
Tensor-Sparsity of Solutions to High-Dimensional

Elliptic Partial Differential Equations

Wolfgang Dahmen, Ronald Devore, Lars Grasedyck and Endre Süli
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TENSOR-SPARSITY OF SOLUTIONS TO HIGH-DIMENSIONAL

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

WOLFGANG DAHMEN, RONALD DEVORE, LARS GRASEDYCK, AND ENDRE SÜLI

Abstract. A recurring theme in attempts to break the curse of dimensionality in the numerical
approximations of solutions to high-dimensional partial differential equations (PDEs) is to em-

ploy some form of sparse tensor approximation. Unfortunately, there are only a few results that

quantify the possible advantages of such an approach. This paper introduces a class Σn of func-
tions, which can be written as a sum of rank-one tensors using a total of at most n parameters

and then uses this notion of sparsity to prove a regularity theorem for certain high-dimensional

elliptic PDEs. It is shown, among other results, that whenever the right-hand side f of the
elliptic PDE can be approximated with a certain rate O(n−r) in the norm of H−1 by elements

of Σn, then the solution u can be approximated in H1 from Σn to accuracy O(n−r′ ) for any
r′ ∈ (0, r). Since these results require knowledge of the eigenbasis of the elliptic operator consid-

ered, we propose a second “basis-free” model of tensor sparsity and prove a regularity theorem

for this second sparsity model as well. We then proceed to address the important question of
the extent such regularity theorems translate into results on computational complexity. It is

shown how this second model can be used to derive computational algorithms with performance

that breaks the curse of dimensionality on certain model high-dimensional elliptic PDEs with
tensor-sparse data.

AMS Subject Classification: 35J25, 41A25, 41A63, 41A46, 65D99
Key Words: High-dimensional elliptic PDEs, tensor sparsity models, regularity theorems, expo-
nential sums of operators, Dunford integrals, complexity bounds

1. Introduction

Many important problems that arise in applications involve a large number of spatial variables.
These high-dimensional problems pose a serious computational challenge because of the so-called
curse of dimensionality; roughly speaking, this means that when using classical methods of ap-
proximation or numerical methods based on classical approximations, the computational work
required to approximate or to recover a function of d variables with a desired target accuracy
typically scales exponentially in d. This has led to so-called intractability results, which say that
even under the assumption that the target function has very high order of classical regularity (in
terms of various notions of derivatives), the exponential effect of the spatial dimension d prevails,
see [30]. Subsequent attempts to overcome the curse of dimensionality have been mainly based on
exploring the effect of very strong regularity assumptions, or constraining the dependence of the
functions on some of the variables, [29]. It is not clear though, for which problems of practical
interest such strong assumptions are actually satisfied.

The tacit assumption behind these negative tractability results is that classical notions of
smoothness are used to characterize the regularity of the solution and classical methods of ap-
proximation are used in the development of the numerical algorithms. In low spatial dimensions,
smoothness is typically exploited by using classical approximation methods, such as splines or fi-
nite elements, based on localization. This is often enhanced by adaptation concepts, which exploit
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weaker smoothness measures in the sense of Besov spaces and thus provide somewhat better con-
vergence rates. However, the larger the spatial dimension the smaller the difference between the
various smoothness notions becomes. Adaptivity based on localization is therefore not a decisive
remedy, and alternative strategies are called for.

It has recently been recognized that the situation is not as bleak as has been described above.
Indeed, solutions to real-world high-dimensional problems are thought to have a structure different
from high-dimensional regularity, that renders them more amenable to numerical approximation.
The challenge is to explicitly define these new structures, for a given class of problems, and then
to build numerical methods that exploit them. This has led to various notions, such as sparsity,
variable reduction, and reduced modelling. In contrast with the low-dimensional regime, essentially
governed by smoothness, there is of course no universal recipe for discovering the correct notion
of sparsity: the correct structural sparsity will depend on the problem at hand.

In the context of numerical approximation of PDEs, there are roughly two groups of high-
dimensional problems. The first group involves parameter-dependent families of partial differential
equations, where the number of “differential” variables is still small but the data and the coefficients
in the PDE depend on possibly many additional parameters, which often are to be optimized in
a design or optimization context. Hence the solution becomes a function of the spatial variables
and of the additional parameters. In particular, such parameter-dependent PDEs are obtained
when coefficients in the PDE are random fields. Expanding such a random field may even lead to
an infinite number of deterministic parameters, see e.g. [8, 9]. Reduced-order modeling concepts
such as POD (proper orthogonal decomposition) or the reduced-basis method aim at constructing
solution-dependent dictionaries comprised of judiciously chosen “snapshots” from the solution
manifold. This can actually be viewed as a separation ansatz between the spatial variables and
the parameters.

The second group of problems, and those of interest to us here, concern partial differential equa-
tions posed in a phase space of large spatial dimension (e.g. Schrödinger, Ornstein–Uhlenbeck,
Smoluchowski, and Fokker–Planck equations). As the underlying domainD is typically a Cartesian
product D = ×dj=1Dj of low-dimensional domains, Dj , j = 1, . . . , d, it is natural to seek (approx-
imate) representations in terms of separable functions - viz. low-rank tensors. Kolmogorov equa-
tions and related PDEs in (countably) infinitely many space dimensions, which arise as evolution
equations for the probability density function for stochastic PDEs, require a different functional-
analytic setting from the one considered here and are therefore not treated in the present paper;
for further details in this direction the reader is referred to [32].

The main purpose of the present paper is to propose specific notions of sparsity, based on tensor
decompositions, and then to show that the solutions of certain high-dimensional diffusion equations
inherit this type of sparsity from given data. This is then shown to lead indeed to tractability of
solving such high-dimensional PDEs.

To motivate the results that follow we sketch a simple example, albeit not in a PDE context
yet, which indicates how tensor structure can mitigate the curse of dimensionality. Suppose that
f ∈ Cs([0, 1]d) for some s ∈ N. Approximating

∫
[0,1]d

f(x) dx by a standard tensor-product

quadrature method Ids,n(f) of order s on a Cartesian grid with meshsize n−1 in each of the d co-
ordinate directions (e.g. with an sth order accurate composite Newton–Cotes or Gauß quadrature
possessing nonnegative weights) yields accuracy in the sense that∣∣∣ ∫

[0,1]d
f(x) dx− Ids,n(f)

∣∣∣ ≤ Cdn−s‖f‖Cs([0,1]d),

at the expense of the order of N = (sn)d operations. Here C is a fixed constant depending on
the univariate quadrature rule. If, in addition, one knows that f is a product of given univari-
ate functions: f(x) = f1(x1) · · · fd(xd), i.e., f is a rank-one tensor or separable function, then∫

[0,1]d
f(x) dx =

∏d
j=1

( ∫ 1

0
fj(xj) dxj

)
, and one obtains

∣∣∣ ∫
[0,1]d

f(x) dx−
d∏
j=1

I1
s,n(fj)

∣∣∣ ≤ Cdn−s‖f‖Cs([0,1]d)
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at the expense of the order of dsn operations only, where again C is a fixed constant depending
on the univariate quadrature rule.

Thus, in the first case, accuracy ε costs

N1(ε) = O(sddd/sε−d/s) (1.1)

operations so that the curse is apparent in the factor d appearing in the power of ε. One could
do much better by employing Smolyak quadrature rules, which, however, requires the assumption
of significantly higher regularity of the integrand, [29], in order to obtain specific rates. In the
second case, accuracy ε is achieved at the expense of the order of d1+1/ss ε−1/s operations. Thus,
one has the full one-dimensional gain of smoothness and the spatial dimension enters only linearly
as opposed to exponentially as in the first case. Of course, assuming that f is a rank-one tensor is
rather restrictive. If however one knew that it takes only r(ε) rank-one summands to approximate
f to within accuracy ε, the computational cost would still be of the order of

N2(ε) = r(ε) d1+1/ss ε−1/s (1.2)

operations. This is preferable to N1(ε) = O(sdε−d/s), even when r(ε) grows like ε−α for some
fixed positive α.

The main purpose of this paper is to show that the type of saving exhibited in the above example
of numerical integration is present in the numerical approximation of certain high-dimensional
elliptic equations described in §2. To expect such savings, the elliptic operator under consideration
should exhibit a “tensor-friendly” structure. A differential operator that is a tensor-product of
low-dimensional elliptic operators would trivially be “tensor-friendly”, but it would lead us into
classes of hypo-elliptic problems. Here, instead, we consider elliptic operators, which are sums of
tensor-product operators. The high-dimensional Laplacian is a prototypical example. We work in
a somewhat more general setting than that of a simple Laplace operator for the following reasons.
The original motivation for this work was a class of Fokker–Planck equations, whose numerical
treatment, after suitable operator splitting steps, reduces to solving a high-dimensional symmetric
elliptic problem over a Cartesian product domain, where the energy space of the elliptic operator
is a weighted Sobolev space with a strongly degenerate weight. The setting we shall describe in
§2 covers such situations as well, the aim of considering a general class of elliptic problems being
to extract and highlight the relevant structural assumptions.

In §3, we turn to proposing notions of tensor-sparsity that we will prove are relevant for ap-
proximating the solutions to operator equations of the type discussed in the above paragraph
and formally introduced in §2. To briefly describe in this introduction the form such sparsity
takes, consider a function space X = X1(D1) ⊗ · · · ⊗ Xd(Dd) over a Cartesian product domain
D = ×dj=1Dj . Suppose, only for the sake of simplifying the present discussion, that the component
domains Dj , j = 1, . . . , d, are intervals. A standard way of approximating the elements of X is to
start with d (a priori chosen) univariate bases Ψj = {ψjν : ν ∈ Λj} for the spaces Xj , j = 1, . . . , d,
where Ψ1 ⊗ · · · ⊗ Ψd is dense in X. Examples of such bases could be trigonometric functions,
polynomials or wavelets. Hence, the product basis Ψ = Ψ1 ⊗ · · · ⊗Ψd allows us to expand v ∈ X
as

v =
∑

ν∈×dj=1Λj

vν1...νdψ
1
ν1
⊗ · · · ⊗ ψdνd . (1.3)

We use, here and throughout this paper, the standard multi-index notation

ν = (ν1, . . . , νd), and ν ≤ µ means that νj ≤ µj for j = 1, . . . , d. (1.4)

Once we have decided to use Ψ as an expansion system, the standard approach to obtaining a
possibly sparse approximation is to retain as few terms of the expansion (1.3) as possible, while
still meeting a given accuracy tolerance. This is a nonlinear selection process known as N -term
approximation, see [11] for a general treatment of N -term approximation and [12] for a proposed
implementation and analysis in the context of high-dimensional elliptic PDEs. However, using
such universal bases Ψ, which are independent of the specific v, best N -term approximation
procedures significantly mitigate but do not quite avoid the curse of dimensionality. In fact, while
in contrast to conventional isotropic multiresolution approximations, under much stronger (mixed)
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smoothness assumptions, the factor ε−d/s in (1.1) can be replaced by ε−1/s, the constants in the
corresponding error bounds still exhibit an exponential growth in d.

Thus, it is not clear how useful N -term approximation with respect to a fixed background tensor
product basis will be for treating truly high-dimensional problems. This is to be contrasted by
allowing v to be expanded in terms of separable functions where the factors are now allowed to
depend on v

v =

∞∑
k=1

vk,1 ⊗ · · · ⊗ vk,d, vk,j = vk,j(v). (1.5)

Of particular interest is then the case where, in spite of a possibly moderate smoothness of v,
the terms in this expansion decay so rapidly that only a few of them suffice in order to meet the
target accuracy. Thus we are asking for an alternative structural property of a function of many
variables that leads to computational tractability despite the lack of high regularity. This will lead
us below to proposing new notions of tensor sparsity.

Of course, to that end, aside from the question for which v such an expansion converges rapidly
and how to identify the summands, the ultimate computational cost depends also on how well,
i.e., at what cost, can the factors vk,j be approximated, e.g. in terms of the universal univariate
bases Ψj , j = 1, . . . , d. Thus, two approximation processes have to be intertwined, which, in the
present setting, takes the following form:

v ≈ vN :=

r∑
k=1

( ∑
ν∈Γk,1

c1k,νψ
1
ν

)
⊗ · · · ⊗

( ∑
ν∈Γk,d

cdk,νψ
d
ν

)
, (1.6)

and ideally, one would like to find r,Γk,j , c
j
k,ν , ν ∈ Γk,j , k = 1, . . . , r, j = 1, . . . , d, subject to

r∑
k=1

d∑
j=1

#(Γk,j) ≤ N, (1.7)

so that ‖v−vN‖X is (near-)minimized; see [4, 2], where algorithms are proposed that nearly mini-
mize this error. This is obviously a much more demanding (and much more nonlinear) optimization
task than activating the best coefficients in (1.3). In fact, it is not clear that a best approximation
in this sense exists. However, if v admits such an expansion, where r = r(ε) increases slowly
with decreasing ε while the #(Γk,j), k = 1, . . . , r, j = 1, . . . , d, scale like typical low-dimensional
processes for moderate regularity, it is clear that the number of coefficients needed in (1.6) would
exhibit essentially the same dependence on ε as N2(ε) in the integration example discussed above,
and hence would be much smaller than the number of coefficients needed in (1.3), for the same
accuracy.

Another way to look at this comparison is to note that when expanding the products of sums
in (1.6) one obtains a representation of the form (1.3). However, the coefficients in the tensor
array (vν), are strongly dependent, as is exhibited by the fact that they can be written as a sum
of a few (r in number) rank-one tensors. In this sense the tensor (vν) is information sparse, i.e.,
loosely speaking, its entries vν depend “on much fewer parameters”.

We are now ready to formulate more precisely the central question in this paper: suppose we
are given an elliptic problem over a high-dimensional product domain and suppose that the data
(the right-hand side function in the partial differential equation) is tensor-sparse in the sense that
it can be approximated by terms of the form (1.6) at a certain rate; then, is the solution u also
tensor-sparse, and, if so, at which rate? In other words: in which circumstances does a highly
nonlinear process offer significantly higher sparsity than (1.3), and does this break the curse of
dimensionality?

In §3, we shall formalize the above ideas and define sparse tensor structures and their spaces Σn,
whose elements depend on at most n parameters. Sparse spaces of this type can, in principle, be
defined relative to any universal background tensor basis. The most convenient one for us in what
follows for the purpose of highlighting the essential mechanisms is however a certain eigenbasis for
the elliptic operator under consideration. In particular, this allows us to employ exponential sum
approximations to reciprocals of eigenvalues, which turns out to be critical for estimating the effect
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of the inversion of an elliptic operator on the growth of ranks in the approximation of solutions.
We then formulate approximation classes for this form of approximation. An important issue
for computational considerations are the spaces Σn(R), introduced in that section, that impose
restrictions on the positions of the tensor basis that are allowed to participate. In §4 we present
our first main contributions, which are regularity results for elliptic PDEs stated in terms of the
tensor-sparsity of §3.

The above approach is primarily of theoretical interest, as a regularity result. From a numerical
perspective its practical relevance is limited by the fact that only in rare cases is an eigenbasis
available. Therefore, we propose in §5 an alternative model for tensor-sparsity, which does not
make use of any background basis. However, now sparsity is expressed by approximability in
terms of short sums of rank-one functions, which are no longer described by a finite number of
parameters but are constrained by a certain excess regularity, which, in turn, will render them
computable. Hitherto, regularity has been described by the number of such constrained terms
needed to approximate the solution to within a given target accuracy. Thanks to the excess
regularity, these constrained rank-one terms can again be approximated to within the same target
accuracy by a finite number of parameters. We then proceed to quantify this last principal
fact. Again exponential sums serve as a key vehicle. This time however, instead of using them
for the construction of separable approximations to reciprocals of eigenvalues, they are used to
approximate inverses of operators. In contrast with previous applications of exponential sums
in the literature [18, 25] for the approximation of inverses of discrete (finite-dimensional) linear
operators, it is now crucial to take into account the mapping properties of the operators concerned
in terms of Sobolev scales.

In §6 and §7 we turn to the question of constructing concrete numerical algorithms which
exhibit these gains in numerical efficiency. In certain settings, discussed in that section, we
give concrete bounds on the representation and numerical complexity of further approximat-
ing the regularity-controlled rank-one sums by analogous finitely parametrized expressions. By
representation-complexity we mean the total number of parameters needed to eventually represent
a tensor expansion to within the target accuracy. Our main tool, in that section, is the Dunford
integral representation of the exponential of a sectorial operator. Again, in contrast with previous
such uses (e.g. [16, 17]), it is crucial to apply these representations on the continuous (infinite-
dimensional) level [10]. It is shown that the spatial dimension d enters the (total) complexity only
in a moderate superlinear fashion, and thereby the curse of dimensionality is avoided. The results
presented here differ in essential ways from those in [35] since the required information on the
data is highly nonlinear and the differential operators cannot be diagonalized on the data classes
under consideration. Thus, the main point is the complexity of a structure preserving approximate
inversion of the operator.

We close the paper with some comments on open problems in §9.

2. The General Setting

2.1. A class of elliptic problems. In this section, we formulate a class of high-dimensional
problems for which we will prove that their solutions can be effectively captured by sparse tensor
approximations for suitable right-hand sides f .

