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tures. If the interest is only on some macroscale quantity it will be sufficient to model

the influence of the unresolved microscale effects. Such multiscale models rely on an ap-

propriate upscaling strategy. Here the strategy originally developed by Achdou et al. 1

for incompressible flows is extended to compressible high-Reynolds number flow. For

proof of concept a laminar flow over a flat plate with partially embedded roughness is

simulated. The results are compared with computations on a rough domain.
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1. Introduction

Domains with microscopic rough boundaries frequently arise in applications in en-

gineering. For instance, small air injecting nozzles are used over wings of aircrafts

to reduce the drag 37. Examples can also be found in nature, e.g. the skin of sharks
22, and in everyday life, e.g. golf balls.

The challenge inherent in the numerical simulation of such problems is the high

resolution that would be needed to resolve the roughness. In general, the computa-

tional costs will be prohibitively high and a simulation will not be feasible in spite

of an ever increasing computer power. To deal with this type of problems we thus

need concepts that allow us to quantify the influence of small scale effects on the

1
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resolved macroscopic scale without resolving small scale structures. For this pur-

pose concepts based on either homogenization techniques 11,31,43, (heterogeneous)

multiscale modeling 20,21 or multiscale finite element methods 19 can be used. These

concepts always need to be adapted to the problem at hand, i.e., for a given concrete

application the main task is to derive an appropriate upscaling strategy.

We are particularly interested in compressible flows over a rough surface. A pos-

sible approach for the derivation of an appropriate upscaling strategy is to smooth

artificially the boundary and solve the flow equations in the artificial smooth do-

main, cf. 1,28. Of course, this will introduce a significant error because micro-scale

effects, due to the roughness, are discarded in this zeroth order solution. Therefore it

has to be corrected by an appropriate correction term that depends on macro-scale

and micro-scale variables. Plugging the modified solution into the original problem,

another typically much simpler problem, the so-called cell problem, can be derived

by means of an asymptotic expansion. In doing so one obtains also a correction

for the boundary conditions on the artificial smooth surface where the solution of

the cell problem enters. These are referred to as effective boundary conditions or

Navier wall laws 16 and can be considered as the upscaling model. Finally the ef-

fective problem can be solved on the smooth domain with the effective boundary

conditions.

Previous related work addresses laminar and incompressible fluid flow modeled

by the incompressible Navier-Stokes equations for moderate Reynolds numbers: in
1 a Navier wall law is derived applying homogenization techniques starting from a

Taylor expansion of velocity and pressure where the zeroth order solution is first

solved on an extension of the rough domain. In 2,7,4 these ideas are extended to

unsteady problems. In 28,27 effective boundary conditions at the contact interface

between a porous medium and a viscous incompressible fluid are derived. The cor-

responding asymptotic expansions have analogies with those in 1. However, instead

of applying a Taylor expansion, a zeroth order approximation is computed first on

a smooth subset of the rough domain and then it is continuously extended to the

boundary of an effective domain including the roughness where it establishes the

Navier wall law. This methodology is used in 22 to solve a shape optimization prob-

lem, namely, finding the optimal “shape of the roughness” so as to minimize the

drag force. Recently, this has been extended to turbulent incompressible flows, see
23.

A Navier wall law is derived also in 13,14 for the steady Poisson problem, applying

an idea similar to 1. In 44 similar ideas are applied to compute mass and momen-

tum transfer over a rough surface, while in 3 the authors try to derive boundary

conditions on the artificial boundary using domain decomposition techniques. Fi-

nally there are also papers where the flow over rough walls is analyzed from an

experimental point of view 42.

The aim of this paper is to derive an upscaling strategy for the compressible flow

regime for high Reynolds numbers. For this purpose we use some ideas presented

in 1. However, here the underlying dynamics are much more complicated. Trans-
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port effects are dominating dissipative effects due to viscosity and heat conduction.

Moreover, boundary layers are much thinner and therefore more sensitive to pertur-

bations. As a consequence some simplifications adopted in 1 cannot be applied here

and new ideas must be taken into account. In particular, for compressible flows the

solution of the zeroth order approximation will enter the cell problem, so we must

deal with a coupling between microscales and macroscales.

Although a complete rigorous foundation of our approach, as given in 27,28 for a

different regime, is currently out of reach, the presented reasoning is supported by

our numerical results which provide evidence of the effectiveness of our approach.

The derivation of the cell problem uses asymptotic expansion arguments, different to

classical perturbation theory 25, in the course of which we carefully collect suitable

“working hypotheses” which we argue are plausible but not theoretically founded.

The paper is organized as follows: in Section 2.1 we introduce the mathematical

model based on the compressible Navier-Stokes equations and present the effective

problem which is to capture the small scale effects on the macro scale. The core

constituent of the effective problem are certain effective boundary conditions at the

rough boundary. To identify such suitable boundary conditions we derive in Section

3 the cell problem by means of an asymptotic expansion. The solution of the cell

problem is discussed in Section 4 where it is written in weak formulation. For proof

of concept we investigate in Section 5 the laminar flow over a flat plate with par-

tially embedded periodic roughness. The roughness elements are characterized by

different heights and spacings. Of particular interest is the skin friction coefficient

that serves as a measure for the quality of the effective model compared to simu-

lations performed on the rough domain. We conclude in Section 6 with an outlook

on future work.

2. Description of the problem

We are interested in the simulation of the flow over a rough surface where the

roughness, characterized by its height ε, ranges on a scale that is by orders of

magnitude smaller than other characteristic flow features, e.g., the boundary layer

thickness δ. The different scales are referred to as the microscale and the macroscale,

respectively. Since our main interest is on the understanding of the basic concepts

to deal with this type of flow problems, we confine ourselves to the following simple

two-dimensional configuration: let Ωε ⊂ R2 be a domain where its boundary ∂Ωε

is partly rough with periodic roughness elements of height ε and period s, see

Figure 1 (left) for an illustration. The roughness is considered to be “small”, i.e.,

x2 = εh(x1/ε), rather than “shallow”, i.e., x2 = εh(x1/ε
1+β), β > 0, see 36. For

vanishing roughness ε we obtain the smooth domain Ω0 ⊃ Ωε, as depicted in Figure

1 (right). These domains are characterized by the so-called macroscale variable

x ∈ R2. In contrast to the macroscale, the roughness is described by periodic

roughness elements on the cell domain Y , see Figure 2, with Lipschitz boundary

∂Y . Any roughness element characterized by its position x1 in streamwise direction
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is related to the macroscale by the microscale variables y ∈ Y

y :=
x− x1e1

ε
(2.1)

for x ∈ R2 with x1 ∈ [x1 − s/2, x1 + s/2].

Fig. 1. Rough domain Ωε (left) and smooth domain Ω0 (right). Fig. 2. Cell domain

Y .

