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Abstract. This paper deals with the modeling of production processes in automotive
industries by models based on partial differential equations.The basic idea consists on
the derivation of kinetic equations to model production flow on an assembly line. Nu-
merical results based on data of an assembly plant are presented. The work implements
a recent discussion [34, 38] for general flow on unstructured networks.
AMS 58F15, 58F17, 53C35
Keywords. Network dynamics, kinetic theory, asymptotic analysis.

1. Introduction

This paper is concerned with the mathematical modeling of high–volume automotive
production processes. A new challenge in production is the large variety of different car
models produced in almost arbitrary order. Today, the production process needs there-
fore to be described as high–variant mixed–model assembly lines [28]. We are interested
in a mathematical description able to be used for long–term planning of for example
workforce capacities, storage capacities and workload predictions. Due to the high vol-
ume a discrete mathematical model as for example given by discrete event simulators
[7] is challenging to compute for large time periods. It has been argued [2, 3, 4, 22, 38]
that models based on partial differential equations are equivalent to discrete event sim-
ulations and in particular might be used to describe efficiently the long–term behavior
of production processes. Several examples for rigorous derivations of models based on
partial differential equations from discrete event simulations exist and we refer to [2, 5]
for examples. For an overview on continuous models for production we refer also to
[6, 22, 30]. In particular, we refer to [24] for a kinetic model of a production line with
priorities and further discussion on the validity of using those equations to describe
production processes.

Modeling processes using multi agent approaches have also been employed to study
socio-economic problems [1, 20], traffic flow [33, 13] or crowd dynamics [10, 11, 25]. We
also refer to [14, 15, 12] for further applications and a general discussion of the deriva-
tion of Boltzmann–like equations for complex systems. When modeling the production
process we follow an approach recently becoming more popular in the mathematical com-
munity. It has been argued that multi agent systems might be used to describe many
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technical and also biological processes. The arising kinetic and corresponding macro-
scopic equations may then be analysed to understand pattern formation or long term
behavior, see for example [25] for an application to fish and bird swarms. This approach
has been fruitful in gas dynamics and has recently been discussed in a general framework
including some analysis in [10]. Even so not all areas of application might be well suited
for such an approach, see for example the discussion in the modeling of swarms [15], we
apply the kinetic approach to production for the following reasons. In order to obtain
a meaningful Monte–Carlo game of agents many interactions are required (to allow to
neglect history and secondary interactions). Further, the set of rules all agents have
to follow is independent of the particular agent. Both assumptions are satisfied for the
high–volume production line. The advantage of modeling processes using kinetic equa-
tions compared with swarm models for biological simulation lies also precisely in the fact
that the car bodies to be assembled are passive and follow a particular set of production
rules. This is most likely only some extent in socio–logical or biological models. Needless
to say the kinetic approach is only one way to model this phenomena. For an overview
of existing approaches we refer to [15] where in the case of swarm modeling different
approaches and further references are given.

From a mathematical point of view an automotive assembly line is a graph with
products moving along the arcs of this graph. Flows on structured media have been
studied widely in the literature in the past years and appear in an almost infinite variety
[26, 8, 9, 31, 29, 16]. Here, we will use a similar description of the underlying process
as in [34, 38]. In [34] a general production flow problem on a general graph structure
has been studied and a kinetic partial differential equation for high–volume part flows
is derived. A transport (macroscopic) equation could also be obtained and used as
long–time approximation to the kinetic dynamics. Similarly, in [38] a system of hyper-
bolic equations is derived from a kinetic partial differential equation describing a simple
production process on a single line. Statistical information on the production process
entered in coefficients of the final hyperbolic equations. In this paper, we discuss results
for an assembly line with statistical information obtained by car manufacturing plants.
Compared with [38] the underlying particle dynamic is more complicated. In contrast
to both references [38, 34] different hyperbolic closure relations are used to derive the
macroscopic hyperbolic models. Further, the transport coefficients in the resulting equa-
tions are also computed explicitly and include the statistical information available from
the manufacturing plant. Further, numerical studies on the macroscopic equation are
presented.

2. Mathematical modeling

We are interested in the prediction of the long term behavior of the overall workload
within a supply chain, depending on the local statistics of the produced parts at each
station, as well as possible variations in production velocity. First, we describe the avail-
able data within the production line before turning to the Monte–Carlo description of
the process. The kinetic equation is derived also in this section, whereas the macroscopic
equations are deduced in the following section 3.
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The assembly plant under consideration is located in Germany. All variants of a
single type are produced on the same production line within this plant. The production is
organized in several steps – a fully automated pre–assembly and manual final production.

At the final production the different possible variants of the car types have to be taken
into account. The production is organized along a single line with different stations. Each
station represents one production step and each production step requires essentially the
assembling of a certain number of parts to a moving car body. However, due to the
many variants the number of parts that must be assembled within a fixed station is
highly volatile. Historic data on the number of parts is available for a total of N = 17
(out of a total of 30) stations from one belt section. Additional statistical data (for
example on the production velocity) is available and we comment below on how we use
this data.

We model an assembly line therefore by N stations n = 1, . . . , N. Due to the high
number of variants, we consider a generic car body. The time a car body spends within
each station is (currently) fixed and given by T = 60[sec]. Within each station n a
different number of parts a(n) is assembled to the car body. Due to the many variants
this number is not fixed and changes with each arriving car body. From historic data
statistical information on the number of parts assembled at each station a(n) is available.

The number of assembled parts for one day and different stations is shown in Figure
1. We use this data to derive a discrete probability distribution function a → Φ(a, n)
for each station n. Here, Φ(a, n) is the probability to assemble a parts at station n. A
typical prediction horizon for car manufacturing is one week whereas the assembly of all
parts in the final production step takes one day. Data is available for one week and in
order to determine Φ, we use all available data. In the following it will be advantageous
to have a probability function Φ(a, n) defined for all a. We therefore, interpolate the
discrete probability function defined for the values aj , j = 1, . . . ,M by

Φ(a, n) = H(a)

M∑
j=1

δ(a− aj)Φ(aj , n).