Let D =×dj=1Dj be a Cartesian product domain in Rdp where the Dj ⊂ Rp are low-dimensional
domain factors. Typically, p takes the value 1, 2, or 3. So, the high-dimensionality occurs because
d is large. For each j = 1, . . . , d, we denote by Hj a separable Hilbert space, with norm ‖ · ‖Hj ,
comprised of functions defined on Dj . We assume that each Hj is continuously and densely
embedded in L2(Dj) = L2(Dj , µj) with µj a positive Borel measure on the factor domain Dj

that is absolutely continuous with respect to the Lebesgue measure. Thus, the measures µj ,
j = 1, . . . , d, are not necessarily the Lebesque measure but could involve weights that are positive
a.e. on Dj , j = 1, . . . , d. The dual pairing 〈·, ·〉 is always understood to be induced by the inner
product for L2(Dj). It will be clear from the context whether 〈·, ·〉 denotes a dual pairing or the
L2 inner product. Thus we have the Gel’fand triple (rigged Hilbert space)

Hj ⊂ L2(Dj) ⊂ (Hj)
′, j = 1, . . . , d,
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with continuous and dense embeddings, where (Hj)
′ denotes the normed dual of Hj . We can think

of the Hj to stand for a (possibly weighted) Sobolev space, and possibly incorporating boundary
conditions.

We assume that we are given “low-dimensional” symmetric Hj-elliptic operators Bj : Hj →
(Hj)

′, i.e., the bilinear forms bj(v, w) := 〈Bjv, w〉 satisfy, for some fixed positive constants c, α,
the following inequalities:

|bj(v, w)| ≤ c‖v‖Hj‖w‖Hj , bj(v, v) ≥ α‖v‖2Hj , v, w ∈ Hj , j = 1, . . . , d, (2.1)

and bj(v, w) = bj(w, v) for all v, w ∈ Hj and all j = 1, . . . , d.
We next introduce a Hilbert space H over D for which we will formulate the high-dimensional

elliptic variational problems of interest to us. For each j = 1, 2, . . . , d, we consider the separable
Hilbert space

Hj := Hj(D) := L2(D1)⊗ · · · ⊗ L2(Dj−1)⊗Hj ⊗ L2(Dj+1)⊗ · · · ⊗ L2(Dd),

(not to be confused with Hj), with its natural norm ‖ · ‖Hj and inner product. From these
component spaces, we define

H :=

d⋂
j=1

Hj ,

which we equip with the norm ‖ · ‖H, defined by

‖v‖2H :=

d∑
j=1

‖v‖2Hj . (2.2)

In the following we will introduce and use an equivalent norm for H based on eigenexpansions.
Again, this gives rise to a Gel’fand triple

H ⊂ L2(D) ⊂ H′, (2.3)

with dense continuous embeddings. For example, if µj is the Lebesgue measure on Dj and Hj is
H1(Dj), j = 1, . . . , d, then H is identical to the standard Sobolev space H1(D), and the above
norm is equivalent to the usual H1(D) norm.

The bilinear form on the space H×H, under consideration, is given by

b(v, w) :=

d∑
j=1

〈(I1 ⊗ · · · ⊗ Ij−1 ⊗Bj ⊗ Ij+1 ⊗ · · · ⊗ Id)v, w〉 , v, w ∈ H, (2.4)

where Ij is the identity operator on L2(Dj), j = 1, . . . , d. This form is H-elliptic, i.e., there exist
constants 0 < ca, c

′
a <∞ such that

|b(v, w)| ≤ ca‖v‖H‖w‖H, b(v, v) ≥ c′a‖v‖2H ∀ v, w ∈ H. (2.5)

Furthermore, b is symmetric; i.e., b(v, w) = b(w, v) for all w, v ∈ H. Thus, the symmetric linear
operator

B : H→ H′, defined by 〈Bv, w〉 = b(v, w) ∀ v, w ∈ H, (2.6)

is an isomorphism of the form

B =

d∑
j=1

I1 ⊗ · · · ⊗ Ij−1 ⊗Bj ⊗ Ij+1 ⊗ · · · ⊗ Id, (2.7)

which is the sum of rank-one tensor-product operators.
The central theme of the subsequent sections is to show, under suitable notions of tensor-

sparsity, that for f ∈ H′ the solution u of the variational problem:

Find u ∈ H1 such that b(u, v) = 〈f, v〉 ∀ v ∈ H1, (2.8)

will inherit a certain tensor-compressibility from that of f . This means that for such right-hand
sides f the solution u avoids the curse of dimensionality.
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2.2. Spectral representations and generalized Sobolev spaces. In this section, we apply
well-known results on elliptic operators and spectral theory to the operator B to obtain an eigen-
system and to define an associated scale of Hilbert spaces that can be viewed as generalizations of
classical Sobolev spaces. In fact, for specific examples of B and for a certain range of smoothness
scales they agree with classical Sobolev spaces (with equivalent norms). The next lemma, which
we quote from [14, 15], is a version of the Hilbert–Schmidt theorem and will be relevant in the
discussion that follows.

Lemma 1. Let H and V be separable infinite-dimensional Hilbert spaces, with V continuously and
densely embedded in H. Let a : V ×V → R be a nonzero, symmetric, bounded and coercive bilinear
form. Then, there exist sequences of real numbers (λn)n∈N and unit H norm members (en)n∈N of
V, which solve the eigenvalue problem:

Find λ ∈ R and e ∈ H \ {0} such that b(e, v) = λ(e, v)H ∀ v ∈ V, (2.9)

where (·, ·)H signifies the inner product of H. The λn, which can be assumed to be in increasing
order with respect to n, are positive, bounded from below away from 0, and limn→∞ λn =∞.

Moreover, the en form an H-orthonormal system whose H-closed span is H and the rescaling
en/
√
λn gives rise to a b-orthonormal system whose b-closed span is V. Thus, we have

h =

∞∑
n=1

(h, en)Hen, ‖h‖2H =

∞∑
n=1

[(h, en)H]
2
, h ∈ H, (2.10)

as well as

v =

∞∑
n=1

b

(
v,

en√
λn

)
en√
λn
, ‖v‖2b := b(v, v) =

∞∑
n=1

[
b

(
v,

en√
λn

)]2

, v ∈ V. (2.11)

Furthermore, one has

h ∈ H and

∞∑
n=1

λn [(h, en)H]
2
<∞ ⇐⇒ h ∈ V. (2.12)

Proof. The proofs of the stated results can be partially found in textbooks on functional analysis
(see, for example, Theorem VI.15 in Reed & Simon [31] or Section 4.2 in Zeidler [36]). A version
of the proof for the special case in which V and H are standard Sobolev spaces is contained in
Section IX.8 of Brezis [7]; using the abstract results in Chapter VI of [7], the result in Section IX.8
of [7] can be easily adapted to the setting of the present theorem. For a detailed proof we refer to
Lemmas 15 and 16 in [15]. �

It follows from (2.1) and Lemma 1 that for each j ∈ {1, . . . , d} there exists an eigensystem
(ej,n)n∈N ⊂ Hj in the factor space Hj , with the properties

〈ej,n, ej,m〉 = δn,m, Bjej,n = λj,nej,n, n,m ∈ N, j = 1, . . . , d, (2.13)

where λj,n ≥ λ0 > 0 are increasing in n, and λj,n →∞ as n→∞ for each j = 1, . . . , d. Therefore,
by (2.7),

eν := e1,ν1 ⊗ · · · ⊗ ed,νd , λν := λ1,ν1 + · · ·+ λd,νd , ν ∈ Nd, (2.14)

satisfy

Beν = λνeν , b(λ−1/2
ν eν , λ

−1/2
µ eµ) = δν,µ, ν, µ ∈ Nd, (2.15)

and hence

e−Beν = e−λνeν =

d⊗
j=1

e−λj,νj ej,νj , ν ∈ Nd. (2.16)

Since H is dense in H′, the linear span of the system of eigenfunctions (eν)ν∈Nd is also dense
in H′. We now define the fractional-order (generalized Sobolev) space Hs, s ≥ 0, as the set of all
v ∈ H′ for which

‖v‖2s := ‖v‖2Hs :=
∑
ν∈Nd

λsν |〈v, eν〉|2 <∞. (2.17)
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In particular, ‖ · ‖H = ‖ · ‖1. Furthermore, when s < 0 we define the spaces Hs := (H−s)′, by
duality. It is easy to see that their norms are also given by (2.17). The spaces

Hs := {v ∈ H′ : ‖v‖s <∞}, s ∈ R, (2.18)

form a scale of separable Hilbert spaces. Note further that, thanks to the orthogonality property
in (2.13) and the definition of the norm (2.17), eν ∈ Hs for any ν ∈ Nd and any s ∈ R. In classical
settings, when B is an elliptic differential operator, the spaces Hs agree with Sobolev spaces for
a certain range of s, which depends on the geometry of the domain D and the coefficients in the
operator.

Having introduced this scale of spaces, let us note that the operator B, while initially defined
on H can now be extended to all of the spaces Hs, s ∈ R: if v ∈ Hs, then

Bv :=
∑
ν∈Nd

λν〈v, eν〉eν . (2.19)

So B is an isometry between Ht and Ht−2, for all t ∈ R,

‖Bv‖t−2 = ‖v‖t. (2.20)

Hence, for any t ∈ R, and any f ∈ Ht, the variational problem:

Find u ∈ Ht+2 such that b(u, v) = 〈f, v〉 ∀ v ∈ H−t, (2.21)

has a unique solution. It will be convenient to interpret (2.21) as an operator equation

Bu = f. (2.22)

The next remark records some related useful facts.

Remark 1. For any v ∈ Hs, s ∈ R, one has

v =
∑
ν∈Nd
〈v, eν〉eν , in Hs, (2.23)

B−1v =
∑
ν∈Nd

λ−1
ν 〈v, eν〉eν , in Hs+2, (2.24)

e−Bv =
∑
ν∈Nd

e−λν 〈v, eν〉eν , in Hs. (2.25)

2.3. Rank-one tensors. We proceed to establish in this section some facts concerning rank-one
tensors that will be used several times later in the paper. The following two observations relate
the regularity of a rank-one tensor to the regularity of its factors.

Lemma 2. Let s ≥ 0. A rank-one tensor τ = τ1 ⊗ · · · ⊗ τd belongs to Hs if and only if τj ∈ Hs
j ,

j = 1, . . . , d. Moreover, when τ ∈ Hs, there is a representation τ = τ1 ⊗ · · · ⊗ τd for which

max
j=1,...,d

‖τj‖Hsj
(∏
i 6=j

‖τi‖L2(Di)

)
≤ ‖τ‖s ≤ (dmax{0,s−1})1/2

d∑
j=1

‖τj‖Hsj
(∏
i 6=j

‖τi‖L2(Di)

)
. (2.26)

Proof. We begin by noting that (2.26) holds trivially for τ = 0. Let us therefore assume that
τ ∈ Hs \ {0}, with s ≥ 0. Assume first that each τj ∈ Hs

j , j = 1, . . . , d. From the definition (2.17),
we have that

‖τ‖2s =
∑
ν∈Nd

(λ1,ν1
+ · · ·+ λd,νd)s 〈τ1, e1,ν1

〉2 · · · 〈τd, ed,νd〉
2

≤ dmax{0,s−1}
∑
ν∈Nd

(λs1,ν1
+ · · ·+ λsd,νd) 〈τ1, e1,ν1

〉2 · · · 〈τd, ed,νd〉
2

= dmax{0,s−1}
d∑
j=1

( ∞∑
νj=1

λsj,νj
〈
τj , ej,νj

〉2 )(∏
i6=j

‖τi‖20
)

= dmax{0,s−1}
d∑
j=1

‖τj‖2s
(∏
i 6=j

‖τi‖20
)
.
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Now, we can replace the right-hand side of the last inequality by the right-hand side of (2.26)
because the `2 norm does not exceed the `1 norm. Thus, τ ∈ Hs and we have established the
second inequality in (2.26).

Concerning, the first inequality in (2.26), for any fixed j ∈ {1, . . . , d}, we have

‖τ‖2s =
∑
ν∈Nd

(λ1,ν1
+ · · ·+ λd,νd)s 〈τ1, e1,ν1

〉2 · · · 〈τd, ed,νd〉
2

≥
∑
ν∈Nd

λsj,νj 〈τ1, e1,ν1
〉2 · · · 〈τd, ed,νd〉

2

≥ ‖τj‖2Hsj
(∏
i 6=j

‖τi‖20
)

= ‖τj‖2Hsj
(∏
i6=j

‖τi‖2L2(Di)

)
,

which yields (2.26) for τ ∈ Hs \ {0}, with s ≥ 0. �

According to Lemma 2, τ ∈ Hs for s ≥ 0 if and only if τ ∈ Hs,...,s := ⊗dj=1H
s
j ; for related results

we refer to [33], where Besov and Sobolev spaces of dominating mixed smoothness are shown to
be tensor products of Besov and Sobolev spaces of univariate functions.

We record the following consequence of the above observations in particular for later use in §8.

Corollary 1. For any s ∈ R there exists a constant C such that, for any τ = τ1⊗ · · ·⊗ τd ∈ H−s,

d∏
j=1

‖τj‖H−sj ≤ C‖τ‖−s. (2.27)

Proof. Since, for s ≥ 0, Hs,...,s is continuously embedded in Hs, there exists a constant C such
that we have

‖τ‖s ≤ C‖τ‖Hs,...,s =

d∏
j=1

‖τj‖Hsj .

By duality, (Hs)′ = H−s is continuously embedded in (Hs,...,s)′. Since

(Hs,...,s)′ = (Hs
1 ⊗ · · · ⊗Hs

d)′ = (Hs
1)′ ⊗ · · · ⊗ (Hs

d)′ = H−s1 ⊗ · · · ⊗H−sd
is a tensor-product Hilbert space endowed with the corresponding cross-norm, the claim follows.

�

While the collection of all rank-one tensors in Hs whose Hs norm is uniformly bounded is not
compact in Hs, one has the following consequence of Lemma 2.

Lemma 3. For any C > 0 and any s′ ∈ R, the collection

T (s′, C) := {τ = τ1 ⊗ · · · ⊗ τd ∈ Hs′ : ‖τ‖s′ ≤ C}

is a compact subset of Hs provided s′ > s.

Proof. It is easy to see (see Lemma 4) that any closed bounded ball B of Hs′ is a compact subset
of Hs. Therefore, we only need to show that the set T (s′, C) is closed in Hs. Let τ (n) be a sequence
from this set, which converges in the topology of Hs to a function g ∈ Hs. We need only show
that g = g1 ⊗ · · · ⊗ gd for some gj ∈ Hs

j . If g = 0, then clearly this limit function is in T (s′, C). If

‖g‖s > 0, then ‖τ (n)‖s ≥ C > 0 for n sufficiently large.
Consider now first the case s′ > 0. Since the norm topology of the spaces Hs gets weaker as s

decreases, it is sufficient to prove the Lemma in this case for s′ > s ≥ 0. We can assume without

loss of generality that for each n the norms ‖τ (n)
j ‖0 are all equal. It follows from Lemma 2 for

s′ ≥ 0, that each of the components satisfies ‖τ (n)
j ‖s′ ≤ C ′ for an absolute constant C ′. Hence,

each of the sequences (τ
(n)
j )n≥1 is compact in Hs

j , j = 1, . . . , d. A common subsequence of each

of them, indexed by (nk), converges to a limit gj ∈ Hs
j , with ‖gj‖Hsj ≤ C

′, j = 1, . . . , d.
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We claim that g is equal to g1 ⊗ · · · ⊗ gd. Indeed, for any τ (n), we can write

(g1 ⊗ · · · ⊗ gd)− (τ
(n)
1 ⊗ · · · ⊗ τ (n)

d ) =

d∑
j=1

g1 ⊗ · · · ⊗ gj−1 ⊗ (gj − τ (n)
j )⊗ τ (n)

j+1 ⊗ · · · ⊗ τ
(n)
d , (2.28)

with an obvious interpretation of the summands for j ∈ {1, . . . ,d}. Given the fact that for each of
the components gj , we have ‖gj‖L2(Dj) ≤ ‖gj‖Hsj ≤ C ′, and a similar bound for the components

of the τ (n), we infer from (2.26) in Lemma 2 that the Hs norm of each of the terms in the sum
appearing (2.28) tends to zero as n→∞. This proves the claim for s > 0.

When s′ ≤ 0, we renormalize so that for each n, all of the norms ‖τ (n)
j ‖Hs′j , j = 1, . . . , d, are

equal. Then, (2.27) in Corollary 1 gives that all of these norms have a uniform bound. Hence, we

again derive the existence of subsequences (τ
(n)
j )n≥1 that converge in Hs

j to respective limits gj . To

show that g agrees with g1⊗· · ·⊗gd it suffices to prove that ‖g1⊗· · ·⊗gd−τ (n)
1 ⊗· · ·⊗τ

(n)
d ‖Hs,...,s → 0,

n→∞. Employing again the decomposition (2.28), this in turn, follows by using that ‖ · ‖Hs,...,s
is a tensor product norm. That finishes the proof of the Lemma. �

We now turn to the central question of this paper: Can some formulation of tensor-sparsity, or
more generally tensor-compressibility, help to break the curse of dimensionality when solving the
variational problems (2.8) and (2.21)?

3. Tensor-Sparsity and Compressibility

Numerical methods for solving partial differential equations are based on some form of approxi-
mation. In our case, we want to approximate the solution u to (2.8) in the H1 norm. The simplest
numerical methods utilize a sequence (Vn)∞n=1 of linear spaces with dim(Vn) ∼ n for the approxi-
mation. Adaptive and more advanced numerical methods replace the Vn by nonlinear spaces Σn.
Since the case of linear subspaces is subsumed by the nonlinear case, we continue our discussion
in the nonlinear context. We assume in the following that the elements of Σn are described by
∼ n parameters.

