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A TRACE FINITE ELEMENT METHOD FOR A CLASS OF
COUPLED BULK-INTERFACE TRANSPORT PROBLEMS ∗

SVEN GROSS† , MAXIM A. OLSHANSKII‡ , AND ARNOLD REUSKEN§

Abstract. In this paper we study a system of advection-diffusion equations in a bulk domain
coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial
differential equations arise in, for example, the modeling of transport and diffusion of surfactants in
two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at
a sharp interface between two fluids and their transport and diffusion in both fluid phases and along
the interface. The paper gives a well-posedness analysis for the system of bulk-surface equations
and introduces a finite element method for its numerical solution. The finite element method is
unfitted, i.e., the mesh is not aligned to the interface. The method is based on taking traces of a
standard finite element space both on the bulk domains and the embedded surface. The numerical
approach allows an implicit definition of the surface as the zero level of a level-set function. Optimal
order error estimates are proved for the finite element method both in the bulk-surface energy norm
and the L2-norm. The analysis is not restricted to linear finite elements and a piecewise planar
reconstruction of the surface, but also covers the discretization with higher order elements and a
higher order surface reconstruction.

1. Introduction. Coupled bulk-surface or bulk-interface partial differential
equations arise in many applications, e.g., in multiphase fluid dynamics [17] and bio-
logical applications [2]. In this paper, we consider a coupled bulk-interface advection-
diffusion problem. The problem arises in models describing the behavior of soluble
surface active agents (surfactants) that are adsorbed at liquid-liquid interfaces. For a
discussion of physical phenomena related to soluble surfactants in two-phase incom-
pressible flows we refer to the literature, e.g., [17, 26, 7, 28].

Systems of partial differential equations that couple bulk domain effects with
interface (or surface) effects pose challenges both for the mathematical analysis of
equations and the development and error analysis of numerical methods. These chal-
lenges grow if phenomena occur at different physical scales, the coupling is nonlinear
or the interface is evolving in time. To our knowledge, the analysis of numerical
methods for coupled bulk-surface (convection-)diffusion has been addressed in the
literature only very recently. In fact, problems related to the one studied in this pa-
per have been considered only in [4, 13]. In these references finite element methods
for coupled bulk-surface partial differential equations are proposed and analyzed. In
[4, 13] a stationary diffusion problem on a bulk domain is linearly coupled with a sta-
tionary diffusion equation on the boundary of this domain. A key difference between
the methods in [4] and [13] is that in the latter boundary fitted finite elements are
used, whereas in the former unfitted finite elements are applied. Both papers include
error analyses of these methods. In the recent paper [5] a similar coupled surface-bulk
system is treated with a different approach, based on the immersed boundary method.
In that paper an evolving surface is considered, but only spatially two-dimensional
problems are treated and no theoretical error analysis is given.

In the present paper, as in [4, 13] we restrict to stationary problems and a linear
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coupling. The results obtained are a starting point for research on other classes of
problems, e.g., with an evolving interface, cf. the discussion in section 10. The two
main new contributions of this paper are the following. Firstly, the class of problems
considered is significantly different from the one treated in [4, 13]. We study a problem
with two bulk domains separated by a sharp interface, instead of a bulk-surface cou-
pling. Furthermore, the partial differential equations are not pure diffusion equations,
but convection-diffusion equations. The latter model the transport by advection and
diffusion of surfactants. We will briefly address some basic modeling aspects, e.g. re-
lated to adsorption (Henry and Langmuir laws), of these coupled equations. The first
main new result is the well-posedness of a weak formulation of this coupled system.
We introduce suitable function spaces and an appropriate weak formulation of the
problem. We derive a Poincare type inequality in a bulk-interface product Sobolev
space and show an inf-sup stability result for the bilinear form of the weak formula-
tion. This then leads to the well-posedness result. The second main new contribution
is the error analysis of a finite element method. We consider an unfitted finite element
method, as in [4]. Such an unfitted approach is particularly attractive for problems
with an evolving interface, which will be studied in a follow-up paper. Both interface
and bulk finite element spaces are trace spaces of globally defined continuous finite ele-
ment functions with respect to a regular simplicial triangulation of the whole domain.
For bulk problems, such finite element techniques have been extensively studied in
the literature on cut finite element methods or XFEM, cf. e.g. [18, 19, 3]. For PDEs
posed on surfaces, the trace finite element method was introduced and studied in
[22, 24, 20, 10]. In the method that we propose, the smooth interface is approximated
by a piecewise smooth one, characterized as the zero level set of a finite element level
set function. This introduces a geometric error in the method. The approach allows
meshes that do not fit to this (approximate) interface and admits implicitly defined
interfaces. The finite element formulation is shown to be well-posed. We present an
error analysis that is general in the sense that finite element polynomials of arbitrary
degree are allowed (in [4] only linear finite elements are treated) and that the accuracy
of the interface approximation can be varied. The error analysis is rather technical
and we aimed at a clear exposition by subdividing the analysis into several steps: the
construction of a bijective mapping between the continuous bulk domains and their
numerical approximations, the definition and analysis of extensions of functions off
the interface and outside the bulk domains, and the analysis of consistency terms in an
approximate Galerkin orthogonality property. This leads to an optimal order bound
for the discretization error in the energy norm of the product space. Finally, by using
a suitable adjoint problem, we derive an optimal order error bound in the L2 product
norm. Results of numerical experiments are included that illustrate the convergence
behavior of the finite element method. A point that we do not address in this paper
is the stabilization of the discretization method with respect to the conditioning of
the stiffness matrix. From the literature it is known that the trace finite element ap-
proach results in a poor conditioning of the stiffness matrix. The technique presented
in [3, 4] can be used (at least for linear finite elements) to obtain a stiffness matrix
with conditioning properties similar to those of a standard finite element method. We
think that this technique is applicable also to the method presented in this paper,
but decided not to include it, since the additional stabilization terms would lead to a
further increase of technicalities in the analysis.

2. Mathematical model. In this section we explain the physical background
of the coupled bulk-interface model that we treat in this paper. Consider a two-phase
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incompressible flow system in which two fluids occupy subdomains Ωi(t), i = 1, 2, of
a given domain Ω ⊂ R3. The corresponding velocity field of the fluids is denoted by
w(x, t), x ∈ Ω, t ∈ [0, t1]. For convenience, we assume that Ω1(t) is simply connected
and strictly contained in Ω (e.g., a rising droplet). The outward pointing normal from
Ω1 into Ω2 is denoted by n. The sharp interface between the two fluids is denoted by
Γ(t) and is transported by the local flow field. The fluids are assumed to be immiscible,
and hence VΓ = w · n, where VΓ denotes the normal velocity of the interface. The
standard model for the fluid dynamics in such a system consists of the Navier-Stokes
equations, combined with suitable coupling conditions at the interface. In the rest of
this paper, we assume that the velocity field has smoothness w(·, t) ∈ [H1(Ω)∩H1(Γ)]3

and that w is given, i.e., we do not consider a two-way coupling between surfactant
transport and fluid dynamics. The fluid is assumed incompressible:

div w = 0 in Ω. (2.1)

Consider a surfactant that is soluble in both phases and can be adsorbed and
desorbed at the interface. The surfactant volume concentration (i.e., the one in the
bulk phases) is denoted by u, ui = u|Ωi , i = 1, 2. The surfactant area concentra-
tion on Γ is denoted by v. Change of the surfactant concentration happens due to
convection by the velocity field w, diffusive fluxes in Ωi, a diffusive flux on Γ and
fluxes coming from adsorption and desorption. The net flux (per surface area) due to
adsorption/desorption between Ωi and Γ is denoted by ji,a − ji,d. The total net flux

is ja − jd =
∑2
i=1(ji,a − ji,d). Mass conservation in a control volume (transported by

the flow field) that is strictly contained in Ωi results in the bulk convection-diffusion
equation

∂u

∂t
+ w · ∇u−Di∆u = 0 in Ωi = Ωi(t), i = 1, 2. (2.2)

Mass conservation in a control area (transported by the flow field) that is completely
contained in Γ results in the surface convection-diffusion equation (cf. [17]):

v̇ + (divΓ w)v −DΓ∆Γv = ja − jd on Γ = Γ(t), (2.3)

where v̇ = ∂v
∂t + w · ∇v denotes the material derivative and ∆Γ, divΓ the Laplace-

Beltrami and surface divergence operators, respectively.
We assume that transport of surfactant between the two phases can only occur

via adsorption/desorption. Due to VΓ = w · n, the mass flux through Γ equals the
diffusive mass flux. Hence, mass conservation in a control volume (transported by
the flow field) that lies in Ωi and with part of its boundary on Γ results in the mass
balance equations

(−1)iDin · ∇ui = ji,a − ji,d, i = 1, 2. (2.4)

The sign factor (−1)i accounts for the fact that the normal n is outward pointing
from Ω1 into Ω2. Summing these relations over i = 1, 2, yields

ja − jd = −[Dn · ∇u]Γ,

where [w]Γ denotes the jump of w across Γ.
To close the system of equations, we need constitutive equations for modeling the

adsorption/desorption. A standard model, cf. [26], is as follows:

ji,a − ji,d = ki,agi(v)ui − ki,dfi(v), on Γ, (2.5)
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with ki,a, ki,d positive adsorption and desorption coefficients that describe the kinetics.
We consider two fluids having similar adsorption/desorption behavior in the sense that
the coefficients ki,a, ki,d may depend on i, but gi(v) = g(v), fi(v) = f(v) for i = 1, 2.
Basic choices for g, f are the following:

g(v) = 1, f(v) = v (Henry) (2.6)

g(v) = 1− v

v∞
, f(v) = v (Langmuir), (2.7)

where v∞ is a constant that quantifies the maximal concentration on Γ. Further
options are given in [26]. Note that in the Langmuir case we have a nonlinearity due
to the term vui. Combining (2.2), (2.3), (2.4) and (2.5) gives a closed model. For the
mathematical analysis it is convenient to reformulate these equations in dimensionless
variables. Let L, W be appropriately defined length and velocity scales and T = L/W
the corresponding time scale. Furthermore, U and V are typical reference volume and
area concentrations. The equations above can be reformulated in the dimensionless
variables x̃ = x/L, t̃ = t/T , ũi = ui/U , ṽ = v/V , w̃ = w/W . This results in the
following system of coupled bulk-interface convection-diffusion equations, where we
use the notation x, t, ui, v,w also for the transformed variables:

∂u

∂t
+ w · ∇u− νi∆u = 0 in Ωi(t), i = 1, 2,

v̇ + (divΓ w)v − νΓ∆Γv = −K[νn · ∇u]Γ on Γ(t),

(−1)iνin · ∇ui = k̃i,ag̃(v)ui − k̃i,dv on Γ(t), i = 1, 2,

with νi =
Di

LW
, νΓ =

DΓ

LW
, K =

LU

V
, k̃i,a =

T

L
ki,a, k̃i,d =

T

K
ki,d,

(2.8)

and g̃(v) = 1 (Henry) or g̃(v) = 1− V
v∞
v (Langmuir). This model has to be comple-

mented by suitable initial conditions for u, v and boundary conditions on ∂Ω for u.
The resulting model is often used in the literature for describing surfactant behavior,
e.g. [12, 28, 11, 5]. The coefficients k̃i,a, k̃i,d are the dimensionless adsorption and
desorption coefficients.

Remark 1. Sometimes, in the literature the Robin type interface conditions
(−1)iνin·∇ui = k̃i,ag̃(v)ui−k̃i,dv in (2.8) are replaced by (simpler) Dirichlet type con-

ditions. In case of “instantaneous” adsorption and desorption one may assume k̃i,a �
νi, k̃i,d � νi and the Robin interface conditions are approximated by k̃i,ag̃(v)ui =

k̃i,dv, i = 1, 2.

