer (bulk)
mesh has been introduced in [12] and further studied in [11, 6]. The main idea of this
method is to use finite element spaces that are induced by triangulations of an outer
domain to discretize the partial differential equation on the surface by considering
traces of the bulk finite element space on the surface, instead of extending the PDE
off the surface, as in [2, 4].

Most of the methods mentioned above have been studied both for stationary and
evolving surfaces.

In all the papers we know of, except for [5], the discretization that is studied
is based on piecewise linear finite elements. The paper [5] is the only one in which
higher order finite element methods for partial differential equations on (stationary)
surfaces are studied. We outline the key results of that paper. For a smooth bounded
and connected surface Γ ⊂ R3 we consider the Laplace-Beltrami problem: for given
f ∈ L2(Γ) with

∫
Γ
f ds = 0 determine u ∈ H1

∗ (Γ) := {u ∈ H1(Γ) |
∫

Γ
u ds = 0 } such
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that ∫
Γ

∇Γu · ∇Γv ds =

∫
Γ

fv ds for all v ∈ H1(Γ). (1.1)

It is assumed that Γ is represented as the zero level of a smooth signed distance function
d. The exact surface is approximated by a quasi-uniform shape-regular polyhedral
surface Γ̂h having triangular faces, and with vertices on Γ. Based on the distance
function d a parametric mapping, consisting of piecewise polynomial mappings of
degree k, is defined on Γ̂h, which results in a corresponding discrete surface Γ̂kh. Using

the same mapping a standard higher order finite element space on Γ̂h is lifted to Γ̂kh.

This lifted space on Γ̂kh is used for the discretization of (1.1). An extensive error
analysis of this method is presented in [5], resulting in optimal error bounds. For
example, for the H1(Γ) error (where the discrete solution is lifted to Γ) a bound of
the form c(hm + hk+1) is proved. Here k is the degree of the polynomials used in the
parametrization of hatΓkh and m the degree of the polynomials in the finite element

space on Γ̂h. We emphasize that in this method explicit knowledge of the exact signed
distance function to Γ is an essential requirement.

In many applications the exact signed distance function to the surface Γ is not known.
One often encounters situations in which Γ is the zero level of a smooth level set
function φ (not necessarily a signed distance function) and one only has a finite
element approximation of φ available. This paper deals with the question: (how) can
one develop a higher order finite element method in such a setting? We will present
a constructive affirmative answer to this question.

We restrict ourselves to the model problem (1.1) with a stationary surface Γ. We
assume Γ to be sufficiently smooth. Our approach is fundamentally different from the
one in [5], in the sense that we do not need the exact distance function d. Instead,
we only(!) need a finite element approximation φkh of a level set function φ, which has
Γ as its zero level. The discrete level set function φkh comes from a standard finite
element space on a quasi-uniform triangulation of a bulk domain that contains Γ. In
the error analysis we assume that φkh satisfies an error bound of the form

‖φkh − φ‖L∞(U) + h‖φkh − φ‖H1
∞(U) ≤ chk+1, (1.2)

where U is a (small) neighborhood of Γ in R3. The zero level of φkh is denoted by
Γkh. Note that for k > 1 , Γkh cannot be easily constructed. From (1.2) it follows that
dist(Γ,Γkh) ≤ chk+1 holds. The method that we introduce is new and is built upon
the following key ingredients:

• For k = 1 the function φ̂h := φ1
h is piecewise linear, hence its zero level is

piecewise planar, consisting of quadrilaterals and triangles, and can easily
be determined. The quadrilaterals are subdivided into triangles. The re-
sulting triangulation is denoted by Γ̂h. This triangulation is in general very
shape-irregular. Nevertheless, the trace of an outer finite element space or
a standard finite element space directly on Γ̂h turns out to have optimal ap-
proximation properties [12, 13]. Such a finite element space on Γ̂h is denoted
by Ŝh.

• We take k > 1. For the parametrization of Γkh we use a quasi-normal field,
as introduced in [14]. Given φkh we apply a gradient recovery method which
results in a Lipschitz continuous vector field nh that is close to the normal
field n that corresponds to φ. Using this quasi-normal field, there is a unique
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decomposition x = ph(x) + dh(x)nh(ph(x)) for all x in a neighborhood of
Γkh, with ph(x) ∈ Γkh and dh ∈ R an approximate signed distance function.

It can be shown that ph : Γ̂h → Γkh is a bijection. This ph is used for

the parametrization of Γkh. For given x ∈ Γ̂h its image ph(x) ∈ Γkh can
be determined (with high accuracy) using the known field nh and only few
evaluations of φkh.

• Using the parametrization ph the finite element space Ŝh on Γ̂h is lifted to Γkh
and used for a Galerkin type discretization of (1.1), i.e. we take (1.1) with Γ
replaced by Γkh, H1(Γ) replaced by the lifted finite element space, f suitably
extended, and instead of ∇Γ we use the tangential gradient along Γkh.

• Only evaluations of ph and Dph can be computed. Hence, quadrature is
needed. The finite element space is pulled back to Γ̂h, integrals over Γkh are

transformed to integrals over Γ̂h and quadrature is applied on triangles in Γ̂h.
We then (only) need evaluations of ph, Dph, and of exact normals on Γ̂h and
on Γkh. The latter are easily determined using φkh.

The method is described more precisely in section 5. The implementation is discussed
in section 14.

Apart from the new discretization method outlined above, the main contribution
of this paper is an error analysis of this method. A key point related to this is the
following. On each triangle T of the “base” triangulation Γ̂h the parametrization ph is
only Lipschitz. This low regularity is due to the construction of the quasi-normal field
nh. Hence, the bilinear form pulled back to Γ̂h consists of a sum of integrals of the
form

∫
T
G∇Γ̂h

ûh ·∇Γ̂h
v̂h dŝh with a function G that has very low smoothness (not even

continuous). Due to this the analysis of the quadrature error is not straightforward.
This lack of smoothness is also an important reason why the analysis in this paper
is (even) more technical than the one in [5]. The structure of the error analysis is
outlined in section 6. As a main result, cf. Theorem 13.1, we prove an H1(Γ) error
bound (where the discrete solution is lifted to Γ) of the form c(hm + hk+1). Here m
is the degree of the polynomials used in the finite element space Ŝh.

2. Preliminaries. Let φ be a smooth function with a smooth, bounded and
connected zero level set Γ ⊂ Ω ⊂ R3, and let Ω1 = {x ∈ Ω | φ(x) ≤ 0} be the enclosed
(compact) region. Furthermore U is a (small) open subset of R3 with Γ ⊂ U ⊂ Ω.
This neighborhood is sufficiently small such that on U we have a local coordinate
system

x = p(x) + d(x)n(p(x)), (2.1)

with n the normal vector field on Γ (pointing out of Ω1), p : U → Γ and d the signed
distance function to Γ (negative in Ω1). For every x ∈ U the normal field has the
unique value n(x) = n(p(x)). We assume that ‖∇φ(x)‖ ≥ c0 > 0 for all x ∈ U holds.

Let {Th}h>0 be a family of regular quasi-uniform tetrahedral triangulations on Ω.
Furthermore V kh denotes a standard FE space on Th consisting of continuous piecewise
polynomial functions of degree k.

Remark 1. Some of the assumptions introduced above are used to simplify the
presentation and not essential for the applicability of the method or the validity of
the error analysis. For example, R3 could easily be replaced by Rn, with n ≥ 2. Also
the extension to a surface Γ with a finite number of connected components is straight-
forward. Finally, with minor modifications the analysis also applies if {Th}h>0 is a
shape-regular (not necessarily quasi-uniform) family of triangulations. The assump-
tion that Γ is a smooth surface is an essential one.
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Let φkh ∈ V kh be an approximation of φ that satisfies

‖φkh − φ‖L∞(U) + h‖φkh − φ‖H1
∞(U) ≤ chk+1. (2.2)

In the remainder we take a fixed value k ≥ 1. To simplify notation, we write φh = φkh.

The linear finite element approximation φ1
h plays a special role and is denoted by φ̂h.

The zero level sets of φh and φ̂h are denoted by Γh and Γ̂h, respectively. The outward
pointing normal fields on Γh and Γ̂h are denoted by n̄h and n̂h, respectively. From
(2.2) we obtain, cf. [5]:

dist(Γ, Γ̂h) ≤ ch2, dist(Γ,Γh) ≤ chk+1,

‖n− n̂h‖L∞(Γh) ≤ ch, ‖n− n̄h‖L∞(Γh) ≤ chk.
(2.3)

The two eigenvalues of the Weingarten map H := D2d ∈ R3×3 corresponding to
the eigenvectors orthogonal to n(x) are denoted by κi(x), i = 1, 2. These are related
to the principal curvatures of Γ by the formula κi(x) = κi(p(x))/

(
1 + d(x)κi(p(x)

)
.

In [5] it is shown that for the surface measures dsh on Γh and ds on Γ we have the
relation µh(x) dsh(x) = ds(p(x)), with

µh(x) = n(x)T n̄h(x)

2∏
i=1

(1− d(x)κi(x)), x ∈ Γh. (2.4)

Using this formula and the results in (2.3) one obtains:

‖µh − 1‖L∞(Γh) ≤ c‖d‖L∞(Γh) + c‖1− nT n̄h‖L∞(Γh)

= c‖d‖L∞(Γh) + c‖n− n̄h‖2L∞(Γh) ≤ ch
k+1.

(2.5)

Here and in the remainder, c is used to denote different constants, which are all
independent of h.

We need an O(h) neighborhood of Γh, denoted by ΩΓh , consisting of all tetrahedra
with distance to Γh smaller than ch, with a given c > 0. We assume that h is
sufficiently small such

Γh ⊂ ΩΓh ⊂ U and Γ̂h ⊂ ΩΓh

hold, cf. (2.3).

3. Quasi-normal field. In this section we define the notion of a quasi-normal
field, as introduced in [14]. Such a quasi-normal field is constructed using a (simple)
gradient recovery technique. Only this field, and not the gradient recovery technique,
is then used in the finite element method further on.

A gradient recovery operator is a mapping Gh : V kh → (V kh )3, which has to satisfy
certain reasonable approximation and stability conditions.

Assumption 3.1. Let Ih be the nodal interpolation in the finite element space
V kh . We assume that for φ sufficiently smooth the gradient recovery method Gh :
V kh → (V kh )3 satisfies:

‖Gh(Ihφ)−∇φ‖L∞(U) ≤ chk, (3.1)

‖Ghvh‖L∞(U) ≤ c‖vh‖H1
∞(Ue) for all vh ∈ V kh . (3.2)
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Here Ue denotes the neighborhood U enlarged with a suitable patch of surrounding
elements.

Remark 2. In the literature gradient recovery techniques are known and often
used in error estimators, cf. [1]. In such a setting one usually requires a power k + 1,
instead of k, in (3.1). In [14] the polynomial-preserving recovery (PPR) technique
is considered. For the PPR technique, (3.2) and (3.1) with k + 1 are shown to hold
in two dimensions in [15]. To indicate that the conditions (3.1) and (3.2) are mild
ones, as an example we describe a very simple gradient recovery technique satisfying
Assumption 3.1. It is used in the experiments in section 14. The set of finite element
nodes is denoted by Nh. To each finite element node ξ ∈ Nh we assign the set Tξ of
all tetrahedra containing ξ. For ξ ∈ Ue this Tξ is chosen such that T ∈ Tξ ⇒ T ⊂ Ue.
Let nξ := |Tξ|. The gradient recovery is defined by simple local averaging, namely
(Gvh)(ξ) := 1

nξ

∑
T∈Tξ ∇vh|Tξ(ξ) for all ξ. Let φh = Ihφ be the nodal interpolation of

a smooth function φ. From standard interpolation theory we get

max
ξ∈Nh∩Ue

‖(Ghφh)(ξ)−∇φ(ξ)‖ = max
ξ∈Nh∩Ue

∥∥∥ 1

nξ

∑
T∈Tξ

(
∇φh|Tξ(ξ)−∇φ(ξ)

)∥∥∥
≤ c max

T∈Th∩Ue
‖∇φh −∇φ‖L∞(T ) ≤ chk‖φ‖Hk+1(Ue).

Hence, using Ih(Ghφh) = Ghφh we get

‖Ghφh −∇φ‖L∞(U) ≤ ‖Ih(Ghφh −∇φ)‖L∞(U) + ‖Ih(∇φ)−∇φ‖L∞(U)

≤ c max
ξ∈Nh∩Ue

‖(Ghφh)(ξ)−∇φ(ξ)‖+ chk‖φ‖Hk+1(Ue) ≤ chk‖φ‖Hk+1(Ue),

and thus the condition in (3.1) is satisfied. With similar arguments, using stability
properties of Ih, one can verify that for this simple recovery operator condition (3.2) is
satisfied, too. Properties of different gradient recovery techniques with respect to the
construction of a quasi-normal field will be analyzed in a forthcoming paper. For the
analysis in this paper it suffices to assume that we use a gradient recovery technique
that has the properties given in Assumption 3.1.

Given the gradient recovery operator Gh we apply it to φh = φkh and define the
quasi-normal field :

nh(x) =
(Ghφh)(x)

‖(Ghφh)(x)‖
, x ∈ ΩΓh . (3.3)

Note that this field is only Lipschitz continuous; a main point in the analysis is that
nh can be approximated by a smooth vector field (cf. Lemma 7.1). The result (3.5)
in the following lemma explains why we call nh a “quasi-normal field”. A proof of this
lemma is given in [14] (where the power k+ 1 instead of k is assumed in (3.1)). Since
the lemma is of fundamental importance for the analysis in this paper, we include a
proof. By B(x; r) we denote the ball with center x and radius r.

