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Abstract

We present a certified reduced basis method for a steady-state quadratically nonlinear diffusion equation. We
employ the standard Galerkin recipe for the reduced basis approximation and derive associated a posteriori error
estimation procedures based on the Brezzi-Rappaz-Raviart (BRR) framework. We show that all necessary ingredients,
i.e., the dual norm of the residual, the Sobolev embedding constant, and a lower bound of the inf-sup constant, can be
decomposed in an offline-online computational decompostion. Numerical results are presented to confirm the rapid
convergence of the reduced basis approximation and the rigor and sharpness of the associated a posteriori error bound.
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1. Introduction

Many problems in computational science and engineering require real-time and/or numerous evaluations of input-
output relationships induced by parametrized partial differential equations (PDEs). For example, the iterative solution
of inverse and parameter optimization problems involves the evaluation of the PDE at each iteration, whereas the
online solution of model-based control problems necessitates the real-time evaluation of the PDE-model. Despite
increased computing capabilities and tremendous advances in numerical analysis, this task can easily become compu-
tationally infeasible. Thus, fast and reliable reduced computational models are a necessity.

The reduced basis method is a model order reduction technique which provides efficient yet reliable approxi-
mations to solutions of parameterized PDEs; see e.g. the review [25] and the references therein for reduced basis
methods and [2, 4, 26] for other model order reduction techniques. The method is thus ideally suited for the real-time
and many-query contexts and has been successfully applied to various problems, e.g. parameter optimization [20]
and estimation [13], multiscale analysis [5], stochastic problems [6], uncertainty quantification [19], and optimal
control [9, 16].

Starting from linear coercive elliptic PDEs with affine parameter dependence [22], the reduced basis method has
been extended to a large class of parametrized PDEs over the last decade. The essential ingredients of the reduced
basis method are: Galerkin projection onto a subspace spanned by solutions of the parametrized PDE at (greedily)
selected parameter values; rigorous a posteriori error estimation procedures; and offline-online decompositions for
the computation of the approximation and associated error bound. Nonlinear problems, however, pose a special
challenge in terms of rigorous a posteriori error estimation procedures and a full decoupling of the offline and online
computations.

In this paper we present a certified reduced basis method for quadratically nonlinear diffusion equations of the
form

div (G(u; µ)∇u) = f, (1)
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where G(u; µ) is a µ-parametrized function which depends linearly on the field variable u and f denotes a source term;
see Section 2 for a detailed problem description. The Brezzi-Rappaz-Raviart (BRR) framework [7, 8] allows us to
derive rigorous and efficiently evaluable a posteriori error bounds for the reduced basis approximation of (1). We
show that for this type of nonlinearity the computation of all necessary ingredients of the BRR framework can be
decomposed in an offline-online fashion, i.e., the dual norm of the residual, the Sobolev embedding constant, and a
lower bound of the solution-dependent inf-sup stability factor. To obtain the latter, we employ the successive constraint
method (SCM) [15]. Nonlinear diffusion problems like (1) appear for example in the area of nonlinear heat transfer,
where the thermal conductivity of the material is not just assumed to be constant — an often used simplification
to obtain the linear heat equation — but is more accurately modeled as temperature dependent; see e.g. [14, 27]
for a reference article and book. In an inverse heat transfer setting, the goal would be to estimate the parametrized
function G(u; µ) from temperature measurements on the boundary, see e.g. [1, 10]. Furthermore, the model may also
be considered as a first order approximation to the higher-order nonlinear porous medium equation [28, 29].

There are essentially two approaches that have been pursued in the reduced basis literature for nonlinear problems.
Problems involving at most quadratically nonlinear terms — like the Burgers and Navier Stokes equations — have
been successfully treated with the standard Galerkin recipe, which still allows to obtain an efficient offline-online
decomposition. Furthermore, rigorous a posteriori error bounds can be derived for such problems based on the
BRR framework. For a certified reduced basis method of the Burgers equation we refer to [31, 34] and for the
steady and unsteady incompressible Navier-Stokes equations to [30, 33]; also see [17] for an alternative approach not
involving the BRR framework. For problems involving higher-order or nonpolynomial nonlinearities, on the other
side, the Empirical Interpolation Method [3] is typically used to approximate the nonlinear terms. The reason lies in
the Galerkin recipe: an N-dimensional reduced basis approximation of a problem involving a nonlinearity of order
q results in an online cost of O(N2q) and is thus prohibitive for large q; nonpolynomial nonlinearities do not even
allow a full offline-online decomposition [24]. The Empirical Interpolation Method recovers the online efficiency —
see [12, 18, 11] for applications to nonlinear elliptic and parabolic problems — but the a posteriori error bounds are
rigorous only under certain conditions on the nonlinear function approximation [11].

The rest of this paper is organized as follows: In Section 2 we introduce the problem statement as well as necessary
definitions and assumptions and present a model problem. In Section 3 we discuss the reduced basis approximation
before turning to the a posteriori error estimation in Section 4. The offline-online decomposition of all necessary quan-
tities is presented in Section 4.3. Finally, in Section 5 we present numerical results to confirm the rapid convergence
of the presented method and the rigor and the sharpness of the associated a posteriori error bound.