From a mathematical point of view, the problem (2.8) is challenging, because
convection-diffusion equations in the moving bulk phase Ωi(t) are coupled with a
convection-diffusion equation on the moving interface Γ(t). As far as we know, for
this model there are no rigorous results on well-posedness known in the literature.

3. Simplified model. As a first step in the analysis of the problem (2.8) we
consider a simplified model. We restrict to g̃(v) = v (Henry law), consider the sta-
tionary case and make some (reasonable) assumptions on the range of the adsorption
and desorption parameters k̃i,a, k̃i,d. In the remainder we assume that Ωi and Γ do
not depend on t (e.g., an equilibrium motion of a rising droplet in a suitable frame
of reference). Since the interface is passively advected by the velocity field w, this
assumption leads to the constraint

w · n = 0 on Γ. (3.1)
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We also assume divΓ w = 0 so that the term (divΓ w)v in the surface convection-
diffusion equation vanishes. Furthermore, for the spatial part of the material deriva-
tive v̇ we have w · ∇v = w · ∇Γv. We let the normal part of w to vanish on exterior
boundary:

w · nΩ = 0 on ∂Ω, (3.2)

where nΩ denotes the outward pointing normal on ∂Ω. From (3.2) it follows that
there is no convective mass flux across ∂Ω. We also assume no diffusive mass flux
across ∂Ω, i.e. the homogeneous Neumann boundary condition nΩ · ∇u2 = 0 on ∂Ω.
Restricting the model (2.8) to an equilibrium state, we obtain the following stationary
problem:

−νi∆ui + w · ∇ui = fi in Ωi, i = 1, 2,

−νΓ∆Γv + w · ∇Γv +K[νn · ∇u]Γ = g on Γ,

(−1)iνin · ∇ui = k̃i,aui − k̃i,dv on Γ, i = 1, 2,

nΩ · ∇u2 = 0 on ∂Ω.

(3.3)

In this model, we allow source terms g ∈ L2(Γ) and fi ∈ L2(Ωi). Using partial
integration over Ωi, i = 1, 2, and over Γ, one checks that these source terms have to
satisfy the consistency condition

K
( ∫

Ω1

f1 dx +

∫
Ω2

f2 dx
)

+

∫
Γ

g ds = 0. (3.4)

A simplified version of this model, namely with only one bulk domain Ω1 and with
w = 0 (only diffusion) has recently been analyzed in [13].

From physics it is known that for surfactants almost always the desorption rates
are (much) smaller than the adsorption rates. Therefore, it is reasonable to assume
k̃i,d ≤ ck̃i,a with a “small” constant c. To simplify the presentation, we assume

k̃i,d ≤ k̃1,a + k̃2,a for i = 1, 2. For the adsorption rates k̃i,a we exclude the singular-

perturbed cases k̃i,a ↓ 0 and k̃i,a → ∞. Summarizing, we consider the parameter
ranges

k̃i,a ∈ [kmin, kmax], k̃i,d ∈ [0, k̃1,a + k̃2,a], (3.5)

with fixed generic constants kmin > 0, kmax. Note that unlike in previous studies we
allow k̃i,d = 0 (i.e., only adsorption). Finally, due to the restriction on the adsorption

parameter k̃i,a given in (3.5) we can use the following transformation to reduce the
number of parameters of the model (3.3):

ui  k̃i,aui, v  (k̃1,a + k̃2,a)v,

νi  k̃−1
i,a νi, νΓ  νΓ/(k̃1,a + k̃2,a),

w wi = k̃−1
i,aw in Ωi, w w/(k̃1,a + k̃2,a) on Γ.

(3.6)

Note that after this transformation w may be discontinuous across Γ, and so w ∈
H1(Ω) does not necessarily hold. In each subdomain and on Γ, however, w is regular:
w ∈ H1(Ωi)

3, i = 1, 2, and w ∈ H1(Γ)3. The same notation will be used for the
transformed variables. Thus the model that we study in the remainder of the paper
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is the following one:

−νi∆ui + w · ∇ui = fi in Ωi, i = 1, 2,

−νΓ∆Γv + w · ∇Γv +K[νn · ∇u]Γ = g on Γ,

(−1)iνin · ∇ui = ui − qiv on Γ, i = 1, 2,

nΩ · ∇u2 = 0 on ∂Ω,

with qi :=
k̃i,d

k̃1,a + k̃2,a

∈ [0, 1].

(3.7)

The data fi and g are assumed to satisfy the consistency condition (3.4). Recall that
K = LU

V > 0, cf. (2.8), is a fixed (scaling) constant.

4. Analysis of well-posedness. In this section we derive a suitable weak for-
mulation of the problem (3.7) and prove well-posedness of this weak formulation.

We first introduce some notations. For u ∈ H1(Ω1∪Ω2) we also write u = (u1, u2)
with ui = u|Ωi ∈ H1(Ωi). Furthermore:

(f, g)ω :=

∫
ω

fg , where ω is any of {Ω,Ωi,Γ},

(∇u,∇w)Ω1∪Ω2
:=
∑
i=1,2

∫
Ωi

∇ui · ∇wi dx, u, w ∈ H1(Ω1 ∪ Ω2),

‖u‖21,Ω1∪Ω2
:= ‖u1‖2H1(Ω1) + ‖u2‖2H1(Ω2) = ‖u‖2Ω + ‖∇u‖2Ω1∪Ω2

.

We need a suitable gauge condition. In the original dimensional variables a natural
condition is conservation of total mass, i.e. (u1, 1)Ω1

+ (u2, 1)Ω2
+ (v, 1)Γ = m0,

with m0 > 0 the initial total mass. Due to the transformation of variables and
with an additional constant shift this condition is transformed to Kk̃−1

1,a(u1, 1)Ω1 +

Kk̃−1
2,a(u2, 1)Ω1

+ (k̃1,a + k̃2,a)−1(v, 1)Γ = 0 for the variables used in (3.7). Hence, we
obtain the natural gauge condition

K(1 + r)(u1, 1)Ω1
+K(1 +

1

r
)(u2, 1)Ω2 + (v, 1)Γ = 0, r :=

k̃2,a

k̃1,a

. (4.1)

Define the product spaces

V = H1(Ω1 ∪ Ω2)×H1(Γ), ‖(u, v)‖V :=
(
‖u‖21,Ω1∪Ω2

+ ‖v‖21,Γ
) 1

2 ,

Ṽ = { (u, v) ∈ V | (u, v) satisfies (4.1) }.

To obtain the weak formulation, we multiply the bulk and surface equation in
(3.7) by test functions from V, integrate by parts and use interface and boundary

conditions. The resulting weak formulation reads: Find (u, v) ∈ Ṽ such that for all
(η, ζ) ∈ V:

a((u, v); (η, ζ)) = (f1, η1)Ω1
+ (f2, η2)Ω2

+ (g, ζ)Γ, (4.2)

a((u, v); (η, ζ)) := (ν∇u,∇η)Ω1∪Ω2
+ (w · ∇u, η)Ω1∪Ω2

+ νΓ(∇Γv,∇Γζ)Γ

+ (w · ∇Γv, ζ)Γ +

2∑
i=1

(ui − qiv, ηi −Kζ)Γ.
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For the further analysis, we note that both w-dependent parts of the bilinear form in
(4.2) are skew-symmetric:

(w · ∇ui, ηi)Ωi = −(w · ∇ηi, ui)Ωi , i = 1, 2, (w · ∇Γv, ζ)Γ = −(w · ∇Γζ, v)Γ. (4.3)

To verify the first equality in (4.3), one integrates by parts over each subdomain Ωi:

(w · ∇u1, η1)Ω1 = −(w · ∇η1, u1)Ω1 − ((div w)η1, u1)Ω1 + ((n ·w)η1, u1)Γ,

(w · ∇u2, η2)Ω2 = −(w · ∇η2, u2)Ω2 − ((div w)η2, u2)Ω2 − ((n ·w)η2, u2)Γ

+ ((nΩ ·w)η2, u2)∂Ω2∩∂Ω.

All terms with div w, n ·w or nΩ ·w vanish due to (2.1), (3.1) and (3.2).
The variational formulation in (4.2) is the basis for the finite element method

introduced in section 6. For the analysis of well-posedness, it is convenient to introduce
an equivalent formulation where the test space V is replaced by a smaller one, in which
a suitable gauge condition is used. For this we define, for α = (α1, α2) with αi ≥ 0,
the space

Vα := { (u, v) ∈ V | α1(u1, 1)Ω1 + α2(u2, 1)Ω1 + (v, 1)Γ = 0 }.

Note that Ṽ = Vα for α = (K(1 + r),K(1 + 1
r )), cf. (4.1). The data f1, f2, g, satisfy

the consistency property (3.4). From this and (4.3) it follows that if a pair of trial and
test functions ((u, v); (η, ζ)) satisfies (4.2) then ((u, v); (η, ζ) + γ(K, 1)) also satisfies
(4.2) for arbitrary γ ∈ R. Now let an arbitrary α = (α1, α2) be given. For every
(η, ζ) ∈ V there exists γ ∈ R and (η̃, ζ̃) ∈ Vα such that (η, ζ) = (η̃, ζ̃)+γ(K, 1) holds.

From this it follows that (4.2) is equivalent to the following problem: Find (u, v) ∈ Ṽ
such that for all (η, ζ) ∈ Vα:

a((u, v); (η, ζ)) = (f1, η1)Ω1
+ (f2, η2)Ω2

+ (g, ζ)Γ. (4.4)

For this weak formulation we shall analyze well-posedness.
On H1(Ωi) and H1(Γ) the following Poincare-Friedrich’s inequalities hold:

‖ui‖2Ωi ≤ c(‖∇ui‖
2
Ωi + (ui, 1)2

Ωi) for all ui ∈ H1(Ωi), (4.5)

‖ui‖2Ωi ≤ c(‖∇ui‖
2
Ωi + ‖ui‖2Γ) for all ui ∈ H1(Ωi), (4.6)

‖v‖2Γ ≤ c(‖∇Γv‖2Γ + (v, 1)2
Γ) for all v ∈ H1(Γ). (4.7)

For the analysis of stability of the weak formulation we need the following Poincare
type inequality in the space V.

Lemma 4.1. Let ri, σi ∈ [0,∞), i = 1, 2. There exists CP (r1, r2, σ1, σ2) > 0 such
that for all (u, v) ∈ V, the following inequality holds:

‖(u, v)‖V ≤ CP
(
‖∇u‖Ω1∪Ω2

+ ‖∇Γv‖Γ

+ |r1(u1, 1)Ω1 + r2(u2, 1)Ω2 + (v, 1)Γ|+
2∑
i=1

|(ui − σiv, 1)Γ|).
(4.8)

Proof. The result follows from the Petree-Tartar Lemma (cf., [14]). For conve-
nience, we recall the lemma: Let X,Y, Z be Banach spaces, A ∈ L(X,Y ) injective,
T ∈ L(X,Z) compact and assume

‖x‖X ≤ c
(
‖Ax‖Y + ‖Tx‖Z

)
for all x ∈ X. (4.9)
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Then there exists a constant c such that

‖x‖X ≤ c‖Ax‖Y for all x ∈ X (4.10)

holds. We take X = H1(Ω1)×H1(Ω2)×H1(Γ) with the norm

‖(u1, u2, v)‖X = (‖u1‖21,Ω1
+ ‖u2‖21,Ω2

+ ‖v‖21,Γ)
1
2 .