Lemma 3.1. Let Assumption 3.1 be satisfied. Let rx > 0 (depending on x) be
small enough such that B(x, rx) ⊂ U for all x ∈ Γh. There exist constants c and
h0 > 0 such that for all h ≤ h0 and all x ∈ Γh the following holds:

‖nh(x)− nh(y)‖ ≤ c‖x− y‖, for all y ∈ B(x; rx), (3.4)

|〈nh(x), x− y〉| ≤ chk‖x− y‖+ c‖x− y‖2, for all y ∈ Γh ∩B(x; rx). (3.5)
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Proof. Take x ∈ Γh and y ∈ B(x; rx) ⊂ U . From the definition of nh we get

‖nh(x)− nh(y)‖ ≤ 2
‖(Ghφh)(x)− (Ghφh)(y)‖

‖(Ghφh)(x)‖
. (3.6)

We write Ghφh = Gh(φh− Ihφ) +
(
Gh(Ihφ)−∇φ

)
+∇φ, and using (3.1), (3.2), (2.2),

‖∇φ(x)‖ ≥ c0 > 0 and an interpolation bound we get

‖(Ghφh)(x)‖ ≥ ‖∇φ(x)‖ − c‖φh − Ihφ‖H1
∞(Ue) − c‖Gh(Ihφ)−∇φ‖L∞(U)

≥ c0 − chk ≥
1

2
c0,

(3.7)

provided h is sufficiently small. The vector functionGhvh ∈ V 3
h is Lipschitz continuous

and

‖(Ghφh)(x)− (Ghφh)(y)‖ ≤
∫ 1

0

‖∇(Ghφh)(x+ t(x− y))‖ dt‖x− y‖ (3.8)

holds. We write z := x+ t(x− y) ∈ B(x; rx) and note that

‖∇(Ghφh)(z)‖ ≤ ‖∇
(
Ghφh − Ih(∇φ)

)
‖L∞(U) + ‖∇Ih(∇φ)‖L∞(U).

Using an inverse inequality and the boundedness of Ih in H1
∞, (3.1) and (3.2) we get

‖∇(Ghφh)(z)‖ ≤ ch−1‖Ghφh − Ih(∇φ)‖L∞(U) + c

≤ ch−1‖Gh(φh − Ihφ)‖L∞(U) + ch−1‖Gh(Ihφ)−∇φ‖L∞(U)

+ ch−1‖∇φ− Ih(∇φ)‖L∞(U) + c

≤ ch−1‖φh − Ihφ‖H1
∞(Ue) + chk−1 + c ≤ chk−1 + c ≤ c.

(3.9)

Using this result in (3.8), in combination with (3.7) and (3.6) proves (3.4).
Now assume y ∈ Γh. The definition of nh and the lower bound in (3.7) yield

|〈nh(x), x− y〉| ≤ 2

cL
|〈(Ghφh)(x), x− y〉|. (3.10)

Since x, y ∈ Γh we have 0 = φh(x)− φh(y) =
∫ 1

0
〈∇φh(x+ t(y − x)), x− y〉 dt, hence,

〈(Ghφh)(x), x− y〉 =

∫ 1

0

〈(Ghφh)(x)− (Ghφh)(x+ t(y − x)), x− y〉 dt

+

∫ 1

0

〈(Ghφh)(x+ t(y − x))−∇φh(x+ t(y − x)), x− y〉 dt.
(3.11)

From the Lipschitz continuity estimate (3.8)-(3.9), with y replaced by x+ t(y − x) ∈
B(x, rx) we get

|〈(Ghφh)(x)− (Ghφh)(x+ t(y − x)), x− y〉| ≤ c‖x− y‖2. (3.12)

For the second term on the right-hand side in (3.11) we get, using (3.1) and (3.2),

|〈(Ghφh)(x+ t(y − x))−∇φh(x+ t(y − x)), x− y〉| ≤ ‖Ghφh −∇φh‖L∞(U)‖x− y‖

≤
(
‖Gh(φh − Ihφ)‖L∞(U) + ‖Gh(Ihφ)−∇φ‖L∞(U) + ‖∇φ−∇φh‖L∞(U)

)
‖x− y‖

≤ c
(
‖φh − Ihφ‖H1

∞(Ue) + hk
)
‖x− y‖ ≤ chk‖x− y‖.
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Using this and (3.12) in (3.11) in combination with (3.10) proves (3.5).

The quasi-normal field can be used to define a local coordinate system similar to
(2.1). Given nh we define F : Γh ×R→ R3, F (z, t) := z + tnh(z). In Lemma 3.1 and
Theorem 3.2 in [14] it is proved that from (3.4) and (3.5) it follows that this mapping
is a bijection between Γh × [−ε, ε] (ε > 0, sufficiently small) and a (sufficiently small)
neighborhood of Γh in R3. This neighborhood is again denoted by U . Hence there is
a unique decomposition

x = ph(x) + dh(x)nh(ph(x)), x ∈ U, (3.13)

with the skew projection ph : U → Γh and dh an approximate signed distance function
to Γh , |dh(x)| = ‖x − ph(x)‖. This decomposition resembles the one in (2.1). In
the latter, however, one needs the exact level set function φ (to compute n(p(x))),
whereas (3.13) is based on the quasi-normal field, which can be determined from the
finite element approximation φh. Furthermore, dh(x) = 0 iff x ∈ Γh holds, and we
have the useful formula dh(x) = 〈x− ph(x), nh(ph(x))〉.

4. Parametrization of Γh. We use Γ̂h (the zero level of the piecewise linear

function φ̂h) and the quasi-normal field nh for a computable parametrization of Γh
(the zero level of the higher order finite element function φh). From the assumptions
above, it follows that

ph|Γ̂h : Γ̂h → Γh is a bijection.

Note that this bijection is (only) Lipschitz. The Lipschitz manifold Γ̂h consists of tri-
angles and convex quadrilaterals. Each quadrilateral is subdivided into two triangles.
The resulting triangular triangulation of Γ̂h is denoted by Fh, i.e.,

Γ̂h = ∪{T | T ∈ Fh}. (4.1)

The family {Fh}h>0 may be quite shape-irregular, but this does not cause problems,
cf. remark 3 below. The mapping ph is used for the parametrization of Γh. We need
a transformation formula between integrals over T ∈ Γ̂h and over ph(T ), which is
derived in the following lemma.

Lemma 4.1. For T ∈ Fh, let H ⊂ R3 be the plane containing T , and let x̃ 7→
Ux̃ + u be a parametrization R2 → H with an orthogonal matrix U ∈ R3×2. Then,
for any measurable function g : ph(T )→ R the transformation formula∫

ph(T )

g(y) dσ(y) =

∫
T

g(ph(x)) µ̂h(x)dσ(x) (4.2)

holds, with µ̂h(x) =
√

det(UTDph(x)TDph(x)U).
Proof. Let F : R2 → R3 be an injective Lipschitz-mapping, and let T ⊆ R2 be

Lebesgue-measurable. We recall the transformation rule∫
F (T )

g(y) dσ(y) =

∫
T

g(F (x))µ(x)dσ(x), µ(x) =
√

det(DF (x)TDF (x)).

We apply this formula to the parametrization x = F (x̃) = Ux̃+ u of H. The surface
measure on H is

dσ(x) =
√

det(UTU) dx̃ = dx̃, (4.3)
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because U is orthogonal. We also apply this formula to the parametrization y =
F (x) := ph(x) = ph(Ux̃+ u). The surface measure on this set is

dσ(y) =
√

det(UTDph(x)TDph(x)U) dx̃ =
√

det(UTDph(x)TDph(x)U) dσ(x),

by the result in (4.3).

5. Finite element discretization. We introduce the finite element discretiza-
tion of the Laplace-Beltrami equation (1.1). Our method has some similarity with
the one presented in [5], but an essential difference is that we (only) need the finite

element approximations φh and φ̂h of φ. From φh the quasi-normal field nh can be
determined.

Let Ŝh be a finite element space of piecewise polynomials of degree m ≥ 1 on the
triangulation Fh of Γ̂h, cf. (4.1):

Ŝh = { v̂h ∈ C(Γ̂h) | v̂h|T ∈ Pm for all T ∈ Fh }. (5.1)

Remark 3. We briefly discuss two possible choices for the space Ŝh. A first
possibility is to use a trace space as introduced and analyzed in [12]. Such a space
is constructed by taking the trace of a standard outer finite element space, e.g. the
space V mh used for the approximation of the level set function, cf. section 2. Its
(optimal) approximation properties depend on the shape-regularity of {Th}h>0 not
on the shape-regularity of the family {Fh}h>0.

A second possibility is to define standard polynomial spaces directly on the tri-
angulation Fh. Although this triangulation is in general very shape irregular, it has
a maximal angle property in three dimensions: in [13] it is shown, that if in the con-
struction of Fh the quadrilaterals are subdivided in two triangles in a suitable way,
the maximal inner angles in the resulting triangulation are uniformly bounded away
from π. Hence, standard finite element spaces on such a triangulation have optimal
approximation quality, cf. [13] for more information.

We lift the space Ŝh to Γh by using the bijection ph : Γ̂h → Γh:

Sh := { vh = v̂h ◦ p−1
h | v̂h ∈ Ŝh }. (5.2)

For the discretization we need a (sufficiently accurate) extension of the data f on Γ
to Γh. This extension is denoted by fh and is such that

∫
Γh
fh ds = 0 holds.

Remark 4. One possible choice for the extension fh is fh = fe− 1
|Γh|

∫
Γh
fe dsh,

where fe denotes the constant extension along the exact normals on Γ. This, however,
is not feasible, since in our setting it is not reasonable to assume that the normals to
Γ are known. Another possibility arises if we assume that f is a (smooth) function
that is defined in a neighborhood U of Γ. As extension we may then take:

fh(x) := f(x)− cf for x ∈ Γh with cf :=
1

|Γh|

∫
Γh

f dsh. (5.3)

In the remainder we restrict to the latter choice of the extension. For f we assume
the smoothness property f ∈ H1

∞(U).

The discrete problem is as follows: Determine uh ∈ Sh with
∫

Γh
uh dsh = 0 such that

a(uh, vh) = l(vh) for all vh ∈ Sh,

a(uh, vh) :=

∫
Γh

∇Γhuh · ∇Γhvh dsh, l(vh) :=

∫
Γh

fhvh dsh.
(5.4)
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For the implementation of this method we pull the discretization back to Γ̂h and apply
quadrature on the triangulation Fh of Γ̂h. We first treat the pull back procedure. For
this we derive a relation between the tangential gradient on Γh and the tangential
gradient on Γ̂h. For this we need several projectors, defined as follows, with n̂h(x)
the exact normal on Γ̂h:

Q̂(x) = I− 1

α̂(x)
n̂h(x)n̄h(y)T , α̂(x) = n̂h(x)T n̄h(y), y = ph(x), x ∈ Γ̂h, (5.5)

P̂(x) = I− n̂h(x)n̂h(x)T , x ∈ Γ̂h, (5.6)

P̄(y) := I− n̄h(y)n̄h(y)T , y ∈ Γh, (5.7)

Note that Q̂(x), x ∈ Γ̂h, is an oblique projector which maps into the tangential space
n̄h(y)⊥. The following commutation relations hold:

Q̂(x)P̄(y) = P̄(y), P̄(y)Q̂(x) = Q̂(x), P̂(x)Q̂(x) = P̂(x), Q̂(x)P̂(x) = Q̂(x). (5.8)

Lemma 5.1. For v̂h ∈ Ŝh, let vh = v̂h ◦ (ph|Γ̂h)−1 ∈ Sh. For the tangential
gradients the relations

∇Γ̂h
v̂h(x) = P̂(x)Dph(x)T∇Γhvh(y) = W (x)∇Γhvh(y) with y = ph(x),

W (x) := I− Q̂(x) + P̂(x)Dph(x)T ,
(5.9)

hold for almost all x ∈ Γ̂h.
Proof. As ph|Γ̂h : Γ̂h → Γh is a bijection, we have:

v̂h(x) = vh(ph(x)).

This relation and the ones below hold for almost all x ∈ Γ̂h. We apply the tangential
gradient on Γ̂h to both sides of the equation to obtain

∇Γ̂h
v̂h(x) = P̂(x)∇vh(ph(x)) = P̂(x)Dph(x)T∇Γhvh(y).

This proves the first relation in (5.9). From

P̂(x)Dph(x)T∇Γhvh(y) = P̂(x)Dph(x)T P̄(y)∇Γhvh(y),

P̂(x)Dph(x)T P̄(y) = W (x)P̄(y),

we obtain the second relation in (5.9).

From Lemma 9.1 below it follows that for h sufficiently small the matrix W is in-
vertible. We assume that this condition on h is satisfied, i.e. W is invertible. We
introduce the symmetric positive definite matrix function

Th(x) := W (x)W (x)T . (5.10)

Using the transformation formulas in (4.2) and (5.9) we obtain the following “pulled
back” equivalent formulation of the discrete problem (5.4): Determine ûh ∈ Ŝh with∫

Γ̂h
ûhµ̂h dŝh = 0 such that∫

Γ̂h

G∇Γ̂h
ûh · ∇Γ̂h

v̂h dŝh =

∫
Γ̂h

(fh ◦ ph)v̂h µ̂h dŝh for all v̂h ∈ Ŝh,

G(x̂) := Th(x̂)−1µ̂h(x̂), x̂ ∈ Γ̂h.

(5.11)
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Clearly, for the implementation of this discretization we need quadrature.
We introduce quadrature along the same lines as in [3]. Let T̃ be the unit triangle

in R2, T ∈ Fh and MT : T̃ → T an affine mapping MT x̃ = BT x̃+ bT = x, x̃ ∈ T̃ , x ∈
T .

