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SOLVING THE MONGE-AMPÈRE EQUATIONS
FOR THE INVERSE REFLECTOR PROBLEM
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Abstract. The inverse reflector problem arises in geometrical nonimaging optics: Given a light
source and a target, the question is how to design a reflecting free-form surface such that a desired
light density distribution is generated on the target, e.g., a projected image on a screen. This optical
problem can mathematically be understood as a problem of optimal transport and equivalently be
expressed by a secondary boundary value problem of the Monge-Ampère equation, which consists of
a highly nonlinear partial differential equation of second order and constraints. In our approach the
Monge-Ampère equation is numerically solved using a collocation method based on tensor-product
B-splines, in which nested iteration techniques are applied to ensure the convergence of the nonlinear
solver and to speed up the calculation. In the numerical method special care has to be taken for
the constraint: It enters the discrete problem formulation via a Picard-type iteration. Numerical
results are presented as well for benchmark problems for the standard Monge-Ampère equation as
for the inverse reflector problem for various images. The designed reflector surfaces are validated by
a forward simulation using ray tracing.

Key words. Inverse reflector problem, elliptic Monge-Ampère equation, B-spline collocation
method, Picard-type iteration
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1. Introduction. Suppose we have a light source with a given directional char-
acteristic and we would like to generate a prescribed illumination pattern on a target,
e.g., project a logo onto a wall. The classical approach using an aperture has the dis-
advantage that a part of the light hits the aperture and is lost for target illumination.
This efficiency reduction also exists for slide projectors, where some light is absorbed
by the film.

In order to use the entire luminous flux emitted by the light source to illuminate
the target an optical system comprised of one or more free-form reflectors or free-form
lenses can be used instead of an aperture. Then the loss of light can be neglected
and the desired illumination pattern is encoded in the shape of the optical surfaces,
that in general is unknown. In the following we will mainly focus on this kind of
problem with only one mirror, i.e., we shall determine one desired reflecting free-form
surface. This nonlinear inverse problem is called the inverse reflector problem, which
is a well-known problem in nonimaging optics [14, 70].

Already 2000 years ago reflectors projecting images, called Chinese magic mirrors,
have been hand-crafted of bronze in China and Japan, but the recipe has been lost and
reconstructed several times over the ages; see [7] and [46]. Today such free-form optics
are important in illumination applications. For example they are used in automotive
industry for the construction of headlights that use the full light emitted by the lamp
to illuminate the road but at the same time do not glare oncoming traffic; see, e.g.,
[71]. Some other applications include homogeneous illumination for machine-vision
purposes or the realization of prescribed patterns in architecture illumination.

However, the solution of the inverse reflector problem is anything but trivial.
There are many different schemes to determine a desired reflector like the method of
supporting ellipsoids [40, 41] and trial and error approaches [2, 30, 47, 60]. The biggest
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problem of these methods is the computational effort needed to accurately compute
reflectors for complex desired illumination patterns on the target. In the beginning of
the 21st century it turned out that solving a corresponding partial differential equation
(PDE) is a high potential approach for this problem as already indicated in [59] in
2002. This equation is of Monge-Ampère type, which is a family of strongly nonlinear
second order PDEs; see [36] for details on the theory of Monge-Ampère equations.
A first equation of this family was presented by Gaspard Monge at the beginning of
the 19th century in his work “Mémoire sur la théorie des déblais et des remblais” [50]
and studied later again by André-Marie Ampère in 1820 [1]. Equations of this type
often arise in the context of optimal transport problems, where the task is to find
the optimal way to transport excavated material (French: déblai), e.g., sand, to piles
(French: remblai) without losing any of the total mass. These problems often have
an economic background: If one minimizes the cost of transport, which is measured
by a quadratic cost functional, under the constraint of total mass conservation, one
obtains a Monge-Ampère equation. [66] In this spirit, the inverse reflector problem
deals with the transportation of light under the constraint that the total light flux
emitted by the source is redistributed to the target surface.

The rest of this paper is arranged as follows: In Section 2 we review approaches to
solve the inverse reflector problem. Section 3 focuses on the modeling of the inverse
reflector problem via an equation of Monge-Ampère type. Our new approach for
numerically solving equations of Monge-Ampère type is detailed in Section 4. In
particular, we explain how to handle the boundary conditions arising in the inverse
reflector problem. Numerical results for benchmark problems for the Monge-Ampère
equations and for the inverse reflector problem are presented in Section 5. The paper
closes with the conclusion and an outlook in Section 6.

2. State of the art of the solution of the inverse reflector problem.
There are plenty of existing approaches for solving the inverse reflector problem; for a
detailed overview we refer the reader to [57]. Most of those methods can be grouped
into three classes, namely brute-force approaches, methods of supporting ellipsoids, and
Monge-Ampère approaches. We give an overview of these methods in Sections 2.1, 2.2,
and 2.4, respectively. Other techniques which do not fit into these three classes are
discussed in Section 2.3.

2.1. Brute-force approaches. At the beginning of the 21st century many trial
and error methods have been developed. The idea of these iterative schemes is as
follows: For an initial reflector in optical setup the resulting illumination pattern
on the target area is computed using a ray tracing software. Then the illumination
pattern is compared with the desired one, where a typical measure of the error is the
deviation at previously selected test points in the Euclidean norm. Afterwards the
reflector surface is slightly perturbed using ideas from optimization (e.g., simulated
annealing) and the setup with the new reflector is simulated again. If the error has
decreased, the new reflector is used as initial guess for the next iteration and the
procedure is repeated; see, e.g., [2, 30, 47, 60].

The advantage of these methods is, that there are only very few restrictions for
the optical setting. For example even extended light sources and mirrors with different
reflectivities can be considered. However, the main drawback is the computing time
required, because repeated simulations of the setup using costly ray tracing techniques
are needed.

Another approach is presented by Weyrich, Peers, Matusik and Rusinkiewicz [69],
where the mirror is assumed to be comprised of many small facets. Each facet is
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directed to a prescribed position on the target area. This composite reflector in
general has a discontinuous surface, which causes artifacts and is not favorable for
production. Therefore, in order to smoothen the solution in a post-processing step,
the facets are sorted according to their slopes and adjusted with respect to their
heights. Nevertheless, the results have relatively low quality and still show many
artifacts.

2.2. Methods of supporting ellipsoids. An ellipse in the plane in general
has two foci with the property that light emitted at one focus and reflected at the
interior of the ellipse is focused at the second focus. Ellipsoids of revolution in three
dimensions have the same property. Kochengin and Oliker [40, 41] (see also [56])
therefore proposed the following method: For each point on the target which needs
to be illuminated one defines an ellipsoid of revolution whose one focus is located
at the light source and the other one at the target point. However, for each target
point there are infinitely many ellipsoids of revolution with this property only differing
in their diameters. Therefore in an iterative process the diameters of the ellipsoids
are determined starting from some initial guess for each ellipsoid. In each iteration
the reflector is defined as the convex hull of the intersection of the interiors of all
ellipsoids. The result is a reflector whose surface consists of glued surface segments
of ellipsoids of revolution. Since the initial reflector in general does not produce the
desired illumination on the target in every iteration the diameters of each ellipsoid
besides the first one are shrunken until convergence.

This method requires in each step a numerical integration over the emission solid
angles of the source and a large number of optimization steps. Therefore the com-
plexity of this scheme quickly grows with the number K of ellipsoids of revolution.
Suppose we would like to determine a reflector whose reflection on the target is exact
for each target point up to an accuracy γ > 0, then the number of iterations scales

like O(K
4

γ log K2

γ ); see [42]. Therefore it is difficult to use this method for practical
illumination patterns of higher resolution.

For the special case where the target is assumed to be infinitely far away from
the light source Caffarelli, Kochengin, and Oliker [11] developed a variant, which uses
paraboloids of revolution instead of ellipsoids.

2.3. Other methods. The simultaneous multiple surfaces (SMS) method de-
veloped by Miñano et al. [49] constructs rotational symmetric optical systems which
couple a prescribed set of incoming wave fronts with prescribed conjugate wave fronts.
This method was also extended to design optics in non-rotational symmetric cases;
see, e.g., [6]. Optical systems which are computed using the SMS method can be
found in [5, 48, 51]. This method always computes a pair of surfaces. Hence it cannot
be applied to solve the inverse reflector problem with just one reflective surface.