2. Problem Statement

2.1. Abstract formulation
We first define the Hilbert space Xe ≡ H1

0(Ω) — or, more generally, H1
0(Ω) ⊂ Xe ⊂ H1(Ω) — where H1(Ω) ={

v | v ∈ L2(Ω),∇v ∈
(
L2(Ω)

)d
}
, H1

0(Ω) =
{
v ∈ H1(Ω) | v|∂Ω = 0

}
, and L2(Ω) is the space of square integrable functions

over Ω [23]. Here, the superscript e denotes “exact,” and Ω is a bounded domain in Rd, d = 1, 2, 3, with Lipschitz
continuous boundary ∂Ω, a typical point in which shall be denoted by x. The inner product and norm associated with
Xe are given by (· , · )Xe and ‖· ‖Xe =

√
(· , · )Xe respectively; for example (w, v)Xe ≡

∫
Ω
∇w∇v +

∫
Ω

wv, ∀w, v ∈ Xe. We
also introduce the parameter domainD ⊂ R2 in which our input parameter µ = (µ0, µ1) resides.

The weak formulation of (1) can then be stated as follows: Given any parameter value µ ∈ D, evaluate ue(µ) ∈ Xe

from
a
(
ue(µ), v,G(ue(µ); µ)

)
= f (v), ∀v ∈ Xe; (2)

where f (v) is a Xe-continuous linear form and

a (w, v,G(w; µ)) =

∫
Ω

G(w; µ)∇w∇v, ∀w, v ∈ Xe. (3)

We consider the parametrized function G : R ×D → R given by

G(w; µ) = µ0 + µ1w. (4)
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We can thus write

a (w, v,G(w; µ)) = µ0

∫
Ω

∇w∇v + µ1

∫
Ω

w∇w∇v

= µ0 a0(w, v) + µ1 a1(w,w, v), (5)

where a0(w, v) =
∫

Ω
∇w∇v (bilinear) and a1(z,w, v) =

∫
Ω

z∇w∇v (trilinear). We also define an output of interest
se : D 7→ R as

se(µ) = `
(
ue(µ)

)
, (6)

where `(v) is a Xe-continuous linear form.
Finally, we assume that µ0 > 0 and µ1 ≥ 0 and restrict ourselves to nonnegative solutions u(x) ≥ 0 defined on Ω

such that (2) is well-posed and does not degenerate [29, 8]. Under these conditions G(u; µ) remains positive, which is
reasonable from a physical point of view.

2.2. Truth Approximation
In actual practice we do not have access to the exact solution. We thus introduce a “truth” finite element approx-

imation subspace X ⊂ Xe and replace ue(µ) ∈ Xe with a “truth” approximation u(µ) ∈ X. Here, X is a suitably fine
piecewise linear finite element approximation space with large dimension N . X shall inherit the inner product and
norm from Xe. Our truth approximation is thus: Given any µ ∈ D, find u(µ) ∈ X such that

a (u(µ), v,G(u(µ); µ)) = f (v), ∀v ∈ X, (7)

and evaluate the output s : D 7→ R from
s(µ) = ` (u(µ)) . (8)

We shall assume that the discretization is sufficiently rich such that u(µ) and ue(µ) are practically indistinguishable.
The reduced basis approximation shall be built upon this truth finite element approximation and the reduced basis
error will thus be evaluated with respect to u(µ) ∈ X.

In order to formulate conditions for existence and uniqueness of the solution, for given z ∈ X and every w, v ∈ X,
we define the Frechet derivative form dg : X3 ×D 7→ R as

dg(w, v; z; µ) = µ0a0(w, v) + µ1a1(z,w, v) + µ1a1(w, z, v). (9)

We also define the family of inf-sup constants

βz(µ) = inf
w∈X

sup
v∈X

dg(w, v; z; µ)
‖w‖X‖v‖X

, z ∈ X, (10)

and the family of continuity constants

γz(µ) = sup
w∈X

sup
v∈X

dg(w, v; z; µ)
‖w‖X‖v‖X

, z ∈ X. (11)

We further assume that a0 and a1 satisfy

|a0(w, v)| ≤ ‖w‖X‖v‖X , ∀w, v ∈ X, (12)
|a1(z,w, v)| ≤ ρ‖z‖X‖w‖X‖v‖X , ∀w, v, z ∈ X, (13)

where ρ is the Sobolev embedding constant; see Lemma 1 for the proof. Assumptions (12) and (13) immediately
imply boundedness of dg. We also assume that there exists a constant β0 > 0, such that

βz(µ) ≥ β0, ∀z ∈ X, ∀µ ∈ D. (14)

We can verify this hypothesis a posteriori.
We solve (7) using a Newton iterative scheme where we take the solution to the corresponding linear problem

(µ0 , 0, µ1 = 0) as the initial guess.
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2.3. Model problem

We introduce a “thermal block” model problem defined on the unit square Ω = [0, 1]2 with homogeneous Dirichlet
boundary conditions on ∂Ω. We define the linear functional f (v) =

∫
Ω

v dΩ and output functional `(v) = 1
|Ω|

∫
Ω

v dΩ;
we also specify the inner product (·, ·)X ≡ a0 (·, ·). We consider the parameter domain D ⊂ R2 given by D ≡
[10−2, 10] × [0, 10]. The non-dimensional temperature u(µ) ∈ X then satisfies (7), where X ⊂ Xe ≡ H1(Ω) is a linear
finite element approximation subspace of dimension N = 2601.
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(a) u(x; µ) for (µ0, µ1) = (10, 0)
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(b) u(x; µ) for (µ0, µ1) = (0.01, 10)
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(c) Cut of u(x; µ) for (µ0, µ1) = (10, 0) along x1-x2 axis.
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(d) Cut of u(x; µ) for (µ0, µ1) = (0.01, 10) along x1-x2

axis.