We consider a quadrature rule on T̃ of the form QT̃ (φ̃) =
∑L
l=1 ω̃lφ̃(ξ̃l) with

strictly positive weights ωl and quadrature nodes ξ̃l ∈ T̃ . This induces a quadrature
rule on T :

QT (φ̂) :=

L∑
l=1

ω̂lφ̂(ξ̂l), ω̂l = |T |ω̃l, ξ̂l = MT (ξ̃l). (5.12)

Note that, although not explicit in the notation, ω̂l, ξ̂l depend on T . We apply quadra-
ture to the discrete problem (5.11) as follows. First we consider the approximation of
the bilinear form a(uh, vh). Using the correspondence vh ◦ ph = v̂h, we can represent
a(uh, vh) as follows, cf. (5.11):

a(uh, vh) =

∫
Γ̂h

G∇Γ̂h
ûh · ∇Γ̂h

v̂h dŝh =
∑
T∈Fh

∫
T

G∇Γ̂h
ûh · ∇Γ̂h

v̂h dŝh (5.13)

=
∑
T∈Fh

3∑
i,j=1

∫
T

Gij∂
Γ
i ûh∂

Γ
j v̂h dŝh,

with ∂Γ
i the ith component of the vector ∇Γ̂h

= P̂∇. Quadrature results in an
approximate bilinear form, given by

ah(uh, vh) =
∑
T∈Fh

QT (G∇Γ̂h
ûh · ∇Γ̂h

v̂h). (5.14)

For the right hand-side functional l(vh) =
∫

Γh
fhvh dsh =

∫
Γ̂h

(f ◦ ph− cf )v̂hµ̂h dŝh we
have the approximation

lh(vh) =
∑
T∈Fh

QT
(
fqhµ̂hv̂h

)
, for all vh ∈ Sh, v̂h = vh ◦ ph,

fqh := f ◦ ph − cqf , cqf :=
1

A

∑
T∈Fh

QT (f ◦ ph µ̂h), A :=
∑
T∈Fh

QT (µ̂h).
(5.15)

The constant shift cqf is taken such that the consistency condition lh(1) = 0 is satisfied.

The final discrete problem, i.e., after quadrature, is as follows: Determine uqh ∈ Sh
with

∑
T∈Fh QT (ûqhµ̂h) = 0 such that

ah(uqh, vh) = lh(vh) for all vh ∈ Sh. (5.16)

Remark 5. In lemma 9.3 below we show

ah(vh, vh) ≥ γ‖∇Γhvh‖2L2(Γh) for all vh ∈ Sh

under some conditions onQT . Recall the Poincaré-inequality ‖vh‖L2(Γh) ≤ c‖∇Γhvh‖L2(Γh)

for all vh ∈ Sh with
∫

Γh
vh dsh = 0. This implies that the variational problem (5.16)

has in Sh a solution that is unique apart from a shift with the constant function on
Γh. This shift is uniquely determined by the condition

∑
T∈Fh QT (ûqhµ̂h) = 0, which

is a computable approximation of the standard condition
∫

Γh
uqh dsh = 0. Hence, the

final discrete problem has a unique solution.
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6. Outline of the analysis. In the sections 7-12 we present an error analysis of
the discrete problem (5.16). The analysis is rather technical and contains ingredients
that are not standard in the literature. Therefore we outline the structure and main
ideas of the analysis.

Central in the analysis is the Strang Lemma 9.4, in which the discretization error
is bounded by three different error components, namely an approximation error, a
geometric error and a quadrature error. In the sections 10–12 bounds for these three
components are derived. Preliminaries for the analysis of these error components are
derived in the sections 7 and 8. In these sections, properties of the quasi-normal field
nh and the skew projection ph, which is used for the parametrization of Γh, are derived.
In the discrete problem (5.16), besides the skew projection ph its Jacobian Dph plays
a prominent role. Key estimates for this Jacobian are derived in Lemma 8.2. An
important result in this lemma is that by using suitable projections the error bound
of order O(hk) in (8.8) can be improved to O(hk+1) in (8.9), (8.10).
In section 12 the error due to quadrature is analyzed. As far as we know, such
quadrature errors have not been considered in other papers that treat error analyses
of finite element methods for surface partial differential equations. The quadrature
issue, however, is essential for the analysis of our method. The reason for this is
that the discrete problem before quadrature (5.11) contains an integrand that is not
smooth on the triangles T ∈ Fh.
This non-smoothness is caused by the use of the quasi-normal field, which is only
Lipschitz. Due to the nonsmooth integrand, standard analyses of quadrature errors
as in e.g. [3], do not yield satisfactory bounds. The analysis of the quadrature error
in section 12 is based on the following idea. Consider an integral

∫
T
Gg dŝh, with a

function g that is smooth on T and a function G that is not necessarily smooth on
T . Assume that Gs is a smooth approximation of G. For the quadrature error we use
the splitting

ET (Gg) :=

∫
T

Gg dŝh −QT (Gg)

=

∫
T

(G−Gs)g dŝh + ET (Gsg) +QT
(
(Gs −G)g

)
.

The error terms
∫
T

(G − Gs)g dŝh and QT ((Gs − G)g) can be controlled by suitable
bounds for G − Gs (as in Corollary 12.3). Since Gsg is smooth the term ET (Gsg)
can be bounded using standard quadrature error analysis. A smooth approximation
of the (matrix) function G is derived and analyzed in section 12.1.
One further “nonstandard” ingredient is the following. As expected, in the analysis
of the quadrature error we use the affine transformation between a triangle T ∈ Fh
and the unit triangle T̃ in R2. We also need the usual relation between norms on T
and on T̃ as given in (12.1). In this estimate a Sobolev norm on T̃ is bounded by
the corresponding norm on T . In our setting, due to the fact that the triangulation
Fh is not shape-regular (inner angles are not uniformly bounded away from zero), an
estimate in the other direction, i.e., bounding |û|Hnp (T ) by |ũ|Hnp (T̃ ), does not hold.

Fortunately, only the estimate (12.1) and not the one in the other direction is needed
in our analysis.

In the analysis different (skew) projections play a key role. For these projections
we use boldface notation. For the readers convenience we summarize these projections

11



and the normal fields that are used:

n : U → R3 (exact normal on Γ), nh : ΩΓh → R3 (quasi-normal field),

n̂h : Γ̂h → R3 (exact normal on Γ̂h), n̄h : Γh → R3 (exact normal on Γh),

P(x) = I− n(x)n(x)T , x ∈ U, (6.1)

P̂(x) = I− n̂h(x)n̂h(x)T , x ∈ Γ̂h, (6.2)

P̄(y) := I− n̄h(y)n̄h(y)T , y ∈ Γh. (6.3)

Q̂(x) = I− 1

α̂(x)
n̂h(x)n̄h(y)T , α̂(x) = n̂h(x)T n̄h(y), y = ph(x), x ∈ Γ̂h, (6.4)

Q(x) = I− 1

α(x)
nh(x)n̄h(x)T , α(x) := nh(x)T n̄h(x), x ∈ Γh. (6.5)

We use the following notation in many proofs below: For any x ∈ Γ̂h (sometimes
x ∈ U), we let

y := ph(x) ∈ Γh, z := p(y) = p ◦ ph(x) ∈ Γ, and ζ := p(x) ∈ Γ.

7. Properties of nh and ph. In this section we derive some properties of the
quasi-normal field nh and the skew projection ph onto Γh that we need in the analysis
further on. We start with a lemma in which it is shown that Dnh is close to a smooth
(matrix) function.

Lemma 7.1. The following holds for all sufficiently small h:

‖nh −
∇φ
‖∇φ‖

‖L∞(ΩΓh
) ≤ chk, (7.1)

‖nh − n‖L∞(Γh) ≤ chk, (7.2)

‖Dnh −D
( ∇φ
‖∇φ‖

)
‖L∞(ΩΓh

) ≤ chk−1. (7.3)

Proof. For the gradient recovery operator applied to the finite element approx-
imation φh of the level set function φ we write Gh = Ghφh. Using (3.1),(3.2),(2.2)
and standard interpolation error results we get

‖Gh −∇φ‖L∞(U) ≤ ‖Gh(φh − Ihφ)‖L∞(U) + ‖Gh(Ihφ)−∇φ‖L∞(U)

≤ c‖φh − Ihφ‖H1
∞(Ue) + chk ≤ chk.

(7.4)

From this and nh = ‖Gh‖−1Gh the result in (7.1) follows. Using this result we get,
for x ∈ ΩΓh :

‖nh(x)− n(x)‖ ≤ chk + ‖n(x)− ∇φ(x)

‖∇φ(x)‖
‖

= chk + ‖ ∇φ(p(x))

‖∇φ(p(x))‖
− ∇φ(x)

‖∇φ(x)‖
‖.

For x ∈ Γh we have ‖x−p(x)‖ ≤ chk+1 and thus ‖∇φ(x)−∇φ(p(x))‖ ≤ chk+1. Hence
we get the result (7.2). For the derivatives we have

Dnh = D(
Gh
‖Gh‖

) =
1

‖Gh‖
(
I − 1

‖Gh‖2
GhG

T
h

)
DGh

D
( ∇φ
‖∇φ‖

)
=

1

‖∇φ‖
(
I − 1

‖∇φ‖2
∇φ∇φT

)
D2φ.

(7.5)
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Using an inverse inequality and the result in (7.4) we obtain

‖Gh −∇φ‖H1
∞(U) ≤ ‖Gh − Ih(∇φ)‖H1

∞(U) + ‖Ih(∇φ)−∇φ‖H1
∞(U)

≤ ch−1‖Gh − Ih(∇φ)‖L∞(U) + chk

≤ ch−1
(
‖Gh −∇φ‖L∞(U) + ‖∇φ− Ih(∇φ)‖L∞(U)

)
+ chk

≤ chk−1.

From this it follows that ‖DGh−D2φ‖L∞(U) ≤ chk−1 holds. Using this and the result
in (7.4) in combination with the formulas (7.5) proves the result in (7.3).

The next lemma quantifies how well ph approximates p and dh approximates d.
Lemma 7.2. For h sufficiently small the following holds:

‖ph − p‖L∞(ΩΓh
) ≤ chk+1, ‖p ◦ ph − p‖L∞(ΩΓh

) ≤ chk+1, (7.6)

‖dh − d‖L∞(ΩΓh
) ≤ chk+1. (7.7)

Proof. Take x ∈ ΩΓh and q ∈ Γh, d̄ ∈ R such that q = x− d̄ n(p(x)) = x− d̄ n(q).
Note that p(x) = p(q) holds. Using diam(ΩΓh) ≤ ch we get

|d̄| = ‖q − x‖ ≤ ‖q − p(q)‖+ ‖p(x)− x‖ ≤ dist(Γh,Γ) + |d(x)| ≤ ch. (7.8)

In Lemma 4.1 in [14] is it shown that dh is uniformly Lipschitz on U , i.e. there is a
constant c such that |dh(z1)− dh(z2)| ≤ c‖z1− z2‖ for all z1, z2 ∈ U . Since q ∈ Γh we
have dh(q) = 0. Using this we get

|dh(x)| = |dh(x)− dh(q)| ≤ c‖x− q‖ = c|d̄| ≤ ch.

From ph(x) = x−dh(x)nh(ph(x)) we obtain ph(x)− q = d̄ n(q)−dh(x)nh(ph(x)), and
thus

‖ph(x)− q‖2 = d̄〈n(q), ph(x)− q〉 − dh(x)〈nh(ph(x)), ph(x)− q〉.

For the first term we have, using (7.2) and (3.5),

|〈n(q), ph(x)− q〉| ≤ |〈n(q)− nh(q), ph(x)− q〉|+ |〈nh(q), ph(x)− q〉|
≤ chk‖ph(x)− q‖+ c‖ph(x)− q‖2.

By (3.5), for the second term:

|〈nh(ph(x)), ph(x)− q〉| ≤ chk‖ph(x)− q‖+ c‖ph(x)− q‖2.

Hence,

‖ph(x)− q‖2 ≤ chk+1‖ph(x)− q‖+ ch‖ph(x)− q‖2,

and thus, for h sufficiently small, ‖ph(x) − q‖ ≤ chk+1 holds. Using ‖q − p(x)‖ =
‖q−p(q)‖ ≤ dist(Γh,Γ) ≤ chk+1 we thus get ‖ph(x)−p(x)‖ ≤ chk+1, which proves the
first estimate in (7.6). The second result in (7.6) follows from a triangle inequality:

‖p(ph(x))−p(x)‖ ≤ ‖p(ph(x))−ph(x)‖+‖ph(x)−p(x)‖ ≤ dist(Γh,Γ)+chk+1 ≤ chk+1.
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For the result in (7.7) we use the representation

dh(x)− d(x) = 〈x− ph(x), nh(ph(x))〉 − 〈x− p(x), n(p(x))〉
= 〈p(x)− ph(x), n(p(x))〉+ 〈x− ph(x), nh(ph(x))− n(ph(x))〉
+ 〈x− ph(x), n(ph(x))− n(p(x))〉.