Wang [67, 68] shows that the inverse reflector problem is in fact an optimal
transportation problem. By taking into account also the dual reflector the problem can
be reformulated as a linear optimization problem. Unfortunately, since the number
of linear inequality constraints quickly grows with the number of pixels is too large,
the complexity for the linear programming is very high and thus this method is not
feasible for images of medium or higher resolution.

Another scheme has been developed by Feßler et al. [43, 72], which computes
single refractive or reflective surfaces to produce a prescribed density distribution
on a prescribed target. To the best of the authors’ knowledge the method is not
completely published.
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2.4. Monge-Ampère approaches. The inverse reflector problem statement for
a point light source can be considered as an optimal transportation problem leading
to strongly nonlinear second order PDEs of Monge-Ampère type; see, e.g., [39, 61].

Brickell, Marder end Westcott [10] already in 1977 started to develop methods
to solve the inverse reflector problem based on Monge-Ampère type equations. Later
Engl and Neubauer [25, 52] investigated a conjugate gradient method with certain
constraints to solve this problem via a Monge-Ampère type equation. Ries and
Muschaweck [59] also developed a method based on this type of equations. How-
ever, this numerical method has only been published very fragmentarily to the best
of the authors’ knowledge.

A compromise between a trial and error method and the solution of a PDE is
proposed by Fournier, Cassarly, and Rolland; see [13, 31]. While the case of extended
light sources is considered, which poses many additional problems, the discussion is
restricted to the special case of rotationally symmetric reflectors. In an iteration at
first the reflector for a point light source is computed by solving an ordinary differential
equation. Then the resulting surface is tested using a ray tracing software in a setup
with an extended light source. If the result is not good enough, the differential
equation for a point light source is solved again for an adjusted target illumination
pattern, where the modification comes from the difference between the simulated and
the desired target illumination. This procedure is repeated until a stopping criterion
holds true.

3. Mathematical formulation of the inverse reflector problem. In Sec-
tion 2 we saw that there are many different approaches to solve the inverse reflector
problem. As proposed in the approaches discussed in Section 2.4 we follow the strat-
egy of first modeling the inverse reflector problem using a PDE of Monge-Ampère type
and solving this equation in a second step. We now therefore turn to a formulation
of the problem in mathematical terms. There exist different approaches to deduce an
equation of Monge-Ampère type for this kind of problem [10, 25, 39, 61]. We choose
the formulation from Karakhanyan and Wang [39, Proposition 2.2], which is based
on an energy conservation equation. The advantage of this approach is that for the
special case in which the light source is located in-plane with the target, we obtain
a relatively simple Monge-Ampère equation which will be called a Monge-Ampère
equation of standard type. In the following we use the notation and results given by
Karakhanyan and Wang [39].

In Subsection 3.1 we first define the problem statement. Then a corresponding
equation of Monge-Ampère type is set up in Subsection 3.2 and a result and some
remarks on the existence and uniqueness of the solution of this problem are discussed
in Subsection 3.3.

3.1. Problem statement. Let us now fix the mathematical description of the
problem.

Problem IR. (see, e.g., the introduction in [39])
Let a point light source be given, which emits light in all directions given by the set
U ⊂ S2 := {X ∈ R3 : ‖X‖2 = 1}. The luminous intensity of the source is modeled
by the density function f : U → R+ := {x ∈ R : x > 0}. Furthermore we have a
target area Σ given in implicit form as Σ := {Z ∈ R3 : ψ(Z) = 0} for an appropriate
function ψ. Let g : Σ→ R+ be a prescribed density function on the target area Σ.

Find a reflector Γ which redistributes the entire light emitted from the light source,
such that the given target illumination defined by g is generated; see Figure 3.1.
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Figure 3.1: Sketch of the point light source, reflector Γ, and target Σ.

3.2. Monge-Ampère equation. We now aim at deriving the Monge-Ampère
type equation corresponding to Problem IR. Therefore we first parameterize the de-
sired reflector by Γ := {ρ(X)X : X ∈ U}, where ρ : U → R+ is an appropriate dis-
tance function. As already indicated in Figure 3.1 we assume that U is located in the
northern hemisphere of S2, such that each X ∈ U can be expressed by X = (x, ω(x))T

where x ∈ R2 and ω := ω(x) :=
√

1− ‖x‖22. Therefore we can use the domain
Ω := {x ∈ R2 : (x, ω(x))T ∈ U} in R2 to parameterize the set U ⊂ R3.

Under these assumptions Karakhanyan and Wang [39, Proposition 2.2] give a
PDE for Problem IR for the desired function ρ. However, substituting ρ by 1

u results
in an equation with slightly simpler expressions (see [39, Remark 2.1]), which leads
to the following result.

Theorem 3.1. (see [39, Remark 2.1 and Proposition 2.2])
Let the density functions f and g be given, satisfying the energy conservation∫

U

f dS =

∫
Σ

g dS.(3.1)

Moreover, let the shape of Σ be defined by the function ψ as in Problem IR. Define

ω :=
√

1− ‖x‖22, t := 1− uz3

ω
,

ã := ‖Du‖22 − (u−DuTx)2, D̂u := (Du, 0)T ,

b̃ := ‖Du‖22 + u2 − (DuTx)2, N := I +
xxT

ω2
,

and

X = (x, ω), Z0 :=
2

ã
D̂u, Z =

1

u
X + t

(
Z0 −

1

u
X

)
,
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where X = (x1, x2, x3)T ∈ U and Z = (z1, z2, z3)T ∈ Σ. We assume that t > 0, i.e.,
ω
u > z3, and ∇ψT (Z− 1

uX) > 0. Then the inverse reflector problem states:
Find a function u : Ω→ R, such that

det

(
D2u+

ãz3

2tx3
N
)

= − (uZ0 −X) · ∇ψ
t2‖∇ψ‖2ω

· ã
3

4b̃
· f(X)

ωg(Z)
in Ω and(3.2)

T : U → Σ, X 7→ Z is surjective.(3.3)

Let us note some comments on the above theorem.
Remark 1.
a) The assumption ω

u > z3 means, that the third component of the vector that
corresponds to the position where a light ray hits the reflector is larger than
the third component of the point where this light ray hits the target Σ after
reflection. In other words, the light ray must be directed downwards after the
reflection.

b) The second condition ∇ψT (Z− 1
uX) > 0 is needed for a technical reason and

just fixes the direction of the normal on Σ. If this constraint is not fulfilled
one can simply replace ψ(Z) by −ψ(Z) for all Z ∈ R3.

c) If one sets z3 ≡ 0, the equation (3.2) simplifies to

det
(
D2u

)
= − (uZ0 −X) · ∇ψ

‖∇ψ‖2ω
· ã

3

4b̃
· f(X)

ωg(Z0)
,(3.4)

which is a Monge-Ampère equation of standard type, i.e., the left hand side
is only the determinant of the Hessian of u; see [39, Remark 2.1].

3.3. Existence and uniqueness. The existence of solutions of Problem IR is
ensured by the following result.

Theorem 3.2. (see [39, Theorem A])
Suppose we have two functions f and g which fulfill the energy conservation condition
(3.1) as in Theorem 3.1. Let moreover p be an element of the light cone CU of the
light source, i.e.,

p ∈ CU := {p ∈ R3 :
p

‖p‖2
∈ U},

and one of the conditions
a) ‖p‖2 > 2 supq∈Σ ‖q‖2 or

b) Σ ⊂ CV := {tX : t > 0,X ∈ V } for a region V ⊂ S2 with Ū ∩ V̄ = ∅
is satisfied. Then there exists a reflecting surface, which is the solution of the inverse
reflector problem IR and contains the point p.

We first notice that the solution is not unique. If we have a solution for one
p ∈ CU , we know that there exist other solutions for cp for each c > 1.

Even if we fix p ∈ CU , there are at least two solutions that contain p. A solution
is called R-convex if it fulfills an ellipticity constraint, i.e., the matrix D2u + ãz3

2tx3
N

in (3.2) is required to be positive definite. Moreover, a solution is defined to be R-
concave, if this matrix is negative definite. In [39, Section 7] one can find a sketch
of a proof that for a fixed p ∈ CU there are exactly one R-convex and one R-concave
solution. Therefore we need at least to fix the size of the reflector by a point p and
search for either a R-convex or a R-concave solutions to obtain uniqueness. This is a
necessary condition to ensure well-posedness of the problem.
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4. Solving the Monge-Ampère equations. We now discuss methods to nu-
merically solve equations of Monge-Ampère type, which is particularly difficult due
to the strong nonlinearity of this type of equations.