Figure 1: Truth solution of the model problem at two different representative parameter values.

In Figure 1 we present the truth solutions for two “corners” of the parameter domain: at (µ0, µ1) = (10, 0) the
problem simply reduces to the linear heat equation whereas at (µ0, µ1) = (0.01, 10) the nonlinearity has the strongest
influence, i.e., µ1 represents the strength of the nonlinearity. On the top row we show a plot of the temperature
distribution over Ω, on the bottom row we present a cut along the diagonal of Ω (the x1 = x2 axis). We note that
the shape of the linear solution resembles the Gaussian profile and the shape of the nonlinear solution is closer to the
Barenblatt profile [28].

4



3. Reduced Basis Method

3.1. Approximation

We first introduce a nested set of parameter samples S 1 ≡ {µ
1 ∈ D} ⊂ · · · ⊂ S Nmax ≡ {µ1, µ2, · · · , µNmax

∈ D} and
associated reduced basis spaces XN ⊂ X, 1 ≤ N ≤ Nmax, as

XN ≡ span
{
ξ j, 1 ≤ j ≤ N

}
= span

{
u(µ j), 1 ≤ j ≤ N

}
, 1 ≤ N ≤ Nmax,

where the ξ j, 1 ≤ j ≤ N, are mutually (·, ·)X-orthogonal basis functions. We construct the samples using the weak
greedy algorithm discussed in Section 4.4.

The reduced basis approximation is then clear: Given any µ ∈ D, evaluate uN(µ) ∈ XN from

a (uN(µ), v,G(uN(µ); µ)) = f (v), ∀v ∈ XN , (15)

and subsequently evaluate the reduced basis output approximation sN(µ) from

sN(µ) = ` (uN(µ)) . (16)

We solve (15) using a Newton iterative scheme. We briefly outline the computational procedure in the next section.

3.2. Computational Procedure

We first express uN(µ) as uN(µ) =
∑N

j=1 uN j(µ)ξ j and choose as test functions v = ξi, 1 ≤ i ≤ N in (15). It then
follows that uN(µ) = [uN1(µ), uN2(µ), · · · , uNN(µ)]T ∈ RN satisfies{

µ0A0N + µ1A1N

(
uN(µ)

)}
uN(µ) = FN , (17)

where A0N ∈ RN×N and FN ∈ RN are a parameter-independent matrix and vector with entries A0N,i j = a0

(
ξ j, ξi

)
, 1 ≤

i, j ≤ N, and FN,i = f (ξi), 1 ≤ i ≤ N, respectively. Furthermore, A1N(uN) ∈ RN×N has entries A1N,i j(uN(µ)) =∑N
n=1 uNn(µ)An

1N,i j, 1 ≤ i, j ≤ N, where An
1N,i j = a1

(
ξn, ξ j, ξi

)
, 1 ≤ i, j, n ≤ N.

We solve for uN(µ) using a Newton iterative scheme: given the current iterate uk
N(µ), we find an increment δuk

N
from {

µ0A0N + µ1

(
A1N

(
uk

N(µ)
)

+ Ã1N(uk
N(µ))

)}
δuk

N = FN −
(
µ0A0N + µ1A1N

(
uk

N(µ)
))

uk
N(µ), (18)

and update uk+1
N (µ) = uk

N(µ) + δuk
N . Here, the matrix Ã1N(uN) ∈ RN×N is given by Ã1N(uN) =

∑N
n=1 uk

N,nÃn
1N , where Ãn

1N

has entries Ãn
1N,i j = a1

(
ξ j, ξn, ξi

)
, 1 ≤ i, j, n ≤ N. Finally, we evaluate the output sN(µ) from

sN(µ) = LT
NuN(µ), (19)

where LN ∈ RN is given by LN,i = `(ξi), 1 ≤ i ≤ N.
The Reduced Basis offline-online decomposition is now clear. In the offline stage – performed only once – we first

compute and store the µ-independent quantities A0N , A1N , Ã1N , FN , and LN . In the online stage, we assemble — at
each Newton step — the matrices A1N(uN) and Ã1N(uN) at cost O(2N3) and then solve (18) for δuN at cost O(N3) per
Newton iteration. Finally, given uN(µ), we evaluate the output sN(µ) from (19) at cost O(N). The online cost is thus
independent of N even in the presence of the quadratically nonlinear term.