The result in (7.7) follows from this if we use

‖p(x)− ph(x)‖ ≤ chk+1, ‖x− ph(x)‖ = |dh(x)| ≤ ch,
‖nh(ph(x))− n(ph(x))‖ ≤ chk, ‖n(ph(x))− n(p(x))‖ ≤ chk+1,

which completes the proof

8. Properties of the Jacobian Dph. The Jacobian Dph plays a key role in the
discretization (5.11) (cf. definition of W and µ̂h). In this section we derive properties
of this Jacobian that we need in our analysis. First we consider the Jacobian of the
exact projection p onto Γ given in (2.1). Differentiating the relation (2.1) and using
n(x) = n(p(x)) we get, for x ∈ U ,(

I + d(x)H(p(x))
)
Dp(x) = P(x), P(x) = I− n(x)n(x)T , H(y) = Dn(y). (8.1)

This formula has equivalent representations due to P(x) = P(p(x)) and H(p(x)) =
P(x)H(p(x)) = H(p(x))P(x). We derive a formula for Dph, cf. Lemma 8.1 below. It
turns out that we need a skew projection as a substitute for the projection P in (8.1).
This skew projection is as in (6.5):

Q(x) = I− 1

α(x)
nh(x)n̄h(x)T , α(x) := nh(x)T n̄h(x), x ∈ Γh.

The following relations hold, with P̄ as in (6.3):

QP̄ = P̄, P̄Q = Q. (8.2)

Lemma 8.1. For a. e. x ∈ U , the following relations hold with y = ph(x) ∈ Γh,(
I + dh(x)Q(y)Dnh(y)

)
Dph(x) = Q(y), (8.3)

Q(y)Dph(x) = Dph(x) = Dph(x)Q(y). (8.4)

Proof. Let d̄h be the exact signed distance function to Γh. Differentiating
d̄h(ph(x)) = 0, which holds for a.e. x ∈ U , yields

n̄h(y)TDph(x) = 0. (8.5)

Applying this to the differential of ph = id− dh · nh ◦ ph,

Dph = I− dhDnh(y)Dph − nh(y)∇dTh , (8.6)

yields 0 = n̄h(y)T − dhn̄h(y)TDnh(y)Dph − n̄h(y)Tnh(y)∇dTh . This can be solved for
∇dTh ,

∇dTh =
1

α

(
n̄h(y)T − dhn̄h(y)TDnh(y)Dph

)
.
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Inserting this into (8.6) and rearranging completes the proof of (8.3). The equation
Q(y)Dph = Dph follows immediately from (8.5) and the definition of Q. The equation
Dph(x) = Dph(x)Q(y) follows from (8.3).

Below, we frequently use that I +M , M ∈ Rn×n, is invertible if ρ(M) < 1 and that

(I +M)−1 = I− (I +M)−1M, M ∈ Rn×n, ρ(M) < 1. (8.7)

Lemma 8.2. For sufficiently small h, the following holds, with projections P, P̂,
P̄ defined in (6.1),(6.2), (6.3):

‖Dp−Dph‖L∞(Γ̂h) ≤ ch
k, (8.8)

‖P
(
Dp−Dph

)
P̂‖L∞(Γ̂h) ≤ ch

k+1, (8.9)

‖(P̄ ◦ ph)
(
Dp−Dph

)
P̂‖L∞(Γ̂h) ≤ ch

k+1. (8.10)

Proof. Let x ∈ Γ̂h be arbitrary and ζ = p(x) ∈ Γ. Let ñ = ∇φ/‖∇φ‖ which
is defined on U . As ñ ≡ n on Γ, we have p(x) = x − d(x)ñ(ζ). Differentiating this
relation we obtain the following representation for the Jacobian Dp:

Dp(x) =
(
I + d(x)P(ζ)Dñ(ζ)

)−1
P(ζ) = (I +B1)−1P(ζ), B1 = d(x)P(ζ)Dñ(ζ).

From (8.3) we get, with y = ph(x) ∈ Γh:

Dph(x) =
(
I+dh(x)Q(y)Dnh(y)

)−1
Q(y) = (I+B2)−1Q(y), B2 = dh(x)Q(y)Dnh(y).

Using (7.6) we get ‖ζ − y‖ ≤ chk+1. Define Ri := (I + Bi)
−1Bi, hence, by (8.7),

(I +Bi)
−1 = I−Ri. From |dh(x)| ≤ ch2, |d(x)| ≤ ch2 and the definition of Bi we get

‖Ri‖ ≤ ch2. From the definitions we obtain

Dp(x)−Dph(x) = P(ζ)−Q(y) +R2Q(y)−R1P(ζ), (8.11)

P(ζ)−Q(y) =
( 1

α(y)
− 1
)
nh(y)n̄h(y)T

+
(
nh(y)− n(ζ)

)
n̄h(y)T + n(ζ)

(
n̄h(y)− n(ζ)

)T
. (8.12)

Using (7.2) and (2.3) we get

‖nh(y)− n(y)‖ ≤ chk, ‖n̄h(y)− n(y)‖ ≤ chk,

and combining this with |α(y) − 1| = 1
2‖nh(y) − n̄h(y)‖2, the smoothness of n and

‖ζ − y‖ ≤ chk+1, we obtain∣∣ 1

α(y)
− 1
∣∣ ≤ ch2k, (8.13)

‖nh(y)− n(ζ)‖ ≤ ‖nh(y)− n(y)‖+ ‖n(y)− n(ζ)‖ ≤ chk, (8.14)

‖n̄h(y)− n(ζ)‖ ≤ ‖n̄h(y)− n(y)‖+ ‖n(y)− n(ζ)‖ ≤ chk. (8.15)

From these results and (8.12) we get

‖Q(y)−P(ζ)‖ ≤ chk. (8.16)

15



Using the smoothness of ñ and the result in (7.3) we obtain:

‖Dñ(ζ)−Dnh(y)‖ ≤ ‖Dñ(ζ)−Dñ(y)‖+ ‖Dñ(y)−Dnh(y)‖ ≤ chk−1.

Combining this with |d(x)| ≤ ch2 and |d(x)− dh(x)| ≤ chk+1, cf. (7.7), yields

‖R1 −R2‖ = ‖(I +B1)−1 − (I +B2)−1‖ ≤ c‖B1 −B2‖ (8.17)

≤ c|d(x)|‖P(ζ)−Q(y)‖+ c|d(x)|‖Dñ(ζ)−Dnh(y)‖+ c|d(x)− dh(x)| ≤ chk+1.

Combining this and (8.16) with the result in (8.11) proves the result in (8.8).
Let P̃ denote either P(x) or P̄(y). Using (8.11)-(8.12) we get

P̃
(
Dp(x)−Dph(x)

)
P̂(x) = MP̂(x) +RP̂(x),

M := P̃
((
nh(y)− n(ζ)

)
n̄h(y)T − n(ζ)

(
n̄h(y)− n(ζ)

)T)
P̂(x),

R := P̃
(
R2Q(y)−R1P(ζ)

)
+
( 1

α(y)
− 1
)
P̃nh(y)n̄h(y)T .

(8.18)

Combining (8.16) and ‖Ri‖ ≤ ch2 with (8.13), (8.17) we get ‖R‖ ≤ chk+1. We finally
consider the term M . From

‖n̂h(x)− n̄h(y)‖ ≤ ‖n̂h(x)− n(x)‖+ ‖n(x)− n(y)‖+ ‖n(y)− n̄h(y)‖ ≤ ch

we get

‖n̄h(y)T P̂(x)‖ = ‖P̂(x)
(
n̄h(y)− n̂h(x)

)
‖ ≤ ch. (8.19)

If P̃ = P(x) then P̃n(ζ) = P̃n(x) = 0 holds. If P̃ = P̄(y) we obtain from (8.15):

‖P̃n(ζ)‖ = ‖P̄(y)
(
n(ζ)− n̄h(y)

)
‖ ≤ ‖n(ζ)− n̄h(y)‖ ≤ chk.

Combining these results we get

‖M‖ ≤ ‖nh(y)− n(ζ)‖‖n̄h(y)T P̂(x)‖+ ‖P̃n(ζ)‖‖n̄h(y)− n(ζ)‖ ≤ chk+1,

which completes the proof.

The estimates in lemma 8.2 play a key role in the error analysis of our method. In
Section 14 we give results of a numerical experiment which show that the bounds in
the estimates are sharp. In particular, for obtaining the hk+1 bounds the projections
in the terms on the left hand-side are essential.

9. Strang Lemma. In this section we derive a Strang lemma. In the analysis
we will need the constant extension of a function w on Γ along the normals n to a
function we on U given by

we(x) := w ◦ p(x) for all x ∈ U. (9.1)

We also use the lift of a function defined on Γh (or on Γ̂h) to a function defined on
Γ along the normals n. More precisely, for a function w defined on Γh (or on Γ̂h), its
lift w` to Γ is given by

w` ◦ p(x) = w(x) for all x ∈ Γh (or x ∈ Γ̂h). (9.2)
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The lifted finite element space is denoted by S`h := { v`h | vh ∈ Sh }. We need the
following matrix function on Γ:

AΓ(p(x)) =
1

µh(x)
P(x)[I − d(x)H(x)]P̄(x)[I − d(x)H(x)]P(x), x ∈ Γh, (9.3)

with µh as in (2.4) and the projectors as in (6.1), (6.3). From [5, formula (2.14)] we
have the integral identity∫

Γh

∇Γhuh · ∇Γhvh dsh =

∫
Γ

AΓ∇Γu
`
h · ∇Γv

`
h ds.

Using this we obtain that if uh solves (5.4), then the lifted function u`h ∈ S`h satisfies∫
Γ

AΓ∇Γu
`
h · ∇Γvh ds =

∫
Γ

1

µ`h
f `hvh ds for all vh ∈ S`h. (9.4)

We also need the following estimates, which follow from the results (2.11), (2.12) in
[5]:

‖∇γve‖L2(γ) ≤ c‖∇Γv‖L2(Γ), v ∈ H1(Γ), γ ∈ {Γ̂h,Γh},
‖∇Γv

`‖L2(Γ) ≤ c‖∇γv‖L2(γ), v ∈ H1(γ), γ ∈ {Γ̂h,Γh}.
(9.5)

We first derive ellipticity of the bilinear form ah(·, ·) in (5.14). For this we need
that the matrix G, cf. (5.11), is positive definite. To derive this result, in the next
lemma we first consider the matrix W .

Lemma 9.1. For h sufficiently small the following holds:

‖W − I‖L∞(Γ̂h) ≤ ch. (9.6)

Proof. We recall the definition W (x) = I− Q̂(x) + P̂(x)Dph(x)T . We drop the x-
dependence in the notation. From (8.3) we get, due to |dh(x)| ≤ ch2, for h sufficiently

small, Dph(x) =
(
I + dh(x)Q(y)Dnh(y)

)−1
Q(y) = Q(y) + O(h2), with y = ph(x).

Hence,

W = I− Q̂ + P̂Q(y)T +O(h2)

holds. Using (7.6) we get ‖x − y‖ = ‖x − ph(x)‖ ≤ ‖x − p(x)‖ + ‖p(x) − ph(x)‖ ≤
dist(Γ, Γ̂h) + chk+1 ≤ ch2. Using this and the results in (2.3), we obtain

‖n̂h(x)− n̄h(y)‖ ≤ ‖n̂h(x)− n(x)‖+ ‖n(x)− n(y)‖+ ‖n(y)− n̄h(y)‖ ≤ ch.

Hence,

‖P̂n̄h(y)‖ = ‖P̂(n̄h(y)− n̂h(x))‖ ≤ ‖n̄h(y)− n̂h(x)‖ ≤ ch.

Using this, the definitions of the projections and Q̂ = Q̂P̂, cf. (5.8), yields

‖W − I‖ ≤ ‖(I− Q̂)P̂‖+ ‖P̂(Q(y)T − I)‖+ ch2

=
1

|α̂|
‖n̂hn̄h(y)T P̂‖+

1

|α(y)|
‖P̂n̄h(y)nh(y)T ‖+ ch2

≤ c‖P̂n̄h(y)‖+ ch2 ≤ ch,
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which completes the proof.

Corollary 9.2. For h sufficiently small the matrix G(x) = Th(x)−1µ̂h(x), x ∈
Γ̂h, is uniformly symmetric positive definite, i.e. there exists a constant λmin(G) > 0
such that

zTG(x)z ≥ λmin(G)‖z‖2 for almost all x ∈ Γ̂h and all z ∈ R3.

Proof. From lemma 9.1 and (5.10), (5.11), we obtain for all sufficiently small h
and arbitrary z ∈ R3 that

zTG(x)z = µ̂h(x)‖W (x)−1z‖2 ≥ µ̂h(x)

2
‖z‖2 , x ∈ Γ̂h.

We recall the definition µ̂h(x) =
√

det(UTDph(x)TDph(x)U). The matrix U

depends on the triangle T ∈ Fh and satisfies P̂(x)U = U , cf. Lemma 4.1. For h
sufficiently small we have Dph(x) = Q(y) + O(h2), y = ph(x). With ζ = p(x), we

have P(ζ) = P(x). From (2.3) and n(x)n(x)T−n̂h(x)n̂h(x)T = n(x)
(
n(x)−n̂h(x)

)T
+(

n(x)− n̂h(x)
)
n̂h(x)T it follows that

‖P− P̂‖L∞(Γ̂h) ≤ ch. (9.7)

Using this and the result in (8.16), we get

‖Q(y)− P̂(x)‖ ≤ ‖Q(y)−P(ζ)‖+ ‖P(ζ)−P(x)‖+ ‖P(x)− P̂(x)‖ ≤ ch.

This yields Dph(x) = P̂(x) +O(h) and consequently

UTDph(x)TDph(x)U = UT P̂(x)P̂(x)U +O(h) = UTU +O(h) = I +O(h).

Thus, for h sufficiently small, we have that

µ̂h(x) = 1 +O(h), x ∈ Γ̂h, (9.8)

is uniformly (in x) bounded from below by a strictly positive constant.