We have Φ(a, n) = 0 for a < 0, Φ is a probability density for each fixed n and H the
Heaviside function. The description of the number of assembled parts at each station
by a probability density Φ(a, n) allows to treat all car bodies as non–distinguishable.

So far, a, n are T dimensional quantities. In order to simplify the notation and dis-
cussion later on we normalize the quantities by

ã =
a

a0
, T̃ =

T

T0

where a0 is the maximal unit of assembled parts overall stations and T0 the characteristic
time of our process being equal to one second. Therefore, from now on a ∈ [0, 1]. We
also drop the tilde in the following.

A particle i (resembling a car body) where i ∈ {1, . . . , k ∈ N} is moving along the
assembly line and has a state Xi. The different stations are called Sn, for n = 1, . . . N and
they are in the following considered as nodes in a directed graph. S1 is the first and SN
the last station in the line. Similar to [34], we assume particles are non–distinguishable.
Dimensionless time is denoted by t ≥ 0. Each particle i has a state Xi = Xi(t) =
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Figure 1. Part distributions at different stations along an assembly line
over a time period of one day.

(x(t), τ(t), a(t), n(t))i ∈ R× R× N× N in state space X = (Xi)
N
i=1 ⊆ RN modeling the

following: ni(t) ∈ {1, . . . , N} denotes the station index of particle i at time t. τi(t) ∈ R+
0

is the time elapsed within the current station, ai(t) are the (dimensionless) number of
parts assembled to the particle in station ni(t) and xi(t) ∈ [0, 1] is the stage of completion
of particle i along the assembly line.

Within a small time interval ∆t > 0 the state of each particle may change according
to the following dynamics. If τi(t) ≤ T then the particle is in between two stations
ni(t) and ni(t) + 1. Therefore, the number of parts ai and the station index do not
change whereas the elapsed time τ and the stage of completion increases. Note that it
is possible, that τi(t) ≥ T provided that the state of the particle does not change. The
latter is modeled by

xi(t+ ∆t) = xi(t) + ∆t v(ai(t)).

Theoretically, the stage of completion of the current particle is linear and independent
of the number of assembled parts and therefore set the velocity v ≡ 1. However, this
is not observed in practice where assembly is also conducted outside the designated
stations, which means for example that work starts before scheduled time. No model
and no data is available to quantify this effect. In order to at least qualitatively asses
this problem, we derive a model for a general (sufficiently smooth) function a→ v(a).

Summarizing, we obtain the following dynamics for a particle i and an elapsed time
τi < T . If τi(t) ≤ T :{

ni(t+ ∆t) = ni(t), ai(t+ ∆t) = ai(t),

xi(t+ ∆t) = xi(t) + ∆t v(ai(t)), τi(t+ ∆t) = τi(t) + ∆t.
(1)

When τi(t) ≥ T the particle has arrived at the next station. Here, it will change state
due to the fact that a new number of assembled parts is assigned. Within any time
interval ∆t the change of state upon arrival happens with probability ω∆t, where ω is
the so–called collision frequency. In the considered assembly line this frequency is ω = 1

T ,
however, in order to discuss more general models, we keep the general variable ω > 0. If
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the particle changes state the new number of parts α is obtained by random sampling
from the probability distribution Φ(a, ni(t) + 1), i.e., dP (α = s) = Φ(s, ni(t) + 1)ds. We
also increase the stage of completion and reset the elapsed time τi to zero. Hence, we
obtain the dynamics for the particle i. If τi(t) ≥ T :

ni(t+ ∆t) = ni(t)(1− ω∆t) + (ni(t) + 1)ω∆t,

ai(t+ ∆t) = ai(t)(1− ω∆t) + αω∆t, P (α = s) = Φ(s, ni(t) + 1),

xi(t+ ∆t) = xi(t) + ∆t v(ai(t)), τi(t+ ∆t) = (τi(t) + ∆t)(1− ω∆t).

(2)

Denoting by s → H(s) the Heaviside function, we restate the previous dynamics for
particle i as


xi(t+ ∆t) = xi(t) + ∆tv(ai(t)),

ni(t+ ∆t) = ni(t)H(T − τi(t)) +H(τi(t)− T ) ((1− ω∆t)ni(t) + ω∆t(ni(t) + 1)) ,

ai(t+ ∆t) = ai(t)H(T − τi(t)) +H(τi(t)− T ) ((1− ω∆t)ai(t) + ω∆tα) ,

τi(t+ ∆t) = (τi(t) + ∆t)H(T − τi(t)) +H(τi(t)− T ) ((1− ω∆t)(τi(t) + ∆t)) .

(3)

Under molecular chaos assumption a kinetic equation for the single particle probability
density f(t,X) with X = (x, τ, a, n) is derived. Here, we denote by f(t,X)dX the
probability to find a particle in state X at time t. Since (x, τ, a) are continuous states
but n is discrete we have that

(4)
1

N

N∑
n=1

∫
f(t,X)dxdτa = 1.

The derivation of the equation for the single particle density is a straight–forward but
lengthy computation. Therefore the details are given in the appendix A, in particular
they are given by equations (40) and (46) depending on whether the change of state
is reversible or not. We observe that the dynamics (3) is composed of three exclusive
events appearing with state–dependent probabilities β1 = H(T − τ), β2 = H(τ −T )ω∆t

and β3 = H(τ − T )(1 − ω∆t) since
3∑
i=1

βi = 1. Herein, events related to β1 and β2 are

reversible changes of the state X. Therefore, the probability density f(t,X) evolves in
case of those events according to equation (40). In the case of an event related to β3 the
new state is τ = 0. This is a non–invertible dynamics and we obtain a term similar to
equation (46). Therefore, f fulfills the following time–discrete equation

f(t+ ∆t,X) = H(T − τ + ∆t)f(t, x−∆tv(a), τ −∆t, a, n)(5)

+H(τ −∆t− T )(1− ω∆t)f(t, x−∆tv(a), τ −∆t, a, n)

+ ω∆tΦ(a, n)δ(τ)

∫
f(t, x−∆tv(ā), τ̄ , ā, n− 1)H(τ̄ − T )dτ̄dā.