4. A Posteriori Error Estimation

We develop an a posteriori error estimator which helps us to (i) assess the error introduced by the reduced basis
approximation (relative to the “truth” finite element solution) and (ii) devise an efficient procedure for generating the
RB space XN .
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4.1. Preliminaries
To begin, we define the dual norm of residual

εN(µ) = sup
v∈X

g (uN(µ), v; µ)
‖v‖X

= ‖êN(µ)‖X , ∀µ ∈ D, (20)

where g (uN(µ), v; µ) is the residual operator defined as

g (uN(µ), v; µ) = µ0a0 (uN(µ), v) + µ1a1 (uN(µ), uN(µ), v) − f (v), ∀v ∈ X, (21)

and the Riesz representer, êN(µ) ∈ X, is given by

(êN(µ), v)X = g (uN(µ), v; µ) , ∀v ∈ X. (22)

We also assume that we are given a positive lower bound βLB
N (µ) of the inf-sup constant βz(µ) defined in (10) for

z = uN(µ), i.e.,

0 < βLB
N (µ) ≤ βN(µ) ≡ inf

w∈X
sup
v∈X

dg(w, v; uN(µ); µ)
‖w‖X‖v‖X

, (23)

and define the continuity constant (11) for z = uN(µ) by γN(µ). Before proceeding with the formulation of the a
posteriori error bound, we show the boundedness of a0 and a1 in (12) and (13), respectively.

Lemma 1. The bilinear and trilinear forms satisfy

|a0(u, v)| ≤ ‖u‖X‖v‖X ,

|a1(z, u, v)| ≤ ρ‖z‖X‖u‖X‖v‖X ,

where ρ here is the L2(Ω)-H1(Ω) Sobolev embedding constant.

Proof. The boundedness of a0 directly follows from the Hölder inequality. For a1 we also obtain from the Hölder
inequality that

|a1(z, u, v)| =

∫
Ω

z∇u · ∇v

≤

[ ∫
Ω

z4
]1/4[ ∫

Ω

( 2∑
j=1

∂u
∂x j

∂v
∂x j

)4/3]3/4

≤ ‖z‖L4

[ ∫
Ω

2∑
j=1

(
∂u
∂x j

)4]1/4[ ∫
Ω

2∑
j=1

(
∂v
∂x j

)2]1/2

.

It follows from Theorem 5 in [21] that the truth solution satisfies u ∈ X ∩W2,p for 2 ≤ p < ∞ and thus

|a1(z, u, v)| ≤ ‖z‖L4‖∇u‖L4‖v‖X . (24)

Furthermore, since X is finite dimensional we have ‖ · ‖L4 ≤ ‖ · ‖L2 and we can thus write

|a1(z, u, v)| ≤ ‖z‖L2‖∇u‖L2‖v‖X
≤ ρ‖z‖X‖u‖X‖v‖X ,

where ρ = supv∈X
‖v‖L2

‖v‖X
is the L2-H1 Sobolev embedding constant and we used the fact that ‖∇u‖L2 = ‖u‖X .

We make one important remark here: Our proof relies on the fact that the truth approximation space X is finite
dimensional. This also allows us to replace the L4-H1 embedding constant — which requires the solution of a non-
linear generalized eigenvalue problem [30] — with the L2-H1 embedding constant; also see the discussion in [33] on
the mesh-dependence of the L4-H1 embedding constant and the comparison with the L2-H1 embedding constant.
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4.2. BRR Framework
The a posteriori error bound for our reduced basis approximation is based on the BRR framework [7], which was

originally used in the reduced basis context in [30]. To this end, we first define a proximity indicator

τN(µ) ≡
4ρµ1εN(µ)
βLB

N (µ)2
, ∀µ ∈ D, (25)

and the a posteriori error bound

∆u
N(µ) =


βLB

N (µ)
2ρµ1

(
1 −

√
1 − τN(µ)

)
, ∀µ ∈ D \ µ1 = 0;

εN (µ)
βLB

N (µ) , ∀µ ∈ D ∩ µ1 = 0.
(26)

We also define the neighbourhood, i.e., ball with radius r around v ∈ X, as B(v, r) =
{
w ∈ X

∣∣∣ ‖w − v‖ < r
}
. We thus

obtain

Proposition 1. If τN(µ) < 1 for some µ ∈ D, then there exists a unique solution u(µ) ∈ B(uN(µ), βLB
N (µ)/2µ1ρ) in

the neighborhood of uN(µ) ∈ XN . Furthermore, the error in the field variable, eN(µ) = u(µ) − uN(µ), and output,
s(µ) − sN(µ), satisfy

‖u(µ) − uN(µ)‖X ≤ ∆u
N(µ), ∀µ ∈ D. (27)

and
|s(µ) − sN(µ)| ≤ ∆s

N(µ) ≡ ‖`‖X′∆u
N(µ), ∀µ ∈ D, (28)

where the dual norm of the output functional is given by ‖`‖X′ = supv∈X
`(v)
‖v‖X

.