Using the result of the previous corollary we can derive ellipticity of the bilinear form
ah(·, ·):

Lemma 9.3. Assume that the quadrature rule QT̃ is exact for all polynomials of
degree 2m− 2. There exists a constants γ > 0 and h0 > 0 such that for all h ≤ h0

ah(vh, vh) ≥ γ‖∇Γhvh‖2L2(Γh) for all vh ∈ Sh. (9.9)

Proof. Let h be sufficiently small such that the matrix G is uniformly positive defi-
nite, cf. Corollary 9.2. From this positive definiteness and the fact that the quadrature
weights are strictly positive we get

QT (G∇Γ̂h
v̂h · ∇Γ̂h

v̂h) ≥ c0QT
(
‖∇Γ̂h

v̂h‖2
)
,

with c0 = λmin(G) > 0, independent of h. Since the quadrature rule QT̃ on T̃ is

exact for all polynomials of degree 2m − 2 and the mapping MT between T̃ and T
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is affine this exactness property also holds for QT on T . The functions (∂Γ
i v̂h)2 are

polynomials of degree 2m− 2 on T , and thus we have

ah(vh, vh) ≥ c0
∑
T∈Fh

QT
(
‖∇Γ̂h

v̂h‖2
)

= c0‖∇Γ̂h
v̂h‖2L2(Γ̂h)

≥ γ‖∇Γhvh‖2L2(Γh)

with γ > 0 due to (5.9) and (9.6).

Based on this ellipticity property we apply standard arguments to derive the following
variant of the Strang Lemma.

Theorem 9.4. Assume h is sufficiently small such that ah(·, ·) has the ellipticity
property (9.3). Define the data extension error Ẽf := ‖f − 1

µ`h
f `h‖L2(Γ). For the

solution uqh of (5.16) the following error bound holds:

‖∇Γ(u− (uqh)`)‖L2(Γ)

≤ c min
vh∈Sh

[
‖∇Γ(u− v`h)‖L2(Γ) + ‖(I −AΓ)P‖L∞(Γ)‖∇Γhvh‖L2(Γh)

+ sup
wh∈Sh/R

a(vh, wh)− ah(vh, wh)

‖∇Γhwh‖L2(Γh)

]
+ c sup

wh∈Sh/R

l(wh)− lh(wh)

‖∇Γhwh‖L2(Γh)
+ Ẽf .

(9.10)

Proof. Take an arbitrary vh ∈ Sh. We start with a triangle inequality and (9.5):

‖∇Γ(u− (uqh)`)‖L2(Γ) ≤ ‖∇Γ(u− v`h)‖L2(Γ) + ‖∇Γ(v`h − (uqh)`)‖L2(Γ)

≤ ‖∇Γ(u− v`h)‖L2(Γ) + c‖∇Γh(vh − uqh)‖L2(Γh).

We derive a bound for ‖∇Γheh‖L2(Γh), eh := uqh − vh. Let c1 be a constant such that
ẽh := eh+c1 satisfies

∫
Γh
ẽh dsh = 0. For arbitrary constants c, there holds ∇Γhc ≡ 0.

In particular, by (5.14), we get the consistency property ah(c, ẽh) = 0. Using this,
(9.9), and the definition of the discrete problems (5.4), (5.16), we obtain

‖∇Γheh‖2L2(Γh) = ‖∇Γh ẽh‖2L2(Γh) ≤ γ
−1 ah(eh, ẽh)

= γ−1
(
lh(ẽh)− l(ẽh) + a(uh, ẽh)− ah(vh, ẽh)

)
= γ−1

(
a(uh − vh, eh) + a(vh, ẽh)− ah(vh, ẽh) + lh(ẽh)− l(ẽh)

)
.

(9.11)

We will derive the bound

a(uh − vh, eh) ≤ c
(
‖∇Γ(u− v`h)‖L2(Γ) + ‖(I −AΓ)P‖L∞(Γ)‖∇Γhvh‖L2(Γh)

+ Ẽf
)
‖∇Γheh‖L2(Γh),

(9.12)

and combination of this with the relation (9.11) and the triangle inequality above
proves the result (9.10). For the derivation of (9.12) we note, cf. (9.4), that for all
wh ∈ S`h we have∫

Γ

AΓ∇Γu
`
h · ∇Γwh ds =

∫
Γ

1

µ`h
f `hwh ds =

∫
Γ

( 1

µ`h
f `h − f

)
wh ds+

∫
Γ

fwh ds

=

∫
Γ

( 1

µ`h
f `h − f

)
wh ds+

∫
Γ

∇Γu · ∇Γwh ds.
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Let c̄ be a constant that is chosen below and ēh := eh− c̄. From the previous equation,

a(uh − vh, eh) = a(uh − vh, ēh) =

∫
Γh

∇Γh(uh − vh) · ∇Γh ēh dsh

=

∫
Γ

AΓ∇Γ(u`h − v`h) · ∇Γē
`
h ds (9.13)

=

∫
Γ

∇Γ(u− v`h) · ∇Γe
`
h ds+

∫
Γ

( 1

µ`h
f `h − f

)
ē`h ds+

∫
Γ

(I −AΓ)P∇Γv
`
h · ∇Γe

`
h ds.

holds. Now c̄ is chosen as c̄ := 1
|Γ|
∫

Γh
µheh dsh such that we have∫

Γ

ē`h ds =

∫
Γ

e`h ds−
∫

Γ

c̄ ds =

∫
Γh

µheh dsh − |Γ|c̄ = 0.

Hence, the Poincare inequality ‖ē`h‖L2(Γ) ≤ c‖∇Γe
`
h‖L2(Γ) holds. Using this, the

Cauchy-Schwarz inequality and ‖∇Γe
`
h‖L2(Γ) ≤ c‖∇Γheh‖L2(Γh), cf. (9.5), in (9.13),

we get the estimate (9.12).

In the total error there are three different components, namely a geometric error
(approximation of Γ by Γh), an approximation error (results from using the finite
element space) and a quadrature error. In section 10 we study the first term on the
right hand-side in (9.10), which quantifies the approximation error. The second term
and the fifth term are related to the geometric error and are analyzed in section 11.
The third and fourth term on the right hand-side in (9.10) arise from the quadrature
and are treated in section 12.

10. Approximation error. For the analysis of the approximation error we
assume the following approximation quality of the finite element space Ŝh on Γ̂h,
cf. (5.1): there are m ≥ 1 and an interpolation operator Ih : Hm+1(Γ) → Ŝh such
that for s = 0, . . . ,m:∑

T∈Fh

‖we − Ihw‖2Hs(T ) ≤ ch
2(m+1−s)‖w‖2Hm+1(Γ) for all w ∈ Hm+1(Γ). (10.1)

Such an approximation property holds for the two possible choices for Ŝh mentioned
in Remark 3. The estimate (10.1) for s = 1 implies

‖∇Γ̂h
(we − Ihw)‖L2(Γ̂h) ≤ ch

m‖w‖Hm+1(Γ) for all w ∈ Hm+1(Γ). (10.2)

In the analysis we use the spaces Ŝh (on Γ̂h), cf. (5.1), Sh (on Γh), cf. (5.2), and the
lifted space S`h (on Γ), cf. (9.2). The analysis requires smoothness of the solution of
(1.1),

Assumption 10.1. The solution u of (1.1) satisfies u ∈ Hm+1(Γ) ∩H2
∞(Γ).

In the analysis below we use the following test function uh,∗ ∈ Sh to prove an
upper bound for the minimum over vh ∈ Sh in (9.10):

uh,∗ := ûh,∗ ◦ p−1
h ∈ Sh, ûh,∗ := Ihu ∈ Ŝh. (10.3)

Theorem 10.1. Let m ≥ 1 be such that (10.2) and assumption 10.1 are fulfilled.
For h sufficiently small the following holds, with uh,∗ as in (10.3):

min
vh∈Sh

‖∇Γ(u− v`h)‖L2(Γ) ≤ ‖∇Γ(u− u`h,∗)‖L2(Γ) ≤ chm‖u‖Hm+1(Γ) + chk+1‖u‖H2
∞(Γ)
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Proof. The test functions in (10.3) satisfy

uh,∗ ◦ ph(x) = ûh,∗(x), u`h,∗ ◦ p(y) = uh,∗(y), y := ph(x) ∈ Γh, x ∈ Γ̂h,

cf. (5.2), (9.2). Using û∗ := ue ∈ H1(Γ̂h), we define u∗ ∈ H1(Γh), and ũ ∈ H1(Γ) by

u∗ ◦ ph(x) = û∗(x), ũ ◦ p(y) = u∗(y), y := ph(x) ∈ Γh, x ∈ Γ̂h.

Note that ũ = u`∗ on Γ holds. From (5.9) it follows that ‖∇Γh

(
v̂ ◦ p−1

h

)
‖L2(Γh) ≤

c‖∇Γ̂h
v̂‖L2(Γ̂h) for all v̂ ∈ H1(Γ̂h) holds. Using this and (9.5) we get

‖∇Γ(ũ− u`h,∗)‖L2(Γ) = ‖∇Γ(u∗ − uh,∗)`‖L2(Γ) ≤ c‖∇Γh(u∗ − uh,∗)‖L2(Γh)

≤ c‖∇Γ̂h
(ue − ûh,∗)‖L2(Γ̂h).

Hence, with the triangle inequality and (10.2) we obtain

‖∇Γ(u− u`h,∗)‖L2(Γ) ≤ c‖∇Γ̂h
(ue − ûh,∗)‖L2(Γ̂h) + ‖∇Γ(ũ− u)‖L2(Γ)

≤ chm‖u‖Hm+1(Γ) + ‖∇Γ(ũ− u)‖L2(Γ).
(10.4)

We derive a bound for the term ‖∇Γ(ũ − u)‖L2(Γ). Let x ∈ Γ̂h be arbitrary, y =
ph(x) ∈ Γh, z = p(y) ∈ Γ, and ζ = p(x) ∈ Γ. From (7.6) it follows that

‖y − ζ‖ ≤ chk+1, ‖z − ζ‖ ≤ chk+1, ‖x− z‖ ≤ ch2. (10.5)

Our starting point is the identity ũ(z) = u(ζ), which holds a. e. on Γ̂h by definition of
ũ. Taking the tangential gradient on Γ̂h yields

P̂(x)Dph(x)TDp(y)T∇Γũ(z) = P̂(x)Dp(x)T∇Γu(ζ). (10.6)

From the smoothness of u and ‖z − ζ‖ ≤ chk+1, we get ∇Γu(ζ) = ∇Γu(z) + r0, with
‖r0‖ ≤ chk+1‖u‖H2

∞(Γ). We insert this into (10.6) and rearrange the terms to obtain

P̂(x)Dph(x)TDp(y)T∇Γ

(
ũ(z)− u(z)

)
= P̂(x)

(
Dp(x)T −Dph(x)TDp(y)T

)
P(z)∇Γu(z) + P̂(x)Dph(x)T r0 =: r1

(10.7)

For the matrix in first term on the right hand-side in (10.7) we have

P̂(x)
(
Dp(x)T −Dph(x)TDp(y)T

)
P(z)

= P̂(x)
(
Dp(x)T −Dph(x)T

)
P(z) + P̂(x)Dph(x)T (I−Dp(y)T

)
P(z) =: A0 +A1.

Using ‖P(z) − P(x)‖ = ‖P(z) − P(ζ)‖ ≤ c‖z − ζ‖ ≤ chk+1 and (8.9) we obtain
‖A0‖ ≤ chk+1. Differentiating the relation p(y) = y−d(y)n(p(y)) one obtainsDp(y) =(
I + d(y)H(z)

)−1
P(z), with H(z) = Dn(z). From (7.7) one obtains |d(y)| ≤ chk+1,

and this yields

Dp(y) = P(z) +O(hk+1). (10.8)

Thus we get ‖A1‖ ≤ c‖P(z)(I − Dp(y))‖ ≤ chk+1. Using the bounds for A0, A1 in
(10.7) we get

A∇Γ

(
ũ(z)− u(z)

)
= r1, ‖r1‖ ≤ chk+1‖u‖H2

∞(Γ),

A := P̂(x)Dph(x)TDp(y)TP(z).
(10.9)
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We now analyze the matrix A. From (8.3) and |dh(x)| ≤ ch2 we get

Dph(x) = Q(y) +O(h2). (10.10)

Combining this with (10.8) yields A = (P̂(x)Q(y)T + E1)P(z), with ‖E1‖ ≤ ch2.

We consider the matrix P̂(x)Q(y)T . Using (8.19) we get

‖P̂(x)(Q(y)T − I)‖ ≤ 1

|α(y)|
‖P̂(x)n̄h(y)‖ ≤ ch.

Using ‖P(z)−P(ζ)‖ ≤ chk+1, P(ζ) = P(x), (9.7) gives ‖P̂(x)−P(z)‖ ≤ ch. Hence,

‖P̂(x)Q(y)T −P(z)‖ ≤ ‖P̂(x)(Q(y)T − I)‖+ ‖P̂(x)−P(z)‖ ≤ ch.

From this we get A = (I +E2)P(z), with ‖E2‖ ≤ ch. Using this in (10.9) we get, for
h sufficiently small,

‖∇Γ

(
ũ(z)− u(z)

)
‖ = ‖(I + E2)−1r1‖ ≤ c‖r1‖ ≤ chk+1‖u‖H2

∞(Γ),

which implies ‖∇Γ(ũ− u)‖L2(Γ) ≤ chk+1‖u‖H2
∞(Γ). Combining this with the result in

(10.4) completes the proof.

11. Geometric error. We study the terms ‖(I − AΓ)P‖L∞(Γ)‖∇Γhvh‖L2(Γh)

and Ẽf := ‖f − 1
µ`h
f `h‖L2(Γ) that occur in the Strang Lemma, cf. (9.10).