After an overview of numerical solvers for Monge-Ampère type equations in Sub-
section 4.1 we discuss our approach in Subsection 4.2. In order to improve the conver-
gence properties and to speed up the solution, a multilevel technique will be introduced
in Subsection 4.3. Since the existence and uniqueness of a solution is guaranteed, if the
Monge-Ampère type equation fulfills an ellipticity condition (see, e.g., [64, Theorem
1.1 and Remarks (i)]), we ensure that this condition holds true by adding a convexity
constraint to the equation as detailed in Subsection 4.4. Since the boundary condi-
tion (3.3) cannot be considered directly, the section closes with the presentation of a
technique to realize this type of boundary conditions in Subsection 4.5.

4.1. State of the art. There are several other numerical methods for the solu-
tion of Monge-Ampère type equations known, but most of them have clear limitations.
Usually the algorithms are only designed to handle boundary value problems for the
Monge-Ampère equation of standard type

det(D2u(x)) = f(x)(4.1)

for any x ∈ Ω ⊂ R2 with Dirichlet boundary conditions u(x) = g(x) for x ∈ ∂Ω. In
particular, in this case the left-hand side determinant may only depend on the Hessian
of the solution, but no perturbations in the determinant like det(D2u + A) = f for
a matrix A are permitted. Numerical methods for this Monge-Ampère equation of
standard type can for example be found in [3, 4, 8, 18, 19, 27, 55].

In order to solve the inverse reflector problem we search for a solution of the
Monge-Ampère equation given in Theorem 3.1. Since equation (3.2) is strongly non-
linear with rather cumbersome terms it is very difficult to analyze this equation par-
ticularly with regard to weak formulations. To the best knowledge of the authors,
there is no closed theory on weak formulations in the classical sense for equations of
Monge-Ampère type available. Hence, Feng and Neilan [27, 28, 29] introduce a new
type of weak solution called the moment solution and investigate the following ansatz.
They embed strongly nonlinear PDEs into linear PDEs of higher order and study the
limit of vanishing highest order term. For example, the Monge-Ampère equation (4.1)
is embedded into an quasilinear elliptic PDE of fourth-order with highest order term
ε∆2u with ε > 0, where the limit ε→ 0 is studied. Such a scheme is called vanishing
moment method; for details we refer to [27, 28, 29].

Another interesting approach has recently been published by Brenner et al. [8]
and by Brenner and Neilan [9]. They propose a finite element method that leads
to a sophisticated consistent discretization and show that the corresponding discrete
linearized problem is stable. The main idea is to employ standard continuous Lagrange
finite elements instead of finite elements with higher smoothness and to use penalty
terms, like those applied in Discontinuous Galerkin methods, to demand for regularity
of the solution across interfaces.

In view of practical applications like the inverse reflector problem, it is necessary
that a numerical solver efficiently treats Monge-Ampère equations of standard type
as well as perturbed equations with Neumann boundary conditions. At least one of
the two methods given by Benamou, Froese, and Oberman [4] supports Neumann
boundary conditions but is only suited to solve Monge-Ampère equations of standard
type. In a subsequent work Froese [32] presents a method for Monge-Ampère type
equations arising in optimal transportation problems. She uses a Neumann boundary
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condition and the right hand side of the Monge-Ampère equation of standard type
(4.1) is allowed to also depend on the gradient of u. The method by Brenner et al. [8]
also permits this dependency on the right hand side.

A detailed overview for numerical methods for fully nonlinear second order PDEs
including methods for Monge-Ampère type equations can be found in the review
article [26] by Feng, Glowinski, and Neilan.

4.2. Spline collocation method. We now explore a different simple but very
flexible approach for the solution of the Monge-Ampère type equations: The colloca-
tion method can directly be applied to the strong formulation such as (3.2).

The solution is approximated in a finite-dimensional trial space, in our case we
choose the space of spline functions because of its good approximation properties.
The spline space is spanned by B-spline functions which form an advantageous basis
due to its flexible manageability. Moreover this basis is well-known to be numerically
very stable and the functions are of minimal support, which favors sparsity in the
collocation matrices.

The rest of this subsection is arranged as follows: First we formulate the colloca-
tion method in Subsection 4.2.1. The trial space and a modified B-spline basis that
is suited for our particular choice of the collocation points are set up in one spatial
dimension in Subsections 4.2.2 and 4.2.3. Finally, the trial space is extended to the
two-dimensional case in Subsection 4.2.4 via a tensor construction.

4.2.1. Collocation. Let us now formulate the collocation method for a general
second order PDE and therefore introduce some notation. Let Ω := (a, b)×(c, d) ⊂ R2

be a rectangular domain and let the boundary value problem be given as

F (x, y, u(x, y),Du,D2u) = 0, for (x, y)T ∈ Ω,(4.2)

G(x, y, u(x, y),Du) = 0, for (x, y)T ∈ ∂Ω.(4.3)

We approximate the exact solution in a finite-dimensional trial subspace, say of di-
mension n ∈ N, spanned by some basis functions B1, ..., Bn ∈ C2(Ω). Then the
approximate solution is written as û(x, y) :=

∑n
i=1 ciBi(x, y), where (x, y)T ∈ Ω̄ and

c1, ..., cn are the desired coefficients.
Of course we cannot expect such a discrete solution to fulfill the PDE exactly in

the whole domain Ω. The idea of the collocation method is that the PDE should be
fulfilled pointwise at certain collocation points. Therefore we choose n appropriate
pairwise different collocation points, i.e., we select two finite and nonempty subsets
Ω̂ ⊂ Ω and ∂Ω̂ ⊂ ∂Ω with cardinality |Ω̂ ∪ ∂Ω̂| = n. Our problem (4.2), (4.3) is then
required to be fulfilled exactly at these points, i.e., we end up with a discrete problem
which is the nonlinear system of equations

F (τ, µ, û(τ, µ),Dû,D2û) = 0, for (τ, µ)T ∈ Ω̂,(4.4)

G(τ, µ, û(τ, µ),Dû) = 0, for (τ, µ)T ∈ ∂Ω̂.(4.5)

Now we can use some Newton-type method to solve (4.4). For reasons of better
stability we favor the application of the double-dogleg method (see, e.g., [24]), which
is a trust region algorithm of quasi-Newton type. We use the variant proposed by
Dennis and Mei [23], where we invoke an algorithm by Nielsen [53] for the choice of
the trust region radius after each iteration step. Adequate stopping criteria for the
iteration process can be found in [45].

Next we will discuss the choice of appropriate basis function and collocation
points.
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4.2.2. B-splines. Let us briefly recall the definition of B-splines, which are the
fundament of our basis functions, using the notation of [15].

Definition 4.1. Let [a, b] ⊂ R be a given interval that serves as the domain
of the basis functions. For B-splines of order n ∈ N we define for a fixed N ∈ N a
strictly increasing knot sequence T = {ti}N+n

i=1 ⊂ R with

t1 < ... < tn := a < ... < tN+1 := b < ... < tN+n.(4.6)

For i = 1, ..., N the i-th B-spline Ni,n of order n is then defined by the Cox-de Boor
recursion formula

Ni,1(x) := χ[ti,ti+1)(x) :=

{
1, if x ∈ [ti, ti+1),

0, otherwise,
if n = 1 and

Ni,n(x) :=
x− ti

ti+n−1 − ti
Ni,n−1(x) +

ti+n − x
ti+n − ti+1

Ni+1,n−1(x) if n ≥ 2.

Remark 2. The condition of a strictly increasing knot sequence (4.6) can be
relaxed using de l’Hôpital’s rule and multiple knots can be permitted; see, e.g., [17,
Chapter IX] or [58, Section 2.2].

In the following we fix the outer knots in (4.6) at the boundary, i.e., we set
t1 := ... := tn−1 := a and tN+2 := ... := tN+n := b. Multiple knots for the interior
knots tn, ..., tN+1 result in less smooth B-splines. Since we want to solve a PDE of
second order, we need basis functions which are twice differential. To have minimal
computational efforts while fulfilling this constraint we choose the lowest possible
order, which is n = 4, i.e., cubic splines, and avoid multiple knots inside (a, b).

Remark 3. Since the left outer knots all coincide with the left boundary a,
N1,n is the only B-spline with a non-zero function value at the left boundary point
a. Moreover, the first derivative of Nj,n vanishes at a for all j > 2 and the second
derivative of Nj,n vanishes at a for all j > 3. By symmetry, the same holds for the
B-splines at the right boundary point b.