Provided f fulfills equation (4) at time t, also

N∑
n=1

∫
f(t+ ∆t,X)dxdτda = 1

holds.
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A formal Taylor expansion shows that the differential form of the previous equation
is

(6) ∂tf(t, x, τ, a, n) + ∂x(v(a)f(t, x, τ, a, n)) = C(f)

and a collision operator

(7) C(f) = −∂τf − ωH(τ − T )f + ωΦ(a, n)δ(τ)

∫
f(x, τ̄ , ā, n− 1)H(τ̄ − T )dτ̄dā.

If not stated otherwise the integration in the collision operator is on the full domain.
It remains to discuss the case n = 1. In the following, we study a periodic problem,
i.e., we assume that the last station n = N is equivalent to station n = 0 and have
f(t, x, τ, a, 0) := f(t, x, τ, a,N). Then, equation (6)-(7) is well–posed for all n = 1, . . . , N.

Alternatively, one would need to prescribe boundary data for n = 1. The equation
(6) is a high–dimensional kinetic equation on the phase space X. A full discretization is
therefore computationally expensive. As in gas dynamics [17] or in production models
[38, 34], we therefore derive approximate, low–dimensional (macroscopic) models, cap-
turing some qualitative properties of the kinetic dynamics in section 3. In order to do
so, we proceed as in gas dynamics [18, 38, 17].

To this end, we first analyse the kernel of C(f). The analysis is similar to [34], however,
there are some differences due to the different particle dynamics. As in [34] the kernel of
C is decomposed in an invertible and non–invertible part similar to the previously given
dynamics.

Lemma 2.1. The kernel C(f) (7) is decomposed as C(f) = B(D(f)) where{
D(f) = ∂τf + ωH(τ − T )f,

B(f) = Φ(a, n)δ(τ)
∫
f(x, τ̄ , ā, n− 1)dādτ̄ − f.

(8)

For a proof of this lemma it suffices to note that for integrable functions f , we have∫
∂τfdτ = 0.
The kernel manifold of C(f) is computed as the kernel of B(f). We obtain

f(t, x, τ, a, n) =
1

T + 1
ω

δ(τ)Φ(a, n)ρ(t, x) ∈ ker(B),(9)

for any product density function ρ(t, x) which is defined later on. This is due to the
fact that C(f) is not acting on time t and space x. Therefore, any steady state solution
may be multiplied by a factor ρ(t, x). The additional factor 1

T+ 1
ω

is used to simplify the

computations later on. Obviously, it is not necessary and may be incorporated in ρ(t, x).
Note that depending on ρ(t, x) f is not necessarily a probability density.

In order to obtain the kernel of C, we compute the inverse of the operator D and
solve for general ρ(t, x) equation

(10) ∂τf + ωH(τ − T )f =
1

T + 1
ω

δ(τ)Φ(a, n)ρ(t, x).
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The solution (in the weak sense) of the previous equation with initial data
f(τ = −∞) = 0 is

(11) f(t, x, τ, a, n) =
1

T + 1
ω

Φ(a, n)ρ(t, x)

 0 τ ≤ 0
1 0 < τ ≤ T

exp (−ω(τ − T )) τ ≥ T


We remark that the solution f in (11) is discontinuous at τ = 0 leading to the δ

distribution as derivative (in the sense of distributions). At τ = T the solution is
continuous and equation (10) is fulfilled in the integral sense. A sketch of f is given in
Figure 2 for ρ ≡ 1.

−100 0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Figure 2. Sketch of the solution τ → f(t, x, τ, a, n) for fixed (t, x, a, n)
given by equation (11) with T = 100, ω = 1 and Φ ≡ ρ ≡ 1.

We are interested in solutions f to equation (6) that are probability distributions.
Hence, among the family of solutions in the kernel of C given by (11) we are only
interested in solutions fulfilling equation (4). Choosing ρ(t, x) as in equation (12) we
obtain the desired steady–states. This leads to the definition of the mass density of our
system as

(12) ρ(t, x) :=
1

N

N∑
n=1

∫
f(t, x, τ, a, n)dadτ.

This definition of ρ may also be used out of steady–state. We are now interested in
an evolution equation for ρ independent of knowledge on f. Such an equation may be
derived using different approaches.

Using the definition (12) we consider the following projection [38]. Let f be any
solution to (6). Then, Pf projects f onto the kernel of C. Pf is defined using the
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explicit representation (11), i.e.,

Pf =
1

T + 1
ω

Φ(a, n)

 0 τ ≤ 0
1 0 < τ ≤ T

exp (−ω(τ − T )) τ ≥ T

( 1

N

N∑
n=1

∫
f(t, x, τ, a, n)dadτ

)(13)

and write

(14) f = Pf + (1− P )f.

Using the periodicity in the stations it is easy to see that P (∂tf) = ∂tPf and PC(f) =
C(P (f)) = 0. Applying the projection P to the kinetic equation (6), summation on n
and integration on a and τ yields

∂tρ(t, x) + ∂x (ϕρ(t, x)) + ∂xψ = 0,

ϕ(a, n) = 1
N

∑N
n=1

∫
v(a)Φ(a, n)da,

ψ(t, x, τ, a, n) = 1
N

∑N
n=1

∫
v(a)(1− P )fdadτ.