We may also bound the effectivity of the a posteriori error bound in the following

Proposition 2. If τN(µ) ≤ 1
2 for some µ ∈ D, the effectivity ηu

N(µ) =
∆u

N (µ)
‖eN (µ)‖X

satisfies

ηu
N(µ) ≤

4γN(µ)
βLB

N (µ)
, ∀µ ∈ D. (29)

We remark that (2) reduces to the linear heat equation for µ1 = 0: using L’Hôpital’s rule it is straightforward to
show that

lim
µ1→0

βLB
N (µ)
2ρµ1

(
1 −

√
1 − τN(µ)

)
=
εN(µ)
βLB

N (µ)
. (30)

It thus follows from (9) and (23) that we obtain the standard results for the linear case for µ1 = 0. Furthermore,
existence and uniqueness is then obviously guaranteed for all solutions in X, i.e., βLB

N (µ)/2µ1ρ→ ∞ for µ1 → 0.
The proofs of Propositions 1 and 2 follow along the lines of [30] and are sketched in Appendix A. We next turn

to the efficient online evaluation of the various quantities involved in the a posteriori error bound.

4.3. Offline-Online Decomposition
The a posteriori error bound (26) is composed of three quantities: the dual norm of the residual, the Sobolev

embedding constant, and a lower bound of the inf-sup-constant. We summarize their computational decomposition in
an offline and online stage in the next three sections.

4.3.1. Dual Norm of Residual
The offline-online decomposition of the dual norm of the residual in the reduced basis method is fairly standard for

linear problems by now. The nonlinear case follows directly, but we incur an N4 computational cost for a quadratically
nonlinear problem. To summarize, it follows from (21) and (22) that

(êN(µ), v)X = µ0

N∑
j=1

a0(ζ j, v)uN j + µ1

N∑
j=1

N∑
j′=1

a1(ζ j, ζ j′ , v)uN juN j′ − f (v), (31)

7



and from linearity of linear, bilinear, and trilinear form that we can express

êN(µ) =

N∑
j=1

µ0z j
a0uN j +

N∑
j=1

N∑
j′=1

µ1z j, j′

a1 uN juN j′ + z f , (32)

where (z f , v)X = − f (v), ∀v ∈ X, (z j
a0, v)X = a0(ζ j, v), ∀v ∈ X, and (z j, j′

a1 , v)X = a1(ζ j, ζ
′
j, v), ∀v ∈ X. We thus obtain

‖êN(µ)‖2X =
(
z f , z f

)
X

+

N∑
j=1

uN j

{
2µ0

(
z j

a0, z f

)
X

+

N∑
j′=1

uN j′

{
2µ1

(
z j, j′

a1 , z f

)
X

+ µ2
0

(
z j

a0, z
j′

a0

)
X

+

N∑
j′′=1

uN j′′
{
2µ0µ1

(
z j

a0, z
j′, j′′

a1

)
X

+

N∑
j′′′=1

uN j′′′µ
2
1

(
z j, j′

a1 , z
j′′, j′′′

a1

)
X

}}}
.

from which the offline-online decomposition directly follows. We precalculate the inner products in the offline stage.
Then, given µ ∈ D and the associated solution uN(µ) we evaluate the quadruple sum at cost O(N4). Note that a
third-order nonlinearity would involve a sextuple sum which may become prohibitive even for modest N.

4.3.2. Sobolev Embedding Constant
The Sobolev embedding constant is given by

ρ = sup
v∈X

‖v‖L2

‖v‖X
, (33)

and thus depends only on the spatial domain Ω and our truth approximation subspace X. Since ρ is parameter inde-
pendent, we simply solve the generalized eigenvalue problem λ = supv∈X ‖v‖

2
L2/‖v‖2X once offline and set ρ =

√
λ∗max,

where (λ∗, ψ∗)max ∈ (R, X) are the maximum eigenvalue and eigenvector.

4.3.3. Inf-sup Lower Bound
We employ the successive constraint method proposed in [15] to obtain an efficiently calculable lower bound for

the inf-sup constant, βN(µ), defined in (23). Since βN(µ) depends on the reduced basis solution uN(µ) ∈ XN , however,
we need to slightly adapt the procedure from [15]. To this end, we first define the supremizing operators T µ : X 7→ X
such that, ∀µ ∈ D and any w ∈ X,

(T µw, v)X = dg (w, v, uN(µ)) , ∀v ∈ X. (34)

We then have

βN(µ) = inf
v∈X

sup
w∈X

dg (w, v; uN(µ))
‖w‖X‖v‖X

= inf
w∈X

∥∥∥T µw
∥∥∥

X

‖w‖X
, (35)

and can thus define (23) as

αN(µ) ≡ (βN(µ))2 ≡ inf
w∈X

(T µw,T µw)X

‖w‖2X
. (36)

We next note from (9) and (34) and recalling the expansion uN(µ) =
∑N

j=1 uN j(µ)ξ j that

(T µw, v) = µ0a0(w, v) + µ1a1

( N∑
q=1

uNqξq,w, v
)

+ µ1a1

(
w,

N∑
q=1

uNqξq, v
)
, ∀v ∈ X. (37)

It follows from linearity that we can express T µw as

T µw =

2N+1∑
q=1

Θ
q
T (µ)T qw, (38)
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where (
T 1w, v

)
= a0(w, v), ∀v ∈ X;(

T 1+qw, v
)

= a1(ξq,w, v), ∀v ∈ X, 1 ≤ q ≤ N;(
T N+1+qw, v

)
= a1(w, ξq, v), ∀v ∈ X, 1 ≤ q ≤ N;

and the parameter-dependent functions Θ
q
T (µ) are given by Θ1

T (µ) = µ0 and Θ
1+q
T = Θ

N+1+q
T (µ) = µ1uNq(µ), 1 ≤ q ≤ N.