4.2.3. Collocation points and modification of the B-spline basis. In order
to uniquely define a spline from our spline space it suffices to set N linear independent
conditions, e.g., to prescribe the function values at N appropriate different nodes. The
knots themselves are possibly a good choice for these nodes. However, we only have
N−2 knots in [a, b], that is there are two open degrees of freedom. There are different
ways to handle open degrees of freedom, e.g., by setting a not-a-knot condition [17,
Chapter IV]. Another possibility is to modify the trial space by lowering the dimension
of the spline space, which we will discuss next.

For our purpose it is crucial to keep the approximation properties of the trial
space. Therefore it is necessary that each (Taylor-)polynomial of degree ≤ n− 1 can
still be reproduced and consequently at least n basis functions must be supported
in each subinterval. With regard to the boundary conditions and the clearness of
the construction of the modified basis, we build new basis functions at the boundary
of the interval [a, b]. Without loss of generality we can restrict ourselves to the left
boundary case, the right boundary case is handled analogously by symmetry.
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In order to modify as few basis functions as possible we choose four new basis
functions from the span of the first five B-splines, i.e., we write

Bi,4 :=


∑5
j=1 ai,jNj,4 for i = 1, ..., 4,

Ni+1,4 for i = 5, ..., N − 6,∑N
j=N−4 ai,jNj,4 for i = N − 5, ..., N − 2

for some coefficients ai,j ∈ R, which still have to be determined. Note that this
approach of gluing B-splines at the boundary is similar to the procedure used in
the construction of WEB-splines [38] where some B-splines are glued to improve the
numerical stability of the basis, i.e., to lower its condition number.

From Marsden’s identity we can derive

xm =

N∑
j=1

(−1)n−1−mψ(n−1−m)
j,n (0)

(n− 1) · ... · (m+ 1)
Nj,n(x) with ψj,n(y) :=

n−1∏
l=1

(tj+l − y)(4.7)

for m = 0, ..., n− 1; see, e.g., [15, (2.3.3)].
Furthermore the coefficient matrix A := [ai,j ]i=1,...,4, j=1,...,5 has to be chosen in

such a way, that for each m ∈ {0, 1, 2, 3} there exist coefficients {ci,m}N−2
i=1 so that

xm =

N∑
i=1

ci,mBi,4(x)

=

5∑
j=1

(
4∑
i=1

ci,mai,j

)
Nj,4 +

N−5∑
i=6

ci,mNi+1,4 +

N∑
j=N−4

(
N−2∑
i=N−5

ci,mai,j

)
Nj,4(4.8)

holds. Setting C := [ci,m]1≤i≤4, 0≤m≤3 and equating the coefficients of Nj,4 for j =
1, ..., 5 in (4.7) and (4.8) yields the system of linear equations

ATC = B(4.9)

where B := [bj,m]1≤j≤5, 0≤m≤3 with bj,m :=
(−1)n−1−mψ

(n−1−m)
j,n (0)

(n−1)·...·(m+1) . Now we have to

choose the matrix A, such that (4.9) has a solution matrix C.
The trivial solution is A := BT and C := I, where I ∈ R4×4 is the identity

matrix. In other words the new basis elements then are exactly the monomials 1, x,
x2, and x3 at the first subinterval. The disadvantage of this solution is, that the new
basis functions are not shift invariant, i.e., they depend on the location of the knots
in the knot sequence T . Therefore we will search for a more favorable solution of shift
invariant functions.

For this purpose let us choose the ansatz (BP )P−1 = B for an invertible matrix
P ∈ R4×4 and set A := (BP )T and C := P−1. Thus the idea is to define the matrix
AT using appropriate column operations acting on B, such that AT has a preferably
simple form.

Of course the choice of P is not unique, such that we can prescribe additional
conditions, e.g., in the spirit of the properties of the B-spline functions observed in
Remark 3. For Dirichlet boundary conditions it is advantageous, if only one basis
function is nonzero at the boundary. The same holds true for Neumann boundary
conditions when the first derivative of the basis functions is considered. Moreover, for
natural spline interpolation (see, e.g., [17, Chapter IV]) it is convenient if only one
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basis function has a non-vanishing second derivative at the boundary. The following
choice provides us with a basis which has all these handy properties.

Suppose that we have an equidistant knot sequence with multiple knots at the
boundary, i.e., T = {ti}N+4

i=1 ⊂ [a, b] ⊂ R with

ti :=


a, if 1 ≤ i ≤ 4,

a+ b−a
N−3 (i− 4), if 5 ≤ i ≤ N,

b, if N + 1 ≤ i ≤ N + 4.

(4.10)

After some elementary computations for this particular case, we can determine an
invertible matrix P such that

A = (BP )T =


1 0 0 0

1 1
4 0 0

1 3
4

1
2 0

3
4

15
16

3
4

1
4

0 0 0 1



T

.(4.11)

Note that the matrix A is independent of the knots, such that our new basis functions
inherit the shift invariance from the B-splines. A plot of the resulting four new basis
functions is given in Figure 4.1.

B1,4

B2,4

B3,4

B4,4

x

y

0.5

1

t1 = t2 = t3 = t4 t5 t6 t7 t8 t9

Figure 4.1: Modified basis functions given by A in (4.11).

Remark 4. Due to the conditions imposed and the properties pointed out in
Remark 3, the matrix AT in (4.11) has a lower triangular structure.

4.2.4. Tensor-product B-spline basis. Since we aim at solving equations of
Monge-Ampère type on a two-dimensional rectangle R = [a, b]× [c, d] ⊂ R2, we next
define the spline space on R using the usual tensor product construction. Let T1 be
the knot sequence as in (4.10) for the interval [a, b] and T2 the analog knot sequence
for [c, d]. As in Section 4.2.2 for both T1 and T2 we define B-splines of order n1 and
n2, respectively. We then define tensor-product B-splines by

Ni,j;n1,n2
(x, y) := Ni,n1

(x)Nj,n2
(y)

for i = 1, ..., N1, j = 1, ..., N2 and (x, y) ∈ [a, b]× [c, d].
Using the same arguments as in Subsection 4.2.2 we set n1 = n2 = 4 and restrict

ourselves to knot sequences that are equidistant in the inner of the intervals. As



12 BRIX, HAFIZOGULLARI, AND PLATEN

ansatz functions in our collocation method in Subsection 4.2.1 we use the modified
tensor-product basis functions

Bi,j;4(x, y) := Bi,4(x)Bj,4(y)

for i = 1, ..., N1− 2 and j = 1, ..., N2− 2 and, as in [17, Chapter XIII], the collocation
points

Ω̂ := {(τ, µ)T ∈ Ω : τ ∈ T1, µ ∈ T2} ⊂ Ω,

∂Ω̂ := {(τ, µ)T ∈ ∂Ω : τ ∈ T1, µ ∈ T2} ⊂ ∂Ω,

which are the knots of the B-splines.

4.3. Nested iteration. Splines are particularly suitable for multilevel strate-
gies, because of the following property: Suppose we have a knot sequence T̂ :=
{t̂i}M+n

i=1 ⊂ R for the interval [a, b] ⊂ R as in (4.10) and a second knot sequence

T := {ti}N+n
i=1 for [a, b] ⊂ R that is obtained from T̂ by inserting new knots. Then the

corresponding spline spaces Sn(T̂ ) and Sn(T ) of order n ∈ N are nested, i.e., Sn(T̂ )
is a subspace of Sn(T ).

Since we use a Newton-type method for solving the discrete nonlinear problem
(4.4), (4.5) we need an initial guess that is preferably close to the solution. Otherwise
solving the problem could be very time consuming or even infeasible, because the
Newton-type method might not converge. We therefore follow an approach based
on nested iteration: Our computation starts on a very coarse grid. After calculating
the solution for this coarse problem, we refine the mesh by knot insertion, e.g., we
halve the mesh size in each coordinate direction. Since the spline spaces of the coarse
and refined knot sequences are nested, the coarse solution is also contained in the
spline space corresponding to the finer mesh and can be used as the initial guess. We
continue with this process until we reach the desired grid resolution.

To be more precise, assume we have N = N1 = N2, i.e., the number of knots is the
same in each coordinate direction. Let us now solve the discrete nonlinear problem
on a grid with N∗ knots in each direction. We start with the coarsest reasonable
grid possible in our situation such that the boundary basis functions do not overlap,
which is of size N0 := 11, and after each iteration we halve the mesh size. Then after
nested iteration k ∈ N there are Nk := 2Nk−1−1 knots in the grid in each coordinate
direction. If Nk+1 ≥ N∗ we interpolate the solution obtained from the k-th iteration
to the fine grid with N∗ × N∗ knots using spline interpolation and solve the final
nonlinear problem.