(15)

The previous equation arises due to the following equivalence

1

N

N∑
n=1

∫
P (∂tf(t, x, τ, a, n))dadτ = ∂tρ(t, x),(16)

and since

1

N

N∑
n=1

∫
P
(
∂xv(a)f(t, x, τ, a, n)

)
dadτ(17)

= ∂x

{ 1

N

N∑
n=1

∫
Φ(a, n)

1

T + 1
ω

 0 τ ≤ 0
1 0 < τ ≤ T

exp (−ω(τ − T )) τ ≥ T

 dadτ

×

(
1

N

N∑
n=1

∫
v(a)f(t, x, τ, a, n)dτda

)}
= ∂x

(
1

N

N∑
n=1

∫
v(a) (Pf + (1− P )f) (t, x, τ, a, n)dτda

)

= ∂x

(
1

N

N∑
n=1

∫
v(a)Φ(a, n)da ρ(t, x)

)
+ ∂x

(
1

N

N∑
n=1

∫
v(a)(1− P )fdτda

)
.

Equation (15) propagates the density with the expected value of v(a) with respect
to the probabilities Φ(a, n). Using EΦ to denote the expectation with respect to the
probability density Φ and by E the sum of the expectations, we may rewrite ϕ as

(18) ϕ =
1

N

N∑
n=1

EΦ(·,n) (v) = E(v)

For general functions v(a) equation (15) is not in a closed form for ρ and we discuss
closure relations in the following section 3.
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3. Macroscopic equations

In this section, we derive the macroscopic approximations for solutions f to (6)-
(7). We first discuss possible closure relations for equation (15). Different approaches
are known in the literature to derive a closed form. As already observed in [38] the
classical Chapman–Enskog expansion [17] yields a parabolic model for the evolution of
the density ρ. This however has the drawback of infinite speed of propagation of waves
which is undesirable in the context of assembly lines. Therefore, we aim in deriving
partial differential equations allowing for finite speed of propagation . Since furthermore
the total number of particles should remain constant we have a conservation property of
our equation for the total mass

∫
ρ(t, x)dx. Therefore, we use a moment approximation to

obtain a hyperbolic system of conservation laws for the evolution of ρ. Here, hyperbolicity
of the partial differential equation is defined as in [21].

3.1. Asymptotic expansion. If we are interested in the qualitative long–time behavior
of f , then we may rescale time and space by t→ t/ε and x→ x/ε for some small positive
value of ε. Using this hyperbolic scaling and denoting the new variables again as (t, x),
we obtain ∂tf + ∂xvf = 1

εC(f). Expanding f in terms of ε, we obtain as order O(1)

approximation f0 which is given by equation (11) and where ρ(t, x) fulfills equation
(15). We review approaches to close equation (15). The scaling approach makes use of
dimensionless quantities.

The case v(a) = cst. In the case v(a) constant the equation (15) simplifies and we have
ϕ = cst and ψ = 0. Therefore, ρ is simply transported with speed equal to one and no
closure relation is required. In the following, we assume v is not constant.

Chapman–Enskog inspired ansatz. A closure relation has been suggested in [38] and we
briefly apply the procedure to the current system. Since C is linear in f , equation (19)
for σ = (1− P )f obtained from the rescaled kinetic equation reads

(19) ∂tσ + (1− P )∂x (vσ) =
1

ε
C(σ).

and we have

ψ =
1

N

N∑
n=1

∫
vσdτda.

The system (15),(19) is still not in closed form. Therefore, in [38] it has been assumed
that the approximation (20) for σ similar to equation (11) holds true. Let σ be given by

(20) σ(t, x, τ, a, n) = j(t, x)S(τ, a, n),
1

N

N∑
n=1

∫
aS(τ, a, n)dτda = 1.

Due to equation (20) the system (ρ, j) fulfills

∂t

(
ρ(t, x)
j(t, x)

)
+ ∂xA

(
ρ(t, x)
j(t, x)

)
=

 0

j(t, x) 1
N

N∑
n=1

∫
a1
εC(S)dτda

 ,(21)
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where

A =
1

N

N∑
n=1


∫
v(a)Φ(a, n)da

∫
v(a)Sdτda

0
∫
av(a)Sdτda−

∫
aΦ(a, n)da 1

N

N∑
m=1

∫
v(a)Sdτda


(22)

The previous system is still not closed since S = S(τ, a, n) is unknown. In [38] the
shape of S has been determined by comparing the solution with a classical Chapman–
Enskog expansion. Since this leads to an asymptotic expansion in ε to Chapman–Enskog
like model, we do not pursue this direction here. For further details, we refer to [38,
page 8].

3.2. Moment approximations. In order to derive new equations, we pursue an ap-
proach based on the kinetic equation (6) and use a moment approximation in the as-
sembled parts a [27, 36]. As before we consider mass density as in (12),

ρ(t, x) :=
1

N

N∑
n=1

∫
f(t, x, τ, a, n)dτda.

Since the kernel C(f) conserves mass, we obtain by integration of (6) equation (15).
Instead of a projection to the kernel manifold, we derive an equation for the first

moment (ρu)

(23) (ρu)(t, x) :=
1

N

N∑
n=1

∫
v(a)f(t, x, τ, a, n)dτda.

We obtain

∂t(ρu(t, x)) + ∂x
1

N

N∑
n=1

∫
v2(a)f(t, x, τ, a, n)dτda(24)

= ω
1

N

N∑
n=1

∫
EΦ(·,n)(v)H(τ − T )f(t, x, τ, a, n− 1)

− v(a)H(τ − T )f(t, x, τ, a, n)dτda

In resemblance of gas dynamics, we may rewrite the previous equation as

∂t(ρu) + ∂x
(
p[f ] + ρu2

)
= Q[f ], with(25)

p[f ] =
1

N

N∑
n=1

∫
(v − u)2 fdτda, and

Q[f ] =ω
1

N

N∑
n=1

∫
EΦ(·,n)(v)H(τ − T )f(t, x, a, n− 1, τ)

−v(a)H(τ − T )f(t, x, a, n, τ)dτda.