Theorem 11.1. Let uh,∗ ∈ Sh be as in (10.3). For h sufficiently small the
following estimates hold:

‖(I −AΓ)P‖L∞(Γ)‖∇Γhuh,∗‖L2(Γh) ≤ chk+1‖u‖H2(Γ), (11.1)

‖f − 1

µ`h
f `h‖L2(Γ) ≤ chk+1‖f‖H1

∞(U). (11.2)

Proof. Using ‖d‖L∞(Γh) ≤ chk+1, ‖ 1
µh
− 1‖L∞(Γh) ≤ chk+1, cf. (2.3) and (2.5), in

(9.3) yields AΓ(p(x)) = P(x)P̄(x)P(x) +O(hk+1), x ∈ Γh. From P(p(x)) = P(x) and
the identity PP̄P−P = P(P− P̄)(P̄−P)P we obtain

‖(I −AΓ)P‖L∞(Γ) ≤ c‖PP̄P−P‖L∞(Γh) + chk+1

≤ c‖P− P̄‖2L∞(Γh) + chk+1 ≤ chk+1.
(11.3)

The last estimate above follows from (2.3). Using (9.5), (5.9) and (10.2) we get

‖∇Γhuh,∗‖L2(Γh) ≤ c‖∇Γ̂h
Ihu‖L2(Γ̂h) ≤ c

(
‖∇Γ̂h

ue‖L2(Γ̂h) + ‖u‖H2(Γ)

)
≤ c
(
‖∇Γu‖L2(Γ) + ‖u‖H2(Γ)

)
≤ c‖u‖H2(Γ).

(11.4)

Combination of (11.3) and (11.4) yields the proof of (11.1).
We consider the data extension fh(x) = f(x) − cf , x ∈ Γh with cf as in (5.3).

For the constant cf we get, using the smoothness of f , dist(Γ,Γh) ≤ chk+1, (2.5), and∫
Γ
f ds = 0:

|cf | ≤
1

|Γh|

∣∣∣∣∫
Γh

(f − f ◦ p) dsh
∣∣∣∣+

1

|Γh|

∣∣∣∣∫
Γh

f ◦ p dsh
∣∣∣∣

≤ c‖∇f‖L∞(U)h
k+1 +

1

|Γh|

∣∣∣∣∫
Γ

f
1

µ`h
ds

∣∣∣∣
≤ c‖∇f‖L∞(U)h

k+1 + c‖ 1

µ`h
− 1‖L∞(Γ)‖f‖L1(Γ) ≤ chk+1‖f‖H1

∞(U).

(11.5)
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With this we obtain

‖f − 1

µ`h
f `h‖L2(Γ) ≤ c‖f − f `h‖L2(Γ) + chk+1‖f‖L2(Γ)

≤ c‖fe − fh‖L2(Γh) + chk+1‖f‖L2(Γ) ≤ c‖fe − f‖L2(Γh) + c|cf |+ chk+1‖f‖L2(Γ)

≤ c‖∇f‖L∞(U)‖x− p(x)‖L∞(Γh) + chk+1‖f‖H1
∞(U) ≤ chk+1‖f‖H1

∞(U),

which proves the result in (11.2).

12. Quadrature error. In this section we analyze the quadrature error, i.e.,
we derive bounds for the third and fourth term in the Strang Lemma. Recall from
section 5 the affine mapping from the unit reference triangle T̃ to T ∈ Fh, given
by x = MT x̃ = BT x̃ + bT , x̃ ∈ T̃ , x ∈ T . Note that BT ∈ R3×2. Furthermore
‖BT ‖ ≤ ch holds. Correspondence of functions on T̃ and T is given by ũ(x̃) =

û(BT x̃ + bT ) = û(x). Note that for n ∈ N, ũ ∈ Cn(T̃ ) and ξi ∈ R2, 1 ≤ i ≤ n
we have Dnũ(x̃)(ξ1, . . . ξn) = Dnû(x)(BT ξ1, . . . , BT ξn) = Dn

T û(x̂)(BT ξ1, . . . , BT ξn)
(where DT denotes the tangential derivative along T ), and thus as in Theorem 15.1
in [3] we obtain, for n ∈ N, p ∈ [1,∞],

|ũ|Hnp (T̃ ) ≤ c‖BT ‖
n|T |−1/p|û|Hnp (T ) ≤ chn|T |−1/p|û|Hnp (T ) for ũ ∈ Hn

p (T̃ ). (12.1)

In the seminorm |û|Hnp (T ) only the derivatives of order n are involved and these deriva-
tives are the tangential ones along the triangle T . We note that an estimate in the
other direction, i.e. bounding derivatives of û by those of ũ, causes problems, because
the triangle T̂ may have arbitrary small angles. Thus the smallest singular value of
BT cannot be bounded from below by ch with a uniform (w.r.t. T and h) constant
c > 0.

The quadrature error for the quadrature rule (5.12) is defined by

ET̃ (φ̃) =

∫
T̃

φ̃ dx̃−QT̃ (φ̃), ET (φ̂) =

∫
T

φ̂ dx̂−QT (φ̂). (12.2)

Note that ET (φ̂) = |T |ET̃ (φ̃) holds.

12.1. Smooth approximation of G. In the bilinear form ah(uh, vh) the quadra-
ture rule QT is applied to the function G∇Γ̂h

ûh ·∇Γ̂h
v̂h. On each triangle T ∈ Γ̂h the

vector functions ∇Γ̂h
ûh and ∇Γ̂h

v̂h are polynomials and thus have C∞ smoothness.

The matrix G = G(x) = Th(x)−1µ̂h(x), x ∈ T , however, contains derivatives of the
function ph, which is only Lipschitz. Hence, G is not even continuous. In this section
we show that, on T , this matrix function can be approximated with accuracy O(hk+1)
by a smooth matrix function, denoted by Gs. The components T−1

h = (WWT )−1 and
µ̂h of G are treated in the lemmas 12.1 and 12.2 below.

Recall the definition W (x) = I − Q̂(x) + P̂(x)Dph(x)T , cf. Lemma 5.1. From
(5.8), (8.2), (8.4), and the definition of W , we get for almost all x ∈ Γ̂h:

P̂(x)W (x) = P̂(x)Dph(x)T = P̂(x)Dph(x)TQ(y)T

= P̂(x)Dph(x)T P̄(y) = W (x)P̄(y), y = ph(x).
(12.3)

This implies the commutator relations (note that W is invertible, cf. (9.6)):

W (x)W (x)T P̂(x) = P̂(x)W (x)W (x)T ,(
W (x)W (x)T

)−1
P̂(x) = P̂(x)

(
W (x)W (x)T

)−1
.

(12.4)
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The oblique projector Q̂(x), x ∈ Γ̂h, is approximated by:

Q̂s(x) := I− 1

α̂s(x)
n̂h(x)n(x)T , with α̂s(x) = n̂h(x)Tn(x). (12.5)

Note that n̂h is constant on T ∈ Γ̂h and the normal n is smooth (depending only on

the smoothness of Γ). Hence, Q̂s(x) is a piecewise smooth matrix function. Similar
to (5.8), the following commutation relations hold for x ∈ Γ̂h:

Q̂s(x)P(x) = P(x), P(x)Q̂s(x) = Q̂s(x),

P̂(x)Q̂s(x) = P̂(x), Q̂s(x)P̂(x) = Q̂s(x).
(12.6)

We use Q̂s to define a piecewise smooth approximation of W (x):

W s(x) := I− Q̂s(x) + P̂(x)Dp(x)T , x ∈ Γ̂h. (12.7)

Note that P̂(x) is constant on T ∈ Fh and Dp(x) is a smooth matrix function (de-
pending only on the smoothness of Γ), hence, W s(x) is smooth for x ∈ T . Using (2.3)

and (8.1), we get (for h sufficiently small) W s(x) = I − Q̂s(x) + P̂(x)P(x) +O(h2).

An elementary computation yields −Q̂s + P̂P = n̂h(α̂sn − n̂h)T − 1
α̂s (α̂sn − n̂h)nT .

Using |α̂s − 1| = 1
2‖n̂h − n‖

2 ≤ ch2 we thus get

W s(x) = I +O(h), x ∈ Γ̂h. (12.8)

In particular, for h sufficiently small, W s is invertible. Similar to (12.3) and (12.4),
we obtain for almost all x ∈ Γ̂h:

P̂(x)W s(x) = P̂(x)Dp(x)T = W s(x)P(x), (12.9)

and this yields the commutation relations

W s(x)W s(x)T P̂(x) = P̂(x)W s(x)W s(x)T ,(
W s(x)W s(x)T

)−1
P̂(x) = P̂(x)

(
W s(x)W s(x)T

)−1
.

(12.10)

Lemma 12.1. For h sufficiently small the following holds:∥∥∥P̂((WWT
)−1 −

(
W sW s T

)−1
)

P̂
∥∥∥
L∞(Γ̂h)

≤ chk+1. (12.11)

Proof. We suppress the argument x in the notation below. We use the matrix
identity A−1 −B−1 = A−1(B −A)B−1 and the commutator relations (12.4), (12.10)
to compute

P̂
(
(WWT )−1 − (W sW s T )−1

)
P̂

= P̂(WWT )−1
(
W sW s T −WWT

)
(W sW s T )−1P̂

= (WWT )−1P̂
(
W sW s T −WWT

)
P̂(W sW s T )−1.

(12.12)

From (9.6) and (12.8) we obtain

‖(WWT )−1‖L∞(Γ̂h) ≤ c, ‖(W sW s T )−1‖L∞(Γ̂h) ≤ c. (12.13)
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The relations (12.3), (12.9) yield

P̂(W sW s T −WWT )P̂ = P̂
(

(Dp−Dph)TDp+DpTh (Dp−Dph)
)
P̂

= P̂
(

(Dp−Dph)TPDp+DpTh P̄(y)(Dp−Dph)
)
P̂,

where in the last equality we used Dp(x) = P(x)Dp(x), Dph(x) = P̄(y)Dph(x) with
y = ph(x), cf. (8.1), (8.2), (8.4). Using the estimates in (8.9) and (8.10) results in

‖P̂(W sW s T −WWT )P̂‖L∞(Γ̂h) ≤ ch
k+1,

and combining this with the results in (12.12) and (12.13) completes the proof.

For the estimate in (12.11) to hold the use of the projections P̂ on the left hand-side is
essential. Without these projections, only the asymptotically worse upper bound chk

holds. This difference in the upper bounds is directly related to the different bounds
in (8.8) and (8.9).

For given T ∈ Fh let U = UT be the orthogonal matrix from Lemma 4.1. We
introduce

µ̂s(x) :=
√

det(UTDp(x)TDp(x)U), x ∈ Γ̂h. (12.14)

Since U is constant on each T and Dp(x) is a smooth matrix function (depending
only on the smoothness of Γ) we have that µ̂s is a smooth matrix function on each
T ∈ Fh.

Lemma 12.2. For h sufficiently small the following holds:

‖µ̂h − µ̂s‖L∞(Γ̂h) ≤ ch
k+1. (12.15)

Proof. Let x ∈ Γ̂h, y = ph(x), ζ = p(x), and U ∈ R3×2 be the orthogonal matrix

from Lemma 4.1. Note that P̂(x)U = U holds. We define A = Dp(x)U ∈ R3×2 and
B = Dph(x)U ∈ R3×2, hence µ̂s(x)2 − µ̂h(x)2 = det(ATA)− det(BTB) holds. Using

Dp(x) = P(x) +O(h2) = P̂(x) +O(h), cf. (9.7), and Dph(x) = P̂(x) +O(h), we get

with P̂(x)U = U that

ATA = I +O(h), BTB = I +O(h) (12.16)

hold. Let M(t) := ATA+ t(BTB−ATA) be a matrix valued function, t ∈ [0, 1]. Due
to (12.16) we have, for h sufficiently small,

|detM(t)− 1| ≤ 1

2
, t ∈ [0, 1]. (12.17)

Hence, M(t) is invertible and has a uniformly bounded condition number. We apply
the mean value theorem to the scalar valued function f(t) := detM(t), t ∈ [0, 1]:
There exists s ∈ (0, 1) with

detBTB − detATA = f(1)− f(0) = f ′(s) = f(s) tr
(
M(s)−1(BTB −ATA)

)
.

With this we obtain∣∣detBTB − detATA
∣∣ ≤ 3|detM(s)| ‖M(s)−1‖‖BTB −ATA‖ ≤ c

∥∥BTB −ATA∥∥ .
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Using P̂U = U , Dph(x) = P̄(y)Dph(x), Dp(x) = P(x)Dp(x) and the estimates in
Lemma 8.2 we obtain

‖ATA−BTB‖ ≤ ‖(B −A)TB‖+ ‖AT (B −A)‖

= ‖UT P̂(Dph −Dp)T P̄(y)DphU‖+ ‖UTDpTP(Dph −Dp)P̂U‖

≤ c
(
‖P̂(Dph −Dp)T P̄(y)‖+ ‖P(Dph −Dp)P̂‖

)
≤ chk+1.

Both µ̂s(x) and µ̂h(x) are strictly positive and uniformly bounded away from 0
for h sufficiently small due to (12.16). Hence, we obtain

|µ̂s(x)− µ̂h(x)| = |µ̂
s(x)2 − µ̂h(x)2|
|µ̂s(x) + µ̂h(x)|

≤ c
∣∣detBTB − detATA

∣∣ ≤ chk+1.

The results in the Lemmas 12.1, 12.2, induce a piecewise (on T ∈ Fh) smooth ap-

proximation of the matrix G(x) = µ̂(x)
(
W (x)W (x)T

)−1
.