4.4. Convexity constraint for Monge-Ampère equations. In order to show
the existence and the uniqueness of solutions of Monge-Ampère type equations, it is
often required that the equation is elliptic with respect to the solution; see, e.g., [64,
Theorem 1.1 and Remarks (i)] or [63].

A nonlinear PDE F [u] = F (·, u,Du,D2u) = 0 is said to be elliptic, if the matrix

[
∂F

∂rij
(γ)

]
i,j

:=


∂F
∂r11

(γ) ... ∂F
∂r1n

(γ)
...

...
∂F
∂rn1

(γ) ... ∂F
∂rnn

(γ)

(4.12)

is positive definite for all γ = (x, z, p, r) ∈ V ⊂ Ω × R × Rn × R̃n×n, where R̃n×n
denotes the space of symmetric n× n matrices; see, e.g., [35, Chapter 17].
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In case of a general Monge-Ampère equation

det
(
D2u+A(·, u,Du)

)
= f(·, u,Du) in Ω(4.13)

with appropriate boundary conditions we have the following result.
Lemma 4.2. Let Ω ⊂ Rn be a domain, u ∈ C2(Ω), and let A be a symmetric

n× n matrix. It is necessary and sufficient to ensure ellipticity for (4.13) that

D2u+A(·, u,Du) is positive definite.(4.14)

Consequently the right-hand side f has to be positive to allow elliptic solutions.
Proof. For A ≡ 0 this result has been proven, e.g., in [33, Lemma 1]. Otherwise,

the result is also well-known (see, e.g., [63]), but the authors could not find a proof
in the literature. We therefore extend the proof given by Froese and Oberman [33,
Lemma 1] to this more general result.

Let W̃ be the cofactor matrix of the symmetric matrix W := D2u + A; see,
e.g., [62, Section 4.3] for a definition. As a consequence of Cramer’s rule we have
W−1 det(W) = W̃T . It follows that W̃ is positive definite if and only if W is positive
definite. Therefore we only have to prove that

Dr det(W) :=

[
∂ det(W)

∂(D2u)i,j

]
i,j

= W̃(4.15)

is true, which is an alternative expression of (4.12) for the Monge-Ampère equation
(4.13).

Expanding the determinant along the i-th row using Laplace’s formula yields

det(W) =

n∑
j=0

W̃i,jWi,j =

n∑
j=0

W̃i,j((D
2u)i,j +Ai,j).

By definition the cofactor W̃i,j is independent of Wi,j and therefore of (D2u)i,j as
well. In addition, the matrix A is independent of D2u, such that we have

∂ det(W)

∂(D2u)i,j
= W̃i,j .

We therefore proved that (4.12) for the Monge-Ampère equation (4.13) is positive
definite if and only if D2u+A is positive definite.

Remark 5. In case that A ≡ 0, the Hessian matrix D2u must be positive definite
to ensure ellipticity for (4.13), which means that u has to be strictly convex. Therefore
condition (4.14) can be viewed as some kind of convexity condition.

As proposed in [33, 34] we take (4.14) into account as an additional constraint.
Note that the positive definiteness of a symmetric matrix from R2×2 is equivalent to a
positive determinant and positive diagonal entries. The positivity of the determinant
is guaranteed if f > 0. To forbid solutions with non-positive diagonal entries in the
matrix (4.14) we define the modified determinant

det+(W) := max{0,W1,1}max{0,W2,2} −W2
1,2,

which is non-positive if at least one diagonal entry is non-positive and otherwise equals
det(W). This idea is similar to the modified determinant in [33, 34] and also in [32,
Section 4.3].
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To avoid problems, such as non-uniqueness of a solution in case of a singularity,
where D2u+A has an eigenvalue equal to zero, we introduce a parameter λ ≥ 0 and
subtract a penalty term

det+
λW := det+W − λ

[
(min{0,W1,1})2 + (min{0,W2,2})2

]
(4.16)

to ensure that the modified determinant has a negative value instead of just a non-
positive value. This was done similarly by Froese [32, Section 4.3]. Now we replace
the determinant in (4.13), consider the equation

det+
λ

(
D2u+A(·, u,Du)

)
= f(·, u,Du)(4.17)

instead, and obtain the following result.

Lemma 4.3. Let Ω ⊂ R2 be a domain, u ∈ C2(Ω), and f > 0. If u is a
classical solution of the modified Monge-Ampère equation (4.17), then u also solves
the original equation (4.13) and simultaneously fulfills the ellipticity constraint (4.14)
and vice versa.

Proof. Let u ∈ C2(Ω) be a classical solution of (4.17) andW := D2u+A(·, u,Du).
Since det+

λW = f > 0, the diagonal entries of W are positive because otherwise
we would have det+

λW ≤ 0 < f . Therefore f = det+
λW = detW holds true. It

immediately follows, that u also solves (4.13) and (4.14) simultaneously.

Conversely, if u solves (4.13) and (4.14), the diagonal entries of W are positive
and we have f = detW = det+

λW.

4.5. Boundary conditions for the inverse reflector problem. Let us now
come back to the solution of the inverse reflector problem. The equation of Monge-
Ampère type (3.2) in Theorem 3.1 already is of the desired form (4.2) to be treated
by the collocation method. But this is not true for the boundary condition (3.3),
because it is a constraint for the desired mapping T on the whole domain U and not
only for T restricted to the boundary of U , i.e., for T |∂U . Thus condition (3.3) is not of
the general form (4.3), which makes it difficult to handle. To overcome this problem
we first assume that the boundary of U is supposed to be mapped by T onto the
boundary of Σ and the interior of U to the interior of Σ. To the best of the authors’
knowledge this assumption has not yet been proven to hold for the inverse reflector
problem. But it is worthwhile noting that when the mirror surface is interpreted as
an extended light source this assumption corresponds to the edge ray principle from
nonimaging optics [70, Chapter 3]. In brief, it states that when the rays emitted at
the boundary of the light source, the edge rays, are mapped to the boundary of the
target it is ensured that all other rays emitted by the light source are also mapped to
the target, i.e. energy conservation holds.

However, Froese [32] discussed a simpler but related problem where a similar
assumption to (3.3) holds true and she proposed to replace this assumption by a
simpler boundary condition. Therefore we follow her strategy proposed in [32, Section
3.3] to render our boundary condition manageable.

The idea is to first replace the constraint (3.3), i.e., T (U) = Σ, by T (∂U) = ∂Σ.
Since we work on Ω, which is isomorphic to U , we write T (∂Ω) = ∂Σ. We then only
need to prescribe the normal component of the mapping T |∂Ω, such that we obtain
the boundary condition

T (·, u,Du)T ν(·) = φ(·) in ∂Ω,(4.18)
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where ν is the outer normal vector of ∂Ω and the normal component φ of T is an a
priori unknown function.

Unfortunately, we now have a circular dependency problem. If we knew φ, we
would have the boundary condition in the desired form (4.2). Of course if the solution
u∗ of the problem and therefore the correct mapping T ∗ is known, then φ(x) =
T ∗(x, u∗,Du∗)T ν(x). But the function φ is unknown unless the solution of Problem IR
is solved, where the boundary condition is needed to identify the solution.

In order to disrupt this circular dependency problem, a Picard-type iteration has
been proposed in [32] for a similar but different problem: We iterate and start with an
initial guess φ0. For k = 1, 2, ... we determine φk by first solving the Monge-Ampère
equation (3.2) with boundary condition (4.18) using φk−1 instead of φ. The solution
uk−1 defines a reflector mapping T k−1 := T (·, uk−1,Duk−1), which not necessarily
maps ∂Ω onto ∂Σ but onto ∂Σk−1 for the image Σk−1 of the mapping T k−1, which
in general differs from Σ. In order to correct this we apply the orthogonal projection
of ∂Σk−1 onto ∂Σ using the standard scalar product and define

φk(x) :=

[
arg min
z∈∂Σ

∥∥z− T k−1(x, uk−1,Duk−1)
∥∥2

2

]
ν(x) for x ∈ ∂Ω.(4.19)

The boundary condition then reads[
T (x, uk,Duk)− arg min

z∈∂Σ

∥∥z− T (x, uk−1,Duk−1)
∥∥2

2

]T
ν(·) = 0 for x ∈ ∂Ω,

where uk−1 is known and uk is the desired interim solution in step k.
Existence. For the solution of the inverse reflector problem we need to ensure the

conservation of energy (3.1). In order to obtain the correct φ, we solve the reflector
problem for φk and therefore for a different target Σk for k = 1, 2, ... in the Picard-
type iteration. The energy conservation then holds for Σk. Note that the prescribed
density function g on the target Σ of Problem IR can be continued with zero outside
of Σ. However, we need to compensate for the difference in energy and ensure the
energy conservation condition to hold on Σ by scaling the density function f with an
appropriate constant c > 0 defined by

c :=

∫
Σk g dS∫
Σ
g dS

;

see [32, Section 3.4]. Since we do not know Σk, also c is unknown. Thus, we introduce
c as a new degree of freedom in our subproblems for the different right hand sides φk

of the boundary condition (4.18) for k = 1, 2, ... and replace f in the Monge-Ampère
equation (3.2) by cf which guarantees the existence of a solution.