Note that in the case v(a) = cst, we have u(t, x) = cstρ(t, x) and we obtain the same
equation as in section 3.1, i.e., equation (15) with ϕ = cst and ψ ≡ 0.
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Next, we discuss different closure relations to approximate Q[f ] and p[f ]. Note that
in all cases, the equations are given by{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p[f ]) = Q[f ].
(26)

Define for the following discussion the projection feq as projection onto the kernel.

feq(t, x, τ, a, n) :=
1

T + 1
ω

Φ(a, n)

 0 τ ≤ 0
1 0 < τ ≤ T

exp (−ω(τ − T )) τ ≥ T

 ρ(t, x)(27)

Note that the following is precisely Pf, but now we choose to rewrite the mass density
relation in terms of ρ in order to obtain a closed formula. The function feq(t, x, τ, a, n)
then fulfills for all fixed t the steady–state equation C(f) = 0.

Hence, replacing in p and Q the general f by feq leads to a closed system of equations
for ρ and ρu. From a modeling point of view this implies that in p and Q only variations
on the steady–state manifold are considered. Therefore, p and Q are approximated by
its action on variation within the kernel.

However, we may not simply replace (p,Q) by (p[feq], Q[feq]). By definition of the
projection operator Pf we have that

1

N

N∑
i=1

∫
feq(t, x, τ, a, n)dτda = ρ(t, x)

and

1

N

N∑
i=1

∫
v(a)feq(t, x, τ, a, n)dτda = E(v(·))ρ(t, x).

Hence, similar to traffic flow [35], the collision operator only preserves the density
but not the first moment (ρu). Therefore, closing equations (26) by setting (p,Q) =
(p[feq], Q[feq]) is not well–defined.

In the following we therefore investigate other approaches to close the equation (26)
using the idea to replace (p,Q) by (p[feq], Q[feq]) but for feq such that the moments ρ
and (ρu) are preserved for feq. We refer for example to [27, 36] for additional possibilities
not discussed here.

3.2.1. Monokinetic closure. Assume v(a) is strictly monotone. Then, we may close the
system using a monokinetic distribution function [23, 1]. To this end define the equilib-
rium function

feq(t, x, τ, a, n) := ρ(t, x)δ(τ)δ(v(a)− u)v′(a).

One verifies easily that for

(28)
1

N

N∑
n=1

∫
feqdτda = ρ(t, x) and

1

N

N∑
n=1

∫
v(a)feqdτda = (ρu)(t, x)

the moments are conserved. Replacing now the pressure and source term yields the
corresponding approximations

p[feq] = 0, Q[feq] = 0,(29)
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so that the resulting system (26) coincides with system of pressureless gas dynamics.
Since the equations are independent of Φ(a, n) no statistical information of the as-

sembly line enters. Further, the closure implies that essentially all cars are concentrated
at zero elapsed time and traveling with the velocity of the ensemble.

3.2.2. Extended equilibrium function. Based on the deterministic data from Section 2
and carrying on with a continuous solution, we are interested in a closure relation which
represents the deterministic problem from the beginning. Therefore, we apply a Grad
closure procedure. An extended equilibrium function is constructed for example using
the Grad closure. We define for given ρ and u set

feq(t, x, τ, n) :=
1

T + 1
ω

Φ(a, n)

 0 τ ≤ 0
1 0 < τ ≤ T

exp (−ω(τ − T )) τ ≥ T

 ρ(t, x) (λ0 + λ1v(a)) .

Herein, λ0, λ1 are functions depending on ρ and u. Using the moment relations we
obtain the following set of equations determining (λ0, λ1) :

{
ρ(t, x) (λ0 + λ1E(v(·))) = ρ(t, x),

ρ(t, x)
(
λ0E(v(·)) + λ1E(v2(·))

)
= ρ(t, x)u(t, x).

(30)

Recall the notation of (18) where E(g) = 1
N

N∑
n=1

EΦ(·,n)(g(·)). Also, we denote by

V(v) = E(v2)−E(v)2. The previous system is solved for (λ0, λ1) provided that V(v) is
non–zero (which excludes in particular the case v(a) = cst) as

λ0(u) =
E(v2)− uE(v)

V(v)
, λ1(u) =

u−E(v)

V(v)
.

Hence, we may close (26) by evaluating p and Q at the extended equilibrium function
feq. The function feq for the previously computed choice of λ0 and λ1 then has the
moments ρ and ρu.

p[feq] =
1

N

N∑
n=1

∫
(v(a)− u)2Pf (λ0(u) + λ1(u)v(a)) dτda(31)

= ρλ0(u)
(
E(v2)− 2uE(v) + u2

)
+ ρλ1(u)

(
E(v3)− 2E(v2)u+ E(v)u2

)
= −ρu2 +

ρ
(
E2(v2)− E(v3)E(v)

)
+ ρu

(
E(v3)− E(v)E(v2)

)
V(v)

.
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Q[feq] = ω
1

N

N∑
n=1

∫ (
EΦ(·,n)(v)Pf(t, x, a, n− 1, τ)(32)

− v(a)Pf(t, x, a, n, τ)
)
H(τ − T )(λ0(u) + λ1(u)v(a))dτda

=
ρλ0(u)

T + 1
ω

(
1

N

N∑
n=1

EΦ(·,n)(v)− E(v)

)

+
ρλ1(u)

T + 1
ω

(
1

N

N∑
n=1

EΦ(·,n)(v)EΦ(·,n−1)(v)− E(v2)

)

=
ρu− ρE(v)

V(v)(T + 1
ω )

(
1

N

N∑
n=1

EΦ(·,n)(v)EΦ(·,n−1)(v)− E(v2)

)
.