To understand how well a potential numerical method built on Σn could perform, we need first
to understand the approximation capabilities of Σn. The following quantification of performance
will be described in a general setting of approximation in a Banach space X and therefore we
assume that each Σn ⊂ X. For any function v ∈ X, the approximation error

σn(v)X := inf
g∈Σn

‖v − g‖X (3.1)

tells us how well v can be approximated by the elements of Σn. In the case of most interest to
us, X = H1, σn(u)H1 gives the optimal performance, in computing u, that would be possible by
any numerical method based on this form of approximation. Of course, there is also the problem
of constructing a numerical algorithm with this level of performance, and proving that the imple-
mentation of the algorithm can be achieved with O(n), or perhaps slightly more, computations.

Given a sequence (Σn)n≥0, with Σ0 := {0}, the approximation space Ar := Ar((Σn)n≥0, X)
consists of all functions v ∈ X such that

σn(v)X ≤M(n+ 1)−r, n ≥ 0, (3.2)

and the smallest such M is the norm of v for the approximation space Ar. More generally, we
have the approximation classes Arq := Arq((Σn)n≥0, X), which are defined, for any 0 < q ≤ ∞ and
r > 0, as the set of all v ∈ X such that

‖v‖Arq((Σn)n≥0,X) :=


(∑∞

n=0 [(n+ 1)rσn(v)X ]q 1
n+1

)1/q

if 0 < q <∞,

sup
n≥0

(n+ 1)rσn(v)X , if q =∞,
(3.3)

is finite. So, Ar = Ar∞.
When X is an Lp space or a Sobolev space, the approximation spaces for classical methods based

on polynomials, splines or wavelets are well studied and are either completely characterized or very
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well understood through embeddings. They turn out to be describable by Sobolev spaces or Besov
spaces (see [11]). In particular, these known results show that classical methods of approximation
suffer from the curse of dimensionality. For example, membership in the approximation space
Ar((Σn)n≥0,H

1) for such methods requires the function v to have rd orders of smoothness in H1.
As d increases, this requirement will not be satisfied for typical right-hand sides f in (2.8) that
arise in applications. This means that numerical methods built on such classical approximation
spaces are not effective when dealing with high-dimensional problems of the form (2.8).

One fairly recent viewpoint reflected by the discussion in the Introduction, and the one taken
here, is that, in contrast to classical constructions, spaces Σn built on suitable tensor formats may
perform much more favorably on certain high-dimensional problems, and, indeed, break the curse
of dimensionality for them. However, to the best of our knowledge no such rigorous results, in this
direction, exist as of yet. In this subsection, we put forward some natural possibilities for defining
sparse tensor classes Σn, subject to a budget of ∼ n parameters. A later subsection of this paper
will show that the nonlinear spaces (Σn)n≥0 built on these tensor constructions effectively capture
the solutions to the variational problem (2.8). To show this effectiveness, one has to understand
what conditions on the right-hand side f guarantee that the solution u is in an approximation
class Ar((Σn)n≥0,H

1) for a reasonably large value of r. One can view any theorem that deduces
membership of u in Ar((Σn)n≥0,H

1) from a suitable property of f as a regularity theorem for the
variational problem under consideration. Such regularity results are then proved in §4.

3.1. Formulations of tensor-sparsity. In this section we introduce and compare several pos-
sible formulations of tensor-sparsity and tensor-compressibility. The main property one seeks in
such sparsity classes Σn is that the elements in Σn should depend on ∼ n parameters. The com-
mon feature of these formulations is that they are based on low-dimensional eigensystems whose
tensor products form a fixed background basis. In later sections we will propose an alternative way
of defining tensor-sparsity, which is independent of any specific background system.

3.1.1. n-term approximation. We first discuss the well-studied nonlinear approximation procedure
of n-term approximation from a basis (ϕν)ν∈Nd . In our setting, we know that (eν)ν∈Nd is a tensor
basis for Ht, t ∈ R, and in particular for H1. In n-term approximation, the space Σn consists of
all functions g =

∑
ν∈Λ cνeν where Λ ⊂ Nd is a subset of indices with cardinality at most n. The

functions in Σn are said to be sparse of order n. Sometimes one places further restrictions on Λ to
ease numerical implementation and the search for the set of the best n co-ordinates. For example,
when d = 1, a typical assumption is that the indices must come from the set {1, . . . , nA} where A
is a fixed positive integer.

Since (eν)ν∈Nd is also a basis for Ht, the same nonlinear space Σn can be used to approximate
the right-hand side f of (2.8). Let Bu = f . If g =

∑
ν∈Λ cνeν is any element of Σn, then

ū := B−1g =
∑
ν∈Λ cνλ

−1
ν eν is also in Σn and satisfies

‖u− ū‖t+2 = ‖f − g‖t. (3.4)

Therefore,

σn(u)Ht+2 ≤ σn(f)Ht . (3.5)

We therefore have the following simple regularity theorem: for each r > 0, f ∈ Ar((Σn)n≥0,H
t)

implies that u ∈ Ar((Σn)n≥0,H
t+2). While this is a favorable-looking result, that seems to break

the curse of dimensionality, closer inspection reveals that for u or f to belong to the corresponding
Ar space, one requires that when the coefficients in its eigenexpansion are rearranged in decreasing
order the n-th coefficient should decay like n−r−1/2. This in turn is like a smoothness condition of
order rd placed on f and u. Hence, the conditions on the data f become more and more restrictive
when the dimension d increases.

3.1.2. Variable rank-one tensors. Our next sparsity model again draws on the eigensystem (eν)ν∈Nd
as a reference basis but now employs low-dimensional eigenbases to parametrize variable rank-one
tensors. More precisely, let us first consider, for any j ∈ {1, . . . , d}, the eigenbasis (ej,k)∞k=1 as-
sociated with the low-dimensional operator Bj on Hj . The ej,k, k = 1, 2, . . ., are functions that
depend only on xj . For each j ∈ {1, . . . , d}, let Σjm be the collection of all linear combinations of
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at most m of the jth eigensystem elements ej,k. If we fix a value of j ∈ {1, . . . , d}, then the space
Σjm is the space of m-sparse functions for this basis. Thus, any function gj ∈ Σjm can be written
as

gj =
∑
k∈Γj

ckej,k, (3.6)

where #(Γj) ≤ m.
Next consider any m = (m1, . . . ,md) and functions gj ∈ Σjmj , j = 1, . . . , d. Then, the functions

g =

d⊗
j=1

gj (3.7)

are rank-one tensors, which depend only on the |m| := m1 + · · · + md positions Γj , j = 1, . . . , d,
and the |m| coefficients of the gj . We define Σm to be the set of all such functions g.

Note that if g ∈ Σm is expanded in terms of the eigenbasis (eν)ν∈Nd , it would involve m1 · · ·md

terms. However, what is key is that the coefficients in the eigenbasis expansion of g only depend
— in a highly nonlinear fashion — on 2|m| parameters, namely the |m| indices in the sets Γj and
the |m| corresponding coefficients that appear in gj , j = 1, . . . , d.

In order to have a more compact notation for these functions g in what follows, we introduce
Γ := Γ1× · · ·×Γd, which is the set of indices appearing in g and C = Cg is the rank-one tensor of
coefficients

C = Cg := (cν1,1 · · · cνd,d)ν∈Γ. (3.8)

We also use the notation

TΓ,C = g, (3.9)

when we want to explicitly indicate for a g ∈ Σm the index set Γ and the tensor of coefficients C
We define the sparsity space Σn as the set of all functions

g =

s∑
k=1

gk, gk ∈ Σmk
,

s∑
k=1

|mk| ≤ n, (3.10)

and introduce, for any v ∈ Ht, the approximation error

σn(v,Ht) := inf
g∈Σn

‖v − g‖t. (3.11)

Obviously a function in Σn depends on at most n positions and n coefficients, so it can be
viewed as an analogue of n-term approximation except that it strongly exploits tensor structure.
Indeed, if such a function were expanded into the tensor basis (eν)ν∈Nd , it would possibly require
(n/d)d terms. Note that this definition of Σn includes all of the n-term functions of §3.1.1.

3.1.3. Restricted index sets. The space Σn as defined by (3.10) is not suitable for use in numerical
computations. One reason for this is that there is no control on the index sets appearing in the
Γj . This can be circumvented in applications by placing restrictions on the set of indices similar
to the restrictions in n-term approximation already described. To make all of this formal, we
suppose that for each m ≥ 1 and j ∈ {1, . . . , d}, we have a finite set Rm,j ⊂ N. We will require
that for any given m, the sets Γj are subsets of Rmj ,j for each j = 1, . . . , d, or, in other words,
that Γ ⊂ Rm where Rm := Rm1,1 × · · · × Rmd,d. The typical choice for the restriction sets Rm,j
is Rm,j := {1, . . . ,mA} where A is a fixed integer. Such choices are independent of j. In what
follows, if we wish to indicate the difference between Σn and the space defined with restrictions,
we will denote the latter by Σn(R).

One possible restriction, certainly a strong one, is that the sets Rm,j are all one and the same,
and equal to {1, . . . ,m} for each j = 1, . . . , d. Notice that in that case only the eν with ‖ν‖`∞ ≤ m
are available to be used. Thus the component spaces Σjmj are now linear spaces, however the spaces
Σm and Σn are not linear spaces.

For later use we record in the following lemma a simple sufficient condition for a rank-one tensor
to be in the approximation space Ar. We shall suppose that we are measuring the error in the
norm of Ht.
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Lemma 4. Suppose that m = (m, . . . ,m). Consider the above case of restricted approximation
when Rm contains {1, . . . ,m}d. Then, for any δ > 0 and any rank-one tensor function v(x) =
v1(x1) · · · v(xd) in Ht+δ, we have that

inf
g∈Σm

‖v − g‖t ≤ [λ∗m]−δ/2‖v‖t+δ, (3.12)

where

λ∗m := min
1≤j≤d

λj,m+1. (3.13)

Proof. As has been already noted, the function g :=
∑
ν≤m

〈v, eν〉eν is in Σm. If ν 6≤ m, then, for

some j ∈ {1, . . . , d}, we have νj ≥ m+ 1 and

λν ≥ λj,m+1 ≥ λ∗m.

Therefore, from (2.17) we have

‖v − g‖2t =
∑
ν 6≤m

λt+δν λ−δν 〈v, eν〉2 ≤ [λ∗m]−δ
∑
ν>m

λt+δν 〈v, eν〉2 ≤ [λ∗m]−δ‖v‖2t+δ. (3.14)

This gives (3.12). �

As a simple example of the above result, we take the Bj to be the Laplacian on a Lipschitz
domain Dj ⊂ R2, with homogeneous Dirichlet boundary condition on ∂Dj , j = 1, . . . , d. Then the
eigenvalues λj,k grow like k and λ∗m ≈ m. Hence the approximation rate for the v in the lemma is

of order m−δ/2. Thus for an investment of computing dm coefficients, we obtain accuracy m−δ.
For an analogous result on the spectral asymptotics of degenerate elliptic operators that arise in
the context of Fokker–Planck equations, we refer to [14].

3.1.4. Other bases for rank-one sparse decompositions. The spaces Σn and their restricted coun-
terparts Σn(R) may still be inappropriate for numerical implementation (except perhaps in the
case of Fourier spectral methods) because they require the computation of the eigenvalues and
eigenfunctions of the elliptic operator under consideration. For this reason, numerical algorithms
use other readily available tensor bases (ϕν)ν∈Nd , such as wavelet or spline bases. In this case, the
role of eν is replaced by ϕν , ν ∈ Nd, in the definition of Σn and σn. In general, different bases
give different approximation classes Ar and these classes should be viewed as ways of measuring
smoothness. Sometimes, it is possible to prove for some choices of bases that the approximation
classes are the same. For example, this is the case for univariate n-term approximation using
wavelet and spline bases. We do not wish, in this paper, to enter too deeply into this issue since
it depends heavily on the properties of D and the constructed bases. For the construction and
analysis of algorithms using such background bases we refer to [4, 2].

4. Regularity theorems based on tensor-sparsity: data with low regularity

We now turn to proving regularity theorems in terms of the approximation classes based on
the tensor systems (Σn)n≥0 introduced in §3.1.2. We shall prove that if the right-hand side f is
in an approximation class Aα((Σn)n≥0,H

t) for some α > 0, then the solution u of the variational
problem:

Find u ∈ Ht+2 such that b(u, v) = 〈f, v〉 ∀ v ∈ H−t, (4.1)

belongs to the approximation class Aα′((Σn)n≥0,H
t+2) for all α′ ∈ (0, α). To prepare for the proof

of this result, we begin with the following lemma.

Lemma 5. Let G(x) := 1/x, x > 0, and fix any β > 0. For each integer r ≥ 1, there exists a
function

Sr(x) :=

r∑
k=1

ωk e−αkx, x > 0, (4.2)

with αk = αr,k > 0, ωk = ωr,k > 0, k = 1, . . . , r, such that
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(i) we have the error bound

‖G− Sr‖L∞[β,∞) ≤
16

β
e−π
√
r; (4.3)

(ii) in addition,

Sr(x) ≤ 1

x
for all x ≥ 1

8eπ
√
r. (4.4)

Proof. This follows from the results in [5, 6] and we only sketch the argument therein. The starting
point is that G is a completely monotone function. Defining the class of exponential sums

Er :=
{ r∑
k=1

ωk e−αkx : x > 0, αk > 0, ωk ∈ R
}
,

it can be shown that for any bounded closed interval [1, R], R > 1, the function

Sr,R(x) =

r∑
k=1

ωr,k,R e−αr,k,Rx (4.5)

from Er that minimizes

Er,[1,R](G) := inf
{
‖G− S‖L∞[1,R] : S ∈ Er

}
exists, is unique, and is characterized by an alternation property, from which one deduces that

0 ≤ Sr,R(x) ≤ 1

x
, x ≥ R. (4.6)

The following estimate for the error is proved in [5]:

Er,[1,R](G) = ‖G− Sr,R‖L∞[1,R] ≤ 16 e−
π2r

log(8R) . (4.7)

In order to obtain a bound on the whole real line one uses that G decays and aims to minimize
max {Er,[1,R], 1/R)} over all choices R > 1. Taking R = Rr := 1

8 exp
(
π
√
r)
)
, gives

Er,[1,Rr](G) ≤ 16 e−π
√
r. (4.8)

Because of (4.6) we can replace the interval [1, Rr] in (4.8) by [1,∞). This proves (4.3) and (4.4)
with Sr := Sr,Rr for the case β = 1. The case of general β follows from a simple rescaling.
The positivity of the weights ωr,k,R in (4.5) is known to hold in general for best exponential
sum approximations to completely monotone functions, see [4], and that then implies the desired
positivity of the ωr,k := ωr,k,Rr . �

The following lemma gives a similar result but with an added restriction on the coefficients αk.

Lemma 6. Let G(x) := 1/x, x > 0, and fix any β > 0. For each integer r ≥ 1, there exists a
function

S̄r(x) :=

r∑
k=1

ω̄k e−αkx, x > 0, (4.9)

with αk = αr,k > 0 and ω̄k = ωr,k ≥ 0, k = 1, . . . , r, such that the following hold.
(i) Whenever ω̄k > 0, we have αk ≥ T−1

r ,where Tr := 1
8exp

(
π
√
r)
)
, k = 1, . . . , r.

(ii) We have the error bound

‖G− S̄r‖L∞[β,∞) ≤
(

16

β
+ 8re

)
e−π
√
r. (4.10)

(iii) In addition,

S̄r(x) ≤ 1

x
for all x ≥ 1

8eπ
√
r. (4.11)
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Proof. We start with the function Sr =
∑r
k=1 ωke−αkx of the previous lemma with αk > 0 and

ωk > 0 for all k ∈ {1, . . . , r}. Suppose that for some k ∈ {1, . . . , r} we have αk ≤ T−1
r . Then,

e−1 ≤ e−αkTr and therefore ωke−1 ≤ ωke−αkTr . In view of (ii) of the previous lemma with x = Tr,
we have ωke−1 ≤ ωke−αkTr ≤ T−1

r , and thus also ωk ≤ eT−1
r . Hence, if for each such αk, we set

ω̄k := 0 and define ω̄k = ωk for all other k ∈ {1, . . . , r}, we obtain a new function S̄r defined by
S̄r(x) :=

∑r
k=1 ω̄ke−αkx, x > 0, such that

S̄r(x) ≤ Sr(x) ≤ S̄r(x) + reT−1
r = S̄r(x) + 8re e−π

√
r for all x > 0. (4.12)

Part (ii) then follows from (4.12) and part (i) of Lemma 5 via the triangle inequality, while part
(i) follows directly from the definition of ω̄k.

All of the remaining claims of the lemma follow from (4.12) together with the corresponding
statement of Lemma 5. �

Exponential sums such as the one in Lemma 5 have been considered in several works for the
purpose of constructing low-rank approximations to inverses of finite-dimensional linear operators
(i.e., matrices); see e.g. [18, 16]. However, in the finite-dimensional setting the metrics for the
domain and the range of the linear operators were taken to be the same: typically the Euclidean
metric. When the discrete operator is to approximate an infinite-dimensional operator, such
as a differential operator, with different domain and range topologies (e.g. H1 and H−1), the
discrete operator becomes more and more ill-conditioned when the discretization is refined. As
a consequence, the accuracy of an approximate discrete solution cannot be well estimated by the
corresponding discrete residual. The deviation of the corresponding expansion in a “problem-
relevant” function space norm is in general not clear. Therefore, the fully discrete approach does
not immediately provide a rigorous rate distortion result in the continuous PDE setting.