Furthermore, Y = L2(Ω1)3 × L2(Ω2)3 × L2(Γ)3 × R3 with standard norm and Z =
L2(Ω1)× L2(Ω2)× L2(Γ) with standard norm. We introduce the bilinear forms

l0(u1, u2, v) := r1(u1, 1)Ω1 + r2(u2, 1)Ω2 + (v, 1)Γ,

l1(u1, u2, v) = (u1 − σ1v, 1)Γ,

l2(u1, u2, v) = (u2 − σ2v, 1)Γ,

and define the linear operators

A(u1, u2, v) = (∇u1,∇u2,∇Γv, l0(u1, u2, v), l1(u1, u2, v), l2(u1, u2, v)),

T (u1, u2, v) = (u1, u2, v).

Then we have A ∈ L(X,Y ) and A is injective. The operator T ∈ L(X,Z) is compact.
This follows from the compactness of the embeddings H1(Ωi) ↪→ L2(Ω), H1(Γ) ↪→
L2(Γ). It is easy to check that the inequality (4.9) is satisfied. The Petree-Tartar

Lemma implies (‖u‖21,Ω1∪Ω2
+ ‖v‖2Γ)

1
2 ≤ c‖A(u1, u2, v)‖Y and thus the estimate (4.8)

holds.

The next theorem states an inf-sup stability estimate for the bilinear form in
(4.4).

Theorem 4.2. There exists Cst > 0 such that for all q1, q2 ∈ [0, 1] and with a
suitable α the following holds:

inf
(u,v)∈Ṽ

sup
(η,ζ)∈Vα

a((u, v); (η, ζ))

‖(u, v)‖V‖(η, ζ)‖V
≥ Cst. (4.11)

Proof. Let (u, v) ∈ Ṽ be given. Note that (u, v) satisfies the gauge condition
(4.1). Without loss of generality one can assume 0 ≤ q2 ≤ q1 ≤ 1. We consider three
cases depending on values of these parameters.

We first consider q1, q2 ∈ [0, ε], with ε > 0 specified below. We take η1 = βu1,
η2 = βu2, with β > 0, and ζ = v. This yields

a((u, v); (η, ζ)) = ν1β‖∇u1‖2Ω1
+ ν2β‖∇u2‖2Ω2

+ νΓ‖∇Γv‖2Γ + β‖u1‖2Γ + β‖u2‖2Γ

−
2∑
i=1

(qiβ +K)(ui, v)Γ +K(q1 + q2)‖v‖2Γ

≥ β‖ν∇u‖2Ω1∪Ω2
+

1

2
β‖u1‖2Γ +

1

2
β‖u2‖2Γ + νΓ‖∇Γv‖2Γ − (εβ

1
2 +Kβ−

1
2 )2‖v‖2Γ

≥ cFβ‖u‖21,Ω1∪Ω2
+ νΓ‖∇Γv‖2Γ − (εβ

1
2 +Kβ−

1
2 )2‖v‖2Γ,

where in the last inequality we used (4.6). The constant cF > 0 depends only on the
Friedrich’s constant from (4.6) and the viscosity ν. From the gauge condition we get

(v, 1)2 ≤ 2K2
(
(1 + r)2(u1, 1)2

Ω1
+ (1 +

1

r
)2(u2, 1)2

Ω2

)
≤ c
(
‖u1‖2Ω1

+ ‖u2‖2Ω2

)
= c‖u‖2Ω.
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Using this and the Poincare’s inequality in (4.7) we obtain

a((u, v); (η, ζ))

≥ cFβ‖u‖21,Ω1∪Ω2
+ νΓ(‖∇Γv‖2Γ + (v, 1)2

)
− ĉ‖u‖2Ω − (εβ

1
2 +Kβ−

1
2 )2‖v‖2Γ

≥ cFβ‖u‖21,Ω1∪Ω2
+ ĉF ‖v‖21,Γ − ĉ‖u‖2Ω − (εβ

1
2 +Kβ−

1
2 )2‖v‖2Γ.

The constant ĉ depends only on νΓ, r,K. The constant ĉF > 0 depends only on a
Poincare’s constant and νΓ. We take β sufficiently large (depending only on cF , ĉ and
K) and ε > 0 sufficiently small such that the third term can be adsorbed in the first
one and the last term can be adsorbed in the second one. Thus we get

a((u, v); (η, ζ)) ≥ c‖(u, v)‖2V ≥ c‖(u, v)‖V‖(η, ζ)‖V,

which completes the proof of (4.11) for the first case. Now ε > 0 is fixed.
In the second case we take q1 ≥ ε, and q2 ∈ [0, δ], with a δ ∈ (0, ε] that will be

specified below. We take η1 = u1, η2 = 0, ζ = K−1q1v. Using the gauge condition
and (4.8) with u2 = 0, σ2 = 0, r1 = K(1 + r), σ1 = q1, we get

a((u, v); (η, ζ)) = ν1‖∇u1‖2Ω1
+
q1νΓ

K
‖∇Γv‖2Γ + ‖u1 − q1v‖2Γ − q1(u2, v)Γ + q2q1‖v‖2Γ

≥ ν1‖∇u1‖2Ω1
+
ενΓ

K
‖∇Γv‖2Γ + ‖u1 − q1v‖2Γ

+ |K(1 + r)(u1, 1)Ω1
+ (v, 1)Γ|2 −K2(1 +

1

r
)2(u2, 1)2

Ω2
− q1(u2, v)Γ

≥ cF
(
‖u1‖21,Ω1

+ ‖v‖21,Γ
)
− c‖u2‖2Ω2

− ‖u2‖Γ‖v‖Γ

≥ 1

2
cF
(
‖u1‖21,Ω1

+ ‖v‖21,Γ
)
− c
(
‖u2‖2Ω2

+ ‖u2‖2Γ
)
. (4.12)

The constant cF > 0 depends on Poincare’s constant and on ε. We now take η1 =
0, η2 = βu2, with β > 0 and ζ = 0. This yields, cf. (4.6),

a((u, v); (η, ζ)) = ν2β‖∇u2‖2Ω1
+ β‖u2‖2Γ − βq2(u2, v)Γ ≥ cβ‖u2‖21,Ω2

− 1

2
βδ2‖v‖2Γ.

Combining this with (4.12) and taking β sufficiently large such that the last term in
(4.12) can be adsorbed, we obtain for η1 = u1, η2 = βu2, ζ = K−1q1v:

a((u, v); (η, ζ)) ≥ 1

2
cF
(
‖u1‖21,Ω1

+ ‖v‖21,Γ
)

+ cβ‖u2‖21,Ω2
− 1

2
βδ2‖v‖2Γ.

Now we take δ > 0 sufficiently small such that the last term can be adsorbed by the
second one. Hence,

a((u, v); (η, ζ)) ≥ c‖(u, v)‖2V ≥ c‖(u, v)‖V‖(η, ζ)‖V,

which completes the proof of the inf-sup property for the second case. Now δ > 0 is
fixed.

We consider the last case, namely q1 ≥ δ and q2 ≥ δ. Take η1 = u1, η2 = q1
q2
u2,

ζ = K−1q1v. We then get

a((u, v); (η, ζ)) = ν1‖∇u1‖2Ω1
+ ν2

q1

q2
‖∇u2‖2Ω2

+
νΓq1

K
‖∇Γv‖2Γ

+ ‖u1 − q1v‖2Γ +
q1

q2
‖u2 − q2v‖2Γ

≥ c
(
‖∇u‖2Ω1∪Ω2

+ ‖∇Γv‖2Γ +

2∑
i=1

‖ui − qiv‖2Γ
)
.

9



We use (4.8) with r1 = K(1 + r), r2 = K(1 + 1
r ), with r from (4.1), and σi = qi. This

yields

a((u, v); (η, ζ)) ≥ c‖(u, v)‖2V ≥ c‖(u, v)‖V‖(η, ζ)‖V,

with a constant c > 0 that depends on δ, but is independent of (u, v).
In all three cases, since (u, v) obeys the gauge condition (4.1), we get (η, ζ) ∈ Vα,

for suitable α = (α1, α2) with αi > 0.

Note that the α used in Theorem 4.2 may depend on qi. In the remainder, for
given problem parameters qi ∈ [0, 1], i = 1, 2, we take α as in Theorem 4.2 and use
this α in the weak formulation (4.2). For the analysis of a dual problem, we also need
the stability of the adjoint bilinear form given in the next lemma.

Lemma 4.3. There exists Cst > 0 such that for all q1, q2 ∈ [0, 1] and with α as
in Theorem 4.2 the following holds:

inf
(η,ζ)∈Vα

sup
(u,v)∈Ṽ

a((u, v); (η, ζ))

‖(u, v)‖V‖(η, ζ)‖V
≥ Cst. (4.13)

Proof. Take (η, ζ) ∈ Vα, (η, ζ) 6= (0, 0). The arguments of the proof of Theo-

rem 4.2 show that for (η, ζ) ∈ Vα there exists (u, v) ∈ Ṽ such that a((u, v); (η, ζ)) ≥
Cst‖(u, v)‖V‖(η, ζ)‖V holds, with the same constant as (4.11).

Finally, we give a result on continuity of the bilinear form.
Lemma 4.4. There exists a constant c such that for all q1, q2 ∈ [0, 1] the following

holds:

a((u, v); (η, ζ)) ≤ c‖(u, v)‖V‖(η, ζ)‖V for all (u, v), (η, ζ) ∈ V.

Proof. The continuity estimate is a direct consequence of Cauchy-Schwarz in-
equalities and boundedness of the trace operator.

We obtain the following well-posedness and regularity results.
Theorem 4.5. For any fi ∈ L2(Ωi), i = 1, 2, g ∈ L2(Γ) such that (3.4) holds,

there exists a unique solution (u, v) ∈ Ṽ of (4.2), which is also the unique solution to
(4.4). This solution satisfies the a-priori estimate

‖(u, v)‖V ≤ C‖(f1, f2, g)‖V′ ≤ c(‖f1‖Ω1 + ‖f2‖Ω2 + ‖g‖Γ),

with constants C, c independent of fi, g and q1, q2 ∈ [0, 1]. If in addition Γ is a C2-
manifold and Ω is convex or ∂Ω is C2 smooth, then ui ∈ H2(Ωi), for i = 1, 2, and
v ∈ H2(Γ). Furthermore, the solution satisfies the second a-priori estimate

‖u1‖H2(Ω1) + ‖u2‖H2(Ω2) + ‖v‖H2(Γ) ≤ c(‖f1‖Ω1 + ‖f2‖Ω2 + ‖g‖Γ).

Proof. Existence, uniqueness and the first a-priori estimate follow from Theo-
rem 4.2 and the Lemmas 4.3 and 4.4. The extra regularity and second a-priori esti-
mate follow from regularity results for the Poisson problem with a Neumann boundary
condition [16] and for the Laplace-Beltrami equation on a smooth closed surface [1].
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5. Adjoint problem. Consider the following formal adjoint problem, with α as
in Theorem 4.2. For given f ∈ L2(Ω) and g ∈ L2(Γ) find (u, v) ∈ Vα such that for

all (η, ζ) ∈ Ṽ:

a((η, ζ); (u, v)) = (f1, η1)Ω1
+ (f2, η2)Ω2

+ (g, ζ)Γ. (5.1)

Due to the results in Theorem 4.2 and Lemmas 4.3, 4.4, the problem (5.1) is well-
posed.

Now we look for the corresponding strong formulation of this adjoint problem.
We introduce an appropriate gauge condition for the right-hand side:

q1(f1, 1)Ω1
+ q2(f2, 1)Ω2

+ (g, 1)Γ = 0. (5.2)

For any (η1, η2, ζ) ∈ V there is a γ ∈ R such that (η1, η2, ζ) + γ(q1, q2, 1) ∈ Ṽ
holds. From the definition of the bilinear form it follows that a((q1, q2, 1); (u, v)) = 0
holds. Hence, if the right-hand side satisfies condition (5.2), the formulation (5.1) is
equivalent to: Find (u, v) ∈ Vα such that

a((η, ζ); (u, v)) = (f1, η1)Ω1
+ (f2, η2)Ω2

+ (g, ζ)Γ for all (η, ζ) ∈ V.