Corollary 12.3. Define

Gs(x) = µ̂s(x)
(
W s(x)W s(x)T

)−1
, x ∈ T ∈ Fh.

Take m ∈ N, m ≥ 1. Provided Γ is sufficiently smooth, the entries of the matrix Gs

have the smoothness property Gsij ∈ Hm
∞(T ), 1 ≤ i, j ≤ 3, for all T ∈ Fh. Furthermore

the estimates

max
T∈Fh

‖Gs‖Hm∞(T ) ≤ c, (12.18)

max
T∈Fh

∥∥∥P̂(G−Gs)P̂
∥∥∥
L∞(T )

≤ chk+1, (12.19)

hold, with constants c independent of h.
Proof. From (2.1) it is clear that the smoothness of p and n, in a small neigh-

borhood of Γ, depends only on the smoothness of Γ. On T ∈ Fh the normal
n̂h is constant, hence the smoothness of (the entries of) the matrix W s(x)−1 =(
I − Q̂s(x) + P̂(x)Dp(x)T

)−1
depends only on the smoothness of the matrix Dp

and of the vector field n. Similarly, on T ∈ Fh the orthogonal matrix U = UT is con-
stant and thus the smoothness of µ̂s depends only on the smoothness of the matrix
Dp. On T ∈ Fh, (higher) derivatives of Gsij can be estimated by bounds that depend
only on bounds for (higher) derivatives of p and n. If Γ is sufficiently smooth, these
bounds are uniform w.r.t. T ∈ Fh. From these observations it follows that for all
entries of the matrix Gs, we have Gsij ∈ Hm

∞(T ) for all T ∈ Fh and that the result
(12.18) holds. The result (12.19) directly follows from (12.15) and Lemma 12.1.

12.2. Bound on the quadrature error in the bilinear form. We derive

a bound for the term supwh∈Sh/R
a(vh,wh)−ah(vh,wh)
‖∇Γh

wh‖L2(Γh)
in the Strang Lemma, where we

take vh = uh,∗ as in Theorem 10.1. The technique used in the error analysis below is
very similar to the one used in the analysis of the quadrature error in [3].

Theorem 12.4. Assume that the quadrature rule QT̃ is exact for all polynomials
of degree 2m− 2 and that (10.1) and assumption 10.1 hold. For uh,∗ from (10.3), the
following holds for h sufficiently small:

sup
wh∈Sh/R

a(uh,∗, wh)− ah(uh,∗, wh)

‖∇Γhwh‖L2(Γh)
≤ chm‖u‖Hm+1(Γ) + chk+1‖u‖H2(Γ).
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Proof. We write vh, v̂h for uh,∗ and ûh,∗. Note that∫
Γ̂h

G∇Γ̂h
v̂h · ∇Γ̂h

ŵh dŝh =

∫
Γ̂h

P̂GP̂∇Γ̂h
v̂h · ∇Γ̂h

ŵh dŝh

holds, and similarly with G replaced by Gs. We use the splitting

a(vh, wh)− ah(vh, wh) =

∫
Γ̂h

P̂(G−Gs)P̂∇Γ̂h
v̂h · ∇Γ̂h

ŵh dŝh

+
∑
T∈Fh

ET (Gs∇Γ̂h
v̂h · ∇Γ̂h

ŵh) +
∑
T∈Fh

QT
(
P̂(Gs −G)P̂∇Γ̂h

v̂h · ∇Γ̂h
ŵh
)

=: A+B + C,

(12.20)

cf. (12.2), (5.13), (5.14). For the first term in (12.20) we get, using (12.19) and
‖v̂h‖H1(Γ̂h) = ‖Ihu‖H1(Γ̂h) ≤ ‖ue‖H1(Γ̂h) + ch‖u‖H2(Γ) ≤ c‖u‖H2(Γ) , cf. (10.1) and

(9.5),

|A| ≤ chk+1‖∇Γ̂h
v̂h‖L2(Γ̂h)‖∇Γ̂h

ŵh‖L2(Γ̂h) ≤ ch
k+1‖u‖H2(Γ)‖∇Γhwh‖L2(Γh). (12.21)

For the third term, we use the positivity of the quadrature weights to obtain

|C| ≤
∑
T∈Fh

‖P̂(Gs −G)P̂‖L∞(T )‖∇Γ̂h
v̂h‖L∞(T )‖∇Γ̂h

ŵh‖L∞(T )QT (1).

Clearly, QT (1) = |T |. We use the local estimate
√
|T |‖f‖L∞(T ) ≤ c‖f‖L2(T ) which is

valid for finite element functions f on arbitrarily shaped triangles. We again apply
(12.19) and combine this with a Cauchy-Schwarz inequality to obtain

|C| ≤ chk+1
∑
T∈Fh

‖∇Γ̂h
v̂h‖L2(T )‖∇Γ̂h

ŵh‖L2(T )

≤ chk+1‖∇Γ̂h
v̂h‖L2(Γ̂h)‖∇Γ̂h

ŵh‖L2(Γ̂h) ≤ ch
k+1‖u‖H2(Γ)‖∇Γhwh‖L2(Γh). (12.22)

In the second term in (12.20) we have smooth integrands Gsij , ∂
Γ
i v̂h, ∂Γ

j ŵh, on
each T ∈ Fh. The latter two are polynomials of degree m − 1. For the derivation of
a bound we can apply an analysis as in [3]. The result (28.16) in [3] states:

|ET̃ (ãṽw̃)| ≤ c
(m−1∑
j=0

|ã|Hm−j∞ (T̃ )|ṽ|Hj(T̃ )

)
‖w̃‖L2(T̃ )

for all ã ∈ Hm
∞(T̃ ), ṽ ∈ Pm−1(T̃ ), w̃ ∈ Pm−1(T̃ ). With the result in (12.1) (note that

Hj(T ) := Hj
2(T )) and using ET (φ̂) = |T |ET̃ (φ̃) we get

|ET (avw)| ≤ chmT
(m−1∑
j=0

|a|Hm−j∞ (T )|v|Hj(T )

)
‖w‖L2(T )

≤ chmT ‖a‖Hm∞(T )‖v‖Hm−1(T )‖w‖L2(T )
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for all a ∈ Hm
∞(T ), v ∈ Pm−1(T ), w ∈ Pm−1(T ). For the second term in (12.20), we

take a = Gsij , v = ∂Γ
i v̂h, w = ∂Γ

j ŵh, and using (12.18) we get

|B| =
∣∣∣ ∑
T∈Fh

3∑
i,j=1

ET (Gsij∂
Γ
i v̂h∂

Γ
j ŵh)

∣∣∣ ≤ chm ∑
T∈Fh

‖v̂h‖Hm(T )‖∇Γ̂h
ŵh‖L2(T )

≤ chm
( ∑
T∈Fh

‖v̂h‖2Hm(T )

) 1
2 ‖∇Γ̂h

ŵh‖L2(Γ̂h)

≤ chm‖u‖Hm+1(Γ)‖∇Γhwh‖L2(Γh).

(12.23)

In the last inequality we used
∑
T∈Fh ‖v̂h‖

2
Hm(T ) =

∑
T∈Fh ‖Ihu‖

2
Hm(T ) ≤ c‖u‖

2
Hm+1(Γ),

which follows from (10.1). Combining the bounds (12.21), (12.22), (12.23) with the
splitting (12.20) completes the proof.

12.3. Bound on the quadrature error in the right hand-side functional.

We finally analyze the term supwh∈Sh/R
l(wh)−lh(wh)
‖∇Γh

wh‖L2(Γh)
in the Strang Lemma. The

idea of the analysis is the same as used above: We replace the Lipschitz functions
fh ◦ ph µ̂h and fqh ◦ ph µ̂h by piecewise smooth ones and split the error into three
terms. As fh and fqh only differ by a constant, the estimates are very similar. For the
approximation of µ̂h we use µ̂s defined in (12.14), with error bound as in (12.15). For
the approximation of f ◦ ph we introduce fs := f ◦ p (= fe). Using the result in (7.6)
we obtain,

‖fs(x)− f ◦ ph‖L∞(Γ̂h) ≤ ‖∇f‖L∞(U) ‖p− ph‖L∞(Γ̂h) ≤ ch
k+1‖f‖H1

∞(U). (12.24)

Similar to the proof of Corollary 12.3, the smoothness of fs on Γ̂h only depends on
the smoothness of f and p and on piecewise constant quantities pertaining to Γ̂h.
Thus, we have

‖fs‖Hm∞(Γ̂h) ≤ c ‖f‖Hm∞(Γ) . (12.25)

Recall the definition fh(x) = f(x) − cf , cf = 1
|Γh|

∫
Γh
f dsh, cf. (5.3). Using the

bound for cf given in (11.5) and the results in (12.24), (12.15) we get

‖(fh ◦ ph)µ̂h − fsµ̂s‖L∞(Γ̂h) ≤ ch
k+1‖f‖H1

∞(U). (12.26)

Theorem 12.5. Assume that the quadrature rule QT̃ is exact for all polynomials
of degree 2m − 2. Furthermore, assume that f ∈ H1

∞(U) ∩ Hm
∞(Γ). The following

holds:

sup
wh∈Sh/R

l(wh)− lh(wh)

‖∇Γhwh‖L2(Γh)
≤ chm‖f‖Hm∞(Γ) + chk+1‖f‖H1

∞(U). (12.27)

Proof. Take an arbitrary wh ∈ Sh/R and recall the Poincaré inequality

‖wh‖L2(Γh) ≤ c ‖∇Γhwh‖L2(Γh) . (12.28)

We use the error splitting

l(wh)− lh(wh) =

∫
Γ̂h

(
(fh ◦ ph)µ̂h − fsµ̂s

)
ŵh dŝh

+
∑
T∈Fh

ET (fsµ̂sŵh)

+
∑
T∈Fh

QT
(
(fsµ̂s − fqhµ̂h)ŵh

)
.

(12.29)
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For the first term we obtain, using (12.26), (9.8), and (12.28):∣∣∣∫
Γ̂h

(
(fh ◦ ph)µ̂h − fsµ̂s

)
ŵh dŝh

∣∣∣ ≤ chk+1‖f‖H1
∞(U)‖ŵh‖L2(Γ̂h)

≤ chk+1‖f‖H1
∞(U)‖wh‖L2(Γh) ≤ chk+1‖f‖H1

∞(U)‖∇Γhwh‖L2(Γh).

(12.30)

For the analysis of the second term, with the smooth integrand fsµ̂sŵh, we use a
result from [3]. From Theorem 28.3 in [3], we have

|ET̃ (ãṽ)| ≤ c
(
|ã|Hm∞(T̃ )|ṽ|L2(T̃ ) +

(
|ã|Hm−1

∞ (T̃ ) + |ã|Hm∞(T̃ )

)
|ṽ|H1(T̃ )

)
(12.31)

for all ã ∈ Hm
∞(T̃ ), ṽ ∈ Pm(T̃ ). Using this with ã = f̃sµ̃s, ṽ = w̃h, (12.1),

supT∈Fh ‖µ̂
s‖Hm∞(T ) ≤ c, and ET (φ) = |T |ET̃ (φ̃), we get

|ET (fsµ̂sŵh)| = |T |
∣∣∣ET̃ (f̃sµ̃sw̃h)

∣∣∣
≤ c |T |

(
|f̃sµ̃s|Hm∞(T̃ )|w̃h|L2(T̃ ) +

(
|f̃sµ̃s|Hm−1

∞ (T̃ ) + |f̃sµ̃s|Hm∞(T̃ )

)
|w̃h|H1(T̃ )

)
≤ chm|T | 12

(
|fsµ̂s|Hm∞(T )|ŵh|L2(T ) +

(
|fsµ̂s|Hm−1

∞ (T ) + |fsµ̂s|Hm∞(T )

)
|ŵh|H1(T )

)
≤ chm|T | 12 ‖fs‖Hm∞(T )‖ŵh‖H1(T ). (12.32)

Summation over T and (12.25) yield∣∣∣ ∑
T∈Fh

ET (fsµ̂sŵh)
∣∣∣ ≤ chm ∑

T∈Fh

|T | 12 ‖fs‖Hm∞(T )‖ŵh‖H1(T )

≤ chm‖f‖Hm∞(Γ)‖ŵh‖H1(Γ̂h).

(12.33)

Using ‖ŵh‖H1(Γ̂h) ≤ c‖wh‖H1(Γh) (which follows from (5.9), (9.6), and (9.8)) and the

Poincaré inequality (12.28) yields∣∣∣ ∑
T∈Fh

ET (fsµ̂sŵh)
∣∣∣ ≤ chm‖f‖Hm∞(Γ)‖∇Γhwh‖L2(Γh). (12.34)

Finally, we treat the third term in (12.29). Using∑
T∈Fh

QT (|ŵh|) ≤ c
∑
T∈Fh

|T |‖ŵh‖L∞(T ) ≤ c‖ŵh‖L2(Γ̂h) ≤ c‖∇Γhwh‖L2(Γh),

we get∣∣∣ ∑
T∈Fh

QT
(
(fsµ̂s − fqhµ̂h)ŵh

)∣∣∣ ≤ ‖fsµ̂s − fqhµ̂h‖L∞(Γ̂h)

∑
T∈Fh

QT (|ŵh|)

≤ c ‖fsµ̂s − fqhµ̂h‖L∞(Γ̂h)
‖∇Γhwh‖L2(Γh).