Expanding further on the above point, note that the operator B is an isomorphism only as a
mapping between spaces of different regularity levels that are not endowed with tensor product
norms. A rigorous assessment of the error has to take this mapping property into account. That,
however, has an adverse effect on tensor sparsity because the representation of B−1 in the eigenba-
sis is a diagonal operator of infinite rank since the diagonal entries λ−1

ν are not separable, see also
[4]. More importantly, as will be seen next, the actual ranks required to approximate u to within
a given tolerance in ‖ · ‖s, for f measured in ‖ · ‖t, say, strongly depends on the corresponding
“regularity shift” s − t. Properly taking such “regularity shifts” into account in the course of
low-rank approximation is a central issue in the subsequent developments of this paper.

The following result is our first main regularity theorem. It will be convenient to define the
smallest eigenvalue of B:

λ := min
ν∈Nd

λν = λ(1,...,1). (4.13)

Theorem 1. Suppose that t ∈ R and that f ∈ Aα((Σn)n≥0,H
t), α > 0; then, the weak solution

u ∈ Ht+2 to (2.21) satisfies the following inequality:

σn[logn]2(u)Ht+2 ≤ A‖f‖Aα((Σn)n≥0,Ht) n
−α, n = 1, 2, . . . , (4.14)

where the constant A depends only on α and the smallest eigenvalue λ > 0 of B. In particular, u
belongs to Aα′((Σn)n≥0,H

t+2) for all α′ ∈ (0, α).

Proof. We fix n ≥ 1. The assumption that f ∈ Aα((Σn)n≥0,H
t) implies the existence of a gn ∈ Σn

such that

‖f − gn‖t ≤Mn−α, M := ‖f‖Aα((Σn)n≥0,Ht). (4.15)

Membership in Σn means that gn is of the form

gn :=

k∑
j=1

hj , hj := TΛ(j),C(j), (4.16)

where

Λ(j) = Λ1(j)× · · · × Λd(j) (4.17)
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and
C(j) = c1(j)⊗ · · · ⊗ cd(j). (4.18)

Here, each ci(j) is a vector in Rmi(j), where mi(j) := #(Λi(j)). We know that the mode sizes

m(j) =
∑d
i=1mi(j) =

∑d
i=1 #(Λi(j)) of the tensors C(j) satisfy

2

k∑
j=1

m(j) ≤ n. (4.19)

Consider now ūn = B−1gn. We also know that

‖u− ūn‖t+2 = ‖f − gn‖t ≤Mn−α, M := ‖f‖Aα((Σn)n≥0,Ht). (4.20)

We deduce from (4.16) that

ūn =

k∑
j=1

h̄j , h̄j := B−1hj . (4.21)

We will next show how each of the functions h̄j can be well approximated by functions from
Σn. To this end, we fix j and write

hj =
∑

ν∈Λ(j)

cν(j)eν , (4.22)

so that
h̄j =

∑
ν∈Λ(j)

λ−1
ν cν(j)eν . (4.23)

where, of course, the cν(j) are determined by the at most n/2 parameters defining the factors in
(4.18). While, for a fixed j, the cν(j) form a rank-one tensor, λ−1

ν is not separable so that h̄j
has infinite rank. To obtain low-rank approximations to h̄j we use Lemma 5, where λ > 0 is the
smallest of the eigenvalues λν of B, and approximate λ−1

ν by an exponential sum Sr(λν) which is
a sum of r separable terms.

In fact, using Sr as defined in Lemma 5, with r to be chosen momentarily, we define

ĥj :=
∑
ν

Sr(λν) cν(j) eν , (4.24)

which can be rewritten as

ĥj =

r∑
k=1

ωk

 ∑
ν∈Λ(j)

[e−αkλν cν(j)]eν

 . (4.25)

We then define ûn =
∑k
j=1 ĥj .

From the tensor structure of hj (see (4.16)) and the fact that e−αkλν = e−αkλ1,ν1 · · · e−αkλd,νd
is separable, we see that each of the functions∑

ν∈Λ(j)

e−αkλν cν(j) eν , k = 1, . . . , r, (4.26)

is in Σm(j). Since, for each j, there are r such functions, we deduce that ûn is in Σrn.

Writing ūn =
∑
ν λ
−1
ν aνeν for a suitable sequence (aν)ν∈

⋃k
j=1 Λ(j), we have, by definition, that

ûn =
∑
ν

Sr(λν)aνeν .

We can now bound ‖ūn − ûn‖t as follows. With A0 := 16/λ, we obtain

‖ūn − ûn‖2t+2 = ‖
∑
ν

[λ−1
ν − Sr(λν)]aνeν‖2t+2 =

∑
ν

λν [[λ−1
ν − Sr(λν)]aν ]2

≤ [A0e−π
√
r]2
∑
ν

λνa
2
ν = [A0e−π

√
r]2 ‖ūn‖2t+2 = [A0e−π

√
r]2 ‖gn‖2t

≤ [A0e−π
√
r]2 ‖f‖2t . (4.27)
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We now take r as the smallest integer for which π
√
r ≥ α log n. For this choice of r, we obtain

‖ūn − ûn‖t+2 ≤ A0‖f‖tn−α. (4.28)

When this is combined with (4.20) by a triangle inequality in the Ht+2 norm, we obtain

‖u− ûn‖t+2 ≤Mn−α +A0‖f‖−tn−α≤(A0 + 1)‖f‖Aα((Σn)n≥0,Ht)n
−α. (4.29)

Since ûn is in Σrn and r ∼ Cα[log n]2, where Cα is a positive constant dependent solely on α, by
absorbing the constants A0 + 1 and Cα into the definition of the constant A = A(α, λ), we deduce
(4.30). That completes the proof. �

Suppose that in place of Σn we use the spaces Σn(R) with restrictions on the indices of the eν
as described in §3.1.3. The proof of the last theorem then applies verbatim with these restrictions.
Hence, we have the following result.

Theorem 2. Suppose that t ∈ R and f ∈ Aα(Σn(R))n≥0,H
t), α > 0; then, the corresponding

solution u ∈ Ht+2 to (2.21) satisfies the following inequality:

σn[logn]2(u)Ht+2 ≤ A‖f‖Aα((Σn(R))n≥0,Ht)n
−α, n = 1, 2, . . . , (4.30)

where the constant A depends only on α and the smallest eigenvalue λ > 0 of B. In particular, u
belongs to Aα′((Σn(R))n≥0,H

t+2) for all α′ ∈ (0, α).

We have formulated the above results in terms of the approximation spaces Aα. This only
gives information for polynomial order decay. We can work in more generality. Let γ be a strictly
monotonically increasing function defined on [0,∞), with γ(0) > 0. We define the approximation
class Aγ((Σn)n≥0,H

t) as the set of all v ∈ Ht such that

γ(n)σn(f)Ht ≤M, n ≥ 0, (4.31)

with (quasi-) norm defined as the smallest such M . We then have the following theorem.

Theorem 3. Suppose that t ∈ R and that f ∈ Aγ((Σn)n≥0,H
t); then, the corresponding solution

u ∈ Ht+2 to (2.21) satisfies the following inequality:

σn[log γ(n)]2(u)Ht+2 ≤ A‖f‖Aγ((Σn(R))n≥0,Ht)[γ(n)]−1, n = 1, 2, . . . , (4.32)

where the constant A depends only on the smallest eigenvalue λ > 0 of B. In particular, u belongs
to Aγ̄((Σn)n≥0,H

t+2), where γ̄(x) := γ(G−1(x)) with G(x) := x[log γ(x)]2, x > 0.

Proof. The proof is in essence the same as that of Theorem 1 with nα replaced by γ(n), and r ≥ 1
chosen so that π

√
r ≥ log γ(n). This gives (4.32) from which the remaining claim easily follows

upon observing that (4.32) just means σG(n)(u)Ht+2 ≤ A‖f‖Aγ((Σn(R))n≥0,Ht)[γ(n)]−1, and putting

m = G(n), n = G−1(m). �

Remark 2. Let us remark on how the curse of dimensionality enters into Theorem 3. This the-
orem says that for f ∈ Aγ((Σn)n≥0,H

t) the number of degrees of freedom needed to approximate
the solution u in Ht+2 to within accuracy ε is of the order γ̄−1(A‖f‖Aγ/ε) where A is a fixed con-
stant independent of the spatial dimension d. Moreover, the approximations to u are derived from
nonlinear information on the data f given in terms of low-rank approximations. Hence, under this
assumption on the data the curse of dimensionality is broken. However, the regularity assumption
on f depends on d because the larger d the fewer degrees of freedom can be spent on each tensor
factor. However, as addressed in more detail later, when the tensor factors approximate functions
having a certain (low-dimensional) Sobolev or Besov regularity the deterioration of accuracy when
d grows is expected to be at most algebraic in d so that one can, in principle, still assert tractability
in the sense that the computational work needed in order to realize a given target accuracy does
not depend exponentially on d.
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5. A Basis-Free Tensor-Sparsity Model

The primary purpose of the sparsity model considered thus far is to highlight in a technically
simple fashion, on the one hand, the principal mechanism of how tensor-sparsity of the data is
inherited by the solution and, on the other hand, the relevance of the structure of the spectrum
of elliptic operators in this context. While this is an interesting theoretical result, it does not
lead directly to a numerical method that exploits this compressibility in an efficient numerical
algorithm. There are several reasons for this.

The first of these is the fact that, in general, the eigenfunction basis is not available to us, and
computing even the first few eigenfunctions will generally require significant computational effort.
Moreover, even, if we had computed the eigenfunction basis and the representation of f in this
basis, it is not a simple task to find a good low-rank approximation g to f .

A second point is that in the classical setting of differential operators, the assumption that f
is compressible in the eigenfunction basis may in fact exclude rather simple functions. Consider,
for example, the Poisson equation subject to a homogeneous Dirichlet boundary condition:

−∆u = 1 in D = (0, 1)d, u = 0 on ∂D.

In this case one has eν(x) = 2−d/2
∏d
j=1 sin(πνjxj), ν ∈ Nd. Note that the right-hand side

f(x) ≡ 1 is a rank-one function. However, its expansion in terms of the eν has infinitely many
terms. Because of the boundary conditions, parametrizing the solution and the right-hand side
with respect to the same basis may not be the most favorable approach. In fact, each univariate
factor 1 of f has an infinite expansion in the univariate basis (sin(πkxj))k∈N. Thus we shall next
propose a way of describing tensor-sparsity without referring to any particular background basis
and where the corresponding regularity notion does not become stronger when d increases.

Perhaps, the main shortcoming of the idea of sparsity introduced in the previous sections is
that the tensors that arise in the approximation lack stability. Indeed, we have no control on how
well the approximants g can themselves be numerically resolved. Typically, the computability of
g is related to its regularity, for example, in the family of spaces Hs.

The purpose of this section is to remedy some of these deficiencies. This will be accomplished
by putting forward a form of tensor sparsity and compressibility that, on the one hand, does not
depend on the eigenfunction basis and, in fact, is independent of any basis, and on the other hand,
it imposes a regularity on the approximates g to f , thereby making them computable. Moreover,
as we shall show, this leads to an efficient numerical implementation. To accomplish this, we will
impose a certain stability for the approximating tensors. To understand the role of stability, let
us begin with some general comments about tensor approximation.

Trying to approximate a function f in a Banach space X in terms of (possibly short) sums
of rank-one functions, which are merely required to belong to the same space X, is an ill-posed
problem. This is well-known even in the discrete (finite-dimensional) case, see [3, 28]. For instance,
the limit of a sequence of rank-two tensors may have rank three. It is also known (see [26]) that
the elements of such sequences degenerate in the sense that the sums have uniformly bounded
norms but the individual summands do not. This is why one resorts (predominantly in the
discrete setting) to subspace-based tensor formats that are inherently more stable, although they
are also more involved technically [21, 19]. Note, however, that even if one managed to stably
approximate f in X by a short sum of arbitrary rank-one tensors in X, in the continuous (infinite-
dimensional) setting, these rank-one functions could be arbitrarily hard to compute. Thus, the
rank-one functions that are allowed to enter into a competition for best tensor approximations to a
given function v need to be tamed in one way or another. The standard way of accomplishing this
and the one we shall follow below is to add a penalty (regularization) term to the approximation
error.

5.1. An alternative sparsity model. To understand the form a penalty or regularization should
take, let us assume that we wish to approximate v in the Ht norm. We denote by Tr(Ht) the set
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of all rank r tensors

g =

r∑
k=1

g(k), g(k) = g
(k)
1 ⊗ · · · ⊗ g(k)

d , g ∈ Ht, (5.1)

and T (Ht) :=
⋃
r∈N0

Tr(Ht). When approximating v by the elements from Tr(Ht), the approxima-
tion error is not the only issue. We also want that the approximant g itself to be approximable
(also in Ht). To guarantee this, we will impose regularity constraints on g and therefore its com-

ponents g
(k)
j (see Lemma 2). To keep matters simple, we take this regularity to be membership in

the space Ht+ζ for some arbitrary but fixed ζ > 0. As will be seen below, in the present particular
context of solving (4.1), there is a natural choice of ζ. Note that one could also assume other types
of regularity measures such as Besov regularity in the classical PDE setting.

We consider for any r ∈ N0, v ∈ Ht, ζ > 0, the K-functional

Kr(v, µ) := Kr(v, µ; Ht,Ht+ζ) := inf
g∈Tr(Ht+ζ)

{
‖v − g‖t + µ|||g|||r,t+ζ

}
, (5.2)

where, for any g ∈ Tr(Hs) of the form (5.1),

|||g|||r,s := inf
[
max {‖g‖s, ‖g(k)‖s : k = 1, . . . , r}

]
, (5.3)

where the infimum is taken over all representations of g, of the form (5.1), using r rank-one
tensors. We infer from Lemma 3 that the infimum in (5.2) is attained for some g ∈ Tr(Ht+ζ). Let
us make some comments that will illuminate the role of Kr. This functional measures how well
v can be approximated by rank r tensors (in the norm of Ht) with the added constraint that the
approximants g have bounded Ht+ζ norm. One question that arises is how should ζ be chosen. In
the context of solving PDEs, to approximate the solution u in a specified Ht norm with a certain
rate requires some excess regularity of u. This excess regularity is quantified by ζ. We guarantee
this excess regularity by assuming some regularity for f and then applying a regularity theorem,
see (7.1). A second remark is that if we know that the function f in (5.2) is indeed in Ht+ζ ,
when Ht+ζ agrees with a classical Sobolev space, then standard constructions of approximants to
v would also be in Ht+ζ and have norm in this space that does not exceed C‖v‖Ht+ζ . However,
we do not wish to assume that we know ‖v‖Ht+ζ or C, which is why we resort to a general µ.

Since Kr(v, µ) is similar to an error functional, we can obtain approximation classes in the
same way we have defined the classes Aα (which give error decay rate O(n−α)) and the more
general classes Aγ (which give error decay rate 1/γ(n)). We describe this in the case of general γ
since it subsumes the special case of polynomial growth rates. We begin with any growth sequence
{γ(r)}r∈N0

, γ(0) = 1, that monotonically increases to infinity. Given such a γ, we define

‖v‖Āγ(Ht,Ht+ζ) := sup
r∈N0

γ(r)Kr(v, 1/γ(r); Ht,Ht+ζ) (5.4)

and the associated approximation class

Āγ := Āγ(Ht,Ht+ζ) := {v ∈ Ht : ‖v‖Āγ <∞}. (5.5)

We shall frequently use that, whenever v ∈ Āγ(Ht,Ht+ζ), there exists for each r ∈ N0 a gr ∈ Tr(Ht)
such that

‖v − gr‖t ≤ γ(r)−1‖v‖Āγ(Ht,Ht+ζ), ‖gr‖t+ζ ≤ |||gr|||r,t+ζ ≤ ‖v‖Āγ(Ht,Ht+ζ). (5.6)

In other words, the approximants gr not only provide the approximation rate 1/γ(r) by rank r
tensors but also provide a control on their regularity.

Of particular interest are sequences (γ(n))n≥0 that have a rapid growth, because this reflects
the closeness of Hs-stable approximations of rank-one summands to v. For sequences γ that grow
faster than any polynomial rate and hence violate the requirement that

γ(2n) ≤ Cγ(n), n ∈ N, (5.7)

the corresponding approximation classes are no longer linear. Nevertheless, when γ(n) = eαn for
instance, then the sum of any two elements is still in Āγ̂ where γ̂(n) = e

α
2 n.
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5.2. Approximations to B−1. As in the case of Theorem 1, the key vehicle for proving regularity
theorems for the new approximation spaces are exponential sum approximations. While these have
been used above for the approximation of the scalars λ−1

ν , we shall now employ them to construct
approximate inverses to B−1, again based on Lemma 5. In contrast with the approximate inversion
of matrices (see [18, 25]), in the infinite-dimensional setting considered here, we shall take into
account the mapping properties of the operator on the scale of generalized Sobolev spaces Ht with
t ∈ R.

In order to apply Lemma 5 for approximating the solution of Bu = f , we recall that, by (2.24),

u =
∑
ν∈Nd

λ−1
ν 〈f, eν〉 eν .