Finally, plugging (38) into (36) it follows that

αN(µ) = inf
w∈X

Q̂∑
q=1

Θ̂q(µ)
âq(w,w)
‖w‖2X

, (39)

where Q̂ = (2N + 1)(N + 1) and we identify âq(w, v), 1 ≤ q ≤ Q̂, with 1
2 ((T qw,T q′w) + (T q′w,T qw)), 1 ≤ q ≤ q′ ≤

2N +1, and Θ̂q(µ), 1 ≤ q ≤ Q̂, with (1−δqq′ )Θ
q
T (µ)Θq′

T (µ), 1 ≤ q ≤ q′ ≤ 2N +1, where δqq′ is the Kronecker delta. We
can now apply the standard SCM procedure [15] to (39) to obtain a lower bound for the inf-sup constant. However, as
opposed to the linear coercive or noncoercive case, the coefficients Θ̂q(µ) also depend on the reduced basis solution
uN(µ) ∈ XN . We also note that the inf-sup lower bound allows us to confirm the well-posedness of the reduced basis
approximation a posteriori.

4.4. Greedy Sampling Procedure
We briefly discuss the greedy algorithm used to construct the reduced basis space XN [32]. One complication

arises in our context since the inf-sup constant and hence its lower bound depends on the reduced basis solution and
space. Theoretically, we would thus need to perform the SCM offline procedure each time we add a new snapshot to
the basis, i.e., after each greedy search over the parameter space. In order to avoid this excessive cost, we follow a
different strategy and proceed as follows: We first specify a coarse parameter sample Ξbeta ⊂ D of size nbeta and a very
large (fine) training parameter sample Ξtrain ⊂ D of size ntrain. We then evaluate the truth inf-sup constant (10) for all
µ ∈ Ξbeta and define a surrogate inf-sup constant β̃(µ) for all µ ∈ D by linearly interpolating between the four closest
parameter points in Ξbeta.

We then choose µ1 ∈ D randomly and Nmax (or a desired error tolerance εtol,min) and start the standard greedy
procedure over Ξtrain, where we replace the inf-sup lower bound, βLB

N (µ) in (25) and (26) by the surrogate β̃(µ). Once
Nmax is reached, we run the SCM offline procedure and subsequently perform another search over Ξtrain using the
actual SCM online inf-sup lower bound in (25) and (26). If the maximum error bound over Ξtrain is still acceptable,
e.g., by checking that ∆u

N(µ) ≤ εtol,min holds for all µ ∈ Ξtrain, the greedy procedure is done. Otherwise we append
more basis functions to XN and perform the SCM offline step again.

5. Numerical Results

We return to the model problem introduced in Section 2.3 and present numerical results for the reduced basis
approximation and associated a posteriori error estimation. We first construct the reduced basis space XN following
the greedy procedure discussed in Section 4.4. To this end, we evaluate the Sobolev embedding constant defined
in (33) to obtain ρ = 0.225 and also define the sample set Ξbeta of size nbeta = 625 (arguably too fine). We also
set Nmax = 16 and introduce a train sample Ξtrain of size ntrain = 2500 (the union of a linearly and logarithmically
distributed grid in each parameter dimension).

Given the reduced basis space XN , we perform the offline SCM procedure where we use the following parame-
ters [15]: ΞSCM

train = Ξtrain, a required tolerance of εα = 0.25, Mα = ∞, and M+ = 0. The greedy SCM procedure then
selects Kmax = 83 parameters; note that online we set Mα = Kmax. We also remark that we require at least Kmin = 45
to obtain an inf-sup lower bound βLB

N (µ) > 0 for all µ ∈ ΞSCM
train . We then perform another greedy search over Ξtrain to

find that the desired error tolerance is still satisfied. We present in Figure 2 the inf-sup constant βN(µ) and its lower
bound βLB

N (µ) as a function of µ0 for µ1 = 1 and 10 as well as K = 45 and 83, respectively. We note that the bound is
very sharp for all values of µ0 and µ1. We henceforth use K = 83 for the numerical results.
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In Figure 3 (a) and (b) we plot the sample sets picked by the reduced basis and SCM greedy procedures, respec-
tively. We observe that the samples — especially for the SCM — are clustered at the top left corner corresponding to
small values of µ0 and large values of µ1. The reason is obviously that the nonlinearity has the largest influence for
µ0 = µ0,min and µ1 = µ1,max.