(12.35)

We derive a bound for the term ‖fsµ̂s − fqhµ̂h‖L∞(Γ̂h)
. Recall the definitions

fqh = f ◦ ph − cqf , cqf =
1

A

∑
T∈Fh

QT (f ◦ phµ̂h), A =
∑
T∈Fh

QT (µ̂h)
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from (5.15). Using the results in (12.24) and (12.15), we get

‖fsµ̂s − fqhµ̂h‖L∞(Γ̂h)
≤ ‖fsµ̂s − f ◦ phµ̂h‖L∞(Γ̂h) + |cqf | ‖µ̂h‖L∞(Γ̂h)

≤ chk+1‖f‖H1
∞(U) + c |cqf |.

(12.36)

Using
∫

Γ̂h
(fh ◦ ph)µ̂h dŝh =

∫
Γh
fh dsh = 0, we obtain the splitting∑

T∈Fh

QT (f ◦ phµ̂h) =
∑
T∈Fh

QT (f ◦ phµ̂h − fsµ̂s) +
∑
T∈Fh

ET (fsµ̂s)

+

∫
Γ̂h

(fsµ̂s − fh ◦ phµ̂h) dŝh =: I + II + III.

(12.37)

Due to (12.24) and (12.15), for the first term in (12.37) we get

|I| ≤ ‖fsµ̂s − f ◦ phµ̂h‖L∞(Γ̂h)

∑
T∈Fh

QT (1) ≤ chk+1 ‖f‖H1
∞(U) .

We insert ŵh = 1 into (12.33). The second term in (12.37) can be bounded using this
and (12.25):

|II| =
∣∣∣ ∑
T∈Fh

ET (fsµ̂s)
∣∣∣ ≤ chm‖f‖Hm∞(Γ).

Furthermore, using the first inequality in (12.30) with ŵh = 1, we get

|III| =
∣∣∣∫

Γ̂h

(fh ◦ ph)µ̂h − fsµ̂s dŝh
∣∣∣ ≤ chk+1‖f‖H1

∞(U).

From (9.8) it follows that ‖µ̂h − 1‖L∞(Γ̂h) ≤ ch and thus, for h sufficiently small we

have |A|−1 ≤ c. Using this and the bounds for I, II, and III in (12.37), we get

|cqf | ≤ ch
k+1‖f‖H1

∞(U) + chm‖f‖Hm∞(Γ).

Combining this with the results in (12.35) and (12.36) we finally obtain the bound
for the third term:∣∣ ∑
T∈Fh

QT
(
(fsµ̂s − fqhµ̂h)ŵh

)∣∣ ≤ (chk+1‖f‖H1
∞(U) + chm‖f‖Hm∞(Γ)

)
‖∇Γhwh‖L2(Γh).

Combining this bound with the estimates in (12.30) and (12.34) completes the proof.

13. Main theorem. Combining the results derived in the previous sections with
the Strang Lemma we obtain a discretization error bound. This main result and the
key assumptions are summarized in the following theorem. We assume that Γ is
sufficiently smooth, but do not specify the required smoothness.

Theorem 13.1. Assume that the finite element level set function φkh satisfies
(2.2). For the construction of a quasi-normal field we apply a gradient recovery method
to φkh that satisfies Assumption 3.1. On Γ̂h (zero level of φ1

h) we use a finite element

space Ŝh that has the approximation property (10.1), with m ≥ 1. Assume that f ∈
Hm
∞(Γ)∩H1

∞(U) and that the solution u of (1.1) has regularity u ∈ Hm+1(Γ)∩H2
∞(Γ).

We consider the discrete problem (5.16) with data extension fh as in (5.3) and with
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a quadrature rule QT that is exact for all polynomials of degree 2m − 2. Then there
exist constants h0 > 0 and c such that for all h ≤ h0 the error in the solution uqh of
(5.16) is bounded by∥∥∇Γ

(
u− (uqh)`

)∥∥
L2(Γ)

≤ chm
(
‖u‖Hm+1(Γ) + ‖f‖Hm∞(Γ)

)
+ chk+1

(
‖u‖H2

∞(Γ) + ‖f‖H1
∞(U)

)
.

14. Numerical experiment. As surface we take the unit sphere Γ = {x ∈ R3 |
‖x‖2 = 1} embedded in Ω = (−2, 2)3. This surface is characterized as the zero-level of
the level set function φ(x) := ‖x‖ − 1. A family {Tl}l≥0 of tetrahedral triangulations
of Ω is used. We triangulate Ω starting with a uniform subdivision into 48 tetra-
hedra with mesh size h0 =

√
3. Then, an adaptive red-green refinement-algorithm

(implemented in the software package DROPS [7]) is applied; in each refinement step
the tetrahedra that contain the (approximate) surface are refined such that on level
l = 1, 2, . . . there holds hT ≤

√
3 2−l in a small neighborhood of Γ. The family {Tl}l≥0

is consistent and quasi-uniform (in a neighborhood of the interface). As piecewise lin-

ear approximation of φ we take φ̂h := φ1
h := I1(φ) where I1 is the standard nodal

interpolation operator on Tl for piecewise linear finite elements. The piecewise lin-
ear interface is given by Γ̂h := {x ∈ Ω | φ̂h(x) = 0 }. For the approximation of
φ two choices are considered below. A piecewise quadratic approximation of φ is
taken as φh := φ2

h := I2(φ) where I2 is the standard nodal interpolation operator
on Tl for piecewise quadratic finite elements. The higher order interface is given by
Γh := {x ∈ Ω | φh(x) = 0 }. This choice satisfies (2.2) for k = 2. We also consider the

choice φh := φ̂h, hence Γh = Γ̂h, which satisfies (2.2) with k = 1. The point in taking
Γh = Γ̂h is to show the dependence on both m and k of the bound in Theorem 13.1.

For the case φh = φ2
h (k = 2) the quasi normal field nh is a vector-valued, con-

tinuous, piecewise quadratic finite element function. It is computed as described in
remark 2. The skew projection y = ph(x) ∈ Γh, x ∈ U , is computed as in [14, Sec. 5].
Given x and y, one can compute nh(y), Dnh(y), and dh(x) = 〈x− y, nh(y)〉. Further-
more, the exact normal on Γh can be determined from n̄h(y) = ‖∇φh(y)‖−1∇φh(y).
Hence, the Jacobian Dph(x) can be computed using the relation (8.3), and µ̂h can be
computed as in lemma 4.1.

Experiment 1. We perform an experiment to show that the estimates in lemma
8.2 and lemma 12.2 are sharp. These estimates are crucial in the error analysis for
bounding the errors resulting from variational crimes by O(hk+1) instead of O(hk)
terms. For the unit sphere, one computes Dp(x) = ‖x‖−1(I − xxT /‖x‖2). For
given x ∈ Γ̂h, the Jacobian Dph(x) can be determined as explained above. The
corresponding error ‖Dph − Dp‖L∞(Γ̂h) is approximated by taking the maximum of

‖Dph(x)−Dp(x)‖ over the vertices x of all triangles T ∈ Fh. In Table 14.1 this error
is given. The results show the O(h2) behavior as proven in (8.8).

The projected error ‖P(Dph −Dp)P̂‖L∞(Γ̂h) (approximated in the same way as

explained above) is also given in Table 14.1 and shows a O(h3) behavior as proven in
(8.9). Finally, in Table 14.2, we give the error quantity ‖µ̂h − µ̂s‖L∞(Γ̂h) which has

an O(h3) behavior, as proven in lemma 12.2.

Experiment 2. We apply the discretization method to the Laplace-Beltrami
equation (1.1), with two different surfaces Γ (as used in [12]). As a first example
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level l ‖Dph −Dp‖L∞(Γ̂h) factor ‖P(Dph −Dp)P̂‖L∞(Γ̂h) factor

1 0.09229 – 0.02021 –
2 0.02704 3.4 3.584e-3 5.6
3 7.004e-3 3.9 4.645e-4 7.7
4 1.722e-3 4.1 6.837e-5 6.8
5 4.579e-4 3.8 8.919e-6 7.7
6 1.148e-4 4.0 1.141e-6 7.8

Table 14.1
Error of the (projected) Jacobian.

level l ‖µ̂h − µ̂s‖L∞(Γ̂h) factor

1 0.02880 –
2 4.851e-3 5.9
3 6.441e-4 7.5
4 9.422e-05 6.8
5 1.239e-05 7.6
6 1.585e-06 7.8

Table 14.2
Error of the functional determinant.

we take the unit sphere Γ = {x ∈ R3 | ‖x‖2 = 1} embedded in Ω = (−2, 2)3. The
right-hand side f is such that the solution is given by

u(x) =
12

‖x‖3
(
3x2

1x2 − x3
2

)
, x = (x1, x2, x3) ∈ Ω.

The function u is an eigenfunction of the Laplace-Beltrami operator, −∆Γu = 12u =:
f . The right-hand side f satisfies the compatibility condition

∫
Γ
f ds = 0, likewise

does u. Note that u and f are constant along normals of Γ, that is u ≡ ue, f ≡ fe.
The triangulations Tl and φ̂h are the same as explained above. For the finite

element space Ŝh, cf. (5.1), we use the trace of the outer piecewise quadratic finite
element space, as explained in Remark 3. Thus, we have m = 2 in (10.1). For
φh = φkh we consider the choices with k ∈ {1, 2} as explained above.

We outline the approach used for the evaluation of the bilinear form ah in (5.14)
and the right-hand side lh in (5.15). For the quadrature rule QT , cf. (5.12), we use
a fifth order accurate quadrature rule with positive weights on the reference triangle.
Given x ∈ Γ̂h, the functional determinant µ̂h(x) can be evaluated as described above.
With these data, lh can be computed as in (5.15). For ah, lemma 5.1 and (5.10) are
used to obtain an expression for G in (5.14). The computed solution uqh is normalized
such that

∑
T∈Fh QT (ûqh ◦ph µ̂h) = 0. The discrete problem is solved with a standard

CG method with symmetric Gauss-Seidel preconditioner to a relative tolerance of
10−7.

We start with the case k = 1 where Γh = Γ̂h. From theorem 13.1, we know that,
for m = 2, k = 1, the H1(Γh)-error is bounded by ch2 + ch2 = O(h2). This can
clearly be observed in Table 14.3. Since the geometric errors are of the order O(h2)
we expect that the L2(Γh)-norm of the discretization error is dominated by this term
and does not scale better than O(h2). The L2(Γh)-norm discretization error is also

32



level l ‖ue − uqh‖L2(Γh) factor ‖∇Γ̂h
(ue − uqh)‖L2(Γh) factor

1 0.1431 – 0.6911 –
2 0.03239 4.4 0.1636 4.2
3 7.986e-3 4.1 0.04219 3.9
4 1.968e-3 4.1 0.01054 4.0
5 4.935e-4 4.0 2.689e-3 3.9
6 1.230e-4 4.0 6.685e-4 4.0

Table 14.3
Sphere, m = 2, k = 1: Discretization errors and error reduction.

given in table 14.4 and clearly scales like O(h2).
The number of iterations needed on level l = 1, 2, . . . , 6, is 21, 40, 68, 147, 272, 588.

level l ‖ue − uqh‖L2(Γh) factor ‖∇Γh(ue − uqh)‖L2(Γh) factor

1 0.03910 – 0.5615 –
2 4.541e-3 8.6 0.1319 4.3
3 6.197e-4 7.3 0.03452 3.8
4 7.772e-5 8.0 8.647e-3 4.0
5 1.006e-5 7.7 2.224e-3 3.9
6 1.243e-6 8.1 5.444e-4 4.1

Table 14.4
Sphere, m = 2, k = 2: Discretization errors and error reduction.

We finally considr the case k = m = 2, i.e. a higher order approximation. From
theorem 13.1, we know that H1(Γh)-error is bounded by ch2 + ch3 = O(h2). This
order can be observed in Table 14.4. Since the geometric errors are of the order O(h3)
we expect, cf. the analysis in [5], that the L2(Γh)-norm of the discretization error
is of the order O(h3). The L2(Γh)-norm discretization error is given in table 14.4.
These results clearly show that this error indeed scales like O(h3). Hence our method,
based on piecewise quadratics both for the surface approximation and for the Galerkin
discretization of the Laplace-Beltrami equation, has third order convergence.
The number of CG iterations needed on level l = 1, 2, . . . , 6, is 21, 39, 68, 147, 272,
588, which is almost identical to the previous experiment.

As a second example we take a torus instead of the unit sphere. Let

φ(x) =

√
x2

3 +

(√
x2

1 + x2
2 −R

)2

− r, Γ = {x ∈ Ω | φ(x) = 0}.

We take R = 1 and r = 0.6. In the coordinate system (ρ, ϕ, θ) with

x = R

cosϕ
sinϕ

0

+ ρ

cosϕ cos θ
sinϕ cos θ

sin θ


the ρ-direction is normal to Γ, ∂x

∂ρ ⊥ Γ for x ∈ Γ. Thus, the following solution u and
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corresponding right-hand side f are constant in normal direction:

u(x) = sin(3ϕ) cos(3θ + ϕ),

f(x) = r−2(9 sin(3ϕ) cos(3θ + ϕ))

− (R+ r cos(θ)−2(−10 sin(3ϕ) cos(3θ + ϕ)− 6 cos(3ϕ) sin(3θ + ϕ))

− (r(R+ r cos(θ))−1(3 sin(θ) sin(3ϕ) sin(3θ + ϕ)).

(14.1)

Both u and f satisfy the zero mean compatibility condition. In the discretization

level l ‖ue − uqh‖L2(Γh) factor

1 0.4567 –
2 0.05133 8.9
3 0.006674 7.7
4 9.053e-4 7.4
5 1.194e-4 7.6
6 1.468e-5 8.1

Table 14.5
Torus: Discretization errors and error reduction.

all components are the same as in the example with the unit sphere above. We only
present the results for k = m = 2. The L2(Γh)-norm discretization errors are given
in table 14.5. Again we observe the expected O(h3) behavior.
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