Note that by (2.16),

λ−1
ν eν ≈ Sr(λν) eν =

r∑
k=1

ωr,k e−αr,kλν eν =

r∑
k=1

ωr,k e−αr,kB eν . (5.8)

Hence, formally, an approximation to B−1f is given by

Sr(B)f :=

r∑
k=1

ωr,k e−αr,kBf. (5.9)

The following proposition establishes the mapping properties of the operators Sr(B) and estimates
for how well this operator approximates B−1.

Proposition 1. Let C0 := max{8, 2
λ}, t ∈ R, and v ∈ Ht.

(i) If t ≤ s ≤ t+ 2, then,

‖B−1 − Sr(B)‖Ht→Hs ≤ C0e−
(2−(s−t))π

2

√
r. (5.10)

(ii) In particular, for any ξ ∈ [0, 2], one has

‖B−1v − Sr(B)v‖t+ξ ≤ C0e−
(2−ξ)π

2

√
r‖v‖t. (5.11)

(iii) Moreover,
‖Sr(B)v‖t+2 ≤ (C0 + 1) ‖v‖t. (5.12)

(iv) If v is a rank-one tensor, then Sr(B)v =
∑r
k=1 v

(k), where each v(k) := ωr,k e−αr,kBv is a
rank-one tensor, which satisfies

‖v(k)‖t+2 ≤ (C0 + 1)1/2‖v‖t. (5.13)

Proof. (i) Defining

εr,ν := λ−1
ν − Sr(λν), ν ∈ Nd,

we know from (4.10) that

|εr,ν | ≤
16

λ
e−π
√
r, ν ∈ Nd. (5.14)

Now, we can write

B−1v =
∑
ν∈Nd

〈v, eν〉
(
Sr(λν) + εr,ν

)
eν = Sr(B)v +

∑
ν∈Nd

εr,ν 〈v, eν〉 eν . (5.15)

Hence,

‖B−1v − Sr(B)v‖s =

∑
ν∈Nd

ε2
r,νλ

s
ν |〈v, eν〉|2

1/2

≤

∑
ν∈Nd

λtν |〈v, eν〉|2
1/2

sup
ν∈Nd

|εr,ν |λ
s−t

2
ν

≤ ‖v‖t sup
ν∈Nd

|εr,ν |λ
s−t

2
ν . (5.16)
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We write s− t = 2− ξ with ξ ∈ [0, 2] and rewrite ε2
r,νλ

s
ν = ε2

r,νλ
2−ξ
ν λtν . Now,

ε2
r,νλ

s−t
ν = ε2

r,νλ
2−ξ
ν =

{
(εr,νλν)2λ−ξν ≤ 8ξe−ξπ

√
r, λν >

1
8eπ
√
r,

(εr,νλν)2−ξεξr,ν ≤ [ 2
λ ]2−ξe−ξπ

√
r, λν ≤ 1

8eπ
√
r,

(5.17)

where in the first estimate we used the fact that εr,νλν ≤ 1 because of (4.11). The second estimate
used (5.14). So, (5.10) follows from (5.16). This proves (i).

(ii) The assertion (5.11) is just a restatement of (5.10).

(iii) The bound (5.12) follows from the fact that ‖B−1‖Ht→Ht+2 ≤ 1.

(iv) Each of the components v(k) satisfies

‖v(k)‖2t+2 =
∑
ν∈Nd

λt+2
ν |〈v(k), eν〉|2

= ω2
r,k

∑
ν∈Nd

λtν(λνe−αr,kλν )2|〈v, eν〉|2

≤ sup
ν∈Nd

(ωr,kλνe−αr,kλν )2‖v‖2t ≤ (1 + C0)‖v‖2t ,

where we have used (2.16) in the first equality. In the last inequality, we used that, by (4.10),

xSr(x) ≤ 1 + 2
λ for x ≤ 1

8eπ
√
r while, by (4.11), xSr(x) ≤ 1 for x ≥ 1

8eπ
√
r so that, for any ν ∈ Nd,

ωr,kλνe−αr,kλν ≤ λν
r∑

k=1

ωr,ke−αr,kλν = λνSr(λν) ≤ 1 +
2

λ
≤ (1 + C0). (5.18)

�

Note that (B−1−Sr(B))r∈N as a sequence of operators from Ht to Hs tends to zero as r →∞
in the corresponding operator norm as long as s − t < 2, while the sequence is merely uniformly
bounded when s− t = 2.

Remark 3. The statements of Proposition 1 remain valid for s < t and hence ξ > 2 where,
however, the constant C0 depends then on ξ = 2 − (s − t), as can be seen from (5.17). Since
Proposition 1 will be applied later for s ≥ t we are content with the above formulation to avoid
further dependencies of constants.

5.3. A new regularity theorem. We can now state our new regularity theorem.

Theorem 4. Assume that f ∈ Āγ(Ht,Ht+ζ) for the specified t ∈ R and some 0 < ζ ≤ 2. Let

R(r, γ) :=
⌈
C1(ζ)

(
log(C0γ(r))

)2⌉
, (5.19)

where C1(ζ) := 4
(πζ)2 and C0 is the constant in Proposition 1, and define the tempered sequence

γ̂(m) := γ(r), rR(r, γ) ≤ m < (r + 1)R(r + 1, γ), r = 1, 2, . . . . (5.20)

Then, the solution u to the variational problem (4.1) belongs to Āγ̂(Ht+2,Ht+2+ζ) and

‖u‖Āγ̄(Ht+2,Ht+2+ζ) ≤ (3 + C0)‖f‖Āγ(Ht,Ht+ζ), (5.21)

Moreover, the mapping that takes the data f into a rank-r approximation to u, realizing the
rate γ̂, is continuous.

Proof. Suppose that f ∈ Āγ := Āγ(Ht,Ht+ζ), so that, by (5.6), there exists, for each r ∈ N, a

gr =
∑r
k=1 g

(k)
r , where g

(k)
r is of the form (5.1), such that

‖f − gr‖t ≤ γ(r)−1‖f‖Āγ , (5.22)

and
‖gr‖t+ζ ≤ |||gr|||r,t+ζ ≤ ‖f‖Āγ . (5.23)

From the definition of R = R(r, γ) and (5.11),

‖B−1gr − SR(B)gr‖t+2 ≤ γ(r)−1‖gr‖t+ζ . (5.24)
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Now, we define

ū := SR(B)gr. (5.25)

The bound (5.19) gives

‖u− ū‖t+2 = ‖B−1(f −Bū)‖t+2 = ‖f −Bū‖t ≤ ‖f − gr‖t + ‖gr −BSR(B)gr‖t
= ‖f − gr‖t + ‖(B−1 − SR(B))gr‖t+2

= ‖f − gr‖t + γ(r)−1‖gr‖t+ζ
≤ 2γ(r)−1‖f‖Āγ(Ht,Ht+ζ), (5.26)

where we have used (5.22) and (5.23) in the last step.
By construction, the rank of ū is bounded by rR. Moreover, expanding

ū = SR(B)gr =

R∑
k=1

r∑
`=1

uk,`, where uk,` := ωR,ke−αR,kBg(`)
r , (5.27)

we have from (iv) of Proposition 1 that

‖uk,`‖t+2+ζ ≤ (1 + C0)1/2‖g(`)
r ‖t+ζ , k = 1, . . . R, ` = 1, . . . , r. (5.28)

Combining this with (5.12), we obtain

|||ū|||rR,t+2+ζ ≤ (1 + C0)|||gr|||r,t+ζ ≤ (1 + C0)‖f‖Āγ(Ht,Ht+ζ). (5.29)

The two inequalities (5.26) and (5.29) allow us to conclude that, for any positive integer m ∈
[rR(r, γ), (r + 1)R(r + 1, γ)),

γ̂(m)Km(u, γ̂(m)−1,Ht+2,Ht+2+ζ) ≤ γ(r)‖u− ū‖t+2 + |||ū|||Rr,t+2+ζ ≤ (3 + C0)‖f‖Āγ(Ht,Ht+ζ).

Since this inequality covers all values of m ∈ N0, this means that

u ∈ Āγ̂(Ht+2,Ht+2+ζ), ‖u‖Āγ(Ht+2,Ht+2+ζ) ≤ (3 + C0)‖f‖Āγ(Ht,Ht+ζ). (5.30)

The asserted continuity of the mapping that takes gr into ū follows from the boundedness of
SR(B) as a mapping from Ht+ζ to Ht+2, 0 ≤ ζ ≤ 2; c.f. Proposition 1. �

Again, Theorem 4 remains valid for ζ > 2 with an adjusted constant C0, see Remark 3. Note
also that in contrast with the previous models (see Remark 2), the assumption f ∈ Āγ(Ht,Ht+ζ)
does not entail increasingly stronger constraints on the approximants, and hence on f , when d
grows.

The loss in the decay rate of Theorem 4 is essentially the same as in Theorem 3. For example,
any algebraic convergence rate γ(r) = rα is preserved up to a logarithmic factor. Perhaps more
interesting in this model is the case of very fast decay rates, as illustrated by the following example.

Example 1. If γ(r) = eαr for some α > 0, then one has

γ̂(r) ≥ γ((r/C)1/3) = e(αr/C)1/3

, (5.31)

where C = C(α, f, ζ). Thus, on the one hand, the convergence rate for u ∈ Āγ̂(Ht+2,Ht+2+ζ) is
still faster than any algebraic rate; on the other hand, in relative terms, the loss of tensor-sparsity
is the larger the stronger the sparsity of the data. This is plausible since even when f is a rank-one
tensor, u will generally have infinite rank.

The proof of (5.31) follows from the fact that R(r, γ) ≈ r2, with constants of equivalence de-
pending only on ζ. Hence, rR(r, γ) ≈ r3 and the result easily follows.
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6. Complexity and Computational Algorithms

While Theorem 4 says that the solution u to (2.21) can be well approximated by sparse ten-
sor sums with stable components, whenever the right-hand side has a stable representation by
sparse tensor sums, it does not provide an approximation that is determined by a finite number
of parameters nor does it offer a numerical algorithm for computing a finitely parametrized ap-
proximation to u that meets a prescribed target accuracy. Recall, for comparison, that in low
spatial dimensions, classical numerical methods and their analysis show that the smoothness or
regularity of the solution to an elliptic problem determines the complexity necessary to compute
an approximation to any given target accuracy.

The central question addressed in this section is whether a regularity result like Theorem 4 can
be translated into an analogous statement about computation even though we are now in a high-
dimensional regime. We address this question in two stages. We first show in §6.2 that whenever
f is in one of the approximation classes Āγ(Ht,Ht+ζ), for a γ with at least power growth, then
the solution u can be approximated in Ht to within accuracy ε by a function that is determined
by N(ε, d) suitable parameters where

N(ε, d) ≤ dC1ε−C2 , ε > 0, d ∈ N. (6.1)

In analogy with the terminology in Information-Based Complexity, we call such a result represen-
tation tractability. In this sense Theorem 4 does establish a favorable relation between regularity
and complexity.

Representation complexity bounds are, unfortunately, of little practical relevance for computa-
tion, since they do not provide in general a viable and implementable numerical algorithm. In fact,
the information used in deriving (6.1) is the evaluation of exponential maps e−αBj applied to data
approximations. Unless one knows the eigenbases of the low-dimensional component operators Bj

this is a very restrictive assumption from a practical point of view, as mentioned earlier. On the
other hand, the bounds can be viewed as a benchmark for the performance of numerical schemes
in more realistic scenarios. If we are only allowed to query the given data f but cannot resort to
an eigensystem of B, as is the case in any standard numerical framework for computing a solution
to (2.21), then it is far less obvious how to arrive at a finitely parametrized approximation to u
and at what cost. We refer to the corresponding computational cost as numerical complexity. It
addresses the computational complexity of approximately inverting B for data with certain struc-
tural properties. This is far less studied in the context of complexity theory when B cannot be
diagonalized, although it is the central question in numerical computation.

We shall address numerical complexity in the remaining subsections of this section. We em-
phasize already here that when treating computational complexity we assume that all relevant
information about the data f is available to us. In particular, we do not include the question of
the cost of providing approximations to f in the desired format as described below. The morale of
this point of view is that “data” are part of the modeling process and are given by the user. Even
when the data take the simplest form, such as being a constant, conventional numerical tools would
render the solution of a high-dimensional diffusion problem, with certified accuracy in a relevant
norm, computationally intractable. Our main contribution, in this direction, is therefore to show
that, using unconventional tools, as described in this paper, the problem is indeed numerically
tractable at a computational cost not much higher than (6.1).

6.1. The right-hand side f . We assume that we are given an error tolerance ε > 0 that we
wish to achieve with the numerical approximation. Any numerical algorithm for solving (2.21)
begins with the input of the right-hand side f . To exploit tensor sparsity, we need that either f
is itself a rank r tensor for some value of r or it can be well approximated by a rank r tensor.
Since the second case subsumes the first, we put ourselves into the second case. Namely, we know
that for certain values of ζ and γ we have f ∈ Āγ(Ht,Ht+ζ). We fix such a value ζ ∈ (0, 2) for
the excess regularity of f . As stressed earlier, we do not address the problem of how one would
create a stable approximation to f , as is guaranteed by membership in this approximation class,
but instead assume that such an approximation to f is already given to us in this form. We will
comment later on the actual feasibility of such an assumption.
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To avoid additional technicalities, we will place very mild restrictions on the sequence γ. We
assume that γ is strictly increasing and has the following two properties:

(γ1): there exists a constant C̄, depending on γ, such that

γ−1(x) + 1 ≤ γ−1(C̄x), x ≥ 1, (6.2)

where γ−1 is the inverse function of γ, i.e., γ−1(γ(x)) = x.

(γ2): there exists a µ > 0 such that

xµ/γ(x) ≤ C, x ≥ 1, (6.3)

where C is a constant.

Let us note that all polynomial growth sequences are admissible and even sequences of the

form γ(r) = ecr
β

, c, β > 0 are included. Thus, these conditions are made only to exclude very
fast and slow decaying sequences. We note that the faster γ increases the more stringent the first
condition becomes. The second condition requires a minimum growth. Of course, the type of
tensor approximation discussed here is of primary interest when γ increases rapidly, so (6.3) is not
a serious restriction.

In summary, in the remainder of this paper, we make the following assumption:

(A1) We assume that we are given a sequence γ, satisfying (γ1) and (γ2), a value t ∈ R, and a
value ζ ∈ (0, 2]. Whenever presented with an r > 0 and f ∈ Āγ(Ht,Ht+ζ), we are given for free
an approximation gr =

∑r
`=1 g

(`), satisfying:

γ(r)‖f − gr‖t + |||gr|||r,t+ζ ≤ A1‖f‖Āγ(Ht,Ht+ζ), (6.4)

with A1 ≥ 1 an absolute constant.

Notice that the existence of such functions gr is guaranteed from the fact that f ∈ Āγ(Ht,Ht+ζ).

6.2. Representation complexity. In this subsection, we prove that for any ε > 0, the solution
to (2.21) can be approximated to accuracy ε by functions, which depend on a controllable number
of parameters. We fix any value of t ∈ R and 0 < ζ ≤ 2 for this section. In order to render the
presentation of the results of this subsection simple, we will make an assumption on the growth of
the eigenvalues of B. This assumption will only be used in the present subsection and not in the
following material, which introduces and analyzes numerical algorithms for solving (2.21). The
reader can easily verify that this assumption can be generalized in many ways but always at the
expense of a more complicated statement of our results.

(RA) We assume that each of the the low-dimensional factor domains Dj is a domain in Rp with
the same p ∈ {1, 2, 3}, and that the eigenvalues of B satisfy, for some fixed β > 0,

λ∗m := min
j=1,...,d

λj,m ≥ βm2/p, m ≥ 1. (6.5)

Classical results on eigenvalues for second order elliptic differential operators in low dimension
establish (RA) for a variety of settings, see e.g. [20, 14, 15]. If the component operators were of
a different order, then the form of (RA) would change but similar results could be obtained with
obvious modifications.

Since the following theorem is only of a theoretical flavor, we shall take A1 = 1 in the assumption
(A1).

Theorem 5. Let t ∈ R and let ζ ∈ (0, 2]. Assume that (A1) holds (with constant A1 = 1) for
this t and ζ and the assumption (RA) also holds. Then, for each ε > 0, there exists a function
v(ε) with

v(ε) ∈ Tr̄(ε)(Ht+2+ζ), r̄(ε) ≤ 2C1(ζ)γ−1(4/ε)C1(ζ)
(

log(4C0/ε)
)2
, (6.6)

satisfying

‖u− v(ε)‖t+2 ≤ ε‖f‖Āγ(Ht,Ht+ζ) (6.7)
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and
|||v(ε)|||t+2+ζ ≤ (1 + C0)‖f‖Āγ(Ht,Ht+ζ). (6.8)

Moreover, v(ε) is determined by

N(ε, d) ≤ B̄dε−p/ζ
(
γ−1(4/ε)

)1+p/ζ(
log(C̄0/ε)

)2+2p/ζ
(6.9)

parameters, where the constant B̄ depends on β from (6.5), on C0 and ζ and where C̄0 = 4C0C̄
with C̄ from (6.2) and C0 from Proposition 1.

Proof. Given ε > 0, we choose r = r(ε) as the smallest integer such that 4 ≤ εγ(r), which means
that

r(ε) := dγ−1(4/ε)e.
For this value of r and this γ, we define R by (5.19); in other words, R = R(ε) is given by

R(ε) =
⌈
C1(ζ)

(
log(4C0/ε)

)2⌉
.