Uniqueness. However, we cannot expect that there is only one R-convex solution,
i.e., a solution of the Monge-Ampère equation (3.2) in the elliptic case, for each inverse
reflector problem. In fact there are infinitely many solutions; see Subsection 3.3. One
possible choice of a condition to ensure uniqueness is to fix the size of the reflector.
The reflector is parameterized by the distance function u, which controls the size of
its shape. Hence, similar to [32, Section 3.4], we fix a parameter G > 0 and add the
constraint ∫

Ω

u(x) dx = G.(4.20)
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Resulting problem. Collecting all the conditions, we obtain the subproblems

det+
λ

(
D2uk +A(x, uk,Duk)

)
= cb(x, uk,Duk) for x ∈ Ω,

T k(x)T ν(x) = φk−1(x) for x ∈ ∂Ω,∫
Ω

u(x) dx = G

for k = 1, 2, ..., kmax, where uk and c are the unknowns, G > 0 and λ ≥ 0 are fixed
parameters, b equals the right hand side of the Monge-Ampère equation (3.2), and
φk−1 is the orthogonal projection as defined in (4.19).

Remark 6. There is not plenty of existence and uniqueness theory available
for equations of Monge-Ampère type, in particular not for the general case where the
determinant does not only depend on the Hessian of u. The most adequate theorems
for our situation found by the authors are formulated in [44, Theorem 1.1] and [64,
Theorem 1.1] with Neumann boundary conditions. But unfortunately this cannot be
applied because of the missing regularity of the boundary ∂Ω and the fact that our
boundary conditions are nonlinear. However, it is worth noting that both theorems
say that under some conditions there exists a unique solution of the elliptic Monge-
Ampère type equation, so the ellipticity constraint (4.14) is important.

5. Numerical simulations. In this section we present some test cases which we
use to verify our numerical solver for the inverse reflector problem. First we consider in
Subsection 5.1 five benchmark test cases for the Monge-Ampère equation of standard
type (4.1). Since these have also been discussed by Froese and Oberman [33, 34],
we can compare the convergence behavior of their and our methods. Afterwards we
discuss results for the inverse reflector problem in Subsection 5.2.

General implementation remarks. All the computations have been carried out on
a standard personal computer equipped with an AMD Phenom II X4 955 processor
running at 3.2 GHz. In order to verify the numerical solutions of the inverse reflector
problem we perform a forward simulation of the reflector using the ray tracing software
POV-Ray [12].

Note that in each iteration of the nonlinear solver, i.e., in each Newton itera-
tion, in our collocation method we solve a sparse system of linear equations. For
this purpose we use the unsymmetric multifrontal sparse LU factorization package
(UMFPACK) [16].

5.1. Test cases for the Monge-Ampère equation of standard type. We
first define in Subsection 5.1.1 five test cases. The results are given in Subsection 5.1.2.

5.1.1. Five test cases. Let us define Ω := (0, 1)×(0, 1) ⊂ R2, x := (x, y)T ∈ Ω,
and x0 := ( 1

2 ,
1
2 )T ∈ Ω. We consider five examples for the Monge-Ampère equation of

standard type with Dirichlet boundary conditions, i.e.,

det
(
D2u(x)

)
= f(x) for x ∈ Ω and u(x) = g(x) for x ∈ ∂Ω.(5.1)

In the following examples the exact convex solution is known and the boundary func-
tion g is given as the restriction of the exact solution to the boundary ∂Ω.

In the first example [4, 20, 33, 34] the solution is in C2(Ω) and radially symmetric.
The exact solution and the right hand side of the Monge-Ampère equation (5.1) are
given by

u(x) = exp

(‖x‖22
2

)
and f(x) =

(
1 + ‖x‖22

)
exp

(
‖x‖22

)
.(5.2)
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The second example, also taken from [33, 34], has a solution u in C1(Ω) and is
defined by

u(x) =
1

2
(max{0, ‖x− x0‖2 − 0.2})2

and f(x) = max

{
0, 1− 0.2

‖x− x0‖2

}
.(5.3)

A solution which is in C2(Ω) but whose gradient has a singularity near (1, 1)T ∈
∂Ω has also been discussed in [4, 19, 20, 33, 34]. This third example is given by the
exact solution

u(x) = −
√

2− ‖x‖22 with right-hand side f(x) = 2
(
2− ‖x‖22

)−2
.(5.4)

The solution u is also in W 1,p(Ω) for any p ∈ [1, 4); see also [20].
In the fourth example, also taken from [4, 33, 34], the solution is only Lipschitz

continuous, i.e., the solution u is in C0,1(Ω), and is defined by

u(x) = ‖x− x0‖2 with right-hand side f = πδx0
,(5.5)

where f is defined by the Dirac delta distribution. Note that u is an Aleksandrov
solution; see [33, 34] for the details. In [4, 33, 34] the distribution is approximated by a
piecewise constant function. On a ball of radius h/2, where h is the spatial resolution
of the grid, the approximation fh takes a value such that integral over the ball is
conserved. This leads to

fh(x) :=

{
4/h2, for ‖x− x0‖2 ≤ h/2,

0, otherwise.

For the fifth and last example the exact solution is unknown such that we can not
compare the results with the exact solution. Nevertheless, Dean and Glowinski [18,
21, 22] and also Feng and Neilan [28] discussed this test case with right-hand side

f := 1(5.6)

and Dirichlet homogeneous boundary condition. Feng and Neilan [28] remark that
there exist a unique convex viscosity solution but no classical one.

Remark 7. Froese and Oberman [34] claim the solution of (5.5) to be u(x) =√
‖x− x0‖2 which is neither a convex function nor a solution to this right-hand side,

but it seems that they used the correct version of (5.5) in their numerical experiments.
This is probably a mistake in writing.

Remark 8. The existence of a solution is guaranteed for the first four test cases
due to their definitions. For the uniqueness we refer to the general result [35, Corollary
17.2] for classical solutions, which states for our case in (5.1) as follows:

Let Ω ⊂ R2 be a domain. Suppose u, v ∈ C0(Ω̄) ∩ C2(Ω) are strictly convex and
we have det(D2u) = det(D2v) in Ω and u = v on ∂Ω. We then have u ≡ v in Ω as
well.

5.1.2. Results for the five test cases. We now apply our solver to the five test
cases introduced in Subsection 5.1.1, that all impose Dirichlet boundary conditions.
We still have to fix λ ≥ 0 for the penalty term of our modified determinant det+

λ in
(4.17), which we use to ensure the ellipticity of the Monge-Ampère equation (5.1).
Since this additional term vanishes for the exact solution we should use a large value.
Preliminary tests reveal that λ = 103 is a good choice for all subsequent numerical
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experiments. Our collocation grid is defined as an equidistant grid of N ×N points
for different values of N ∈ N. Note that the grid points coincide with the knots of the
B-splines.

For the first four test cases Benamou, Froese, and Oberman [4, 33, 34] suggest to
use as initial guess the solution of the Poisson boundary value problem

∆u =
√

2f(5.7)

with the same Dirichlet boundary conditions and for the same right hand side function
f as for the corresponding Monge-Ampère equation. In [33, 34] this Poisson equation
is solved in a preprocessing step and after that the result is convexified by the method
of Oberman [54] to ensure a convex initial guess. Here we also use same initial guess
for all five test cases, but, however, it turned out that our method works well even
without convexifying the solution of (5.7). We therefore omit this step.