Varying (η, ζ) we find the strong formulation of the dual problem to (3.7):

−νi∆ui −w · ∇ui = fi in Ωi, i = 1, 2,

−νΓ∆Γv −w · ∇Γv + [qνn · ∇u]Γ = g on Γ,

(−1)iνin · ∇ui = ui −Kv on Γ, i = 1, 2,

nΩ · ∇u2 = 0 on ∂Ω, with q = (q1, q2).

(5.3)

Note that compared to the original primal problem (3.7) we now have −w instead of
w and that the roles of K and q are interchanged. With the same arguments as for
the primal problem, cf. Theorem 4.5, the following H2-regularity result for the dual
problem can be derived.

Theorem 5.1. For any fi ∈ L2(Ωi), i = 1, 2, g ∈ L2(Γ) such that (5.2) holds,
there exists a unique weak solution (u, v) ∈ Vα of (5.3). If Γ is a C2-manifold and Ω
is convex or ∂Ω is C2 smooth, then ui ∈ H2(Ωi), for i = 1, 2, and v ∈ H2(Γ) satisfy
the a-priori estimate

‖u1‖H2(Ω1) + ‖u2‖H2(Ω2) + ‖v‖H2(Γ) ≤ c(‖f1‖Ω1
+ ‖f2‖Ω2

+ ‖g‖Γ).

6. Unfitted finite element method. Let the domain Ω ⊂ R3 be polyhedral
and {Th}h>0 a family of tetrahedral triangulations of Ω such that max

T∈Th
diam(T ) ≤ h.

These triangulations are assumed to be regular, consistent and stable.
It is computationally convenient to allow triangulations that are not fitted to

the interface Γ. We use a ‘discrete’ interface Γh, which approximates Γ (as specified
below), and can intersect tetrahedra from Th. To this end, assume that the surface Γ
is implicitly defined as the zero set of a non-degenerate level set function φ:

Γ = {x ∈ Ω : φ(x) = 0},

where φ is a sufficiently smooth function, such that

φ < 0 in Ω1, φ > 0 in Ω2, and |∇φ| ≥ c0 > 0 in Uδ ⊂ Ω. (6.1)
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Here Uδ ⊂ Ω is a tubular neighborhood of Γ of width δ: Uδ = {x ∈ R3 : dist(x,Γ) <
δ}, with δ > 0 a sufficiently small constant. A special choice for φ is the signed distance
function to Γ. Let φh be a given continuous piecewise polynomial approximation
(w.r.t. Th) of the level set function φ which satisfies

‖φ− φh‖L∞(Uδ) + h‖∇(φ− φh)‖L∞(Uδ) ≤ c h
q+1, (6.2)

with some q ≥ 1. Then we define

Γh := {x ∈ Ω : φh(x) = 0 }, (6.3)

and assume that h is sufficiently small such that Γh ⊂ Uδ holds. Furthermore

Ω1,h := {x ∈ Ω : φh(x) < 0 },
Ω2,h := {x ∈ Ω : φh(x) > 0 }.

(6.4)

From (6.1) and (6.2) it follows that

dist(Γh,Γ) ≤ chq+1 (6.5)

holds. In many applications only such a finite element approximation φh (e.g, resulting
from the level set method) to the level set φ is known. For such a situation the
finite element method formulated below is particularly well suited. In cases where
φ is known, one can take φh := Ih(φ), where Ih is a suitable piecewise polynomial
interpolation operator. If φh is a P1 continuous finite element function, then Γh is a
piecewise planar closed surface. In this practically convenient case, it is reasonable to
assume that (6.2) holds with q = 1.

Consider the space of all continuous piecewise polynomial functions of a degree
k ≥ 1 with respect to Th:

V bulk
h := {v ∈ C(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th}. (6.6)

We now define three trace spaces of finite element functions:

VΓ,h := {v ∈ C(Γh) : v = w|Γh for some w ∈ V bulk
h },

V1,h := {v ∈ C(Ω1,h) : v = w|Ω1,h
for some w ∈ V bulk

h },
V2,h := {v ∈ C(Ω2,h) : v = w|Ω2,h

for some w ∈ V bulk
h }.

(6.7)

We need the spaces VΩ,h = V1,h × V2,h and Vh = VΩ,h × VΓ,h ⊂ H1(Ω1,h ∪ Ω2,h) ×
H1(Γh). The space VΩ,h is studied in many papers on the so-called cut finite element
method or XFEM [18, 19, 6, 15]. The trace space VΓ,h is introduced in [22].

We consider the finite element bilinear form on Vh ×Vh, which results from the
bilinear form of the differential problem using integration by parts in advection terms
and further replacing Ωi by Ωi,h and Γ by Γh:

ah((u, v); (η, ζ)) =

2∑
i=1

{
(νi∇u,∇η)Ωi,h +

1

2

[
(wh · ∇u, η)Ωi,h − (wh · ∇η, u)Ωi,h

]}
+ νΓ(∇Γhv,∇Γhζ)Γh +

1

2
[(wh · ∇Γhv, ζ)Γh − (wh · ∇Γhζ, v)Γh ]

+

2∑
i=1

(ui − qiv, ηi −Kζ)Γh .
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In this formulation we use the transformed quantities as in (3.6), but with Ωi, Γ
replaced by Ωi,h and Γh, respectively. For example, on Ωi,h we use the transformed

viscosity k̃−1
i,a νi, with νi the dimensionless viscosity as in (2.8). Similarly, the trans-

formed velocity field wh ∈ [H1(Ω1,h ∪ Ω2,h)]3 is obtained after the transformation

w  k̃−1
i,aw =: wh on Ωi,h, i = 1, 2, and w  w/(k̃1,a + k̃2,a) =: wh on Γh, with w

the dimensionless velocity as in (2.8). We use the skew-symmetric form of the advec-
tion term because w · n = 0 holds on Γ but not necessarily on Γh. Let gh ∈ L2(Γh),
fh ∈ L2(Ω) be given and satisfy

K(fh, 1)Ω + (gh, 1)Γh = 0. (6.8)

As discrete gauge condition we introduce, cf. (4.1),

K(1 + r)(uh, 1)Ω1,h
+K(1 +

1

r
)(uh, 1)Ω2,h

+ (vh, 1)Γh = 0, r :=
k̃2,a

k̃1,a

. (6.9)

Furthermore, define

Vh,α := { (η, ζ) ∈ Vh : α1(η, 1)Ω1,h
+ α2(η, 1)Ω2,h

+ (ζ, 1)Γh = 0},

for arbitrary (but fixed) α1, α2 ≥ 0, and Ṽh := Vh,α, with α1 = K(1 + r), α2 =

K(1 + 1
r ). The finite element method is as follows: Find (uh, vh) ∈ Ṽh such that

ah((uh, vh); (η, ζ)) = (fh, η)Ω + (gh, ζ)Γh for all (η, ζ) ∈ Vh. (6.10)

With the same arguments as for the continuous problem, cf. (4.4), based on the
consistency condition (6.8) we obtain an equivalent discrete problem if the test space
Vh is replaced by Vh,α. The latter formulation is used in the analysis below. We
shall use the Poincare and Friedrich’s inequalities (4.5)–(4.8) with Ωi replaced by Ωi,h
and Γ by Γh. We assume that the corresponding Poincare-Friedrich’s constants are
bounded uniformly in h.

In the finite element space we use the approximate V-norm given by

‖(η, ζ)‖2Vh
:= ‖η‖2H1(Ω1,h∪Ω2,h) + ‖ζ‖2H1(Γh), (η, ζ) ∈ H1(Ω1,h ∪ Ω2,h)×H1(Γh).

Repeating the same arguments as in the proof of Theorem 4.13 and Lemmas 4.3,
and 4.4, we obtain an inf-sup stability result for the discrete bilinear form and its
dual as well as a continuity estimate.

Theorem 6.1. (i) For any q1, q2 ∈ [0, 1], there exists α such that

inf
(u,v)∈Ṽh

sup
(η,ζ)∈Vh,α

ah((u, v); (η, ζ))

‖(u, v)‖Vh
‖(η, ζ)‖Vh

≥ Cst > 0, (6.11)

with a positive constant Cst independent of h and of q1, q2 ∈ [0, 1].
(ii) There is a constant c independent of h such that

ah((u, v); (η, ζ)) ≤ c‖(u, v)‖Vh
‖(η, ζ)‖Vh

(6.12)

for all (u, v), (η, ζ) ∈ H1(Ω1,h ∪ Ω2,h)×H1(Γh).
As a corollary of this theorem we obtain the well-posedness result for the discrete

problem.
Theorem 6.2. For any fh ∈ L2(Ωh), gh ∈ L2(Γh) such that (6.8) holds, there

exists a unique solution (uh, vh) ∈ Vh of (6.10). For this solution the a-priori estimate

‖(uh, vh)‖Vh
≤ C−1

st ‖(fh, gh)‖V′
h
≤ c(‖fh‖Ωh + ‖gh‖Γh)

holds. The constants Cst and c are independent of h.
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7. Error analysis. We assumed that Γ is a closed, C2 surface embedded in R3.
Hence, there exists a C2 signed distance function d : Uδ → R such that Γ = {x ∈
Uδ : d(x) = 0}. We assume that d is negative on Ω1 ∩ Uδ and positive on Ω2 ∩ Uδ.
Thus for x ∈ Uδ, dist(x,Γ) = |d(x)|. Under these conditions, for δ > 0 sufficiently
small, but independent of h, there is an orthogonal projection p : Uδ → Γ given by
p(x) = x − d(x)n(x), where n(x) = ∇d(x). Let H = D2d = ∇n be the Weingarten
map. More details of the present formalism can be found in [9], § 2.1.

Given v ∈ H1(Γ), we denote by ve ∈ H1(Uδ) its extension from Γ along normals,
i.e. the function defined by ve(x) = v(p(x)); ve is constant in the direction normal
to Γ. The following holds:

∇ve(x) = (I− d(x)H(x))∇Γv(p(x)) for x ∈ Uδ. (7.1)

We need some further (mild) assumption on how well the mesh resolves the geometry
of the (discrete) interface. We assume that Γh ⊂ Uδ is the graph of a function γh(s),
s ∈ Γ in the local coordinate system (s, r), s ∈ Γ, r ∈ [−δ, δ], with x = s + rn(s):

Γh = { (s, γh(s)) : s ∈ Γ }.

From (6.5) it follows that

|γh(s)| = dist
(
s + γh(s)n(s),Γ

)
≤ dist(Γh,Γ) ≤ chq+1, (7.2)

with a constant c independent of s ∈ Γ.

7.1. Bijective mapping Ωi,h → Ωi. For the analysis of the consistency error
we need a bijective mapping Ωi,h → Ωi, i = 1, 2. We use a mapping that is similar to
the one given in Lemma 5.1 in [25]. For the analysis we need a tubular neighborhood
Uδ, with a radius δ that depends on h. We define δh := ch, with a constant c > 0
that is fixed in the remainder. We assume that h is sufficiently small such that
Γh ⊂ Uδh ⊂ Uδ holds, cf. (6.5). Define Φh : Ω→ Ω as

Φh(x) =

x− n(x)
δ2
h − d(x)2

δ2
h − γeh(x)2

γeh(x) if x ∈ Ūδh ,

x if x ∈ Ω \ Uδh .
(7.3)

We assume that h is sufficiently small such that for all x ∈ Ūδh the estimate δ2
h −

γeh(x)2 > c̃h2 holds with a mesh independent constant c̃ > 0. Using this and the
definition in (7.3), we conclude that Φh is a bijection on Ω with the properties:

Φh(Ωi,h) = Ωi, Φh(x) = p(x) for x ∈ Γh, p(Φh(x)) = p(x) for x ∈ Uδh .