We take ū = SR(B)gr where gr is the approximation to f asserted by (A1). Arguing as in the
derivation of (5.26), we find that

‖u− ū‖t+2 ≤ 2γ(r)−1‖f‖Āγ(Ht,Ht+ζ) ≤
ε

2
‖f‖Āγ(Ht,Ht+ζ). (6.10)

From (5.27), we have that

ū(ε) =

R(ε)∑
k=1

r(ε)∑
`=1

uk,`.

Using the bounds (5.28) for the rank-one terms

uk,` =

d⊗
j=1

uk,`j ,

one obtains, as in (5.29), that

|||ū(ε)|||rR,t+2+ζ ≤ (1 + C0)‖f‖Āγ(Ht,Ht+ζ). (6.11)

Now we invoke Lemma 4, which provides for each uk,` a rank-one approximation

uk,`,m =

d⊗
j=1

( m∑
ν=1

〈uk,`j , ej,ν〉ej,ν
)
,

satisfying

‖uk,` − uk,`,m‖t+2 ≤ (λ∗m+1)−ζ/2‖uk,`‖t+2+ζ ≤ (1 + C0)(λ∗m+1)−ζ/2‖f‖Āγ(Ht,Ht+ζ).

Hence, defining

um :=

R(ε)∑
k=1

r(ε)∑
`=1

uk,`,m,

we have that um ∈ TrR(Ht+2+ζ) and satisfies

‖u− um‖t+2 ≤
(ε

2
+ (1 + C0)(λ∗m+1)−ζ/2r(ε)R(ε)

)
‖f‖Āγ(Ht,Ht+ζ).

We now choose m = m(ε), as the smallest integer, such that

(1 + C0)(λ∗m+1)−ζ/2r(ε)R(ε) ≤ ε

2
. (6.12)

If we define v(ε) := um(ε), then the triangle inequality shows that (6.7) holds. The bound (6.8)

follows from (6.11) since each component uk,`,m, from its very definition, has smaller Ht+2+ζ norm
than that of uk,`.

We now check the complexity of v(ε). By (6.2), we have r(ε) = dγ−1(4/ε)e ≤ γ−1(C̄4/ε) so
that

r(ε)R(ε) = γ−1(4C̄/ε)
⌈
C1(ζ)

(
log(4C̄C0/ε))

)2⌉
.



26 WOLFGANG DAHMEN, RONALD DEVORE, LARS GRASEDYCK, AND ENDRE SÜLI

Under the assumption (6.5) the condition (6.12) is indeed satisfied provided that

m(ε) ≥ Bε−p/ζγ−1(4/ε)p/ζ
(

log(4C̄C0/ε)
)p/ζ

, (6.13)

where the constant B depends on β from (6.5), on C0, p and ζ. Since the number of parameters
N(ε, d) needed to determine v(ε) := um(ε) is at most r(ε)R(ε)m(ε)d the assertion (6.9) follows
from the above choices of r(ε), R(ε). �

The above reasoning reveals that under the assumption (A1) the representation complexity of

f can be bounded by Cdε−p/ζ
(
γ−1(4/ε)

)1+p/ζ
. Thus, up to a logarithmic factor, the inversion of

B on tensor-sparse data does not worsen the representation complexity as already hinted at by
Theorem 1.

6.3. Numerical complexity. The remaining subsections of this paper are devoted to the con-
struction of a numerical algorithm based on Theorem 4, using only queries of the approximate
data gr. This will provide, in particular, a bound on the numerical complexity of the problem
(4.1). The scheme we propose in §7.1 does not require any knowledge about the eigenbases of the
operators Bj but is based on the approximate application of the operator SR(B) to gr.

We shall always assume the validity of (A1). In what follows let t < 0 and let 0 < ζ ≤ 2 stand
for some excess regularity. Given a target accuracy ε > 0 we wish to formulate a numerically
implementable scheme that delivers an approximation ū(ε) to the solution u of (4.1) of possibly
low rank, satisfying

‖u− ū(ε)‖t+2 ≤ ε‖f‖Āγ(Ht,Ht+ζ). (6.14)

The proof of Theorem 4 will serve as the main orientation for the construction of the numerical
scheme, however, with the approximate inverse SR(B) of B replaced by the variant S̄R(B) defined
in Lemma 6. We will need the following counterpart to Proposition 1, which follows by combining
Lemma 6 with the arguments used in the proof of Proposition 1.

Proposition 2. Fix any a < π. For any s > t, s − t′ < 2, there exists a constant C̄0 depending
on λ, s− t′, and a such that

‖B−1v − S̄r(B)v‖s ≤ C̄0e−
(2−(s−t))a

2

√
r‖v‖t′ , v ∈ Ht′ . (6.15)

Moreover, C̄0 = C̄0(s− t′) tends to infinity as s− t′ → 2.

Now given any prescribed error tolerance ε, we choose

r = r(ε) := dγ−1(4A1/ε)e, (6.16)

where A1 is the constant appearing in (A1). In other words, r is the smallest integer such that

γ(r) ≥ 4A1

ε
. (6.17)

It follows from (A1) that g(ε) := gr(ε) satisfies

‖f − g(ε)‖t ≤
ε

4
‖f‖Āγ . (6.18)

With an eye towards (5.26) we want to choose R = R(ε) such that

‖(B−1 − S̄R(B))gr‖t+2 ≤
ε

4A1
‖gr‖t+ζ . (6.19)

By Proposition 2 and (6.17), this means that we want

C̄0e−
aζ
2

√
R ≤ (γ(r))−1.

A suitable choice is

R(ε) :=
⌈
C̄1(ζ)

(
log
(
C̄0γ(r(ε))

))2⌉
, C̄1(ζ) :=

4

(aζ)2
. (6.20)

Since, by (6.2), r(ε) ≤ γ−1(4C̄A1/ε) we conclude that

R(ε) ≤
⌈
C̄1(ζ)

(
log
(
C̄2/ε))

))2⌉
, C̄2 := 4C̄0C̄A1. (6.21)
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Then, defining the function u(ε) := S̄R(ε)(B)gr(ε) and estimating as in (5.26) gives

‖u− u(ε)‖t+2 ≤ 2A1γ(r(ε))−1‖f‖Āγ(Ht,Ht+ζ) ≤
ε

2
‖f‖Āγ . (6.22)

Thus, the main issue we are faced with is how to give a numerically realizable approximation
ū(ε) to u(ε) = S̄R(ε)(B)gr(ε), which satisfies

‖ū(ε)− u(ε)‖t+2 ≤
ε

2
‖f‖Āγ(Ht,Ht+ζ). (6.23)

The following section describes a numerical algorithm for constructing such a ū(ε). We emphasize
that although S̄R(B) is a linear operator, in order to preserve ranks, its numerical approximation
will be a nonlinear process.

6.4. Numerical approximation of exponential operators. The main issue in our numerical
algorithm is to provide a numerical realization of the application of the operator S̄R(B) acting on
finite rank functions g, in our case g = gr =

∑r
`=1 g

(`). Since

S̄R(B)g =

r∑
`=1

S̄R(B)g(`), (6.24)

we need a numerical implementation of the application of the operator S̄R(B) on the rank-one
tensors g(`). Given such a rank-one tensor, which we will denote by τ , we have

S̄R(B)τ =

R∑
k=1

ω̄ke−αkBτ, (6.25)

where, by Lemma 6,

αk = αR,k, ω̄k :=

{
ωR,k when αR,k ≥ T−1

R ;
0 otherwise.

(6.26)

Thus, the core task is to approximate terms of the form

e−αBτ =

d⊗
j=1

(
e−αBjτj

)
, where τ =

d⊗
j=1

τj (6.27)

is one of the summands g(`) of gr(ε).

In this section, we give a procedure for approximating e−αBjτj and analyze its error. This
numerical procedure is based on the Dunford representation of the exponential

e−αBj =
1

2πi

∫
Γ

e−αz(zI−Bj)
−1 dz, α > 0, (6.28)

where I is the identity operator (canonical injection of Ht+2
j → Ht

j) and Γ is a suitable curve

in the right complex half-plane. Recall that the Dunford representation (6.28) holds for sectorial
operators, and, in particular, for the symmetric linear elliptic operators considered here. For
simplicity of exposition we shall assume that for each j = 1, . . . , d, we can take the same Γ = Γj
and that this curve is symmetric with respect to R, see Figure 1 for an illustration. The numerical
realization of the operator exponential is done in two steps. The first one employs a quadrature
for the above integral with exact integrands. Since the integrands themselves are solutions of
operator equations the second step consists in approximately solving these operator equations for
the chosen quadrature points z ∈ Γ.

Quadrature methods for contour integrals of the above type are well studied, see e.g. [34, 27].
Here we follow closely the results from [23, 24, 10], which are tailored to our present needs.
Specifically, as in [23], we choose for a fixed c ≤ λ/2, the hyperbola

Γ(x) := c+ cosh(x+ iπ/6) = c+ cosh(x) cos(π/6) + i sinh(x) sin(π/6) (6.29)
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Γ

λj,ν

iy

x

Figure 1. The contour Γ

as a parametrization of the curve Γ, which can be seen to have asymptotes c+ te±iπ/6. Denoting
by Sb ⊂ C the symmetric strip around the real axis of width 2b, Γ extends to a holomorphic
function

Γ(z) = c+ cosh(x+ i(π/6 + y)), z = x+ iy ∈ Sb
for any b > 0. Therefore, the operator-valued integrand (with clockwise orientation)

Fj(z, α, ·) := − 1

2πi
sinh(z + iπ/6)e−αΓ(z)(Γ(z)I−Bj)

−1 (6.30)

is analytic in the strip Sb provided that Γ(Sb) does not intersect the spectrum of Bj . As shown
in [23, §1.5.2], this is ensured by choosing b such that cos(π/6− b) + c < λ, which we will assume
to hold from now on. Moreover, Re(Γ(z)) tends exponentially to infinity as Re(z)→∞.

Under these premises we know that, for t ∈ R,

sup
z∈Γ
‖(zI−Bj)

−1‖Htj→Ht+2
j
≤M, j = 1, . . . , d, (6.31)

for some constant M > 0.
The following result, specialized to the present setting, has been shown in [23, §1.5.4], see also

[24].

Theorem 6. Let α > 0, t ∈ R and

β0 :=
α

2
cos(π/6), β1 :=

α

2
cos(π/6 + b), β2 :=

α

2
cos(π/6− b). (6.32)

Define

C(α) :=
M

π
e−cα

( 1

β0
+

e2

e2 − 1

( 1

β1
e−β1 +

1

β2
e−β2

))
. (6.33)

Then, for the operator

QN (Fj(·, α, ·)) := h

N∑
q=−N

Fj(qh, α, ·), (6.34)

one has ∥∥e−αBj −QN (Fj(·, α, ·))
∥∥
Htj→H

t+2
j

≤ C(α)e−2πb/h, j = 1, . . . , d, (6.35)

where

N = N(h) := max

{
0,

⌊
1

h
log(β0)−1

⌋
+ 1,

⌊
1

h
log
(2πb

β0h

)⌋
+ 1

}
. (6.36)
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Notice that there exist positive constants C1, c1, depending only on λ and c in (6.29) such that

C(α) ≤ C1

α
e−c1α =: C̄(α). (6.37)

We also remark that one has, for N,h related by (6.36),

h(2N + 1) ≤ C3| log(αh)|, (6.38)

where C3 depends only on λ and c.
We will use the above bound also for the smaller quantities∥∥e−αBj −QN (Fj(·, α, ·))

∥∥
Ht
′
j →Hsj

,

when 0 ≤ s− t′ ≤ 2.
Since QN (Fj(·, α, ·)) is an approximation to e−αBj , it is natural to approximate e−αBτ by⊗d
j=1QN (Fj(·, α, ·))τ . The factors QN (Fj(·, α, ·)) in the approximation to e−αBτ are, of course,

not yet computable because the quantities uj,q(α, τj) := Fj(qh, α, τj) are the exact solutions of the
resolvent equations

(Γ(qh)I−Bj)uj,q(α, τj) = − 1

2π
sinh(qh+ iπ/6) e−αΓ(qh)τj (6.39)

for q = −N, . . . , N . Hence our numerical procedure will be based on approximate solutions to
(6.39).

Definition 1. Let 0 ≤ s, s − t′ < 2. An approximate solution ūj,q(α, τj) of (6.39) is called
(s, t′)-accurate for α if

‖uj,q(α, τj)− ūj,q(α, τj)‖Hsj ≤ (C3| log(αh)|)−1C(α)e−2πb/h‖τj‖Ht′j , (6.40)

where C3 is the constant from (6.38).

Note that here we need s− t′ < 2 to be able to achieve a desired accuracy. We postpone at this
point the discussion of how and at what cost one can obtain such approximations.

Given the approximations ūj,q(α, τj) of the exact integrand uj,q(α, τj) = Fj(qπ, α, τj), we define
the computable approximations

Ej(τj , α, h) := h

N∑
q=−N

ūj,q(α, τj), (6.41)

to QN (Fj(·, α, τj)) where N = N(h), as well as

E(τ, α, h) :=

d⊗
j=1

Ej(τj , α, h), (6.42)

as a numerically realizable approximation to the rank-one tensor e−αBτ .

6.5. The numerical approximation of u = B−1f . We are now in a position to specify our
numerical approximation u = B−1f . Recall that u(ε) = S̄R(ε)(B)gr(ε), with the choice of R(ε)
and r(ε) specified in (6.20) and (6.16) respectively, satisfies

‖u− u(ε)‖t+2 ≤
ε

2
‖f‖Āγ(Ht,Ht+ζ), (6.43)

because of (6.22). We will now use as our approximation to u the following computable quantity

S̄R(ε),h(B)(gr(ε)) :=

r(ε)∑
`=1

R(ε)∑
k=1

ωR(ε),kE(g(`), αR(ε),k, h). (6.44)

It remains to specify h sufficiently small, so as to achieve the error bound∥∥u(ε)− SR(ε),h(B)(gr(ε))
∥∥
t+2
≤ ε

2
‖f‖Āγ(Ht,Ht+ζ). (6.45)

The following result whose proof is deferred to §8 provides a sufficient choice of h = h(ε).
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Proposition 3. Assume that t + ζ ≥ 0 and s − (t + ζ) < 2 and let u(ε) be the approximation
from (6.22). Then there exists a constant c6, depending only on ζ, C̄, C̄2, defined in (6.21), A1

from (A1), on C̄0 (hence depending on s− t′ > 0), λ,Γ, as well as on the minimum growth of γ
in (6.3) such that for

h = h(ε) := c6

(
log
(d
ε

))−1

(6.46)

the function

ū(ε) := SR(ε),h(ε)(B)(gr(ε)), (6.47)

given by (6.44) for h = h(ε), satisfies

‖ū(ε)− u(ε)‖s ≤
ε

2A1
‖gr(ε)‖t+ζ ≤

ε

2
‖f‖Āγ(Ht,Ht+ζ), (6.48)

provided that for j = 1, . . . , d, ` = 1, . . . , r(ε) and q = −N(h(ε)), . . . , N(h(ε)), the approxi-

mate solutions ūj,q(αR(ε),k, g
(`)
j ), entering (6.41) are (s, t+ ζ)- and (0, 0)-accurate for αR(ε),k, k =

1, . . . , R(ε).

7. A rate distortion theorem

Recall that the spatial dimension of the factor domains Dj is p ∈ {1, 2, 3} and so a key task is to
approximately solve low-dimensional elliptic problems, see (6.39). The size of the discretizations
of the low-dimensional operator equations (6.39), required in order to realize a desired target
accuracy, depends on the regularity of the solution. In the scale of spaces Ht

j and Ht, t ∈ R, this
regularity follows, in view of (2.20) and analogous relations for the low-dimensional component
operators, from our assumption on the right-hand side f stated in assumption A1. This gives a

control on the rank-one terms g
(`)
r in the ‖ · ‖t+ζ norm which, in turn, implies a regularity of u, see

(6.8). Suitable approximations in terms of the eigensystems of the component operators Bj could
then be derived from Lemma 4. However, if one wants to dispense with using the eigensystems
and, as we will do now, employ instead standard numerical techniques for low-dimensional operator
equations, then one needs more information about the spaces Ht, Ht

j .
Since our goal is only to illustrate that, even in the absence of having an eigensystem at hand, it

is possible to construct numerical algorithms that exhibit significant computational savings when
utilizing tensor structure, we shall, for the remainder of §7, place ourselves in a more specific setting
where known standard finite element solvers can be employed and bounds for their numerical
efficiency are available. Specifically, we shall limit ourselves to approximating the solution in the
energy norm H1. One issue to overcome is that this is not a cross norm and hence is not as
compliant with tensor structures as the L2 norm. So, we are interested in approximating the
solution u in the H1 norm, given H−1+ζ-data. Certain restrictions on ζ will be identified below.