2.1. Mathematical model

The flow field in the rough domain Ωε is assumed to be compressible and time

independent. Thus it is characterized by the steady compressible Navier-Stokes

equations (NSE) composed of the balance laws for mass, momentum and total

energy. In dimensionless form these read

∇ · (ρu) = 0,

∇ · (ρu⊗ u) +∇p = 1
Re∇ · σ,

∇ · ((ρE + p)u) = 1
Re∇ · (σu− q),

(2.2)

for the conserved quantities (ρ, ρu, ρE) with density ρ, velocity u = (u1, u2), pres-

sure p and total energy E = e + 1
2u

2 composed of internal energy e and kinetic

energy. The viscous stress tensor σ and the heat flux q are defined for an isentropic

Newtonian fluid by

σ ≡ σ(u) = −2

3
η(∇ · u)I + η(∇u+ (∇u)T ), q ≡ q(T ) = − γ

Pr
κ∇T, (2.3)

where we have used Fourier’s law. Here η and κ denote the dimensionless dynamic

shear viscosity coefficient and the heat conductivity coefficient, respectively, both

assumed to be constant, and T the temperature. The system (2.2) is closed by the

calorical and thermal equations of state for a perfect gas

e = T, p = ρe(γ − 1) = ρRT (2.4)
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length L̃∗ L̃ref m

velocity ũ∗ ũ∞ m/s

sound speed c̃∗ ũ∗ m/s

time t̃∗ L̃∗/ũ∗ s

density ρ̃∗ ρ̃∞ kg/m3

pressure p̃∗ (ũ∗)2 ρ̃∗ Pa

temperature T̃ ∗ (ũ∗)2/c̃v K

energy ẽ∗ (ũ∗)2 J/kg

mass specific enthalpy h̃∗ (ũ∗)2 J/kg

dynamic viscosity η̃∗ η̃∞ kg/m s

heat conduction κ̃∗ η̃∗ c̃p/Pr J/m s K

specific gas constant R̃∗ c̃v J/kg K

Table 1. Reference values: L̃ref is the characteristic length of the configuration and the quantities

( )∞ denote free-stream conditions.

with γ = c̃p/c̃v the ratio of specific heats at constant pressure and volume, respec-

tively. Moreover, c̃p = c̃v + R̃ is the specific gas constant where R̃ = Rc̃v. For later

use we also introduce the mass specific enthalpy h and the sound speed c which, for

a perfect gas, read

h = e+ p/ρ =
p

ρ

γ

γ − 1
, c2 = γ p/ρ = γ RT. (2.5)

The flow is characterized by the Reynolds number Re and the Prandtl number

Pr

Re =
ρ̃∗ ũ∗ L̃∗

η̃∗
, P r =

η̃∗ c̃p
κ̃∗

defined by reference values with dimensions indicated by the asterix. In Table 1

we summarize the reference values. Note that throughout this work we will use

dimensionless quantities from which we can compute the corresponding quantities

with dimensions, always indicated by a tilde, by multiplication with the respective

reference quantity.

Throughout the remainder of this paper we will make the following assumptions.

Hypothesis: 2.1.

(i) The flow is subsonic.

(ii) The wall is adiabatic.

In particular, (i) implies that the Mach number M = |u|/c is less than one.

Since in the subsonic flow regime no shocks develop due to compressibility effects,

the solution of the problem is smooth. In particular, it allows us to consider the

system (2.2), written in conservative form, in the equivalent quasi-conservative form
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for the primitive variables u := (ρ,u, p), i.e., (2.2) becomes

L(u) :=


(u · ∇)ρ+ ρ∇ · u

(u · ∇)u+ 1
ρ∇p−

1
ρRe∇ · σ

(u · ∇)p+ γp(∇ · u) + γ−1
Re ((σ · ∇)u+∇ · q)

 = 0, (2.6)

where we employ the equation of state (2.4). Thus the solution uε = (ρε,uε, pε) in

the rough domain Ωε satisfies

L(uε) = 0 in Ωε. (2.7)

In view of Hypothesis 2.1, we impose at the various boundary portions of Ωε free-

stream conditions ρ∞, p∞, u∞, far-field conditions, outflow conditions characterized

by the pressure pout and adiabatic, no-slip conditions on Σin, Σup, Σout and Γε,

respectively,

ρε = ρ∞,
∂pε

∂n = 0, uε = u∞ on Σin,

∂ρε

∂n = 0, pε = p∞, u
ε = u∞ on Σup,

∂ρε

∂n = 0, pε = pout,
∂uε
∂n = 0 on Σout,

∂ρε

∂n = 0, ∂p
ε

∂n = 0, uε = 0 on Γε.

(2.8)

We summarize for convenience these boundary conditions for the respective bound-

ary portions as

Rin(uε) = 0, Rup(uε) = 0, Rout(uε) = 0. (2.9)

In the following the problem (2.7), (2.8), respectively (2.9), is referred to as the

exact problem. To our knowledge there is not much known about solvability and

analytical properties of the solution to this problem. For regularity results for a

similar problem on a polygon but only for Dirichlet boundary conditions, we refer

to 34.

Note that due to the perfect gas law (2.4) and ∂pε

∂n = 0 on Γε, the adiabatic wall

condition ∂T ε

∂n = 0 implies ∂ρε

∂n = 0 on Γε and vice versa.

2.2. Zeroth order approximation

A simple but not very accurate approximation to the problem (2.7), (2.8) on the

rough domain Ωε can be determined by solving the Navier-Stokes equations on the

smooth domain Ω0⊃ Ωε, also shown in Figure 1, where we replace Γε by Γ0 in (2.8),

i.e., the solution u0 = (ρ0,u0, p0) satisfies

L(u0) = 0 in Ω0 (2.10)

with boundary conditions

Rin(u0) = 0, Rout(u0) = 0, Rup(u0) = 0,

∂ρ0

∂n = 0, ∂p0

∂n = 0, u0 = 0, on Γ0.
(2.11)
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Fig. 3. Sketch of the zeroth order solution.

Due to the no-slip conditions on a smooth wall, all microscale effects are ignored

so that its solution, referred to as zeroth order approximation, provides only a rough

approximation to the exact solution. Nevertheless, in contrast to previous work in

the low Reynolds number incompressible flow regime, the computation of zeroth-

order solution is part of the proposed upscaling method. As long as the flow is

laminar it is determined by a laminar boundary layer sketched in Figure 3 and

a sufficiently accurate numerical solution requires, a much coarser resolution than

the exact problem. Moreover, in simple model configurations as considered here it

suffices to compute van Driest’s similarity solution, 5.

2.3. Effective problem

To improve the accuracy of the zeroth order solution we have to account for the in-

fluence of the roughness on the macroscale, without resolving the microscale effects.

Since in many applications the interest is on some averaged macroscale quantity,

e.g. drag, the microscale effects due to the small scale structures need not to be

resolved but their influence on the macroscale has to be properly modeled. Thus

the idea is to replace the exact problem (2.7), (2.8) by an approximate problem

in a smooth domain and to model the influence of the microscale effects on the

macroscale quantities by imposing appropriate boundary conditions on the smooth

boundary of yet another domain Ωσ⊂ Ωε, see Figure 4, with smooth boundary Γσ.