Some further properties of this mapping are derived in the following lemma.
Lemma 7.1. Consider Γh as defined in (6.3), with φh such that (6.2) holds. The

mapping Φh has the smoothness properties Φh ∈
(
W 1,∞(Ω)

)3
, Φh ∈

(
W 1,∞(Γh)

)3
.

Furthermore, for h sufficiently small the estimates

‖id− Φh‖L∞(Ω) + h‖I−DΦh‖L∞(Ω) ≤ c hq+1 (7.4)

‖1− det(DΦh)‖L∞(Ω) ≤ c hq (7.5)

hold, where DΦh is the Jacobian matrix. For surface area elements we have

ds(Φh(x)) = µhdsh(x), x ∈ Γh, with ‖1− µh‖L∞(Γh) ≤ c hq+1. (7.6)
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Proof. The smoothness properties follow from the construction of Φh and the fact
that γh ∈W 1,∞(Γ). Note that γh(x) is an implicit function given by

φh(x + γh(x)n(x)) = 0, x ∈ Γ. (7.7)

To compute the surface gradient of γh, we differentiate this identity and using the
chain rule we obtain the relation:

∇Γγh(x) = − (I + γh(x)H(x))∇Γφh(x′)

n(x) · ∇φh(x′)
, x′ = x + γh(x)n(x), x ∈ Γ.

For the denominator in this expression we get, using |x − x′| ≤ dist(Γh,Γ) ≤ chq+1,
(6.1), (6.2) and taking h sufficiently small:

|n(x) · ∇φh(x′)| =
∣∣n(x) · (∇φh(x′)−∇φ(x′)) + n(x) · (∇φ(x′)−∇φ(x)) + |∇φ(x)|

∣∣
≥ c0 − chq ≥

1

2
c0.

For the nominator we use ∇Γφ(x) = 0 and (6.2) to get:

|∇Γφh(x′)| ≤ |∇Γ(φh(x′)− φ(x′))|+ |∇Γ(φ(x′)− φ(x))| ≤ chq.

From this and (6.5) we infer

‖γh‖L∞(Γ) + h‖∇Γγh‖L∞(Γ) ≤ c hq+1. (7.8)

The following surface area transformation property can be found in, e.g., [8, 9]:

µh(x)dsh(x) = ds(p(x)), x ∈ Γh,

µh(x) := (1− d(x)κ1(x))(1− d(x)κ2(x))n(x)Tnh(x),

with κ1, κ2 the nonzero eigenvalues of the Weingarten map and nh the unit normal on
Γh. Note that Φh(x) = p(x) on Γh holds. From (6.2) we get ‖1−µh‖L∞(Γh) ≤ chq+1.

Hence, the result in (7.6) holds. For the term g(x) :=
δ2h−d(x)2

δ2h−γ
e
h(x)2

, with x ∈ Ūδh , used

in (7.3) we have ‖g‖L∞(Uδh ) ≤ c and ‖∇g‖L∞(Uδh ) ≤ ch−1. Using these estimates

and (7.1), (7.8) we obtain ‖id−Φh‖L∞(Ω) ≤ chq+1 and ‖I−DΦh‖L∞(Ω) ≤ chq. This
proves (7.4). The result in (7.5) immediately follows from (7.4).

7.2. Smooth extensions. For functions v on Γ we have introduced above the
smooth constant extension along normals, denoted by ve. Below we also need a smooth
extension to Ωi,h of functions u defined on Ωi. This extension will also be denoted
by ue. Note that u ◦ Φh defines an extension to Ωi,h. This extension, however, has
smoothness W 1,∞(Ωi,h), which is not sufficient for the interpolation estimates that
we use further on. Hence, we introduce an extension ue, which is close to u ◦ Φh in
the sense as specified in Lemma 7.2 and is more regular.

We make the smoothness assumption Γ ∈ Ck+1, where k is the degree of the
polynomials used in the finite element space, cf. (6.6). We denote by Ei a linear
bounded extension operator Hk+1(Ωi) → Hk+1(R3) (see Theorem 5.4 in [29]). This
operator satisfies

‖Eiu‖Hm(R3) ≤ c‖u‖Hm(Ωi) ∀ u ∈ Hk+1(Ωi), m = 0, . . . , k + 1, i = 1, 2. (7.9)
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For a piecewise smooth function u ∈ Hk+1(Ω1 ∪ Ω2), we denote by ue its “transfor-
mation” to a piecewise smooth function ue ∈ Hk+1(Ω1,h ∪ Ω2,h) defined by

ue =

{
E1(u|Ω1) in Ω1,h

E2(u|Ω2
) in Ω2,h.

(7.10)

The next lemma quantifies in which sense this function ue is close to u ◦ Φh.
Lemma 7.2. The following estimates hold for i = 1, 2:

‖u ◦ Φh − ue‖Ωi,h ≤ chq+1‖u‖H1(Ωi), (7.11)

‖(∇u) ◦ Φh −∇ue‖Ωi,h ≤ chq+1‖u‖H2(Ωi), (7.12)

for all u ∈ H2(Ωi).
Proof. Without loss of generality we consider i = 1. Note that u◦Φh = E1(u|Ω1

)◦
Φh in Ω1,h and ue = E1(u|Ω1

) in Ω1,h. To simplify the notation, we write u1 =
E1(u|Ω1

) ∈ H1(R3). We use that Φh = id and u = ue on Ω \ U δh and transform to
local coordinates in Uδh using the co-area formula:

‖u ◦ Φh − ue‖2Ω1,h
= ‖u1 ◦ Φh − u1‖2Ω1,h

= ‖u1 ◦ Φh − u1‖2Ω1,h∩Uδh

=

∫
Γ

∫ γh

−δh
(u1 ◦ Φh − u1)2|∇φ|−1dr ds.

(7.13)

In local coordinates the mapping Φh can be represented as Φh(s, r) = (s, ps(r)), with

ps(r) = r − δ2
h − r2

δ2
h − γh(s)2

γh(s).

The function ps satisfies |ps(r)− r| ≤ chq+1. We use the identity

(u1 ◦ Φh − u1)(s, r) =

∫ ps(r)

r

r · ∇u1(s, t)dt, r =
Φh(s, r)− (s, r)

|Φh(s, r)− (s, r)|
. (7.14)

Due to (7.13), (7.14), the Cauchy inequality and |∇φ| ≥ c0 > 0 on Uδ, we get

‖u1 ◦ Φh − u1‖2Ω1,h
≤ c

∫
Γ

∫ γh

−δh
|ps(r)− r|

∫ ps(r)

r

|∇u1(s, t)|2 dt dr ds

≤ chq+1

∫
Γ

∫ γh

−δh

∫ r+chq+1

r−chq+1

|∇u1(s, t)|2 dt dr ds.
(7.15)

Let χ[−chq+1,chq+1] be the characteristic function on [−chq+1, chq+1] and define g(t) =
|∇u1(s, t)|2 for t ∈ [−δh − chq+1, γh + chq+1], g(t) = 0, t /∈ [−δh − chq+1, γh + chq+1].
Applying the L1-convolution inequality we get∫ γh

−δh

∫ r+chq+1

r−chq+1

|∇u1(s, t)|2 dtdr ≤ c
∫ ∞
−∞

∫ ∞
−∞

χ[−chq+1,chq+1](r − t)g(t) dt dr

≤ c‖χ[−chq+1,chq+1]‖L1(R)‖g‖L1(R) ≤ chq+1

∫ γh+chq+1

−δh−chq+1

|∇u1(s, t)|2 dt,

and using this in (7.15) yields

‖u1 ◦ Φh − u1‖2Ω1,h
≤ ch2q+2

∫
Γ

∫ γh+chq+1

−δh−chq+1

|∇E1(u|Ω1
)(s, t)|2 dr ds

≤ c h2q+2‖E1(u|Ω1
)‖2H1(R3) ≤ c h

2q+2‖u‖2H1(Ω1).
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For deriving the estimate (7.12) we note that (∇u) ◦ Φh = (Ei((∇u)|Ωi) ) ◦ Φh =
(∇(Ei(u|Ωi)) ) ◦ Φh = (∇u1) ◦ Φh in Ωi,h. Hence we have

‖(∇u) ◦ Φh −∇ue‖Ω1,h
= ‖(∇u1) ◦ Φh −∇u1‖Ω1,h

.

We can repeat the arguments used above, with u1 replaced by ∂u1

∂xj
, j = 1, 2, 3, and

thus obtain the estimate (7.12).

7.3. Approximate Galerkin orthogonality. Due to the geometric errors, i.e.,
approximation of Ωi by Ωi,h and of Γ by Γh, only an approximate Galerkin orthogo-
nality relation holds. In this section we derive bounds for the deviation from orthog-
onality. The analysis is rather technical but in the same spirit as in [9, 8, 4].

For the right-hand side of the differential problem (3.7) we assume f ∈ H1(Ω1 ∪
Ω2) and g ∈ L2(Γ) and for the right-hand side in the discrete problem (6.10) we take
fh := fe and gh := ge|Γh − cf , where cf ∈ R is such that the mean value condition

(6.8) is satisfied. Let (u, v) ∈ Ṽ be the solution of the weak formulation (4.2) and

(uh, vh) ∈ Ṽh the discrete solution of (6.10). We take an arbitrary finite element test
function (η, ζ) ∈ Vh. We use (η, ζ) ◦ Φ−1

h ∈ V as a test function in (4.2) and then
obtain the approximate Galerkin relation:

ah((ue − uh, ve − vh); (η, ζ))

= ah((ue, ve); (η, ζ))− a((u, v); (η, ζ) ◦ Φ−1
h ) (7.16)

+ (f, η ◦ Φ−1
h )Ω + (g, ζ ◦ Φ−1

h )Γ − (fe, η)Ω − (ge, ζ)Γh + (cf , ζ)Γh . (7.17)

In the analysis of the right-hand side of this relation we have to deal with full and
tangential gradients∇(η◦Φ−1

h ), ∇Γ(ζ◦Φ−1
h ). For the full gradient in the bulk domains

one finds

∇(η ◦ Φ−1
h )(x) = DΦh(y)−T∇η(y), x ∈ Ω, y := Φ−1

h (x). (7.18)

To handle the tangential gradient, a more subtle approach is required because one
has to relate the tangential gradient ∇Γ to ∇Γh . Let nh(y), y ∈ Γh, denote the unit
normal on Γh (defined a.e. on Γh). Furthermore, P(x) = I − n(x) ⊗ n(x) (x ∈ Uδ),
Ph(y) = I− nh(y)⊗ nh(y) (y ∈ Γh). Recall that ∇Γu(x) = P(x)∇u(x), ∇Γhu(y) =
Ph(y)∇u(y). We use the following relation, given in, e.g., [9]: for w ∈ H1(Γ) it holds

∇Γw(p(y)) = B(y)∇Γhw
e(y) a.e. on Γh,

B(y) = (I− d(y)H(y))−1P̃h(y), P̃h(y) := I− nh(y)⊗ n(y)

nh(y) · n(y)
.