We next turn to the a posteriori error estimation. We plot the maximum relative error eu
N,max,rel(µ) and bound

∆u
N,max,rel(µ) in Figure 4 (a) and the maximum and average proximity indicator τN,max and τN,avg in Figure 4 (b). Here,

eu
N,max,rel(µ) and ∆u

N,max,rel(µ) are the maxima of ‖eu
N(µ)‖X/‖u(µ)‖X and ∆u

N(µ)/‖u(µ)‖X over Ξtest, respectively; and τN,max
and τN,avg is the maximum and average of τN(µ) over Ξtest, respectively; and Ξtest = Ξbeta. We observe that the error
and bound converge very fast and that the error bound is very sharp for all values of N. From Figure 4 (b) we further
note that the maximum of τN(µ) is less than one only for N ≥ 8. In fact, for N = 2 the average effectivity is even less
than one indicating that the error bound is not rigorous. However, the bound is provably rigorous for N ≥ 8 where the
effectivities show that the error bound is also very sharp.

Finally, in Table 1 we present, for different values of N, the maximum proximity indicator, the maximum relative
error and bound as well as the average effectivity for the field variable and outputs, and the computational savings in
the online stage. Here, ηu

N,avg is the average of ∆u
N(µ)/‖eu

N(µ)‖X over Ξtest; the maximum relative output error, es
N,max,rel,

and bound, ∆s
N,max,rel, are the maxima of |s(µ) − sN(µ)|/|s(µ)| and ∆s

N(µ)/|s(µ)| over Ξtest, respectively; and ηs
N,avg is the

average of ∆s
N(µ)/|s(µ) − sN(µ)| over Ξtest. We note that the effectivity of the field variable error bound is very close

to 1. We also observe that the output error and bound converge very fast. Furthermore, the average output effectivity
is considerably larger than ηu

N,avg but — given the fast convergence — is still acceptable for all values of N. Finally,
we present the average computational savings in the online stage, i.e., the ratio of the computational time to solve the
truth finite element problem and the computational time to solve the reduced basis approximation and evaluation of
the a posteriori error bound. The average is taken over Ξtest. The savings are O(103) for all values of N confirming
the online-efficiency of the reduced basis method.

N eu
N,max,rel τN,max ∆u

N,max,rel ηu
N,avg es

N,max,rel ∆s
N,max,rel ηs

N,avg ∂tFEM/RB

2 2.59 E – 1 8.92 E + 1 5.09 E – 1 0.99 1.58 E – 2 9.54 E – 2 9.78 E + 2 1.69 E + 4
4 4.87 E – 2 3.92 E + 1 9.03 E – 2 1.18 8.34 E – 5 1.69 E – 2 2.72 E + 3 9.74 E + 3
8 2.32 E – 3 4.90 E – 2 2.85 E – 3 1.33 3.27 E – 6 5.33 E – 4 5.48 E + 3 6.65 E + 3

12 2.52 E – 5 1.71 E – 3 2.69 E – 5 1.28 1.00 E – 9 5.03 E – 6 2.75 E + 4 4.82 E + 3
16 4.69 E – 7 7.86 E – 4 2.51 E – 6 1.90 2.36 E – 10 4.71 E – 7 2.82 E + 3 3.60 E + 3

Table 1: Proximity indicator, maximum relative error and bound as well as effectivity for the field variable and the output, and computational
online-savings for different values of N.

Appendix A. Proofs

Appendix A.1. Proof of Proposition 1
Given g(·, ·; µ) from (21) and dg(·, ·; ·; µ) from (9), we first define the operator G : X 7→ X′ given by

〈G(w; µ), v〉 = g(w, v; µ), ∀w, v ∈ X, (A.1)

and its Frechet derivative for any z ∈ X by

〈dG(z; µ)w, v〉 = dg(w, v; z; µ), ∀w, v ∈ X, (A.2)

where 〈·, ·〉 denotes the dual pairing between X′ and X. We also introduce the mapping H(·; µ) : X 7→ X as

H(w; µ) = w − dG(uN(µ); µ)−1G(w; µ), ∀w ∈ X. (A.3)

Note that a fixed point of H, w∗ = H(w∗; µ), must be a solution of (2) and vice versa. We now consider H(z2; µ) −
H(z1; µ) for z1, z2 ∈ B(uN(µ), α) which from (A.3) can be expressed as

H(z2; µ) − H(z1; µ) = (z2 − z1) − dG(uN(µ); µ)−1{G(z2; µ) −G(z1; µ)}. (A.4)
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Furthermore, from the Taylor series expansion we note that

〈G(z2; µ) −G(z1; µ), v〉 =

∫ 1

0

〈
dG

(
z1 + t(z2 − z1); µ

)
(z2 − z1), v〉 dt, ∀v ∈ X. (A.5)

Multiplying (A.4) from the left by dG(uN(µ); µ) and invoking (A.5) we obtain

〈dG(uN(µ); µ){H(z2; µ) − H(z1; µ)}, v〉 = ∫ 1

0

〈 {
dG(uN(µ); µ) − dG

(
z1 + t(z2 − z1); µ

)}
(z2 − z1), v

〉
dt. (A.6)

We next note from (9), (A.2) and(13) that

sup
w∈X

sup
v∈X

〈
{dG(z1; µ) − dG(z2; µ)}w, v

〉
‖w‖X‖v‖X

≤ 2µ1ρ‖z2 − z1‖X , (A.7)

and from the triangle inequality and the fact that z1, z2 ∈ B(uN(µ), α) we immediately obtain∥∥∥uN(µ) − [z1 + t(z2 − z1)]
∥∥∥

X ≤ t
∥∥∥(z2 − uN(µ))