The so-called effective problem then reads

L(ueff ) = 0 in Ωσ (2.12)

with boundary conditions

Rin(ueff ) = 0, Rout(ueff ) = 0, Rup(ueff ) = 0,

∂ρeff

∂n = 0, ∂peff

∂n = 0, ueff =
∂ueff1

∂x2
(σe1 + ε〈χ〉), on Γσ.

(2.13)

In contrast to Γ0, Γσ is located above the rough boundary Γε, i.e., σ≥ε, but is still

close to it, i.e., σ = O(ε). The distance σ from Γ0 will be specified later.

Most importantly, we note that in the second line of (2.13), the no-slip conditions

on Γε in (2.8) have been replaced by the so-called effective boundary conditions, or
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Fig. 4. Sketch of the domain Ωσ .

Navier wall law, on Γσ. Here 〈χ〉 ∈ R2 is a constant that is computed by solving

an auxiliary problem on the microscale, the so-called cell problem, modeling the

microscale effect on the macroscale. The derivation of the Navier wall law and the

choice of σ are in the focus of this work.

To this end, we proceed working under the following two further assumptions:

Hypothesis: 2.2.

(i) The flow is laminar.

(ii) Perturbations caused by the rough surface are only effective in the laminar

boundary layer but have negligible influence outside this layer, i.e., ε� δ,

see Fig. 3.

On account of Hypothesis 2.2, (i), the Reynolds number is in the range of 1×103

to 5 × 105. In particular, the flow over a flat plate is parallel to the surface. And

the boundary layer thickness can be approximated by δ ∼ 1/
√
Re.

Hypothesis 2.2, (ii) says that the roughness does not trigger any instationarity

of the flow in the main stream.

3. Derivation of effective boundary conditions

In this section we derive the effective boundary conditions, i.e., the constant 〈χ〉
in (2.13). For this purpose we use an upscaling strategy based on homogenization

techniques. The underlying idea is an asymptotic expansion of the true solution uε

of the exact problem (2.7), (2.8) in terms of ε powers, i.e.,

uε(x) = u0(x) + εu1(x,x/ε) +O(ε2), x ∈ Ωε. (3.1)

where u0 is the (zeroth order) solution of (2.10). In view of Hypothesis 2.2, (ii), this

expansion is supposed to hold only near the wall. We emphasize that in contrast
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to classical perturbation theory, cf. 25, the upscaling function u1 depends on the

macroscale variables and the microscale variables.

The modeling error introduced by the zeroth order solution has to be compen-

sated by the upscaling function u1. In principle, plugging the asymptotic expansion

(3.1) into the exact problem (2.7), (2.8), one can derive a system of partial differ-

ential equations for u1. However, solving the resulting system on Ωε would be as

expensive as solving the exact problem. Instead, we make a “structured ansatz” for

the upscaling function u1 from which we derive a cell problem on the microscale with

the aid of an asymptotic analysis. This latter reasoning makes use of the assumed

regularity of the solution, see Hypothesis 2.2, (i). Averaging the solution of the cell

problem will then give us the constant in the Navier wall law (2.13) for the effective

problem (2.12). Thus, the derivation of u1 is crucial to the overall modeling error.

3.1. Upscaling

Hypothesis 2.2, (ii) implies that the influence of the microscale on the macroscale

will be dominant near the boundary but not in the far field. Therefore we first focus

on the upscaling near the wall. In order to derive appropriate upscaling functions

for the primitive variables, we evaluate the first order Taylor expansion of the zeroth

order velocity u0 at x= (x1, x2) ∈ Γε on the rough boundary using its orthogonal

projection x0= (x1, 0) to Γ0 as the expansion point, i.e.,

u0(x1, x2) = u0(x1, 0) + ε
∂u0

∂x2
(x1, 0)

x2

ε
+O(ε2) = ε

∂u0

∂x2
(x1, 0)

x2

ε
+O(ε2), (3.2)

where we have used that, due to the no-slip conditions (2.11), the velocity u0

vanishes at the wall Γ0. Note that, according to Figure 1 (right), Γ0 := {(x1, x2) ∈
Ω0, x2 = 0}, and that, since Ωε ⊂ Ω0, the solution of the zeroth order problem is

defined on Γε. Since by Hypothesis 2.2, (i), the velocity is parallel to Γ0, there is

no flow in wall-normal direction which implies
∂u0

2

∂x2
= 0 in Ω0. Thus, introducing for

ease of presentation

f(x) = f(x1, x2) = f(x1, 0) :=
∂u0

1

∂x2
(x1, 0),

we obtain for x = (x1, x2) ∈ Γε

u0(x1, x2) = ε
∂u0

1

∂x2
(x1, 0)e1

x2

ε
+O(ε2) = εf(x1, 0)e1

x2

ε
+O(ε2). (3.3)

The term εf(x1, 0)e1
x2

ε can be considered as an approximation to the velocity

of the zeroth order solution on the rough surface Γε, where the leading term is the

product of two factors εf(x1, 0) and y2 = x2

ε depending on macroscopic and micro-

scopic variables, respectively. This motivates the following ansatz for the upscaling

functions of the density, the velocity and the pressure

ρ1(x,y) := f(x1, 0) φ(y),

u1(x,y) := f(x1, 0) χ(y),

p1(x,y) := f(x1, 0) π(y),

(3.4)
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where the cell functions φ, χ and π are assumed to be sufficiently smooth and

only depend on the microscale. Later the cell functions will be determined by the

solution of a cell problem, see Section 4.

We will make an upscaling ansatz for the effective solution of (2.12), (2.13) of

the form

ρε = ρ0 + ερ1 +O(ε2), uε = u0 + εu1 +O(ε2), pε = p0 + εp1 +O(ε2). (3.5)

In order to investigate the upscaling error at the boundary we now plug the up-

scaling functions (3.4) into the expansion (3.1) of the exact solution uε = (ρε,uε, pε).

First, we consider the error in the velocity. For both, the exact problem and the

zeroth order problem, no-slip conditions hold on the rough surface Γε and on the

smooth surface Γ0, respectively, i.e., uε|Γε = 0 and u0|Γ0
= 0 hold according to the

boundary conditions (2.8) and (2.11). Hence, using (3.3) and (3.4), the upscaling

error for the velocity at x = (x1, x2) ∈ Γε is given by

(u0 + εu1)(x1, x2)− uε(x1, x2) = εf(x1, 0)
(
e1
x2

ε
+ χ

)
+O(ε2). (3.6)

The upscaling errors for the first derivatives of the density and the pressure can

be derived similarly. First of all, we note that

∂ρε

∂n

∣∣∣∣
Γε

=
∂pε

∂n

∣∣∣∣
Γε

= 0,
∂ρ0

∂n

∣∣∣∣
Γ0

=
∂p0

∂n

∣∣∣∣
Γ0

= 0

hold because of the boundary conditions (2.8) and (2.11). As a consequence one has

∂2ρ0

∂x2∂x1

∣∣∣∣
Γ0

=
∂2ρ0

∂x1∂x2

∣∣∣∣
Γ0

=
∂2p0

∂x2∂x1

∣∣∣∣
Γ0

=
∂2p0

∂x1∂x2

∣∣∣∣
Γ0

= 0 .