Summarizing, we obtain the following system for the evolution of (ρ, ρu)

{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρc1 + (ρu)c2) = (ρu)c3 + ρc4.
(33)

The constants ci depend on the statistical information of Φ(a, n) and are given by



c1V(v) = E2(v2)− E(v3)E(v),

c2V(v) = E(v3)− E(v)E(v2),

c3V(v)(T + 1
ω ) = 1

N

N∑
n=1

EΦ(·,n)(v)EΦ(·,n−1)(v)− E(v2),

c4 = −E(v)c3.

(34)

The density ρ(t, x) is the (station-)averaged number of parts at production stage
x ∈ (0, 1) and we are interested in the time–evolution of this quantity.

The system (33) is a linear hyperbolic balance law provided that the hyperbolicity
property 4c1 + c2

2 > 0 holds. In this case the real eigenvalues are

λ1,2 =
c2

2
Ψ

1

2

√
4c1 + c2

2(35)

and there exists a full set of eigenvectors. If we assume, that all probability density
functions are equal Φ(a, n) = Ψ(a) then the Grad closure Ansatz is well–defined pro-
vided that the variance is non–zero. This also implies that V(v) > 0. In section 4, we
numerically compute λ1,2 for the available statistical data. Further, in the example of
an assembly line, we have Φ(a, n) = 0 for a < 0 and therefore all moments (36) are
non–negative Ein ≥ 0. It turns out that also in this case the eigenvales are real and
V(v) > 0. Since also the source terms are linear an initial value problem for equation
(33) is well–posed. This result has been established in a more general setting for example
in [19]. Note that the model (33) may as well produce negative values for ρ due to the
presence of the source term in the equation for (ρu).
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In the following remark, we give an example of the arising coefficients in a simplified
setting. The real data will be considered in the following section.

Remark 3.1. The velocity v(a) describes the speed at which parts are assembled to the
car body. This speed depends on the number of parts to be mounted. So far, we do not
have data on this function. However, it seems reasonable to assume that v(a) is at least
monotone decreasing in the number of mounted parts. The simplest model is linear and
therefore would be similar to the speed-density relationship from Greenshields velocity
model [32]:

v(a) = 1− a,
Observe that the number of parts has been normalized to one. Let Ein be the ith moment
of the probability density a→ Φ(a, n), i.e.,

(36) Ein =

∫
aiΦ(a, n)da.

Then, we obtain the following equations

E(v) = 1− 1

N

N∑
n=1

E1
n, E(v2) = 1 +

1

N

N∑
n=1

E2
n − 2E1

n,

E(v3) = 1 +
1

N

N∑
n=1

(−3E1
n) + 3E2

n − E3
n, V(v) =

1

N

N∑
n=1

E2
n −

(
1

N

N∑
n=1

E1
n

)2

,

1

N

N∑
n=1

EΦ(·,n)(v)EΦ(·,n−1)(v) = 1 +
1

N

N∑
n=1

E1
nE

1
n−1 − 2E1

n.

Note that for the last equation, we used the periodicity assumption Φ(a, 0) ≡ Φ(a,N).
If we additionally assume, that Φ(a, n) = Ψ(a) and Ψ(a) = 2H(a)ψ(a) where ψ(a) =

1√
2π

exp(−x2

2 ) is the probability density of the normal distribution with mean µ = 0 and

variance σ2 = 1. Then, we obtain E1
n =

√
2
π , E

2
n = 1, E3

n = 2E1
n and therefore

E(v) = 1−
√

2

π
, E(v2) = 2E(v), E(v3) = 4− 5E1

n, V(v) = 1− 2

π
> 0,

(E(v))2 =
1

N

N∑
n=1

EΦ(·,n)(v)EΦ(·,n−1)(v),

c1V(v) = (1− E1
n)E1

n > 0, c2V(v) = 2− E1
n − 2(E1

n)2 6= 0.

Hence, in this case both eigenvalues (35) are real and separate leading to a hyperbolic
balance equation (33).

4. Statistical information on the assembly line

For a production plant of a factory, statistical information has been collected along
the final assembly line. We present in the following diagram distribution probabilities
a→ Φ(a, n) of assembled parts within different stations n along the assembly line. The
probability density Φ(a, n) at eight selected stations n (out of 17) is depicted in Figure
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3. As described in the introduction, the data has been collected by using a daily average
of the number of parts at each station. We use historic data from a one week production
cycle.

0
2

4
6

8

0

50

100

150

200
0

0.2

0.4

0.6

0.8

1

stationparts

Φ

Figure 3. Statistical information available along the assembly line at
eight selected stations.

Furthermore, we present results on the dependence of ϕ given by equation (18) on
the transport velocity v(·). Currently, the assumption is that the assembly line runs
independent of a. However, it is observed in practice that the production within some
stations n is not completed within T leading to congestion and possibly highly utilized
stations. We illustrate this in Figure 4 where the utilization of the assembly line and
the utilization or load of each station is shown. This figure is obtained from the same
data on the production line as above. We observe a huge difference between over- and
underload. Figure 4 depicts the workload and the degree of capacity at stations. The
degree of capacity is separated into three parts: under 95%, between 95% and 100% and
over 100%. This effect will be included in the presented model by using a non constant
velocity function v(a).

This motivates the assumption, that a constant velocity v(a) independent of the num-
ber of parts is not realistic. We consider the extended equilibrium function and based on
the available statistical data, we compute the transport coefficients in equation (33). We
set T = 60[sec] and ω = 1/T. The maximal number of assembled parts is amax = 200. In
the following, we investigate different models for transport velocities and compute the
hyperbolicity property as well as the coefficients ci for i = 1, . . . , 4. The simplest possible
choice (37) is a Greenshields like model [32] with slope 0 < κ < 1.

(37) v(a) = 1− κ a

amax



16 MICHAEL HERTY, LENA MICHAILIDIS, AND MARCUS ZIEGLER

Figure 4. Degree of capacity utilization at selected stations

Alternatively, we also consider below a velocity model given by

(38) v(a) = 2− exp(κ
a

amax
).