The spline collocation method has been used to solve (5.7). In order to validate the
numerical result, we compare the maximum absolute error of the numerical solution u
at the N2 collocation points with the exact solution u∗. The absolute errors are given
in Table 5.1, while the corresponding computing times are denoted in Table 5.2. Note
that the computing time measurements indicate the overall time for the computation
including the computation of the initial guess and the nested iteration scheme. In
Figure 5.1 the dependency of the maximum error and the computing time on the
number of unknowns are shown in a plot with logarithmic scale on both axes. We
observe that the complexity of the solution method is proportional to N3.

Table 5.1: Maximum error ‖u− u∗‖∞ for the first four test cases of Subsection 5.1.1.

N C2 example (5.2) C1 example (5.3)
example with

C0,1 example (5.5)
blow up (5.4)

31 9.60 · 10−5 1.18 · 10−4 3.76 · 10−3 1.25 · 10−2

45 4.53 · 10−5 7.90 · 10−5 3.21 · 10−3 1.10 · 10−2

63 2.29 · 10−5 4.40 · 10−5 2.75 · 10−3 9.00 · 10−3

89 1.14 · 10−5 2.86 · 10−5 2.34 · 10−3 8.34 · 10−3

127 5.58 · 10−6 2.37 · 10−5 1.97 · 10−3 8.50 · 10−3

181 2.74 · 10−6 1.58 · 10−5 1.66 · 10−3 8.48 · 10−3

255 1.37 · 10−6 1.01 · 10−5 1.41 · 10−3 8.73 · 10−3

361 6.84 · 10−7 7.27 · 10−6 1.18 · 10−3 8.68 · 10−3

Table 5.2: Computing time in seconds for the five test cases of Subsection 5.1.1 (the
wall-clock time on the otherwise idle computer has been measured).

N
C2 C1 example with C0,1 Viscosity

example (5.2) example (5.3) blow up (5.4) example (5.5) solution (5.6)
31 0.1 0.3 0.1 4.8 0.1
45 0.1 0.6 0.2 13.3 0.2
63 0.2 1.2 0.4 18.9 0.3
89 0.6 3.2 0.9 58.6 0.9
127 0.9 4.1 1.7 97.6 1.7
181 2.7 12.8 4.9 345.2 5.1
255 5.1 24.9 9.7 639.5 9.9
361 18.4 79.8 31.6 2193.7 32.9
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Figure 5.1: Plot of the maximum errors and computing times for the test cases of
Subsection 5.1.1 (see also Table 5.1 and Table 5.2).

For a better comparison the grid sizes given by N were chosen to match the
choices of Froese and Oberman [34]. In that paper three of their methods [4, 33, 34]
are compared for the first four test cases, where it turned out that the standard finite
difference method [4] performed best for the first example. Using regression analysis
for our method we observe that the curve in the double-logarithmic plot has a slope of
−1.01 which corresponds to a quadratic convergence rate. This rate agrees with that
achieved by the finite difference scheme. Moreover, the differences in the maximum
errors is less then a factor of 3/2.

For the little less smooth solution in the second example the standard finite dif-
ference method proposed in [4] still leads to smaller errors than the two methods
in [33, 34]. Comparing the absolute errors our method improves the results of the
standard finite difference method by a factor of 2 to 3 and we observe a slightly
superlinear convergence rate.

The third example is a big challenge for the methods because of the blow up of
the gradient of the solution at the point (1, 1)T ∈ ∂Ω. Here the monotone scheme [33]
and the hybrid scheme [34] perform best. Our method shows a convergence that is
approximately proportional to the square root of the mesh size. It works more precise
than the standard finite difference method by a factor of about 4 but is not as accurate
as the other two schemes whose maximal errors are between 2 · 10−3 and 4 · 10−5.
Due to the fact that the schemes [33, 34] are constructed to converge also to viscosity
solutions theses methods are suited for less smooth solutions.

The solution of the fourth example does not have a continuous first derivative in
Ω such that it is very difficult to handle even for standard spline interpolation. Here
all three methods given in [4, 33, 34] and also our method do not converge, the error
does not drop below 10−3. Interestingly, we observe that all three methods, the two
methods of [33, 34], and our method, stagnate for N larger than 89. In fact, we do not
even expect that our collocation method converges, because it requires the solution
to be twice differentiable.
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In Figure 5.2 we visualize the result for the fifth test case. In fact, the solution is
convex. Figures 5.2(b) and 5.2(c) show cross section of the solution along the x-axis
and along the diagonal, respectively. These can be compared with those of Dean and
Glowinski [18, 21, 22] and Feng and Neilan [28]. We observe that both the curvature
as well as the minimal values of the functions agree with those in the literature.
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Figure 5.2: Solution of the fifth example computed for N = 181.

5.2. Test cases for the inverse reflector problem. First, in Subsection 5.2.1
we give some additional details that are crucial for numerically solving the inverse
reflector problem. Then in Subsection 5.2.2 we define the geometric setting of our
test case for the inverse reflector problem. Afterwards we describe in Subsection 5.2.3
how we obtain a good initial guess and in Subsection 5.2.4 we present the results for
some examples.

5.2.1. Solution procedure. We now briefly discuss the procedure of numeri-
cally solving the inverse reflector problem. To this end we focus on three issues that
particularly need to be handled to successfully solve the inverse reflector problem.

Boundary condition. In Subsection 3.2 we saw the mathematical formulation of
the reflector problem for the near field and in Subsection 4.5 a relaxation to a sequence
of subproblems. For each subproblem we have to solve an equation of Monge-Ampère
type with an adjusted boundary function φ. Moreover, we use an iterative nonlinear
solver for the solution of each subproblem. To avoid solving the Monge-Ampère
equation many times, we intertwine the iterations and update the boundary function
φ immediately after each correction step in the iterative nonlinear solver instead of
not updating φ until the nonlinear solver terminates.

Since we work on a rectangular target set Σ we face the problem that the outer
normal vector of ∂Σ is not defined in a corner. Here we use the normalized sum vector
of the two outer normal vectors of both adjacent edges, i.e., the outer normal vectors
at the corners of a rectangle (a, b)× (c, d) are given by the vectors (±1/

√
2,±1/

√
2)T .

Dark areas on the target. Let the density function g for our target illumination
on Σ be given by 8 bit digital grayscale images, i.e. the gray values of the image are
integer values in the range 0, . . . , 255. Since g is in the denominator on the right hand
side of the Monge-Ampère equation (3.2), we require that g is bounded away from
zero. This lower bound should be as small as possible. To ensure this constraint we
adjust brightness and contrast of the input image g and consider the image

g̃(Z) := g(Z) + max{0, 20− min
Z′∈Σ

g(Z′)}(5.8)
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instead, where the value of 20 leads to good results. Afterwards this density function
needs to be normalized such that the energy conservation (3.1) holds true.

However, if we try to realize black values in the target image by letting some
pixel values go to zero, the right-hand side of the Monge-Ampère equation (3.2) tends
to infinity. The left-hand side is more or less the determinant of the Hessian of u;
see, e.g., the special case in equation (3.4), which also needs to go to infinity at some
points because of the surjectivity constraint (3.3). It follows that the curvature of the
reflector must be infinitely large at these points which leads to a kink on its surface.

Nested iteration. On the one hand our nonlinear solver profits from a good choice
of the initial guess. But on the other hand, if we want to produce a very complex
image on the target, we need to define our ansatz functions on a very fine grid. Thus
we have many degrees of freedom which makes it difficult to obtain a good initial
guess.

An efficient way to address this problem is to apply the multilevel technique of
Subsection 4.3. We therefore start the computation on a very coarse grid of dimension
21 × 21 and solve the inverse reflector problem. Our target density function g will
be given by an image of size 512 × 512 pixels. Thus we cannot expect to be able
to solve the reflector problem accurately on such a coarse grid. We therefore also
coarsen the image. For this reason we define the standard mollifier function ϕ(x) :=
exp(−1/(1−‖x‖22)) if ‖x‖2 < 1 and zero otherwise. A discrete approximation of the
mollifier function with a support of size n× n pixels is given by

ϕn(i, j) :=
ϕ
(
2 in , 2

j
n

)∑
r,s∈Z ϕ

(
2 rn , 2

s
n

)(5.9)

for i, j ∈ Z. We now convolve the image with ϕn for different n ∈ N and solve the
problem for these modified images on grids of size N ×N for appropriate N ∈ N, i.e.,
we solve the problem many times for different pairs (N,n) to improve the solution; see
Figure 5.3. We use the following pairs in the given order: (21, 55), (41, 55), (41, 19),
(81, 19), (81, 7), (161, 7), (161, 3), (321, 3).