Since f does not depend on x2 and is determined by its values on the smooth

boundary Γ0 we have ∂
∂x2

(f(x1, 0)) = 0. Denoting by n(x) = n = (n1, n2) the

outward normal at x ∈ Γε and x0 being the wall-normal projection of x on Γ0

and using Taylor expansions for ρ0 and p0 as well as the ansatz for the upscaling

functions ρ1 and p1, it follows that

∂(ρ0 + ερ1)

∂n
(x)− ∂ρε

∂n
(x) =

(
∂ρ0

∂x1
(x0) + ε

∂f

∂x1
(x0)φ(x)

)
n1 +(

ε
∂2ρ0

∂x2
2

(x0)
x2

ε

)
n2 + f(x0)

∂φ

∂n
(x) , (3.7)

∂(p0 + εp1)

∂n
(x)− ∂pε

∂n
(x) =

(
∂p0

∂x1
(x0) + ε

∂f

∂x1
(x0)π(x)

)
n1 +(

ε
∂2p0

∂x2
2

(x0)
x2

ε

)
n2 + f(x0)

∂π

∂n
(x) . (3.8)

In view of the asymptotic expansion (3.1), the cell functions φ, χ and π have

to be chosen now in such a way that the expansion error is of order 2 near the wall

Γε, i.e., the leading terms on the right-hand sides in (3.6), (3.7) and (3.8) vanish.
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3.2. Cell problem

The upscaling functions (3.4) are determined by the cell functions that only depend

on the microscopic variables y. In order to characterize the cell functions we plug

(3.1) into the Navier-Stokes equations (2.7). When computing the derivatives with

respect to the macroscopic variables x we note that all quantities with respect to

the zeroth order solution only depend on the macroscopic variables whereas the

cell functions depend on the microscopic variables. The derivatives of the upscaling

functions (3.4) are thus given by

∂(ρ0 + ερ1)

∂xi
=
∂ρ0

∂xi
+ f

∂φ

∂yi
+O(ε), (3.9)

∂(p0 + εp1)

∂xi
=
∂p0

∂xi
+ f

∂π

∂yi
+O(ε), (3.10)

∂(u0 + εu1)

∂xi
=
∂u0

∂xi
+ f

∂χ

∂yi
+O(ε). (3.11)

Therefore only the derivatives of the zeroth order solution and of the cell functions

have to be taken into account.

In order to distinguish the derivatives with respect to x and y we will use ∇,

∆ and ∇y, ∆y, respectively. Since the calculations are tedious, we omit the details

and only give the final results. From the continuity equation, the velocity equation

and the pressure equation and using that the zeroth order solution satisfies (2.10),

we derive(
(u0 · ∇y)φ+ ρ0∇y · χ

)
f +O(ε) = 0,(

ρ0(u0 · ∇y)χ+∇yπ − ηε
(

∆yχ+
1

3
∇y(∇y · χ)

))
f +O(ε) = 0, (3.12)(

(u0 · ∇y)π + γp0∇y · χ−
κεγ

Pr ρ0

(
∆yπ −

p0

ρ0
∆yφ

))
f +O(ε) = 0.

Note that the zeroth order quantities (ρ0,u0, p0) and the upscaling functions

(φ,χ, π) are evaluated at the macroscale x and the microscale x/ε, respectively.

Furthermore, the microscale dynamic shear viscosity coefficient and the microscale

heat conductivity coefficient are defined as

ηε :=
η

εRe
, κε :=

κ

εRe
. (3.13)

In order to ensure at least first order accuracy in ε of the upscaling ansatz we

choose the cell functions in such a way that the leading terms in (3.12) vanish, i.e.,

(u0 · ∇y)φ+ ρ0∇y · χ = 0 in Y,

ρ0(u0 · ∇y)χ+∇yπ = ηε
(
∆yχ+ 1

3∇y(∇y · χ)
)
in Y,

(u0 · ∇y)π + γp0∇y · χ = γκε
Pr ρ0

(
∆yπ − p0

ρ0 ∆yφ
)

in Y,

(3.14)

should hold in a domain Y accommodating the microscale variables, referred to as

cell domain, which in view of the relation y2 = x2/ε, is unbounded in y2 direction. see
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Figure 2. We note that by ρ0, u0, p0 the cell problem, defined on the microscale, i.e.,

(φ,χ, π) = (φ(y),χ(y), π(y)), is intertwined with the zeroth order solution ρ0(x),

u0(x), p0(x) on the macroscale x = εy+x1e1.

To close the cell problem (3.14), we need to impose boundary conditions, in

particular at the wall W , see Figure 2, on the microscale. For this purpose, we

choose boundary conditions for χ such that the upscaling error (3.6) for the velocity

becomes O(ε2), i.e., the leading term in (3.6) vanishes:

χ(y1, y2) = −y2e1 (y1, y2) ∈W . (3.15)

Similarly, requiring the following boundary conditions on φ and π,

∂u0
1

∂x2

∣∣∣∣
Γ0

∂φ

∂n
= −

(
∂ρ0

∂x1

∣∣∣∣
Γ0

+ ε
∂f

∂x1
φ

)
n1 − ε

∂2ρ0

∂x2
2

∣∣∣∣
Γ0

y2 n2 ,

∂u0
1

∂x2

∣∣∣∣
Γ0

∂π

∂n
= −

(
∂p0

∂x1

∣∣∣∣
Γ0

+ ε
∂f

∂x1
π

)
n1 − ε

∂2p0

∂x2
2

∣∣∣∣
Γ0

y2 n2 , (3.16)

on W , the errors (3.7) and (3.8) for the density and the pressure components,

respectively, are reduced.

Since the roughness is assumed to be periodic, see Section 2.1, it is natural to

impose periodic boundary conditions in streamwise direction, i.e.,

χ, φ, π are s-periodic . (3.17)

It will be shown numerically in Section 5.2, that the cell functions converge to some

constant values for y2 →∞. This motivates the following assumption:

Hypothesis: 3.1. The cell functions φ, χ and π converge for y2 →∞ in the following

sense: defining for the y2-cross sections Γy2up = {y ∈ Y : y2 = y2} with y2 ≥ 1, then

the means are constant for v ∈ {χ, φ, π}, i.e.,

1

|Γy2up|

∫
Γ
y2
up

vdγ = 〈v〉 = const for y2 ≥ 1 (3.18)

and the functions are converging uniformly to the mean, i.e.,

lim
y2→∞

‖v|Γy2up − 〈v〉‖∞ = 0. (3.19)

In the incompressible flow regime, Jäger and Mikelic verify in 26,28 for a Stokes

cell problem that the means are independent of the y2-cross-sections Γy2up. Numerical

computations verify that this holds true also for the above cell problem although it

cannot be proven yet.
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3.3. Effective problem