For the given data Φ(a, n), we present in Figure 5 and Figure 6 the value of the
coefficients c1, . . . , c4, E(v),E(v2) and E(v3) for the choices of v(a). We observe that for
all κ the eigenvalues (35) are real and V(v) > 0. We therefore numerically discretize
the linear transport equations (33) by standard first-order finite volume and operator
splitting to treat the source term. Therefore, an Upwind scheme combined with an
implicit discretization in time of the source term has been applied. This is certainly only
one possibility to discretize the preceding equations. Due to the one–dimensionality of
the problem we may use very high number of grid points and even be computationally
efficient. All numerical results are obtained on an equidistant grid x ∈ [0, 1] with Nx =
400 discretization points and ∆t such that the CFL (Courant-Friedrichs-Lewy) condition
is fulfilled. In order to simulate the time evolution of the density ρ(t, x), we need to
prescribe an initial station-averaged car distribution ρ(t = 0, x). As initial data for
(ρu)(t = 0, x), we consider the definition (24) and replace f by Pf and density ρ(t =
0, x). With this choice and if we prescribe a constant car distribution ρ(t, x = 0) = ρo,
then (ρu)(t, 0) = (ρu)o is constant.The eigenvalues λ1,2 of (33) for different values of
κ are depicted in Figure 7. They are positive and between ≈ 1

2 and one in all cases.
Therefore, any perturbation of the state ρo will be transported towards x = 1. Hence,
the total simulation time can be limited to T = 120. Assuming similar assembly times
for each part, we study a production line at ρ0 = 95% load and a perturbation of 0.1%.
We prescribe a small perturbation at x = 1% as ρ(t = 0, x) = ρo − 0.1% exp(−(8x)2).
This leads to a perturbation in density and flow.

The coefficients c3 and c4 exceed the order of the coefficients of c1 and c2 by at least
one order. Therefore, the dynamics are mainly driven by the exponential growth of (ρu)
over time. This might lead to an increase or decrease in density. The model itself has no
mechanism to prevent densities larger than one or less than zero. Therefore, we simulate
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(33) until time t∗ where at one stage of completion x∗ either the car density exceeds
one. In Figure 9, we show the degree of completion x∗ at which the initial perturbation
has lead to a density exceeding one. We repeat the experiment under a smaller load of
the assembly line, namely, ρo = 70%, and for a perturbation located at x = 25% and
present the corresponding results in Figure 9. We observe that in this case for κ = 0.9
and (38) the density did not exceed one within the given time interval.

The typical load of an assembly line is ρo = 95%. We now compare Figure 4 and
Figure 8 in order to estimate the unknown parameter κ. In Figure 4, we observe, that
at 13 out of 17 stations there is production density observed, which is larger than the
(desired) maximal load. The station averaged capacity utilization is between 20% and
40% for those stations. Identifying the capacity utilization with degree of completion
(x) and assuming the initial perturbation is at position 1%, we observe that for both
velocity models a suitable value for κ ∈ (0.3, 0.6).

Figure 5. Transport coefficients c1, . . . , c4 for equation (33) and veloc-
ity (37). Left: c1 (cross), c2 (circle) and 4c1 +c2

2 (dot). Middle: c3 (cross)
and c4 (dot). Right: E(v) (cross), E(v2) (circle) and E(v3) (dot).

Figure 6. Transport coefficients c1, . . . , c4 for equation (33) and veloc-
ity (38). Left: c1 (cross), c2 (circle) and 4c1 +c2

2 (dot). Middle: c3 (cross)
and c4 (dot). Right: E(v) (cross), E(v2) (circle) and E(v3) (dot).
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Figure 7. Eigenvalues λ1 and λ2 given by (35) for velocities (37) (left)
and (38) (right), respectively.

Figure 8. Degree of completion x∗ ∈ [0, 1] at which a perturbation
(0.1%) of the initial data leads to a density larger than one for velocities
(37) (left) and (38) (right), respectively. The initial load of the assembly
line is 85%.
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Figure 9. Degree of completion x∗ ∈ [0, 1] at which a perturbation
(0.1%) of the initial data leads to a density larger than one for velocities
(37) (left) and (38) (right), respectively. Compared with Figure 8 the
initial load of the assembly line is only 70%. The dot indicates that the
density below is zero for κ = 0.9 in the right part of the figure.
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5. Summary and future work

To model assembly lines, the automotive industry has to deal with large sets of data for
part feeding processes. In this paper, we present an ansatz to model automotive assembly
lines by using kinetic theory. To exhibit the same unidirectional flow of information as in
the underlying particle model and reproduce the parabolic equations, we have derived a
macroscopic model via hyperbolic conservation laws. Similar to [38] we discussed closure
relations using Chapman-Enskog expansion without satisfactory results.

As consequence of the made assumptions on the microscopic interactions we have
used moment approximations in Section 3.2, which are the starting point for studying
the asymptotic behavior [37] of the model. To finally close the system we have used
the Grad closure approach to derive an extended equilibrium function and to obtain the
fluid dynamic equations (33), which are based on the statistical information of underlying
data Φ(a, n).

In Section 4 we have numerically discretized (33) and have simulated the density
ρ(t, x) for the evaluation and filtering out of a characteristic number for the long time
behavior of the overall workload at automotive assembly lines.

We have outlined the capacity utilization ρ of the assembly line with degree of com-
pletion x. When prescribing the initial station averaged car distribution ρ0 we are able
to estimate the underlying velocity model v(a). For example, for the typical load of an
assembly line of ρ0 = 95% we have found suitable values for κ in the interval (0.3, 0.6).
This information may be used to quantify the workload at the stations as well as rate
of completion at stations. This is also a qualitative indicator of over- or underload at
stations.