Assumptions for the rate distortion theorem: We assume the validity of (A1) and that
f ∈ Āγ(H−1,H−1+ζ). In addition, we make the following assumptions:

(A2): For s ∈ [0, 2], the spaces Hs
j , j = 1, . . . , d, agree with classical Sobolev spaces Hs(Dj) with

equivalent norms. Hence, the same holds for the spaces Hs, s ∈ [0, 2], i.e., there exist positive
constants c∗, C∗ such that

c∗‖Bv‖s−2 ≤ ‖v‖Hs(D) ≤ C∗‖Bv‖s−2, v ∈ Hs(D), 0 ≤ s ≤ 2. (7.1)

(A3): The factor domains Dj have the same“small” dimension p ∈ {1, 2, 3}. The operators Bj

are symmetric H1
j -elliptic operators (see (2.1)) so that whenever z ∈ C satisfies min {|z − λj,k| :

k ∈ N} > cRe(z), the problem

(zI−Bj)v = w (7.2)

possesses, for j = 1, . . . , d, and any w ∈ H−1
j a unique solution v. In particular, by (6.31), for

w ∈ H−1+ζ
j and z ∈ Γ, one has ‖v‖H1+ζ

j
≤M‖w‖H−1+ζ

j
, j = 1, . . . , d.
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Moreover, we have at our disposal a discretization method using linear spaces Vj,δ with the
following properties: For any target accuracy δ > 0, to obtain an approximate solution vδ ∈ Vj,δ ⊂
H1
j (Dj) satisfying

‖v − vδ‖H1
j
≤ δ‖w‖H−1+ζ

j
, (7.3)

requires a trial space of dimension at most

nδ := dimVj,δ ≤ C8δ
−p/ζ , δ > 0, (7.4)

and the number of operations flops(vδ), required to compute vδ, is bounded by

flops(vδ) ≤ C9δ
−p/ζ , δ > 0, (7.5)

with C8, C9 independent of j = 1, . . . , d.

Clearly, under the assumption (A2), the hypotheses in (A3) are well justified, simply resorting
to available computational techniques in low spatial dimensions.

As for the justification of (A2), we state the following facts.

Remark 4. Suppose, for example, that Bj is a second-order strongly elliptic operator of the form

Bjv :=

p∑
k,m=1

∂

∂xjk

(
ajkjm(xj1 , . . . , xjp)

∂v

∂xjm

)
, j = 1, . . . , d,

with ajkjm = ajmjk ∈ C0,1(Dj) for k,m = 1, . . . , p, where Dj is a bounded open convex domain
in Rp, p ∈ {1, 2, 3}, j = 1, . . . , d. Hence, D = ×dj=1Dj is a bounded open convex domain (cf.
[22], p. 23) and B is a second-order strongly elliptic operator on D. Assuming a homogeneous
Dirichlet boundary condition on ∂D, the second inequality in (7.1) holds with s = s∗ = 2 thanks to
Theorem 3.2.1.2 in Grisvard [20] and the equivalence of the H2(D) norm on H2(D)∩H1

0(D) with
the standard Sobolev norm of H2(D). The first inequality follows trivially, by noting the regularity
hypothesis on the coefficients ajk,jm and the equivalence of the H2 norm with the standard Sobolev
norm of H2(D) on H2(D)∩H1

0 (D). For s ∈ (1, 2), s 6= 3/2, the pair of inequalities (7.1) is deduced
by function space interpolation. For elliptic regularity results of the kind (7.1) with s = s∗ = 2
for second-order degenerate elliptic operators appearing in Fokker–Planck equations we refer to
[14, 15].

7.1. The numerical algorithm. We shall now specify the above construction of the finitely
parametrized finite rank approximation ū(ε) = SR(ε),h(ε)(B)(gr(ε)) from (6.47) in the following
scheme.

Scheme-Exp: Given ε > 0, g(ε) = gr(ε) ∈ Tr(ε)(Ht+ζ) satisfying (6.18), R = R(ε), r = r(ε),
defined by (6.20), (6.16), the scheme produces a numerical approximation ū(ε) to the solution u
of (4.1) as follows:

(i) Fix the curves Γj = Γ, according to (6.29), j = 1, . . . , d, along with the collections of
quadrature points ΓQ := {Γ(qh) : q = −N, . . . , N}, N = N(h) (see (6.36)), h = h(ε),
given by (6.46);

(ii) For k = 1, . . . , R(ε), ` = 1, . . . , r, q = −N, . . . , N , j = 1, . . . , d, compute an approximate

solution ūj,q(αR,k, g
(`)
j ) to (6.39), satisfying (6.40) for s = 1, t′ = −1 + ζ;

(iii) compute Ej(g
(`)
j , αR,k, h(ε)) by (6.41) for j = 1, . . . , d, ` = 1, . . . , r, k = 1, . . . , R, and

output

ū(ε) := SR(ε),h(ε)(B)(gr(ε)). (7.6)

7.2. Statement of the Theorem. We can now formulate a theorem, which bounds the number
of computations necessary for achieving a prescribed accuracy ε using the numerical Scheme-
Exp described above. As has been already mentioned, we describe this only for approximating
the solution u of (4.1) in the H1 norm. The main result of §6 reads as follows.
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Theorem 7. We assume that (A1) holds, i.e., we are given a function f ∈ Āγ(H−1,H−1+ζ) and
for each r ∈ N a gr ∈ T (H−1+ζ), satisfying (6.4). Moreover, assume that 1 ≤ ζ ≤ 2 and that
(A2), (A3) hold. Then, given any target accuracy ε > 0, the approximate solution

ū(ε) = SR(ε),h(ε)(B, gr(ε)),

of rank at most r(ε)R(ε), produced by Scheme-Exp has the following properties:

(i) ū(ε) is ε-accurate and stable, i.e.,

‖u− ū(ε)‖1 ≤ ε‖f‖Āγ(H−1,H−1+ζ), |||ū(ε)|||r(ε)R(ε),1 ≤ A2‖f‖Āγ(H−1,H−1+ζ), (7.7)

where A2 depends only on C0 and A1.

(ii) ū(ε) is finitely parametrized and the total number of parameters determining ū(ε) is bounded
by

A3d
1+ρ̄p/ζε−ρ̄p/ζγ−1(4C̄A1/ε)

(
log
( C̄2

ε

))2(
log
(d
ε

))2

, (7.8)

where ρ̄ > 2πb/c6 is any fixed number.
(iii) The computational complexity needed to compute ū(ε) by Scheme-Exp is bounded by

cost(ū(ε)) ≤ A4d
1+ρ̄p/ζε−ρ̄p/ζγ−1(4C̄A1/ε)

(
log
( C̄2

ε

))2(
log
(d
ε

))2

, (7.9)

where the constants A3, A4 depend on ρ̄, λ, Γ, A1, and the constants C8, C9 in (7.3) and (7.4) in
assumption (A3)).

The bounds (7.8), (7.9) given in Theorem 7 are somewhat worse than the benchmark provided
by Theorem 5 and are perhaps not best possible. They rely on the specific way of approximating
B−1 and its discretization via Dunford integrals. In particular, it is not clear whether ζ ≥ 1 is
necessary. The proof of Theorem 7, which will be given in §8, and Remark 6 below will shed some
light on this constraint.

It is also not clear whether the upper limitation ζ ≤ 2 is necessary, i.e., whether the bounds
in (7.8) and (7.9) continue to hold for ζ > 2, which would mean that one could exploit even
higher regularity of the solutions to the resolvent equations. As will be seen below, the restriction
arises when applying Proposition 3 requiring the numerical approximation to be simultaneously
(1,−1 + ζ)- and (0, 0)-accurate.

Nevertheless, the theorem confirms polynomial numerical inversion tractability under overall
very mild smoothness assumptions, exploiting instead a “global structural sparsity” of the solutions
inferred from such a sparsity of the data. In fact, save for logarithmic terms these bounds are
comparable to those for the simple example about integration given in the introduction, see (1.2).
In particular, although the growth in ε−1 and d is somewhat stronger than in (1.2) or (6.9), one
does benefit from a larger excess regularity at least up to ζ ≤ 2 of the low-dimensional problems.

Finally, in contrast with Theorem 4 the approximate solution ū(ε) is only guaranteed to be
tensor-stable with a controlled ||| · |||rR,1 norm not with a controlled ||| · |||rR,1+ζ norm. First of all,
the latter bound would require the approximate solutions of the resolvent equations to belong to

H1+ζ
j , which is not the case for ζ ≥ 1/2 and standard C0-continuous finite elements. However, it

can be seen from the proof of Theorem 7 that ū(ε) could be arranged to satisfy |||ū(ε)|||rR,1+ζ′ ≤
C‖f‖Āγ(H−1,H−1+ζ) for some 0 < ζ ′ < ζ, for which the low-dimensional trial spaces fulfill Vj,δ ⊂
H1+ζ′

j . However, the numerical approximations to (6.39) would need to be (1+ζ ′,−1+ζ)-accurate

and thus require possibly finer discretizations. As a consequence, the bounds (7.8) and (7.9) would
only hold for ζ replaced by ζ − ζ ′. Since, the asserted tensor-stability in H1 suffices to avoid the
occurrence of norm-degenerations often encountered with the canonical tensor format, we omit
the details.

The results are to be contrasted with the intractability results in [30] stating that the approx-
imation of a high-dimensional function in a Sobolev norm of positive order is intractable even
under excessively high smoothness assumptions. The results in [35] on the tractability of high-
dimensional Helmholtz problems are different in spirit. The conditions on the data required in
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[35] strongly constrain the dependence of f on some of the variables, and adopt the additional
assumption that B−1 as a mapping from such a data class into H1 can still be diagonalized. Thus
the inversion of B, which is the focus of the present work, is not an issue there.

8. Proof of Theorem 7

The proof of Theorem 7 is based on a series of intermediate, partly technical results. The first
of these is to give an approximation to exponential operators of the type e−αB that appear in the
definition of the numerical approximation ū(ε) of (7.6).

8.1. Approximation of exponential operators. The present subsection and the next subsec-
tion require only the assumption (A1). A recurring issue is the need to bound the norms of

e−αBj and the corresponding quadrature-based counterparts as mappings from Ht′

j to Hs
j also

when s > t′ while keeping track of the role of α > 0 when α gets small.
In what follows we make an effort to trace the dependence of the various constants on the

problem parameters and, in particular, on d. To simplify the exposition somewhat we assume
throughout this section that λj,m ≥ 1, j = 1, . . . , d, m ∈ N, which implies that λ ≥ 1. As a
consequence we have ‖ · ‖Hsj ≤ ‖ · ‖Hs′j for s′ ≥ s. Of course, this can always be achieved by

renormalizing B by a fixed constant factor. Hence all subsequent conclusions remain valid in the
general case up to another adjustments of the constants depending on the smallest eigenvalues.

We begin with the exact quadrature operator QN (Fj(·, α, ·)).

Lemma 7. For any s and t′, satisfying s− t′ ≤ 2, and any α > 0, one has the following bounds:

‖e−αBj‖Ht′j →Hsj ≤
( (s− t′)+

2eα

) (s−t′)+
2

, (8.1)

as well as

‖QN (Fj(·, α, ·))‖Ht′j →Hsj ≤
( (s− t′)+

2eα

) (s−t′)+
2

+ C̄(α)e−2πb/h. (8.2)

Proof. We have

‖e−αBjτj‖2Hsj =

∞∑
k=1

e−2αλj,kλs−t
′

j,k λt
′

j,k|〈τj , ej,k〉|2.

When s− t′ ≥ 0 we note that the function h(x) = xβe−αx attains its maximum at x∗ = β/α, i.e.,

xβe−αx ≤ (β/α)βe−β . (8.3)

Taking β = (s − t′)/2 confirms (8.1) in this case. When s− t′ < 0, we apply (8.1) for s = t′ and
use then that ‖τj‖Hsj ≤ ‖τj‖Ht′j . The bound (8.2) follows from (8.1) and Theorem 6. �

Remark 5. Note that, in particular, one has for s ≤ t′ the following bounds:

‖e−αBj‖Ht′j →Hsj ≤ 1, ‖QN (Fj(·, α, ·))‖Ht′j →Hsj ≤ 1 + C(α)e−2πb/h. (8.4)

Next we shall address the effect of replacing the quantities uj,q(α, τj) := Fj(qh, α, τj), for q =
−N, . . . , N , used in QN (Fj(·, α, τj)), which are the exact solutions of the resolvent equations (6.39),
by (s, t′)-accurate approximate solutions ūj,q(α, τj) for α (see (6.40)) where s, t′ with s − t′ < 2
are fixed. We shall later need this for s = t + 2 and t′ = t + ζ with 0 < ζ ≤ 2 and will analyze
the complexity of these low-dimensional problems for these choices. We recall from (6.41) the
definition of the computable approximations Ej(τj , α, h) to QN (Fj(·, α, τj)).

Lemma 8. Let s, t′ ∈ R satisfy s− t′ < 2. Assume that (6.40) holds for s and t′. Then, one has

‖e−αBjτj − Ej(τj , α, h)‖Hsj ≤ 2C̄(α)e−2πb/h‖τj‖Ht′j , (8.5)

and

‖Ej(τj , α, h)‖Hsj ≤

{( (s− t′)+

2eα

) (s−t′)+
2

+ 2C̄(α)e−2πb/h

}
‖τj‖Ht′j . (8.6)
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Proof. Using the fact that each of the terms in the sums for Ej and QN satisfies (6.40) and the
number 2N + 1 of terms satisfies (6.38), gives

‖QN (Fj(·, α, τj))− Ej(τj , α, h)‖Hsj ≤ C(α)e−2πb/h‖τj‖Ht′j .

The first estimate (8.5) now follows from Theorem 6 by using the triangle inequality together with
the fact that C(α) ≤ C̄(α). Likewise (8.6) is a consequence of (8.5) and (8.2). �

Defining E(τ, α, h) :=
⊗d

j=1Ej(τj , α, h) according to (6.42), one has the following error bounds.

Lemma 9. Assume that s ≥ 0 and s−t′ < 2. Furthermore, assume that the approximate solutions
ūj,q(α, τj) used in E(τ, α, h) are (s, t′)-accurate as well as (0, 0)-accurate for α (see (6.40)). Then,
whenever

h ≤ h0 := 2πb
(

log
(2C1d

α

))−1

(8.7)

holds, one has:
(i) for α ≤ 1,

‖e−αBτ − E(τ, α, h)‖s ≤ C2d
2
(
dmax{0,s−1})1/2C̄(α)e−2πb/h

{
(eα)−1 + 2C̄(α)e−2πb/h

}
×

{( (−t′)+

2eα

) (−t′)+
2

+
1

d

}d−2

‖τ‖t′ ; (8.8)

(ii) for α ≥ 1,

‖e−αBτ − E(τ, α, h)‖s ≤ C2d
2
(
dmax{0,s−1})1/2C̄(α)e−2πb/h

×

{( (−t′)+

2eα

) (−t′)+
2

+
1

d

}d−1

‖τ‖t′ , (8.9)

where the constant C2 depends only on the constant in Corollary 1.

Proof. We use a telescoping decomposition, as in (2.28), to obtain the bound

‖e−αBτ − E(τ, α, h)‖s ≤
d∑
i=1

‖Si‖s, (8.10)

where

Si :=

i−1⊗
j=1

Ej(τj , α, h)⊗ (e−αBiτi − Ei(τi, α, h))

d⊗
j=i+1

e−αBjτj :=

d⊗
j=1

Si,j . (8.11)

We estimate next the terms ‖Si‖s with the aid of Lemma 2, using the assumption s ≥ 0. Since
the `2 norm does not exceed the `1 norm, this lemma gives that

‖Si‖s ≤ (dmax{0,s−1})1/2
d∑
j=1

‖Si,j‖Hsj
∏
k 6=j

‖Si,k‖L2(Dk). (8.12)

The previous lemmas provide the following bounds for each i = 1, . . . , d:

‖Si,k‖Hsk(Dk) ≤ ‖τk‖Ht′k (Dk)


2C̄(α)e−2πb/h, k = i;(

(s−t′)+

2eα

) (s−t′)+
2

+ 2C̄(α)e−2πb/h, k 6= i.
(8.13)

Indeed, by (s, t′)-accuracy, the first inequality in (8.13) follows from (8.5) while the second follows
from (8.6) and (8.1). Similarly, we have the following bounds on the L2 norms for µ ∈ {0, t′},

‖Si,k‖L2(Dk) ≤ ‖τk‖Hµk (Dk)

 2C̄(α)e−2πb/h, k = i;(
(−µ)+

2eα

) (−µ)+
2

+ 2C̄(α)e−2πb/h, k 6= i.
(8.14)
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Here, the first inequality follows from (8.5) while the second follows from (8.6) and (8.1). In fact,
since ‖ · ‖L2(Dj) ≤ ‖ · ‖Hsj we have used (s, t′)-accuracy when µ = t′ while for µ = 0 we used

(0, 0)-accuracy. Moreover, under the assumption (8.7), we have

2C̄(α)e−2πb/h ≤ 2C1

α
e−2πb/h ≤ 1/d. (8.15)

Case t′ ≥ 0: Let us first note that from the first inequality in Lemma 2, we have

d∑
i=1

‖τi‖Ht′i
∏
k 6=i

‖τk‖L2(Dk) ≤ ‖τ‖t′ . (8.16)

We first consider any term appearing in the sum on the right-hand side of (8.12) with j 6= i and
obtain

‖Si,j‖Hsj
∏
k 6=j

‖Si,k‖L2(Dk)

≤ {(eα)−1 + 2C̄(α)e−2πb/h}‖τj‖Ht′j {2C̄(α)e−2πb/h‖τi‖L2(Di)}
∏
k 6=i,j

(1 + d−1)‖τk‖L2(Dk)

≤ {(eα)−1 + 2C̄(α)e−bh}{2C̄(α)e−2πb/h}{1 + d−1}d−2‖τj‖Ht′j
∏
k 6=j

‖τk‖L2(Dk), (8.17)

where we used (8.13) for the term outside of the product, and we used (8.14) with µ = 0 and the
bound (8.15) for the remaining terms. Similarly, for the term j = i in (8.12), we have

‖Si,i‖Hsi
∏
k 6=i

‖Si,k‖L2(Dk)

≤ {(2C̄(α)e−2πb/h‖τi‖Ht′i }
∏
k 6=i

(1 + d−1)‖τk‖L2(Dk)

≤ {2C̄(α)e−2πb/h}{1 + d−1}d−1‖τi‖Ht′i
∏
k 6=i

‖τk‖L2(Dk). (8.18)

If α ≤ 1, we use the bounds (8.17) and (8.18) in the sum on the right-hand side of (8.12), and
we arrive at

‖Si‖Hs ≤ (dmax{0,s−1})1/2d{(eα)−1 + 2C̃(α)e−bh}{2C̃(α)e−bh}{1 + d−1}d−2‖τ‖τ ′ , (8.19)

where we used (8.16) and the fact that (1 + 1/d) ≤ 2e{(eα)−1 + 2C̃(α)}. If we now sum over
i = 1, . . . , d, we arrive at (8.8) and complete the proof in this case. A similar argument gives the
case (ii) when α > 1.