We emphasize that ueff cannot be chosen as u0 + εu1 because determining u1

would require solving a problem on Ωε. Instead, we want to set up an effective

problem such that ueff approximates uε on the lifted smooth boundary Γσ. For this

purpose we need to specify the lifting parameter σ ≥ ε and the effective boundary

condition on Γσ. In a first step we therefore perform a Taylor expansion of u0 at

x = (x1, σ) ∈ Γσ, in wall-normal direction similar to (3.2) where again we employ

the no-slip condition of u0 at Γ0 and laminarity of the flow field implying no flow

in wall-normal direction, i.e., u0
2 ≡ 0:

u0(x1, σ) = u0(x1, 0) + σf(x1, 0)e1 +O(σ2) = σf(x1, 0)e1 +O(ε2) . (3.20)

Inserting this expansion in our asymptotic expansion (3.1) and using (3.4), we obtain

uε(x1, σ) = u0(x1, σ) + εu1(x,x/ε) +O(ε2)

= u0(x1, σ) + εf(x1, 0)χ(y1, σ/ε) +O(ε2)

= f(x1, 0) (σe1 + εχ(y1, σ/ε)) +O(ε2) . (3.21)

A natural choice for the effective problem then would be to choose the Dirichlet

conditions

ueff,1(x1, σ) = f(x1, 0) (σe1 + ε〈χ〉) (3.22)

that are obtained substituting the function χ(y1, σ/ε) by its mean 〈χ〉 at Γup.

Instead of this, we consider the following Robin conditions

ueff (x1, σ) =
∂ueff1

∂x2
(x1, σ) (σe1 + ε〈χ〉) (3.23)

that do not depend explicitly on u0 but the zeroth order solution only enters im-

plicitly via the mean 〈χ〉 of the cell solution.

We now introduce the errors

eeff,1(x1, σ) := uε(x1, σ)− ueff,1(x1, σ), (3.24)

eeff (x1, σ) := uε(x1, σ)− ueff (x1, σ). (3.25)

By means of (3.21), (3.22) and (3.23) these errors can be written as

eeff,1(x1, σ) = εf(x1, 0) (χ(y1, σ/ε)− 〈χ〉) +O(ε2) (3.26)

eeff (x1, σ) = eeff,1 +

(
∂u0

1

∂x2
(x1, 0)− ∂ueff1

∂x2
(x1, σ)

)
(σe1 + ε〈χ〉) .

Since numerical computations confirm that |〈χ2〉| � |〈χ1〉|, we choose the smallest

admissible σ ≥ ε such that σ + ε〈χ1〉 is minimized, i.e. σ = ε, to get as close as

possible to eeff,1. Note that the error eeff,1 is of order O(ε) for small σ but of

higher order O(εα), α > 1, for large σ, because χ(y1, σ/ε) tends (numerically) to

〈χ〉 for σ → ∞. On the other hand, the second term in eeff might also become

small because ueff tends (numerically) to u0 for ε→ 0.
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3.4. Some remarks

We briefly relate the present approach to previous work. Note that in the context

of a Poisson problem, Bresch and Milisic in 13,14 introduce a multiscale wall-law

which consists in considering a pointwise value in the effective law. Alternatively

one can use the mean value 〈χ〉 instead of the point value χ, as done in 1,2,28,27

and motivated by the Beavers-Joseph experiment 9. This approach is adopted also

in this paper.

The upscaling strategy presented in the previous sections is motivated by earlier

work of Achdou et al., cf. 1, in the incompressible flow regime. Since we are dealing

with compressible flows the free-stream velocities imposed at the inflow boundary

are significantly larger causing non-negligible density variations in the boundary

layer. This strongly affects the cell problem. First of all, we may no longer neglect

the influence of the zeroth order solution in the cell problem as done in 1. In Section

5.2 we will investigate by means of numerical simulations that these terms have a

significant influence on the effective constants in the compressible case. Furthermore

we also have to solve equations for the cell functions φ and π for the density and

the pressure, respectively. Thus we need additional boundary conditions for these

functions as well. This results in a system of partial differential equations where in

addition to dissipative effects, as in 1, we also have to account for transport effects

that typically complicates its numerical discretization.

A crucial question is where to pose the effective boundary conditions. A first

approach considered in 1 is

ueff = ε
∂u0

1

∂x2
〈χ〉, on Γ0 . (3.27)

Since this requires the knowledge of the zeroth order solution, in a second approach

it was suggested to replace (3.27) by

ueff = ε
∂ueff1

∂x2
〈χ〉, on Γ0 . (3.28)

Thus, the Dirichlet condition becomes now a Robin condition. Since 〈χ〉 is nega-

tive, as confirmed by computations, (3.27) and (3.28) impose a counterflow at the

wall, opposed to the flow outside the boundary layer. Therefore a vortex devel-

ops, located in a thin layer of height proportional to ε, i.e., the effective problem

still needs to resolve micro-scale effects. This has been confirmed numerically for

approach (3.27). For approach (3.28) it turned out that the computation becomes

numerically unstable, when the thin layer is resolved too well. From a theoretical

point of view, it has been shown in 1 for the incompressible case that the effec-

tive problem corresponding to (3.28) does not satisfy the Lax-Milgram Theorem.

Therefore Achdou et al. finally suggested a third approach

ueff = ε
∂ueff1

∂x2
(〈χ〉+ δe1), on Γδ , (3.29)
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where δ > 0 is chosen such that 〈χ1〉 + δ is positive, so that the weak formulation

of the effective problem has a unique solution. The derivation is similar to (3.21)

performing a Taylor expansion of u0
1 on Γ0 instead of Γσ. Choosing, in particular,

σ = δε in (2.13) then the effective boundary conditions coincide with (3.29). There

is no strategy presented in 1 how to choose σ.

Alternatively, Jäger and Mikelic 28 consider the effective boundary conditions

ueff = −ε∂u
eff
1

∂x2
〈χ〉, on Γσ . (3.30)

These coincide with (2.13) if σ = −2ε〈χ1〉 ≥ 0.

Observe that for both approaches (3.29) and (3.30) the constants 〈χ1〉+ δ and

−〈χ1〉, respectively, are positive. Hence, there is no counterflow induced at the wall

and no vortex develops, i.e., there is no need to resolve an effect on a micro-scale

grid resolution and numerical instabilities no longer occur for the upscaled problem.

4. Solution of the cell problem

In Section 3.2 the cell problem (3.14) together with its boundary conditions (3.15),

(3.16) and (3.17) has been derived on an unbounded domain in wall-normal di-

rection, see Figure 2. Since by Hypothesis (3.1) the solution of the cell problem

is supposed to converge in wall-normal direction, we may truncate the domain Y

by a fixed cross section Γup choosing the corresponding y2 large enough to ensure

that φ|Γup , χ|Γup and π|Γup are almost converged to the mean value according to

Hypothesis 3.1 within O(ε2) and define the averages at Γup

〈φ〉 :=
1

|Γup|

∫
Γup

φdγ, 〈χ〉 :=
1

|Γup|

∫
Γup

χdγ, 〈π〉 :=
1

|Γup|

∫
Γup

πdγ. (4.1)

Fig. 5. Bounded cell domain Y .
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When bounding the domain in wall-normal direction by Γup, see Figure 5, we

have to prescribe additional boundary conditions on Γup. As it is motivated later

on when considering the weak formulation of the cell problem, we use Robin type

and von Neumann type boundary conditions for χ and φ, respectively, i.e.,

(ηε∇χ− πI) n = 0, ∇φ · n = 0 on Γup. (4.2)