∥∥∥ + (1 − t)
∥∥∥(z1 − uN(µ)

∥∥∥
X ≤ α. (A.8)

It thus follows from (A.6) by inovking (A.7) and (A.8) that〈
dG(uN(µ); µ)

{
H(z2; µ) − H(z1; µ)

}
, v

〉
≤ 2 µ1 ρ α ‖z2 − z1‖X ‖v‖X . (A.9)

From (23), (23), and the definition of the supremizer (34) we furthermore know that

βLB
N (µ) ≤

〈
dG(uN(µ); µ)

{
H(z2; µ) − H(z1; µ)

}
,T µ(H(z2; µ) − H(z1; µ)

)〉∥∥∥H
(
z2; µ

)
− H

(
z1; µ

)∥∥∥
X

∥∥∥T µ
(
H(z2; µ) − H(z1; µ)

)∥∥∥
X

. (A.10)

Combining (A.9) and (A.10) we finally obtain

‖H(z2; µ) − H(z1; µ)
∥∥∥

X ≤
2 µ1 ρ α

βLB
N (µ)

‖z2 − z1‖X , (A.11)

which means that H(·; µ) is a contraction mapping for

α <
βLB

N (µ)
2 µ1 ρ

. (A.12)

We next let z ∈ B (uN(µ), α) and consider H(z; µ) − uN(µ) which from (A.3) can be expressed as

H(z; µ) − uN(µ) = z − uN(µ) − dG(uN(µ); µ)−1{G(z; µ) −G(uN(µ); µ)
}

− dG(uN(µ); µ)−1{G(uN(µ); µ)
}
. (A.13)

Following the same steps as above starting at (A.6) we finally obtain

‖H(z; µ) − uN(µ)‖X ≤
εN(µ)
βN(µ)

+
ρ µ1 α

2

βLB
N (µ)

. (A.14)

We now look for the smallest value of α such that

εN(µ)
βLB

N (µ)
+

ρ µ1

βLB
N (µ)

α2 < α, (A.15)

which is satisfied for α ∈ [α−, α+] where α± are the roots of the quadratic equation

ρ µ1

βLB
N (µ)

α2 − α +
εN(µ)
βLB

N (µ)
= 0 (A.16)
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given by

α± =
βLB

N (µ)
2 ρ µ1

1 ±
√

1 −
4 ρ µ1 εN(µ)
βLB

N (µ)2

 . (A.17)

If τN(µ) =
4ρµ1εN (µ)
βLB

N (µ)2 ≤ 1, then α± ∈ R. For α ∈ [α−,
βLB

N (µ)
2 µ1 ρ

] and z ∈ B (uN(µ), α) it thus follows that H(z; µ) maps
B (uN(µ), α) into itself and we conclude from the contraction mapping theorem that there exists a unique solution
u(µ) ∈ B

(
uN(µ), βLB

N (µ)/2µ1ρ
)
. Furthermore, the error satisfies

‖u(µ) − uN(µ)‖X ≤ ∆u
N(µ) ≡

βLB
N (µ)

2 ρ µ1

(
1 −

√
1 − τN(µ)

)
. (A.18)

The output error bound then directly follows from the linearity and definition of the dual norm of the output functional,
i.e.,

|s(µ) − sN(µ)| = |` (u(µ)) − ` (uN(µ))| ≤ sup
v∈X

`(v)
‖v‖X

‖u(µ) − uN(µ)‖X . (A.19)

Appendix A.2. Proof of Proposition 2
We first note from from (9) and (21) that

g(w + ∆w, v; µ) = g(w, v; µ) + dg(∆w, v; w; µ) + µ1a1(∆w,∆w, v). (A.20)

Choosing w = uN(µ), ∆w = e(µ) = u(µ) − uN(µ), and v = êN(µ) and invoking (11), (13), and (22) it follows that

‖êN(µ)‖X ≤ γN(µ) ‖e(µ)‖X + ρ µ1
∥∥∥e(µ)

∥∥∥2
X . (A.21)

Since ‖e(µ)‖X ≤ ∆u
N(µ) and, for τN(µ) ≤ 1, ∆u

N(µ) ≤ 2εN (µ)
βLB

N (µ) we obtain

∆u
N(µ) ≤ 2

γN(µ)
βLB

N (µ)
‖e(µ)‖X +

4 ρ µ1 εN(µ)
βLB

N (µ)2
∆u

N(µ). (A.22)

Finally, invoking τN(µ) ≤ 1/2 gives
1
2

∆u
N(µ) ≤ 2

γN(µ)
βLB

N (µ)
‖e(µ)‖X (A.23)

which proves the desired result.
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Figure 2: Inf-sup constant βN (µ) and lower bound βLB
N (µ) as a function of µ0 for µ1 = 1 and 10 and K = 45 and 83.
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Figure 3: Parameter samples picked by (a) the reduced basis and (b) SCM greedy procedures.
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(a) Error eN,max,rel and bound ∆N,max,rel
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(b) Proximity indicator τN

Figure 4: Maximum relative error, eN,max,rel, and bound, ∆N,max,rel and maximum and average proximity indicator, τN , as a function of N for
K = 83.
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