(7.19)

From the construction of the bijection Φh : Γh → Γ it follows that (ζ◦Φ−1
h )e(y) = ζ(y)

holds for all y ∈ Γh. Application of (7.19) yields an interface analogon of the relation
(7.18):

∇Γ(ζ ◦ Φ−1
h )(x) = B(y)∇Γhζ(y), x ∈ Γ,y = Φ−1

h (x) ∈ Γh. (7.20)

The mapping Φh equals the identity outside the (small) tubular neighborhood Uδh .
In the analysis we want to make use of the fact that the width behaves like δh = ch.
For this, the following result, proven in Lemma 4.1 in [13] is crucial:

‖w‖Uδh∩Ωi ≤ ch
1
2 ‖w‖H1(Ωi) for all w ∈ H1(Ωi). (7.21)
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Using properties of Φh and (7.18) we thus get, with Jh = det(DΦh):

‖w‖Uδh∩Ωi,h = ‖w◦Φ−1
h J

− 1
2

h ‖Uδh∩Ωi ≤ ch
1
2 ‖w◦Φ−1

h ‖H1(Ωi) ≤ ch
1
2 ‖w‖H1(Ωi,h), (7.22)

for all w ∈ H1(Ωi,h), with a constant c independent of w and h.
We introduce a convenient compact notation for the approximate Galerkin rela-

tion. We use U := (u, v) = (u1, u2, v), and similarly Ue = (ue, ve), Uh := (uh, vh) ∈
Vh, Θ = (η, ζ) ∈ H1(Ω1,h ∪ Ω2,h)×H1(Γh). Furthermore

Fh(Θ) := ah(Ue; Θ)− a(U ; Θ ◦ Φ−1
h ) + (f, η ◦ Φ−1

h )Ω + (g, ζ ◦ Φ−1
h )Γ

− (fe, η)Ω − (ge, ζ)Γh + (cf , ζ)Γh .

With this notation the approximate Galerkin relation can be represented as

ah(Ue − Uh; Θh) = Fh(Θh) for all Θh ∈ Vh. (7.23)

In Lemma 7.3 and Lemma 7.5 we derive bounds for the two parts (7.16) and (7.17)
that together form the functional Fh. We always assume that Γ and the velocity field
w in (3.3) are sufficiently smooth.

Lemma 7.3. For m = 0 and m = 1 the following estimate holds:∣∣ah(Ue; Θ)− a(U ; Θ ◦ Φ−1
h )
∣∣

≤ chq+m
(
‖u‖H2(Ω1∪Ω2) + ‖v‖H1(Γ)

)(
‖η‖H1+m(Ω1,h∪Ω2,h) + ‖ζ‖H1(Γh)

)
for all U = (u, v) ∈ H2(Ω1∪Ω2)×H1(Γ), Θ = (η, ζ) ∈ H1+m(Ω1,h∪Ω2,h)×H1(Γh).

Proof. Take U = (u, v) ∈ H2(Ω1 ∪ Ω2) ×H1(Γ) and Θ = (η, ζ) ∈ H1+m(Ω1,h ∪
Ω2,h)×H1(Γh). Denote Jh = det(DΦh). Using the definitions of the bilinear forms,
the relations (7.18), (7.19), (7.20) and an integral transformation rule we get

ah(Ue; Θ)− a(U ; Θ ◦ Φ−1
h ) = ah((ue, ve); (η, ζ))− a((u, v); (η, ζ) ◦ Φ−1

h ) (7.24)

=

2∑
i=1

[
(νi∇ue,∇η)Ωi,h − (νi∇u ◦ Φh, Jh(DΦh)−T∇η)Ωi,h

]
(7.25)

+

2∑
i=1

1

2

[
(wh · ∇ue, η)Ωi,h − ((w · ∇u) ◦ Φh, Jhη)Ωi,h (7.26)

− (wh · ∇η, ue)Ωi,h +
(
(w ◦ Φh) · (DΦh)−T∇η, Jhu ◦ Φh

)
Ωi,h

]
(7.27)

+ νΓ(∇Γhv
e,∇Γhζ)Γh − νΓ(µhB

TB∇Γhv
e,∇Γhζ)Γh (7.28)

+
1

2

[
(wh · ∇Γhv

e, ζ)Γh − (µh(w ◦ Φh) ·B∇Γhv
e, ζ)Γh (7.29)

− (wh · ∇Γhζ, v
e)Γh + (µh(w ◦ Φh) ·B∇Γhζ, v

e)Γh

]
(7.30)

+

2∑
i=1

[
(uei − qive, ηi −Kζ)Γh − ((ui − qiv) ◦ Φh, µh(ηi −Kζ))Γh

]
. (7.31)

In this expression the different terms correspond to bulk diffusion, bulk convection,
surface diffusion, surface convection and adsorption, respectively. We derive bounds
for these terms. We start with the bulk diffusion term in (7.25). Using the estimates
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derived in the Lemmas 7.1, 7.2 we get

2∑
i=1

∣∣∣(νi∇ue,∇η)Ωi,h − (νi∇u ◦ Φh, Jh(DΦh)−T∇η)Ωi,h

∣∣∣
≤

2∑
i=1

νi
[
|(∇(ue − u ◦ Φh), Jh(DΦh)−T∇η)Ωi,h |+ |(∇ue, (I− Jh(DΦh)−T )∇η)Ωi,h |

]
≤ c

2∑
i=1

[
hq+1‖u‖H2(Ωi)‖∇η‖Ωi,h + hq‖ue‖H1(Ωi,h)‖∇η‖Ωi,h

]
(7.32)

≤ chq‖u‖H2(Ω1∪Ω2)‖η‖H1(Ω1,h∪Ω2,h). (7.33)

If η ∈ H2(Ω1,h ∪ Ω2,h) we can modify the estimate (7.32) as follows. Note that
Jh(DΦh)−T = I on Ωi,h \ Uδh . Hence, using (7.22) we get

|(∇ue, (I− Jh(DΦh)−T )∇η)Ωi,h | = |(∇ue, (I− Jh(DΦh)−T )∇η)Uδh∩Ωi,h |
≤ chq‖∇ue‖Uδh∩Ωi,h‖∇η‖Uδh∩Ωi,h ≤ chq+1‖ue‖H2(Ωi,h)‖η‖H2(Ωi,h)

≤ chq+1‖u‖H2(Ωi)‖η‖H2(Ωi,h).

(7.34)

Thus, instead of (7.33) we then obtain the upper bound

chq+1‖u‖H2(Ω1∪Ω2)‖η‖H2(Ω1,h∪Ω2,h).

For the bulk convection term in (7.26)-(7.27) we get

2∑
i=1

1

2

∣∣(wh · ∇ue, η)Ωi,h − ((w · ∇u) ◦ Φh, Jhη)Ωi,h

∣∣
+

1

2

∣∣(wh · ∇η, ue)Ωi,h −
(
(w ◦ Φh) · (DΦh)−T∇η, Jhu ◦ Φh

)
Ωi,h

∣∣
≤

2∑
i=1

1

2

∣∣(wh · ∇ue − (w · ∇u) ◦ Φh, Jhη)Ωi,h

∣∣+
1

2

∣∣(wh · ∇ue, (1− Jh)η)Ωi,h

∣∣
+

1

2

∣∣(wh − (w ◦ Φh) · (DΦh)−T )∇η, Jhu ◦ Φh)Ωi,h

∣∣+
1

2

∣∣(wh · ∇η, ue − Jhu ◦ Φh)Ωi,h

∣∣
The difference wh −w ◦ Φh can be bounded using the assumption that the original
(unscaled) velocity w is sufficiently smooth, w ∈ W 1,∞(Ω). Using this, the relation
(7.14) and the definition of wh we get ‖wh−w ◦Φh‖L∞(Ωi,h) ≤ chq+1. The first term
on the right-hand side above can be bounded using

‖wh · ∇ue − (w · ∇u) ◦ Φh‖Ωi,h = ‖wh · ∇ue − (w ◦ Φh) · (∇u ◦ Φh)‖Ωi,h
≤ ‖(wh −w ◦ Φh) · ∇ue‖Ωi,h + ‖(w ◦ Φh) · (∇ue −∇u ◦ Φh)‖Ωi,h
≤ chq+1‖u‖H2(Ωi),

where in the last step we used results from the Lemmas 7.1, 7.2. The other three
terms can be estimated by using ‖1 − Jh‖L∞(Ω) ≤ chq, ‖I − (DΦh)−T ‖L∞(Ω) ≤ chq
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and ‖ue − u ◦ Φh‖Ωi,h ≤ chq+1‖u‖H1(Ωi). Thus we get a bound

2∑
i=1

1

2

∣∣(wh · ∇ue, η)Ωi,h − ((w · ∇u) ◦ Φh, Jhη)Ωi,h

∣∣
+

1

2

∣∣(wh · ∇η, ue)Ωi,h −
(
(w ◦ Φh) · (DΦh)−T∇η, Jhu ◦ Φh

)
Ωi,h

∣∣
≤ chq‖u‖H2(Ω1∪Ω2)‖η‖H1(Ω1,h∪Ω2,h).

If η ∈ H2(Ω1,h ∪ Ω2,h) we can apply an argument very similar to the one in (7.34)
and obtain the following upper bound for the bulk convection term:

chq+1‖u‖H2(Ω1∪Ω2)‖η‖H2(Ω1,h∪Ω2,h).

For the surface diffusion term in (7.28) we introduce, for y ∈ Γh, the matrix A(y) :=
Ph(y)

(
I − µh(y)B(y)TB(y)

)
Ph(y). Using |d(y)| ≤ chq+1, |1 − µh(y)| ≤ chq+1 and

PhP̃h = Ph we get ‖A‖L∞(Γh) ≤ chq+1 and thus:

νΓ

∣∣(∇Γhv
e,∇Γhζ)Γh − (µhB

TB∇Γhv
e,∇Γhζ)Γh

∣∣ = νΓ

∣∣(A∇Γhv
e,∇Γhζ)Γh

∣∣
≤ ‖A‖L∞(Γh)‖∇Γhv

e‖Γh‖ζ‖Γh ≤ chq+1‖v‖H1(Γ)‖ζ‖H1(Γh).

For the derivation of a bound for the surface convection term in (7.29)-(7.30) we
introduce w̃ := Ph(wh − µhBT (w ◦ Φh)). Using the results in Lemmas 7.1, 7.2 and
Pw = w it follows that

‖w̃‖L∞(Γh) ≤ ‖Ph(wh −w ◦ Φh)‖L∞(Γh) + ‖Ph(I− µhBT )(w ◦ Φh)‖L∞(Γh)

≤ c‖Ph(I− P̃T )P‖L∞(Γh) + chq+1 ≤ c‖Phn‖L∞(Γh)‖Pnh‖L∞(Γh) + chq+1

= c‖(Ph −P)n‖L∞(Γh)‖(P−Ph)nh‖L∞(Γh) + chq+1

≤ c‖Ph −P‖2L∞(Γh) + chq+1.

Using

|nh(y)− n(y)| = |nh(y)− n(p(y))| =
∣∣∣∣ ∇φh(y)

|∇φh(y)|
− ∇φ(p(y))

|∇φ(p(y))|

∣∣∣∣
in combination with |y− p(y)| ≤ chq+1 and the approximation error bound (6.2) we
get ‖P−Ph‖L∞(Γh) ≤ chq. Hence, for the surface convection term in (7.29) we obtain∣∣(wh · ∇Γhv

e, ζ)Γh − (µh(w ◦ Φh) ·B∇Γhv
e, ζ)Γh

∣∣
= |(w̃ · ∇Γhv

e, ζ)Γh

∣∣ ≤ ‖w̃‖L∞(Γh)‖∇Γhv
e‖Γh‖ζ‖Γh ≤ chq+1‖v‖H1(Γ)‖ζ‖H1(Γh).