Case t′ < 0: The proof in this case is similar to that of Case 1 except that we use Corollary
1 in place of (8.16) and this forces us to use (8.14) for µ = t′ rather than µ = 0. Since we will not
use this case in what follows (see Remark 6), we do not include the details. �

Remark 6. In view of the value of C̄(α) given in (6.37), the estimate (8.9) shows, in particular,
that

‖e−αBτ − E(τ, α, h)‖s ≤ Cd2
(
dmax{0,s−1})1/2α−1e−c1αe−2πb/h‖τ‖t′ , when α ≥ 1,

where C depends only the embedding constant from Corollary 1 and on C1 from (6.37). Therefore,
(8.8) is of primary importance for small α. In this regime, when t′ < 0, the right-hand side of

(8.8) contains the factor
(
(|t′|/2eα)|t

′|/2 +(1/d)
)d−2

. Thus, whenever (|t′|/2eα) >
(
(d−1)/d

)2/|t′|
this factor exhibits an exponential growth of the form α−|t

′|(d−2)/2. In fact, as will be seen below,
α can be as small as ε2 so that, in order to compensate this growth, the factor e−2πb/h would have
to satisfy at least e−2πb/h <∼ ε|t

′|(d−2). Thus, the accuracy (5.26) needed in the low-dimensional

problems would scale at least like ε|t
′|(d−2), which is exponential in ε. To avoid this, at least in our

proof, one apparently has to require t′ ≥ 0. Later this means that the excess regularity ζ should
satisfy t+ ζ ≥ 0, which becomes increasingly stringent with decreasing t.
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Corollary 2. Under the assumptions of Lemma 9 suppose that in addition

t′ ≥ 0. (8.20)

Then, for s− t′ < 2, for which (6.40) holds, one has

‖e−αBτ − E(τ, α, h)‖s ≤ C5d
2
(
dmax{0,s−1})1/2 max{α−1, α−2}e−2πb/he−c1α‖τ‖t′ , (8.21)

where C5 depends only on the embedding constant from Corollary 1 and on λ and Γ through the
constants in (6.37).

8.2. The analysis and proof of Proposition 3. We proceed now to the analysis of the ap-
proximation of u by

S̄R(ε),h(B)(gr(ε)) :=

r(ε)∑
`=1

R(ε)∑
k=1

ωR(ε),kE(g(`), αR(ε),k, h),

as defined by (6.44). Recall that our goal is to show that when h = h(ε) is given by (6.46), then
we have ∥∥u(ε)− SR(ε),h(B)(gr(ε))

∥∥
t+2
≤ ε

2
‖f‖Āγ(Ht,Ht+ζ),

where u(ε) = S̄R(ε)(B)gr(ε), with the choice of R(ε) and r(ε) specified in (6.20) and (6.16), is
known to satisfy ‖u− u(ε)‖t+2 ≤ ε

2‖f‖Āγ(Ht,Ht+ζ).

In going further, we recall from Lemma 6 that any summand that appears in S̄R(ε)(B) satisfies

αR(ε),k ≥ T−1
R(ε) = 8e−π

√
R(ε) ≥ 8e−π

( C̄2

ε

)− 2π
ζa

, (8.22)

where we have used the definition of R(ε) and C1(ζ) in (6.20). This means that

αR(ε),k ≥ c3εe(ζ) =: α(ε), e(ζ) :=
2π

ζa
, (8.23)

where c3 depends only on C̄0, C̄, and A1, see Proposition 2, (A1), and (6.2).

Proof of Proposition 3: First note that if c6 is chosen sufficiently small, then any h ≤ h(ε) will
comply with the threshold (8.7) required in Lemma 9. In fact, inserting the expression (8.23) into
(8.7), gives

h0 = 2πb
(

log
((2C1

c3

)(d1/e(ζ)

ε

)e(ζ)))−1

≥ c6
(

log(d/ε)
)−1

provided c6 is chosen sufficiently small (depending in part on ζ), because we know that a < π.
We consider only such c6 in what follows. Therefore, Lemma 9, respectively (8.21) in Corollary 2,
apply. Bearing (6.37) in mind, this yields for r = r(ε), R = R(ε), given by (6.20), (6.16),

‖ū(ε)− u(ε)‖s ≤ d2
(
dmax{0,s−1})1/2C5e−2πb/h

( r∑
`=1

R∑
k=1

ωR,ke−αR,kc1 max{α−1
R,k, α

−2
R,k}

)
|||gr|||r,t+ζ .

(8.24)
To identify further stipulations on c6 that eventually guarantee (6.48), we infer next from Lemma
5, (4.10) and (6.37) that there exists a constant C(Γ) depending only on Γ and λ such that

R∑
k=1

ωR,ke−αR,kc1 ≤ C(Γ).

Hence, ‖ū(ε)− u(ε)‖s ≤ ε
2A1
‖gr(ε)‖t+ζ follows provided we can show that

d2
(
dmax{0,s−1})1/2C5C(Γ) e−2πb/h ≤

εT−2
R(ε)

2A1r(ε)
. (8.25)
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Now, by the condition (6.3) on the minimum growth of γ, there exists a µ > 0 and a positive
constant Cµ such that xµ ≤ Cµγ(x) for x ≥ 1, which implies that γ−1(x) ≤ (Cµx)1/µ for x ≥ 1.
By the definition (6.16) of r(ε) we thus conclude that

r(ε) ≤ γ−1(C̄4A1/ε) ≤
(4CµC̄A1

ε

)1/µ

.

Placing this into the right-hand side of (8.25), we are left to show that

d2
(
dmax{0,s−1})1/2C5C(Γ) e−2πb/h ≤

εT−2
R(ε)

2A1

(4CµC̄A1

ε

)−1/µ

, (8.26)

where µ is the constant in the minimum growth condition (6.3).
Now using the bound for T−1

R(ε) given in (8.22), we need only show that

d2
(
dmax{0,s−1})1/2C5C(Γ) e−2πb/h ≤ e−2π

( C̄2

ε

)− 4π
ζa 32ε

A1

(4CµC̄A1

ε

)−1/µ

. (8.27)

Hence, it suffices to show that

e−2πb/h ≤ Ĉ
( ε
d

)â
, (8.28)

where Ĉ and â are appropriate constants. Taking a logarithm, we see that if c6 is sufficiently
small, then (8.28) will be satisfied for h ≤ c6/ log(dε ). �

8.3. Proof of Theorem 7, (i).

Theorem 8. Assume that (A1) is valid and hence the conditions (γ1), (γ2) hold and let t+ζ ≥ 0.
Furthermore, assume that for k = 1, . . . , R(ε), ` = 1, . . . , r(ε), j = 1, . . . , d, q = −N, . . . , N ,

N = N(h(ε)), the approximate solutions ūj,q(αR(ε),k, g
(`)
j ), entering the Ej from (6.41) in the

definition of SR(ε),h(ε)(B)(gr(ε)), satisfy (6.40) for the pairs

s := t+ 2, t′ := t+ ζ, and s = t′ = 0.

Then, the finitely parametrized finite rank function u(ε), given by (6.47), satisfies

‖u− ū(ε)‖t+2 ≤ ε‖f‖Āγ(Ht,Ht+ζ), (8.29)

and is stable in the sense that

|||ū(ε)|||r(ε)R(ε),t+2 ≤ C7‖f‖Āγ(Ht,Ht+ζ), (8.30)

where C7 depends on C0 and A1.

Proof. The estimate (8.29) follows directly from (A1) and (6.48) in Proposition 3 for s = t + 2.
Concerning (8.30), we need to estimate the terms ωR(ε),k‖E(g(`), αR(ε),k, h(ε))‖t+2. In (5.28) we
have already shown that

ωR(ε),k‖e−αR(ε),kBg(`)‖t+2+ζ ≤ (1 + C0)‖g(`)‖t+ζ .

Hence, by Proposition 3, and in particular (8.25),

ωR(ε),k‖E(g(`), αR(ε),k, h(ε))‖t+2 ≤ (1 + C0)‖g(`)‖t+ζ

+ωR(ε),kd
2+(t+1)/2C5e−c1αR(ε),kα−2

R(ε),ke−2πb/h‖g(`)‖t+ζ

≤ (1 + C0)‖g(`)‖t+ζ + C(λ)d2+(t+1)/2C5α
−2
R(ε),ke−2πb/h‖g(`)‖t+ζ

≤
(

1 + C0 +
ε

2A1

)
‖g(`)‖t+ζ ,

which completes the proof. �
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To prove now (i) of Theorem 7, we specialize Theorem 8 to the case t = −1, 1 ≤ ζ ≤ 2. By step
(ii) of Scheme-Exp, we know that the approximate resolvent solutions are (1,−1 + ζ)-accurate.
Thus, we only need to verify that they are automatically (0, 0)-accurate as well. To this end, we
now require also the validity of assumptions (A2), (A3). In fact, we set ζ := 1 + ζ ′ for some
ζ ′ ≥ 0, and assume that the finite element solution vδ ∈ Vj,δ satisfies (7.3). By interpolation, we
then obtain

‖v − vδ‖H1
j
≤ Cδ

1
ζ ‖w‖L2(Dj).

Using the standard Aubin–Nitsche duality argument, this in turn, yields

‖v − vδ‖L2(Dj) ≤ C
(
δ

1
ζ
)2‖w‖L2(Dj) ≤ Cδ‖w‖L2(Dj),

since ζ ≤ 2. Hence, Theorem 8 is applicable and proves (i) of Theorem 7.

8.4. The proof of Theorem 7, (ii) and (iii). The major part of the computational work in
Scheme-Exp is obviously associated with the approximate solution of the resolvent equations
(6.39), which could be done completely in parallel. Let us denote by cost(q, k, `, j) the computa-

tional cost of (6.39) for τj = g
(`)
j for s = 1, t′ = −1 + ζ. Hence, the total cost of computing ū(ε)

is given by

cost(ū(ε)) =

N∑
q=−N

r(ε)∑
`=1

R(ε)∑
k=1

d∑
j=1

cost(q, k, `, j). (8.31)

In order to continue with the analysis of the computational cost (8.31) of the Scheme-Exp we
require the validity of assumptions (A1) – (A3).

To estimate the cost, cost(q, k, `, j), of computing the approximate solution ūj,q(αR(ε),k, g
(`)
j )

requires a few further preparatory remarks. First note that, by (6.29), the right-hand side of the
corresponding resolvent problem (6.39) is given by

rhs(q, k, j, `) := − 1

2πi
sinh(qh(ε) + iπ/6)e−αR(ε),kΓ(qh(ε))g

(`)
j ,

so that

‖rhs(q, k, j, `)‖H−1+ζ
j

≤ C10e|qh(ε)|e−αR(ε),ke|qh(ε)|/2

‖g(`)
j ‖H−1+ζ

j
, (8.32)

where C10 depends only on Γ and λ. We record the following simple observation.

Lemma 10. For rhs(q, k, j, `) defined above and all q = −N . . . ,N , N = N(h(ε)), j = 1, . . . , d,
` = 1, . . . , R(ε), ` = 1, . . . , r(ε), we have

‖rhs(q, k, j, `)‖H−1+ζ
j

≤ C11α
−1
R(ε),k‖g

(`)
j ‖H−1+ζ

j
, (8.33)

where the constant C11 depends only on Γ and λ and where α(ε) is defined by (8.23).

Proof. Since the function xe−αx/2 attains its maximum on [0,∞) at x∗ = 2/α where it takes the
value 2

αe−1 the assertion is an immediate consequence of (8.32). �

Recall that by (6.40) the target accuracy depends also on αR(ε),k but becomes more stringent
as αR(ε),k increases. Combining Lemma 10 with (6.40) shows that the target accuracy δ(q, k, j, `),
at which the resolvent problem

(Γ(gh(ε))I−Bj)uj,q(αR(ε),k, g
(`)
j ) = − 1

2πi
sinh(qh(ε) + iπ/6) e−αR(ε),kΓ(qh(ε))g

(`)
j

has to be solved in order to satisfy the tolerance required in (6.40) for s = 1, t′ = −1 + ζ, should
satisfy, in view of (6.37),

C11(αR(ε),k)−1δ(q, k, j, `) ≤
(
C3| log(h(ε)αR(ε),k)|

)−1
C1α

−1
R(ε),ke−2πb/h(ε).

This gives

δ(q, k, j, `) ≤ C12

∣∣ log(h(ε)αR(ε),k)
∣∣−1

e−2πb/h(ε), (8.34)

where C12 depends only on λ and Γ. We can now estimate the complexity of the approximate
resolvent solutions.
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Lemma 11. Under the hypotheses of Theorem 7, for each ` = 1, . . . , r(ε), k = 1, . . . , R(ε),
q = −N, . . . , N , j = 1, . . . , d, the trial spaces Vq,k,`,j required to approximate the solution to (6.39)
with accuracy specified in (6.40) have dimension at most

dimVq,k,`,j ≤ C15

( ε
d

)−ρ̄p/ζ
. (8.35)

Moreover, the computational work required to determine ūj,q(αR(ε),k, g
(`)
j ) is bounded by

cost(q, k, `, j) ≤ C16

( ε
d

)−ρ̄p/ζ
, (8.36)

where ρ̄ is any fixed constant satisfying ρ̄ > 2πb/c6, and the constants C15, C16 depend on ρ̄, C8, C9,
c6, c3.

Proof. We need to estimate the two factors on the right-hand side of (8.34) from below. To that
end, recalling (6.46) and (6.16), we have

e−2πb/h(ε) = (ε/d)2πb/c6 . (8.37)

Moreover, by (6.46) and (8.23) we obtain for αR(ε),k ≤ 1 (see (8.23)) that

∣∣ log(h(ε)αR(ε),k)
∣∣ ≤ ∣∣ log

(c6c3εe(ζ)
log(d/ε)

)∣∣. (8.38)

Using that log(d/ε) ≤ C(d/ε)ρ holds for any ρ > 0 with C depending on ρ, we obtain∣∣ log(h(ε)αR(ε),k)
∣∣ ≤ log

( C13d
ρ

εe(ζ)+1

)
, (8.39)

where C13 depends on ρ, c3, c6. Combining (8.37) and (8.39) it suffices to require that

δ(q, k, j, `) ≤
( ε
d

)2πb/c6(
log
( C13d

ρ

εe(ζ)+1

))−1

. (8.40)

Hence, choosing any fixed number ρ̄ > 2πb/c6, there exists a constant C14, depending on ζ, ρ, c3, c6
such that

δ(q, k, j, `) ≤ C14

( ε
d

)ρ̄
(8.41)

guarantees the validity of (6.40). The assertion of Lemma 11 follows now from (7.4) and (7.5). �

We can now complete the proof of Theorem 7. In fact, in total dr(ε)R(ε)(2N(h(ε)) + 1) low-
dimensional problems have to be solved. Recall from (6.38) that

(2N(h(ε)) + 1) ≤ C3h(ε)−1| log(h(ε)α(ε))|.

By (6.46) and (8.39), we conclude that

(2N(h(ε)) + 1) ≤ C
(

log
(d
ε

))2

,

where C depends on C3, c3, c6, and ρ. Now (ii) and (iii) are immediate consequences of (8.31),
Lemma 11, and the bounds (6.21), (6.16) for R(ε), r(ε), respectively. �

The complexity bounds are still based on generous overestimations, since the constraints on the
δ(q, k, j, `) are uniform and refer to the least favorable constellation of parameters. Also one need
not use the same number of quadrature points for all αR(ε),k.
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9. Concluding Remarks - Some Loss of Tensor-Sparsity

The prototypical example for the above setting is B = −∆. A natural question is what
could be said about tensor-sparsity when −∆ is replaced, for example, by the second-order elliptic
differential operator w 7→ −div(A∇w)+w, where A is a symmetric positive definite (d×d)-matrix.
Intuitively, since A now combines different variables one expects that the solution to

− div(A∇w) + w = g in Rd, w ∈ H1(Rd), (9.1)

is “less tensor-sparse”. In fact, since A is symmetric positive definite, it can be factorized as
A = QTDQ where Q is unitary. Defining u(x) := w(Qx) = w(y), (9.1) takes the form

−
d∑
k=1

Dk,ku(x) + u(x) = Bu(x) = f(x) := g(Qx), (9.2)

where B is again of the form (2.7). Hence, when f in (9.2) is tensor-sparse the results above apply
to (9.2) providing a tensor-sparse solution in the new coordinate system. However, this does not
imply, of course, any tensor-sparsity of w as a function of y in the original coordinate system.
Understanding the general circumstances in which it is possible to quantify any tensor-sparsity of
solutions to (9.1) is the subject of ongoing work.
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