4.1. Weak formulation

In order to solve the cell problem (3.14) together with its boundary conditions

(3.15), (3.16), (3.17), and (4.2) it will be convenient to reformulate it somewhat

as follows. By the first equation in (3.14) we have ∇y · χ = − 1
ρ0 (u0 · ∇y)φ. A

corresponding substitution of ∇y · χ in the momentum and pressure equation in

(4.2), yields to the equivalent (strong) system

(u0 · ∇y)φ+ ρ0∇y · χ = 0 in Y,

ρ0(u0 · ∇y)χ+∇yπ = ηε

(
∆yχ− 1

3∇y( 1
ρ0 (u0 · ∇y)φ)

)
in Y,

(u0 · ∇y)π − γ p
0

ρ0 (u0 · ∇y)φ = γκε
Pr ρ0

(
∆yπ − p0

ρ0 ∆yφ
)

in Y,

(4.3)

subject to the same boundary conditions as before. To solve this system numerically

with the aid of finite element discretizations we need to derive suitable weak formu-

lations. It suffices to ensure unique solvability for homogeneous boundary conditions

for χ. As trial spaces we choose the following infinite dimensional spaces:

V χ := H1
0,W,per(Y ), Vφ = Vπ := H1

per(Y ), (4.4)

where H1
0,D(Y ) denotes the space of functions of H1(Y ) that are zero on D ⊂ ∂Y ,

and where the subscript “per” indicates periodicity in the y1-coordinate, that is the

traces on opposite side walls Γper coincide. Moreover, the test spaces are chosen to

be identical to the trial spaces, i.e., we seek a weak formulation over V ×V , where

V = V χ × V φ × V π.

We first test the continuity equation in (3.14) by the test function vφ ∈ Vφ to

obtain its weak formulation

bφ([φ,χ], vφ) :=

∫
Y

vφ(u0 · ∇y)φ+ vφρ
0∇y · χdy = 0, vφ ∈ Vφ. (4.5)

Consider now the momentum equation. Note that, due to the boundary condi-

tions (4.2),∫
∂Y

n · vχπ − ηεvχ · ∇yχndγ =

∫
Γup

vχπ · n− ηεvχ · ∇yχ · ndγ = 0

holds for all vχ ∈ V χ. Thus, testing the momentum equation in (4.3) by the test

function vχ ∈ V χ, we obtain after some calculations
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bχ([φ,χ, π],vχ) :=

∫
Y

(
vχ · ρ0(u0 · ∇y)χ+ ηε∇yvχ : ∇yχ

−
∫
Y

( ηε
3ρ0

(∇y · vχ)(u0 · ∇yφ) + (∇y · vχ)π
)
dy

+

∫
Γup

ηε
3ρ0

vχ · n(u0 · ∇yφ)dγ, vχ ∈ V χ, (4.6)

where

∇yv : ∇yψ :=
∑

i,j=1,2

∂vi
∂yj

∂ψi
∂yj

,

and where we have used that by periodicity and the definition of V χ and Vφ,∫
∂Y

ηε
3ρ0

vχ(u0 · ∇y)φ · ndγ =

∫
Γup

ηε
3ρ0

vχ(u0 · ∇y)φ · ndγ.

Finally, we treat the pressure equation in (4.3) in an analogous fashion and test

it with the test function vπ ∈ Vπ. We note first, that due to the conditions on the

derivatives of pressure and density (3.16), the following relation holds.∫
W

γκε
Prρ0

vπ

(
−∇yπ · n+

p0

ρ0
∇yφ · n

)
dγ =

∫
W

γκε

Prρ0 ∂u0
1

∂x2

∣∣∣
Γ0

vπε
∂2u0

1

∂x1∂x2

∣∣∣∣
Γ0

n1

(
π − p0

ρ0
φ

)
dγ +

∫
W

γκε

Prρ0 ∂u0
1

∂x2

∣∣∣
Γ0

vπ

[
n1

(
∂p0

∂x1

∣∣∣∣
Γ0

− p0

ρ0

∂ρ0

∂x1

∣∣∣∣
Γ0

)

+εy2n2

(
∂2p0

∂x2
2

∣∣∣∣
Γ0

− p0

ρ0

∂2ρ0

∂x2
2

∣∣∣∣
Γ0

)
dγ

]
.

Moreover, since vπ ∈ Vπ, boundary terms agree on both components of Γper and,

due to the orientation of the respective normals, cancel. Imposing the von Neumann

boundary condition ∇φ · n = 0, see (4.2), only one boundary integral term on Γup
remains in the weak formulation. Thus, abbreviating for convenience

q0 := p0

ρ0 , C0 := γκε
Prρ0 , p0

1 := ∂p0

∂x1

∣∣∣
Γ0

, p0
1,2 := ∂2p0

∂x2
2

∣∣∣
Γ0

,

u0
2 :=

(
∂u0

1

∂x2

∣∣∣
Γ0

)−1

, u0
1,2 :=

∂2u0
1

∂x1∂x2

∣∣∣
Γ0

ρ0
1 := ∂ρ0

∂x1

∣∣∣
Γ0

, ρ0
1,2 := ∂2ρ0

∂x2
2

∣∣∣
Γ0

,
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after some calculations we finally end up with

bπ([φ,χ, π], vπ) :=

∫
Y

vπ(u0 · ∇y)π − vπγq0(u0 · ∇y)φ+∇y(C0vπ) · ∇yπ

−∇y(C0q
0vπ) · ∇yφdy −

∫
Γup

C0vπ∇yπ · ndγ

+

∫
W

ε(C0u
0
2u

0
1,2n1)

(
π − q0φ

)
vπdγ (4.7)

= −
∫
W

C0u
0
2

[
n1

(
p0

1 − q0ρ0
1

)
+ εy2n2

(
p0

1,2 − q0ρ0
1,2

)]
vπdγ

for vπ ∈ Vπ.

We consider now the bilinear form for U = (χ, φ, π),V = (vχ, vφ, vπ) defined

by

b
(
U,V

)
:= bφ([φ,χ], vφ) + bχ([φ,χ, π], bvχ) + bπ([φ,χ, π], vπ)

=

∫
Y

vφ(u0 · ∇y)φ+ vφρ
0∇y · χdy

+

∫
Y

vχ · ρ0(u0 · ∇y)χ− (∇y · vχ)π

+ηε∇yvχ : ∇yχ−
ηε

3ρ0
(∇y · vχ)(u0 · ∇y)φdy

+

∫
Γup

ηε
3ρ0

vχ(u0 · ∇y)φ · ndγ

+

∫
Y

vπ(u0 · ∇y)π − vπγq0(u0 · ∇y)φ+ C0∇yvπ · ∇yπ

−q0C0∇yvπ · ∇yφdy −
∫

Γup

C0vπ∇yπ · ndγ

+

∫
W

εC0u
0
2u

0
1,2n1

(
π − q0φ

)
vπdγ

so that the weak formulation of the cell problem reads: find U = (χ, φ, π) ∈ Vφ ×
V χ × Vπ such that for each V = (vφ,vχ, vπ) ∈ Vφ × V χ × Vπ one has

b(U,V ) = F (V ) = Fπ(vπ), (4.8)

where

Fπ(vπ) = −
∫
W

C0u
0
2

[
n1

(
p0

1 − q0ρ0
1

)
+ εy2n2

(
p0

1,2 − q0ρ0
1,2

)]
vπdγ.