Summarizing, in this paper we present an approach using kinetic theory to assess
workload in assembly lines. Especially the consideration of perturbations (e.g. depen-
dency of not available parts, supply strategies) may be helpful when further extending
the model. However, further data collection is required in order to give evidence to the
predictions of the model.

Appendix A. Computations

We present some computations used in the derivation of the kinetic equations. Those
computations can also be found in different context for example in [2, 34].

Consider N particles, i = 1, . . . , N having each a state Xi ⊆ R and full state space
X = (Xi)

N
i=1 ⊆ RN . We only consider the following Monte-Carlo game for single particle

interactions. For given ∆t > 0 and with given frequency γ, we randomly pick a particle
and a collision mechanism. Then, we change state from X to Y . Let βc,i = 1

N βc(Xi)
for c = 1, . . . , C and i = 1, . . . , N be the (possibly state–dependent) probability to pick

particle i and collision mechanism c. We require
C∑
c=1

βc(W ) = 1 for all W ∈ RN .

Denote by Y = ξc,i(X) the new state of the system after collision at time t+ ∆t :

X(t+∆t) =

(
X(t) with probability 1− γ∆t

ξc,i(X(t)) with probability γ∆tβc,i(X(t)) c = 1, . . . , C, i = 1, . . . , N

)
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In the assembly line model the collision mechanism ξc,i only changes the state of
particle i and hence we assume from now

ξc,i(X) = (X1, . . . , ξc(Xi), . . . , XN )

where ξc : RN → RN is the change of state for collision mechanism c. If we additionally
assume, that the function y → ξc(y) is invertible, then, ξ−1

c,i (X) = (X1, . . . , ξ
−1
c (Xi), . . . , XN ).

The microscopic dynamics will be rewritten in terms of the probability P. Let P (X(t) =
Z) be the probability that the state X of the system at time t equals Z

P (X(t+ ∆t) = Z) = (1− γ∆t)P (X(t) = Z)(39)

+ γ∆t

C∑
c=1

N∑
i=1

βc,i(X(t))P (ξc,i(X(t)) = Z)

In order to rewrite (39), we assume there is a joint probability density function F (t, x)
such that P (X(t) = Z) = F (t, Z) and

∫
R`×N F (t, Z)dZ = 1 where dZ = dZ1 . . . dZn.

Using the molecular chaos assumption F (X, t) =
N∏
i=1

f(t,Xi) with
∫
f(t,Xi)dXi = 1

a formal computation leads to an equation for the single particle distribution. If each
collision mechanism ξc(·) is invertible and if the molecular chaos assumptions holds true,
then the single particle probability distribution function f(t, x) with x ∈ R fulfills

f(t+ ∆t, x) = f(t, x) +
γ∆t

N

(
C∑
c=1

βc(ξ
−1
c (x))|detDξ−1

c (x)|f(t, ξ−1
c (x))− f(t, x)

)
(40)

Due to equation (39) and upon integration on Z2, . . . , ZN , we have

F (t+ ∆t, Z) = (1− γ∆t)F (t, Z) + γ∆t
C∑
c=1

N∑
i=1

∫
βc,i(Y )F (t, Y )δ(ξc,i(Y )− Z)dY

(41)

= (1− γ∆t)F (t, Z) +
γ∆t

N

C∑
c=1

N∑
i=1

βc(ξ
−1
c (Zi))

· F (t, Z1, . . . , ξ
−1
c (Zi), . . . , Zn)|detDξ−1

c (Zi)|

f(t+ ∆t, Z1) = (1− γ∆t)f(t, Z1) +
γ∆t

N

∫ C∑
c=1

N∑
i=1

βc(ξ
−1
c (Zi))|detDξ−1

c (Zi)|

(42)

× f(t, ξ−1
c (Zi))

N∏
j=1,j 6=i

f(t, Zj)dZ2 . . . dZN

= (1− γ∆t)f(t, Z1) +
γ∆t

N

C∑
c=1

βc(ξ
−1
c (Z1))f(t, ξ−1

c (Z1))|detDξ−1
c (Z1)|

+
N − 1

N
γ∆tf(t, Z1)
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Formal Taylor expansion in equation (40) yields a differential version leading to the
kinetic equation.

If the function Xi → ξc(Xi) for all c ∈ {1, . . . , C} is not invertible, then a similar
kinetic equation can be derived. This case appears within the particle interaction at
each station. Similarly, to the previous equation, we obtain

F (t+ ∆t, Z) = (1− γ∆t)F (t, Z)(43)

+
γ∆t

N

C∑
c=1

N∑
i=1

∫
βc(Yi)δ(ξc(Yi)− Zi)F (t, Z1, . . . , Yi, . . . , Zn)dYi

f(t+ ∆t, Z1) = (1− γ∆t)f(t, Z1) +
γ∆t

N

∫ C∑
c=1

βc(Y1)δ(ξc(Y1)− Z1)f(t, Y1)dY1(44)

+
γ∆t

N

C∑
c=1

N∑
i=1

∫
f(t, Z1)βc(Yi)δ(ξc(Yi)− Zi)f(t, Yi)dZidYi

f(t+ ∆t, Z1) = (1− γ∆t)f(t, Z1) +
γ∆t

N

∫ C∑
c=1

βc(Y1)δ(ξc(Y1)− Z1)f(t, Y1)dY1(45)

+
N − 1

N
γ∆tf(t, Z1)

Finally, we obtain for non–invertible changes of state ξc and x ∈ R

f(t+ ∆t, x) = f(t, x) +
∆tγ

N

(
C∑
c=1

∫
R`

βc(y)δ(X − ξc(Y ))f(t, Y )dY − f(t, x)

)
.(46)

Clearly, a combination of both processes is possible where part of the change of state
is reversible (invertible) and part not. The corresponding kinetic equation is then a
combination of the terms of equation (40) and (46). This is the case for the presented
production process where C = 3 and c ∈ {1, 2} are invertible processes but c = 3 is not.
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