The term in (7.30) can be bounded in the same way. Finally we consider the adsorption
term in (7.31). Using the results in Lemmas 7.1, 7.2 we get

2∑
i=1

∣∣∣(uei − qive, ηi −Kζ)Γh − ((ui − qiv) ◦ Φh, µh(ηi −Kζ))Γh

∣∣∣
≤

2∑
i=1

∣∣(uei − µhui ◦ Φh, ηi −Kζ)Γh

∣∣+ qi
∣∣((1− µh)ve, ηi −Kζ)Γh

∣∣
≤ chq+1

2∑
i=1

(
‖ui‖H1(Ωi) + ‖v‖Γ

)(
‖ηi‖Γh + ‖ζ‖Γh

)
.

≤ c hq+1(‖u‖H1(Ω1∪Ω2) + ‖v‖Γ)(‖η‖H1(Ω1,h∪Ω2,h) + ‖ζ‖Γh).
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Combining these estimates for the terms in (7.25)-(7.31) completes the proof.

From the arguments in the proof above one easily sees that the bounds derived
in Lemma 7.3 also hold if in ah(·; ·) and a(·; ·) the arguments are interchanged. This
proves the result in the following lemma, that we need in the L2-error analysis.

Lemma 7.4. The following estimate holds:∣∣ah(Θ;Ue)− a(Θ ◦ Φ−1
h ;U)

∣∣
≤ chq

(
‖η‖H1(Ω1,h∪Ω2,h) + ‖ζ‖H1(Γh)

)(
‖u‖H2(Ω1∪Ω2) + ‖v‖H1(Γ)

)
for all U = (u, v) ∈ H2(Ω1 ∪Ω2)×H1(Γ), Θ = (η, ζ) ∈ H1(Ω1,h ∪Ω2,h)×H1(Γh).

Lemma 7.5. Assume that the data has smoothness f ∈ H1(Ω1 ∪Ω2), g ∈ L2(Γ).
For the term in (7.17) the following estimate holds:

∣∣(f, η ◦ Φ−1
h )Ω + (g, ζ ◦ Φ−1

h )Γ − (fe, η)Ω − (ge, ζ)Γh + (cf , ζ)Γh

∣∣
≤ chq+1

(
‖f‖H1(Ω1∪Ω2) + ‖g‖Γ

)(
‖η‖H1(Ω1,h∪Ω2,h) + ‖ζ‖Γh

)
for all (η, ζ) ∈ H1(Ω1,h ∪ Ω2,h)×H1(Γh).

Proof. Define Jh = det(DΦh). Using integral transformation rules we obtain∣∣(f, η ◦ Φ−1
h )Ω + (g, ζ ◦ Φ−1

h )Γ − (fe, η)Ω − (ge, ζ)Γh + (cf , ζ)Γh

∣∣
=
∣∣(f ◦ Φh, Jhη)Ω + (ge, µhζ)Γh − (fe, η)Ω − (ge, ζ)Γh + (cf , ζ)Γh

∣∣ (7.35)

≤
∣∣(Jhf ◦ Φh − fe, η)Ω

∣∣+
∣∣((1− µh)ge, ζ)Γh

∣∣+ c |cf |‖ζ‖Γh .

The first term on the right-hand side can be estimated using (7.11) and (7.22):∣∣(Jhf ◦ Φh − fe, η)Ω

∣∣ ≤ |(Jh − 1)f ◦ Φh, η)Ω

∣∣+ |(f ◦ Φh − fe, η)Ω

∣∣
≤ chq|(f ◦ Φh, η)Uδh

∣∣+ chq+1‖f‖H1(Ω1∪Ω2)‖η‖Ω
≤ chq+1‖f ◦ Φh‖H1(Ω1,h∪Ω2,h)‖η‖H1(Ω1,h∪Ω2,h) + chq+1‖f‖H1(Ω1∪Ω2)‖η‖Ω
≤ chq+1‖f‖H1(Ω1∪Ω2)‖η‖H1(Ω1,h∪Ω2,h).

For the second term we have:∣∣((1− µh)ge, ζ)Γh)

∣∣ ≤ chq+1‖g‖Γ‖ζ‖Γh .

It remains to estimate

|cf | = |Γh|−1 |(K(f − fe, 1)Ω + (g, 1)Γ − (ge, 1)Γh)| .

Note that (f − fe, 1)Ω =
∑2
i=1(f, 1)Ωi − (fe, 1)Ωi,h . Without loss of generality we

consider i = 1. The extension of f1 = f|Ω1
is denoted by f̂1 := E1(f1). In Uδ

we use the local coordinate system (s, r) with x = s + rn(s), s = p(x). Note that
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f̂1(s, 0) = f1(s, 0) holds. We thus obtain

|(f, 1)Ω1
− (fe, 1)Ω1,h

| ≤ (|E1(f1)|, 1)Ω14Ω1,h
=

∫
Γ

∫ γh

0

|f̂1(s, r)||∇φ|−1|dr| ds (7.36)

=

∫
Γ

∫ γh

0

∣∣∣∣∣f1(s, 0) +

∫ r

0

∂f̂1

∂r
(s, t)dt

∣∣∣∣∣ |∇φ|−1|dr| ds

≤ ‖γh‖L∞(Γ)‖f1‖L1(Γ) + c

∫
Γ

∫ γh

0

∫ r

0

|∂f̂1

∂r
(s, t)| |dt| |dr| ds

≤ chq+1‖f1‖L1(Γ) + c

∫
Γ

∫ γh

0

∫ γh

0

|∂f̂1

∂r
| |dt| |dr| ds

≤ chq+1‖f1‖H1(Ω1) + chq+1‖E1(f1)‖H1(Ω14Ω1,h)

≤ chq+1‖f1‖H1(Ω1).

Finally, the estimate

|(g, 1)Γ − (ge, 1)Γh | ≤ chq+1‖g‖Γ

follows immediately from (7.6). Hence, for the third term we have

c |cf |‖ζ‖Γh ≤ chq+1(‖f‖H1(Ω1∪Ω2) + ‖g‖Γ)‖ζ‖Γh .

Combining these results completes the proof.

As an immediate corollary of the previous two lemmas, the definition of Fh and
the regularity estimate in Theorem 4.5 we obtain the following result.

Lemma 7.6. Let f ∈ H1(Ω1 ∪ Ω2), g ∈ L2(Γ). Assume that the solution (u, v)
of (4.2) has smoothness u ∈ H2(Ω1 ∪ Ω2), v ∈ H2(Γ). For m = 0 and m = 1 the
following holds:

|Fh(Θ)| ≤ chq+m(‖f‖H1(Ω1∪Ω2) + ‖g‖Γ
)(
‖η‖H1+m(Ω1,h∪Ω2,h) + ‖ζ‖H1(Γh)

)
(7.37)

for all Θ = (η, ζ) ∈ H1+m(Ω1,h ∪ Ω2,h)×H1(Γh).

7.4. Discretization error bound in the Vh-norm. Based on the stability,
continuity and approximate Galerkin properties presented in the previous sections,
we derive a discretization error bound in the Vh norm. Due to the approximation of
the interface the discrete solution Uh = (uh, vh) has a domain that differs from that
of the solution U = (u, v) to the continuous problem. Therefore, it is not appropriate
to define the error as U −Uh. It is natural to define the discretization error either as
Ue−Uh, with functions defined on the domain corresponding to the discrete problem,
or as U − Uh ◦ Φ−1

h , with functions defined on the domain corresponding to the
continuous problem. We use the former definition. In the analysis we need suitable
interpolation operators, applicable to Ue. The function ue consists of the pair ue =
(E1(u|Ω1

)|Ω1,h
, E2(u|Ω2

)|Ω2,h
) =: (ue1, u

e
2), cf. (7.10). As is standard in analyses of

XFEM (or unfitted FEM) we define an interpolation based on the standard nodal
interpolation of the smooth extension in the bulk space V bulk

h . Let Ibulk
h denote the

nodal interpolation in V bulk
h (which consists of finite elements of degree k). We define

Ihu
e ∈ VΩ,h as follows:

Ihu
e =

(
[Ibulk
h E1(u|Ω1

)]|Ω1,h
, [Ibulk

h E2(u|Ω2
)]|Ω2,h

)
.
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The construction of this operator and interpolation error bounds for Ibulk
h immediately

yield

‖Ihue − ue‖H1(Ω1,h∪Ω2,h) ≤ c hk‖u‖Hk+1(Ω1∪Ω2). (7.38)

For the interpolation of ve we use a similar approach, namely Ihv
e := [Ibulk

h ve]|Γh .
Interpolation error bounds for this operator are known in the literature, see, e.g.,
Theorem 4.2 in [27]:

‖Ihve − ve‖H1(Γh) ≤ c hk‖v‖Hk+1(Γ). (7.39)

Using these interpolation error bounds we obtain the following main theorem.
Theorem 7.7. Assume f ∈ H1(Ω1 ∪Ω2). Let the solution (u, v) ∈ Ṽ of (4.4) be

sufficiently smooth. For the finite element solution (uh, vh) ∈ Ṽh the following error
estimate holds:

‖(ue − uh, ve − vh)‖Vh
≤ chk

(
‖u‖Hk+1(Ω1∪Ω2) + ‖v‖Hk+1(Γ)

)
+ chq

(
‖f‖H1(Ω1∪Ω2) + ‖g‖Γ

)
,

(7.40)

where k is the degree of the finite element polynomials and q the geometry approxima-
tion order defined in (6.2).

Proof. We use arguments similar to the second Strang’s lemma. Recalling the
stability and continuity results from (6.11), (6.12), the consistency error bound in
Lemma 7.6 and the interpolation error bounds in (7.38), (7.39) we get, with IhU

e =
(Ihu

e, Ihv
e):

‖IhUe − Uh‖Vh
≤ C−1

st sup
Θh∈Vh

ah(IhU
e − Uh; Θh)

‖Θh‖Vh

= C−1
st sup

Θh∈Vh

(ah(IhU
e − Ue; Θh)

‖Θh‖Vh

+
ah(Ue − Uh; Θh)

‖Θh‖Vh

)
≤ c

(
‖IhUe − Ue‖Vh

+ sup
Θh∈Vh

Fh(Θh)

‖Θh‖Vh

)
≤ c hk(‖u‖Hk+1(Ω1∪Ω2) + ‖v‖Hk+1(Γ)) + chq(‖f‖H1(Ω1∪Ω2) + ‖g‖Γ).

(7.41)

The desired result now follows by a triangle inequality and applying the interpolation
error estimates (7.38), (7.39) once more.

8. Error estimate in L2-norm. In this section we use a duality argument to
show higher order convergence of the unfitted finite element method in the L2 product
norm. As typical in the analysis of elliptic PDEs with Neumann boundary conditions,
one considers the L2 norm in a factor space:

‖U‖L2/R = inf
γ∈R
‖U − γ(q1, q2, 1)‖L2(Ω)×L2(Γ), for U ∈ L2(Ω)× L2(Γ),

and q1, q2 ∈ [0, 1] from (3.7). A similar norm can be defined on L2(Ω)× L2(Γh).
Define the error Eh := (Ue−Uh)◦Φ−1

h ∈ L2(Ω)×L2(Γ). There is a constant γ ∈ R
such that Ẽh := Eh − γ(q1, q2, 1) satisfies the consistency condition (5.2). According
to Theorem 5.1 the dual problem: Find W ∈ Vα such that

a(Θ;W ) = (Ẽh,Θ)L2(Ω)×L2(Γ) for all Θ ∈ V, (8.1)
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has the unique solution W = (w, z) ∈ H2(Ω1 ∪ Ω2)×H2(Γ), satisfying

‖w‖H2(Ω1∪Ω2) + ‖z‖H2(Γ) ≤ c‖Ẽh‖L2(Ω)×L2(Γ), (8.2)

with a constant c independent of Ẽh.
Theorem 8.1. Let the assumptions in Theorem 7.7 and Theorem 5.1 be fulfilled.