We observe next that (4.7) can be written as the difference of two very similar
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elliptic problems. Specifically, consider

bπ,π(π, vπ) :=

∫
Y

(
(u0 · ∇y)πvπ + C0∇yπ · ∇yvπ

)
dy

−
∫

Γup

C0vπ∇yπ · ndγ +

∫
W

ε(C0u
0
2u

0
1,2n1)πvπdγ

= −
∫
W

C0u
0
2

[
n1p

0
1 + εy2n2p

0
1,2

]
vπdγ, vπ ∈ Vπ, (4.9)

as well as

bπ,φ(φ, vπ) =

∫
Y

−γq0((u0 · ∇y)φ)vπ − C0q
0∇yvπ · ∇yφdy

−
∫
W

ε(C0u
0
2u

0
1,2n1)q0φvπdγ

= +

∫
W

C0u
0
1

[
n1q

0ρ0
1 + εy2n2q

0ρ0
1,2

]
vπdγ, vπ ∈ Vπ. (4.10)

Thus, (4.9) and (4.10) are convection diffusion equations which subject to the given

boundary conditions have unique solutions in Vπ = Vφ. Observe moreover that

bχ([φ,χ, π],vχ) is again an elliptic form in χ which has a unique solution for given

π, φ. Here we have to assume that φ is actually regular enough to ensure that

u0 · ∇yφ belongs to H−1/2(Γup). This shows existence.

5. Laminar flow over a rough plate

For a proof of concept we consider a laminar flow of a compressible fluid over a flat

plate with partially embedded roughness. This allows to perform numerical simula-

tions of the exact problem that can be compared with the solution of the effective

problem to provide inside on the modeling error. Furthermore, the zeroth order

approximation coincides with the flow over a flat plate that can be approximated

by van Driest’s similarity solution.

The configuration with and without partial roughness are sketched in Figure

6. Following the notation in Figure 1 the smooth domain is determined by Ωσ :=

[−0.0125, 2.5]× [σ, 0.0375] with boundaries

Σin := {0} × [0, 0.0375] ∪ [−0.125, 0]× {0} ,
Σup := [−0.125, 2.5]× {0.0375} ,

Σout := {2.5} × [0, 0.0375],

Σ0 := [0, 0.875]× {0} ∪ [1, 2.5]× {0} ,
Σsym := [−0.0125, 0]× {0} ,

Σσ := [0, 0.875]× {σ} ∪ [1, 2.5]× {σ} ,
Γσ := [0.875, 1]× {σ}

Σsym,σ := [−0.0125, 0]× {σ} .
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For the domain Ωε, we replace the boundary Γ0 by Γε with roughness structure

described below.

Fig. 6. Test case: configuration of a flat plate with (left) and without (right) roughness.

The flow field is characterized by the Reynolds number Re∞ = 5 · 105. In the

viscous stress tensor and the heat flux, see equation (2.3), the dynamic viscosity

coefficient and the heat conductivity coefficient are chosen as η = 1 and κ = 1,

respectively. The gas is assumed to be air, thus we use Pr = 0.72 for the Prandtl

number and γ = 1.4 for the ratio of specific heats.

The free-stream conditions are characterized by the free-stream Mach number

M∞ = |u∞|/c∞ = 0.3 with c2∞ = γ p∞/ρ∞ = γ RT . According to the reference

values given in Table 1 we conclude

ρ∞ = 1, u∞ = (1, 0)T , p∞ =
1

M2
∞ γ

.

Since for the flow solver at hand we have to specify the quantities with di-

mensions, for convenience of the reader we give the reference length L̃ref = 0.08

m and the free-stream values for temperature T̃∞ = 293 K, dynamic viscosity

η̃∞ = 1.8 · 10−5 kg/m s, speed of sound c̃∞ = (γR̃T̃∞)1/2 = 337.16 s, veloc-

ity ũ∞ = M∞ c̃∞ = 101.15 m/s, density ρ̃∞ = Re η̃∞/ũ∞L
∗ = 1.11 kg/m3

as well as the specific heat c̃v = 692.83 J/kg K and the specific gas constant

R̃ = c̃p − c̃v = 277.13333 J/kg K for air.

5.1. Approximation of the zeroth order solution

For computing the solution of the cell problem (3.14) together with its boundary

conditions (3.15), (3.16), (3.17) and (4.2) or the corresponding variational problem

(4.8), we need as input the quantities (ρ0,u0, p0) evaluated near the smooth wall
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Γ0 and the derivatives at Γ0

∂u0
1

∂x2

∣∣∣∣
Γ0

,
∂2p0

∂x2
2

∣∣∣∣
Γ0

,
∂2ρ0

∂x2
2

∣∣∣∣
Γ0

,
∂ρ0

∂x1

∣∣∣∣
Γ0

,
∂2u0

1

∂x1∂x2

∣∣∣∣
Γ0

,

determined by the zeroth order problem (2.10) with its boundary conditions (2.11).

To avoid performing the numerical computation of the zeroth order solution we

employ van Driest’s similarity solution that can be derived from the boundary layer

theory for laminar compressible fluid flow over a flat plate, cf. 5. This is admissible

as long as 1
Re = O(δ2) holds true, where δ denotes the dimensionless boundary layer

thickness, 5, i.e., the flow remains laminar. To be consistent with our assumption

that the effects of the roughness stay all inside the boundary layer, we have to

choose ε� δ .

In the following we briefly summarize the key ingredients of the boundary layer

theory that are needed to provide the necessary information to approximate the cell

problem. For this we need to specify the parameters Re, M∞ and ε.

First of all, we note that the pressure change in the boundary layer is negligibly

small and, hence, the pressure in the entire flow domain Ω0 can be considered

constant, i.e.,

p0 = p∞ =
1

γM2
∞
,

∂2p0

∂x2
2

∣∣∣∣
Γ0

= 0. (5.1)

Starting point for the derivation of the boundary layer equations is the change

of coordinates 5:

ξ(x1) :=

∫ x1

0

ρ∞u∞η∞dx̃1 = ρ∞u∞η∞x1, (5.2)

ζ(x1, x2) :=

√
Re

2 ξ(x1)

∫ x2

0

ρdx̃2. (5.3)

To describe the boundary layer solution in wall-normal direction, we fix an arbitrary

position in streamwise direction, i.e., ξ̄ = ξ(x̄1). Then we define

G(ζ) :=
h(x1(ξ̄), x2(ξ̄, ζ))

h∞
, (5.4)

where h denotes the mass specific enthalpy (2.5) and determine F = F (ζ) such that

F
′
(ζ) = u1(x1(ξ̄), x2(ξ̄, ζ)). (5.5)

Note that (5.1), (5.4) and (2.5) imply

ρ =
ρ

ρ∞
=
ρ p∞
ρ∞ p

=
h∞
h

=
1

G
. (5.6)
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The functions F and G satisfy the so-called van Driest equations, cf. 5,(
ηF
′′

G

)′
+ FF

′′
= 0,

(5.7)(
η

Pr

G
′

G

)′
+ FG

′
+

η

h∞

(F
′′
)2

G
= 0

with boundary conditions F = F ′ = G′ = 0 at the wall, i.e., ζ = 0, and F ′ = G = 1

at infinity, i.e., ζ → ∞. The boundary layer edge or boundary layer thickness δ

is defined as the distance to the wall, where the flow velocity reaches 99% of the

free-stream velocity. This boundary value problem can be solved by the shooting

method, where the second order problem is transformed into an initial value problem

for a first order system of ODEs, cf. 41. Having solved this for F and G, the flow

quantities in wall-normal direction can be computed, as sketched in Figure 7 for

different positions ξ̄ = 0.25, 0.5, 1 in streamwise direction.