5.2.2. Optical and geometric setting. For the illumination of the mirror we
choose an isotropic light source, i.e., f ≡ 1. Our geometrical setting is given by
the target surface, defined by Σ := {Z = (z1, z2, z3)T ∈ R3 : z1 ∈ (−1.5, 1.5) , z2 ∈
(1, 4), z3 = −5} and by the position of the reflector, which is given in the dimensioned
drawing in Figure 5.4(a). In the mathematical model, the size of the reflector is
controlled by an appropriate constant G in (4.20) which in the following examples
is G = 0.417674. For the modified determinant (4.16) we again choose the penalty
constant λ = 103, which leads to good results for all of our examples.

5.2.3. Initialization. The choice of the initial guess is crucial for the conver-
gence of the Newton-type scheme in the collocation method. Therefore we need an
initial guess that is close enough to the solution. Since there are already other meth-
ods available to solve the inverse reflector problem, we can resort to one of them for
the initialization. Due to the nested iteration approach we only need to calculate an
initial guess for a strongly blurred input density distribution on a very coarse initial
grid. For that reason we choose the method of supporting ellipsoids [40, 41] for this
task, which is a viable choice, because of the low resolution the complexity of the
method is not too high; see also Section 2.2.

In principle, we need to generate a new initial guess when the desired density
function g changes. However, numerical evidence shows that this is not necessary
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Figure 5.3: Nested iterations to improve the initial guess from bottom to top with
given pairs (N,n), where N × N is the resolution of the grid and n the
parameter for the mollifier ϕn in (5.9).

and that we can prepare an universal initial guess that depends on the optical and
geometric setup but no longer on g. This is probably possible, because the collocation
method starts on a very coarse grid using a strongly blurred and thus an “almost”
constant version of g.

We therefore invoke the method of supporting ellipsoids and compute a reflec-
tor surface that produces a constant density function g on the target. The solution
specifies a surface that consists of segments of ellipsoids of revolution. Next we ap-
proximate the solution in our B-spline ansatz space corresponding to the coarse initial
grid using spline interpolation and we solve the inverse reflector problem again on the
same grid with our spline collocation method. The output of the forward simulation
of the resulting reflector is shown in Figure 5.4(b). As desired the reflector produces a
homogeneous illumination pattern on the target. In the following we use this reflector
as the initial guess for all calculations in the same geometrical and optical setting but
for different target illuminations g.

5.2.4. Results for the inverse reflector problem. We now calculate the
reflector surfaces for three test cases, where the desired target illuminations g are
given by three common grayscale test images from the USC-SIPI Image Database [65].
In a post-processing step we run the forward simulation by ray tracing to compute the
actual illumination pattern produced on the target by the designed reflector surface.
Figure 5.5 shows the simulation results. Each of the three output images is very close
to the corresponding original image and, although the images are slightly blurred,
even complex details can easily be identified.

Note that the differences in the illumination between dark areas in the original
pictures and the simulations are resulting from the fact that we have to lift dark gray
values up; see (5.8). Therefore it is impossible to produce real black areas on the
target.

The three test images pose different challenges for our reflector design algorithm.
In the first test image Boat, see Figure 5.5(a), the problem is to meet the straight
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Figure 5.4: Setting of the problem and initial guess.

lines of the mast, the person standing next to the boat and the lettering on the stern
of the vessel. The simulation result looks very good, straight lines are depicted almost
perfectly in all directions and the name of the vessel is still readable but only barely.
In our selection the second image Goldhill, see Figure 5.5(b), represents a different
type of pictures. It is rich of different patterns, e.g. the patterns of the roofing tiles
and the windows in the foreground as well as the patterns of the trees and bushes
in the background, such that we can test how well different patterns are reproduced.
Apart from the slight blurring effect the different patterns are well depicted and can
be distinguished easily. The challenge of the image Mandrill is to depict the hair of
the beard of the monkey. We can see in Figure 5.5(c) that our algorithm also passes
this test.

As our final numerical example we compute the surface of a mirror that projects
our institute’s logo on the screen. Note that this type of cartoon-like images with
high contrast and sharp edges is most challenging for our algorithm. Nevertheless,
our algorithm achieves a very good reproduction of the logo; see Figure 5.6(a) for
the desired intensity pattern and Figure 5.6(b) for the forward simulation result by
ray tracing. In Figure 5.6(c) we show the position and the coarse shape of the mirror
surface, while the fine structure that contains the information of the image is visualized
in Figure 5.6(d) after a highpass filtering process. Note that lighter areas on the screen
correspond to large areas on the mirror surface.

6. Conclusion and outlook. We have presented a new B-spline collocation
method for the numerical solution of Monge-Ampère type equations, which are strong-
ly nonlinear partial differential equations. Some extensions and manipulations of
the equations and boundary conditions have been explained in detail that render
it possible to apply the collocation method to the solution of the inverse reflector
problem formulated as a Monge-Ampère type equation.

In comparison with existing schemes developed in [4, 33, 34] our B-spline collo-
cation method produces results that are similar to the finite difference scheme in [4],
which is the most accurate method for smooth solutions proposed in these publica-
tions.

The largest obstructions encountered for the numerical solution of the inverse
reflector problem are how to handle the boundary conditions, how to ensure the
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(a) Boat (b) Goldhill (c) Mandrill

Figure 5.5: Simulation results for three test images. First row: desired distribution
(original image); second row: distribution after forward simulation by ray
tracing).

uniqueness of the solution, and how to achieve convergence in the numerical scheme.
In fact, we explain how these issues can be resolved and that the B-spline collocation
method is well-suited even for this strongly nonlinear problem.

In future work the authors plan to extend the numerical method to support other
optical devices, in particular lenses. The problem is then, for example, to determine
the two surfaces of a lens such that all light passing through this lens is redirected
onto the target and produces a prescribed illumination pattern. This is a strongly
related problem and can also be modeled by a Monge-Ampère type equation; see, e.g.,
[37].

In modern lighting applications sources can often no longer be assumed to be
point sources, e.g., in compact optical systems using light emitting diodes (LEDs).
Therefore the challenging question arises how to handle extended light sources in the
inverse reflector problem.

Acknowledgment. The authors are deeply indebted to Professor Dr. Wolfgang
Dahmen for many fruitful and inspiring discussions on the topic of solving equations
of Monge-Ampère type.
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(a) Desired light distribution
(original image).

(b) Light distribution after for-
ward simulation by ray trac-
ing (result).

(c) Reflector surface in correct ge-
ometrical position (overview)

(d) High-frequency components of
the reflector (fine structure).

Figure 5.6: Simulation results for our institute’s logo.
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tion of the SMS method for imaging designs, Optics Express, 17 (2009), pp. 24036–24044.
DOI: 10.1364/OE.17.024036.
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[70] R. Winston, J. C. Miñano, and P. Beńıtez, Nonimaging Optics, Academic Press, New York,
2005.

[71] X. Zhu, J. Ni, and Q. Chen, An optical design and simulation of LED low-beam headlamps,
J. Phys. Conf. Ser., 276 (2011), p. 012201. DOI: 10.1088/1742-6596/276/1/012201.

[72] S. Zwick, R. Feßler, J. Jegorov, and G. Notni, Resolution limitations for tailored
picture-generating freeform surfaces, Optics Express, 20 (2012), pp. 3642–3653. DOI:
10.1364/OE.20.003642.

http://dx.doi.org/10.1117/1.1753588
http://dx.doi.org/10.1007/978-1-4612-1962-0_6
http://www2.imm.dtu.dk/pubdb/p.php?648
http://dx.doi.org/10.1142/S0218202508002851
http://dx.doi.org/10.3934/dcdsb.2008.10.221
http://dx.doi.org/10.1163/157404006777491981
http://dx.doi.org/10.1111/j.1467-8659.2005.00901.x
http://dx.doi.org/10.1111/j.1467-8659.2005.00901.x
http://dx.doi.org/10.1364/JOSAA.19.000590
http://dx.doi.org/10.1038/nphoton.2007.190
http://dx.doi.org/10.1364/JOSA.62.001498
http://dx.doi.org/10.2422/2036-2145.2009.1.07
http://dx.doi.org/10.1007/s005260050097
http://sipi.usc.edu/database/
http://dx.doi.org/10.1088/0266-5611/12/3/013
http://dx.doi.org/10.1007/s00526-003-0239-4
http://dx.doi.org/10.1145/1531326.1531338
http://dx.doi.org/10.1088/1742-6596/276/1/012201
http://dx.doi.org/10.1364/OE.20.003642

	IGPM396-Deckblatt.pdf
	IGPM396-Original