For the finite element solution (uh, vh) ∈ Ṽh the following error estimate holds:

‖ue − uh, ve − vh‖L2/R ≤ chk+1
(
‖u‖Hk+1(Ω1∪Ω2) + ‖v‖Hk+1(Γ)

)
+ chq+1

(
‖f‖H1(Ω1∪Ω2) + ‖g‖Γ

)
,

(8.3)

where k is the degree of the finite element polynomials and q the geometry approxima-
tion order defined in (6.2).

Proof. First, let γopt := arg infγ∈R ‖Eh − γ(q1, q2, 1)‖L2(Ω)×L2(Γ). Observe the
chain of estimates:

‖Ue − Uh‖L2/R ≤ ‖Ue − Uh − γopt(q1, q2, 1)‖L2(Ω)×L2(Γh)

= ‖(Ue − Uh − γopt(q1, q2, 1)) ◦ Φ−1
h J

− 1
2

h ‖L2(Ω)×L2(Γ)

≤ c‖(Ue − Uh − γopt(q1, q2, 1)) ◦ Φ−1
h ‖L2(Ω)×L2(Γ)

= c‖(Ue − Uh) ◦ Φ−1
h − γopt(q1, q2, 1)‖L2(Ω)×L2(Γ)

= c ‖Eh‖L2/R ≤ c‖Ẽh‖L2(Ω)×L2(Γ).

We apply the standard duality argument and thus obtain:

‖Ẽh‖2L2(Ω)×L2(Γ) = a(Ẽh,W ) = a(Eh,W )

= a(Eh;W )− ah(Ue − Uh;W e) + ah(Ue − Uh;W e − IhW e)− ah(Ue − Uh; IhW
e)

=
[
a(Eh;W )− ah(Ue − Uh;W e)

]
+ ah(Ue − Uh;W e − IhW e) + Fh(IhW

e)

=
[
a(Eh;W )− ah(Ue − Uh;W e)

]
+ ah(Ue − Uh;W e − IhW e)

+ Fh(IhW
e −W e) + Fh(W e).

These terms can be estimated as follows. For the term between square brackets we
use Lemma 7.4 and (8.2):

|a(Eh;W )− ah(Ue − Uh;W e)| ≤ chq‖Ue − Uh‖Vh
(‖w‖H2(Ω1∪Ω2) + ‖z‖H1(Γ))

≤ chq‖Ue − Uh‖Vh
‖Ẽh‖L2(Ω)×L2(Γ)

For the second term we use continuity, the interpolation error bound and (8.2):

|ah(Ue − Uh;W e − IhW e)| ≤ ch‖Ue − Uh‖Vh
(‖w‖H2(Ω1∪Ω2) + ‖z‖H2(Γ))

≤ ch‖Ue − Uh‖Vh
‖Ẽh‖L2(Ω)×L2(Γ).

For the third term we use Lemma 7.6 with m = 0, the interpolation error bound and
(8.2):

|Fh(IhW
e −W e)| ≤ chq

(
‖f‖H1(Ω1∪Ω2) + ‖g‖Γ

)
‖IhW e −W e‖Vh

≤ chq+1
(
‖f‖H1(Ω1∪Ω2) + ‖g‖Γ

)
‖Ẽh‖L2(Ω)×L2(Γ).

For the fourth term we use Lemma 7.6 with m = 1 and (8.2):

|Fh(W e)| ≤ chq+1
(
‖f‖H1(Ω1∪Ω2) + ‖g‖Γ

)
‖Ẽh‖L2(Ω)×L2(Γ).

Combining these results and using the bound for ‖Ue − Uh‖Vh
of Theorem 7.7 com-

pletes the proof.
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9. Numerical results. We consider the stationary coupled bulk-interface con-
vection diffusion problem (3.3) in the domain Ω = [−1.5, 1.5]3 and with the unit
sphere Γ = {x ∈ Ω : ‖x‖2 = 1} as interface. For the velocity field we take a rotating
field in the x-z plane: w = 1

10 (z, 0,−x). This w satisfies the conditions (2.1) and
(3.1), i.e., div w = 0 in Ω and w ·n = 0 on Γ. On some parts of the boundary ∂Ω the
velocity field w is pointing inwards the domain, so natural boundary conditions as in
(3.3) are not suitable here. For this reason, and to simplify the implementation, we
use Dirichlet boundary conditions on ∂Ω. Note that in this case we do not need the
additional condition (4.1) to obtain well-posedness. For the scaling constant we take
K = 1.

9.1. Convergence study. In this experiment, the material parameters are cho-
sen as ν1 = 0.5, ν2 = 1, νΓ = 1 and k̃1,a = 0.5, k̃2,a = 2, k̃1,d = 2, k̃2,d = 1. The
source terms fi ∈ L2(Ω), i = 1, 2, and g ∈ L2(Γ) in (3.3) and the Dirichlet boundary
data are taken such that the exact solution of the coupled system is given by

v(x, y, z) = 3x2y − y3,

u1(x, y, z) = 2u2(x, y, z),

u2(x, y, z) = e1−x2−y2−z2v(x, y, z).

Note that the gauge condition (3.4) is satisfied for this choice of f and g. For the initial
triangulation, Ω is divided into 4 × 4 × 4 sub-cubes each consisting of 6 tetrahedra.
This initial mesh is uniformly refined up to 4 times, yielding Th. The discrete interface
Γh is obtained by linear interpolation of the signed distance function corresponding
to Γ. We use the finite element spaces in (6.6)-(6.7) with k = 1, i.e., V bulk

h consists of
piecewise linears on Th. The resulting coupled linear system is iteratively solved by
a GCR method using a block diagonal preconditioner, where the bulk and interface
systems are preconditioned by the SSOR method.

The numerical solution uh, vh after 2 grid refinements and the resulting interface
approximation Γh are shown in Figure 9.1.

The L2 and H1 errors for the bulk and interface concentration are given in Ta-
bles 9.1 and 9.2. As expected, first order convergence is obtained for the H1 errors
of bulk and interface concentration, cf. Theorem 7.7. The respective L2 errors are of
second order, which confirms the theoretical findings in Theorem 8.1.

# ref. ‖u− uh‖L2(Ω) order ‖u− uh‖H1(Ω1,h∪Ω2,h) order

0 1.27E+0 — 6.07E+0 —
1 4.39E-1 1.53 3.39E+0 0.84
2 1.28E-1 1.78 1.79E+0 0.92
3 3.34E-2 1.94 9.12E-1 0.98
4 8.47E-3 1.98 4.58E-1 0.99

Table 9.1
L2 and H1 errors for bulk concentration uh on different refinement levels.

9.2. Effect of small desorption. The theory presented indicates that both
the model and the discretization are stable if the desorption coefficients tend to zero.
Related to this we performed an experiment with a small or even vanishing desorption
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Fig. 9.1. Numerical solutions vh on Γh and uh visualized on a cut plane z = 0 for refinement
level 2.

# ref. ‖v − vh‖L2(Γh) order ‖v − vh‖H1(Γh) order

0 6.75E-1 — 4.60E+0 —
1 1.88E-1 1.85 2.30E+0 1.00
2 5.39E-2 1.80 1.01E+0 1.18
3 1.34E-2 2.01 5.15E-1 0.98
4 3.38E-3 1.99 2.52E-1 1.03

Table 9.2
L2 and H1 errors for interface concentration vh on different refinement levels.

coefficient. For the bulk concentration, homogeneous Dirichlet boundary data on
∂Ω are chosen. The source terms are set to fi = 0, i = 1, 2 and g = 1, so bulk
concentration can only be generated by desorption of interface concentration from Γ.
The material parameters are chosen as ν1 = 0.5, ν2 = 1, νΓ = 1 and k̃1,a = k̃2,a =

k̃2,d = 1, k̃1,d = ε with ε ≥ 0. We use the same initial triangulation as before. This
initial mesh is uniformly refined 3 times, and the discrete problem is solved on this
mesh for different values of ε, yielding solutions uεi,h ∈ Vi,h, vεh ∈ VΓ,h. Table 9.3
shows the mean bulk concentration of uε1,h in Ω1,h,

ū1,h(ε) := |Ω1,h|−1

∫
Ω1,h

uε1,h dx,

for different values of the desorption coefficient k̃1,d = ε. We clearly observe a linear
behavior, which can be expected, based on the relation

k̃1,a

∫
Γ

u1 ds =

∫
Γ

u1 ds = k̃1,d

∫
Γ

v ds,
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k̃d,1 ū1,h(k̃d,1)

1E+0 1.42E+00
1E-1 1.42E-01
1E-3 1.42E-03
1E-5 1.42E-05
1E-10 1.42E-10

0 1.37E-15

Table 9.3
Mean bulk concentration in Ω1,h for different

values of the desorption coefficient k̃d,1 for
refinement level 3.

# ref. ū1,h(10−3)

0 1.3191E-03
1 1.3865E-03
2 1.4088E-03
3 1.4153E-03
4 1.4171E-03

Table 9.4
Mean bulk concentration in Ω1,h with desorp-

tion coefficient k̃d,1 = 10−3 for different re-
finement levels.

that holds for the continuous solution u1, v (follows from the first and third equation
in (3.3)). In the numerical experiments the discrete analogon of this relation turns
out to be satisfied with value

∫
Γh
vh ds = 17.775 for all considered values of ε. For

ε = 0 we have ū1,h(0) = 1.37 · 10−15 which is due to round-off errors and the chosen
tolerance tol = 10−14 of the iterative solver. These results illustrate the well-posedness
of the model for k̃1,d ↓ 0. Furthermore, in the discrete problem there is no “numerical
leakage” of surfactant concentration through the interface. The iteration numbers
are essentially independent of ε (155 ± 1 iterations for the considered range of ε),
indicating that the condition number of the resulting preconditioned system matrix
is robust w.r.t. k̃d,1 → 0.

We now fix the value ε = 10−3 and change the number of uniform grid refinements,
obtaining different mesh sizes hi, i = 0, 1, . . . , 4. The obtained values of ū1,hi(10−3)
are given in Table 9.4. These numbers show a linear convergence behavior with a
contraction factor ∼ 0.3, which indicates that we have stable (almost second order)
convergence w.r.t h. On refinement level 3 we have an estimated relative error of
approximately 2 · 10−3.

10. Discussion and outlook. In this paper a coupled system of elliptic partial
differential equations is studied, in which two advection-diffusion equations in bulk
subdomains are coupled, via adsorption-desorption terms, with an advection-diffusion
equation on the interface between these bulk domains. This system of equations is
motivated by models for surfactant transport in two-phase flow problems. A main
result is the well-posedness of a certain weak formulation of this system of equations.
We introduce an unfitted finite element method for the discretization of this problem.
The method uses three trace spaces of one standard bulk finite element space. The
interface is approximated by the zero level of a finite element function. For this finite
element function and for the finite element functions used in the bulk space piecewise
linears as well as higher order polynomials can be used. For this discretization method
optimal error bounds are derived. We consider the following topics to be of interest
for future research. The unfitted finite element discretization leads to linear systems
of equations that are ill-conditioned. The discretization method treated in this paper
can be combined with a stabilization procedure as recently presented in [4]. The
use of an unfitted finite element technique becomes particularly attractive for time
dependent problems with an evolving interface. In the applications that we have in
mind (surfactants in two-phase incompressible flow) such time dependent problems
are highly relevant. Hence, the extension of the method studied in this paper to a
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time-dependent coupled system as in (2.8) is an interesting topic. Such an extension
may be based on space-time trace finite element methods that are studied in the recent
papers [23, 21], which deal with advection-diffusion equations on evolving surfaces,
but without a coupling to a bulk phase. Finally we note that if for the interface
approximation a finite element polynomial of degree q ≥ 2 is used, the zero level
of this function is not directly available. For this case (approximate) computable
parametrizations have to be used as e.g. in [8].
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