Fig. 7. Boundary layer solution in wall-normal direction for several positions in streamwise direction
ξ̄ = 0.25, 0.5, 1 : streamwise velocity u1 (left), density ρ (middle), temperature T (right).

The zeroth order solution for ρ0, u0
1 is then approximated by evaluating F ′ and

G, respectively, and by (5.5) and (5.6) we compute

u0
1 ≈ u1(x̄1, x2) = F

′
(ζ(x̄1, x2)), ρ0 ≈ 1

G(ζ(x̄1, x2))
. (5.8)
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The derivatives ∂u0
1/∂x2

∣∣
Γ0

, ∂2ρ0/∂x2
2

∣∣
Γ0

at the wall are approximated by eval-

uating the boundary layer solution at ζ = 0. For this purpose, we calculate from

(5.3) the derivative of ζ in wall-normal direction

∂ζ

∂x2
=

√
Re

2x1
ρ =

√
Re

2x1

1

G
. (5.9)

Using (5.6) and (5.9) it then follows that

∂ρ

∂x2
=

∂

∂ζ

(
1

G(ζ)

)
∂ζ

∂x2
= −

√
Re

2x1

G
′
(ζ)

G3(ζ)
,

∂2ρ

∂x2
2

=
Re

2x1

1

(G(ζ))4

(
−G

′′
(ζ) + 3

(G
′
(ζ))2

G(ζ)

)
.

From this we deduce the approximation

∂2ρ0

∂x2
2

∣∣∣∣
Γ0

≈ ∂2ρ

∂x2
2

(x̄1, 0) =
Re

2x̄1

1

(G(0))4

(
−G

′′
(0) + 3

(G
′
(0))2

G(0)

)
. (5.10)

Moreover, using (5.5) and (5.9), it follows that

∂u1

∂x2
=

√
Re

2x1

F
′′
(ζ)

G(ζ)
.

Again in terms of dimensionless variables we obtain the approximation

∂u0
1

∂x2

∣∣∣∣
Γ0

≈ ∂u1

∂x2
(x̄1, 0) =

√
Re

2x̄1

F
′′
(0)

G(0)
. (5.11)

According to our configuration, sketched in Figure 6, the roughness is located in

the interval Iε = [0.875, 1]. In Figure 8 we show how varying the streamwise direc-

tion affects the approximations (5.8) of u0
1, ρ0 and (5.10), (5.11) of the derivatives

∂2ρ0/∂x2
2

∣∣
Γ0

, ∂u0
1/∂x2

∣∣
Γ0

, as well as ∂ρ0/∂x1

∣∣
Γ0

and ∂2u0
1/∂x1∂x2

∣∣
Γ0

, computed

using centered finite difference approximations. Obviously, there is only a moderate

variation within the range Iε. Therefore, we only use the approximation for fixed

x̄1 = 1.

5.2. Numerical solution of the cell problem

For solving the cell problem we have to specify the shape of one element of the

periodic roughness defining the boundary W in Figure 5. For our computations we

use the C1-curve

y2(y1) :=



1− r/ε+
√

(r/ε)2 − (y1 + s
2ε )

2, if y1 < −ỹ1,
ȳ2−ỹ2
−ȳ1+ỹ1

(y1 + ỹ1) + ỹ2, if −ỹ1 < y1 < −ȳ1

R/ε−
√

(R/ε)2 − y2
1 , if −ȳ1 < y1 < ȳ1

ȳ2−ỹ2
ȳ1−ỹ1 (y1 − ỹ1) + ỹ2, if ȳ1 < y1 < ỹ1

1− r/ε+
√

(r/ε)2 − (y1 − s
2ε )

2, if y1 > ỹ1

(5.12)
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Fig. 8. Variation of zeroth order approximations in streamwise direction on Γ0: u01(·, ε), ρ0(·, ε),
∂2ρ0

∂x22
(·, 0),

∂u0
1

∂x2
(·, 0), ∂ρ

0

∂x1
(·, 0) and

∂2u0
1

∂x1∂x2
(·, 0).

s = 5ε s = 10ε s = 20ε

(ȳ1, ȳ2) (0.441, 0.10249) (2.1098, 0.28321) (0.83978, 0.044199)

(ỹ1, ỹ2) (2.059, 0.89751) (4.4726, 0.9292) (9.7901, 0.98895)

Table 2. Points (ȳ1, ȳ2) and (ỹ1, ỹ2).

characterized by the dimensionless height ε and the dimensionless length s, respec-

tively. The parameters r and R typically depend on ε and the points (ȳ1, ȳ2) and

(ỹ1, ỹ2) are chosen such that the curve is C1. For our simulations the coordinates

of these points are recorded in Table 2.

The shape of this element is depicted in Figure 9. The upper boundary as well
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as the periodic boundaries are determined by

Γup = {(y1, y2) ∈ Y : y1 ∈ [−s/2, s/2], y2 = γy},
Γleft = {(y1, y2) ∈ Y : y1 = −s/2, y2 ∈ [y2(−s/2), 10]},

Γright = {(y1, y2) ∈ Y : y1 = s/2, y2 ∈ [y2(s/2), 10]}.

Fig. 9. Shape of one roughness element for ε = 5 · 10−5/L̃∗ and s = 10ε, r = 2ε, R = 8ε.

Here we choose the position of Γup such that the zeroth order solution in wall

normal direction becomes nearly constant. This holds true if y2 > δ(x1)/ε, where

δ is the boundary layer thickness at x1. From Figure 7 we conclude that the value

x̄2 = 0.01 for x1 = x̄1 = 1 is reasonable. Thus γy := x̄2

ε becomes 16 and 80 for

ε = 5 · 10−5/L̃∗ and ε = 10−5/L̃∗, respectively.

The variational problem (4.8) corresponding to the cell problem is discretized

by the Galerkin method using the software deal.II, cf. 6: χ is discretized with P2

elements and π and φ using P1 elements, respectively. The total number of degrees

of freedom is 116546. The linear system is solved using GMRES. Since convection

does not dominate diffusion in the cell problem, we don’t need to stabilize the

discretization. Note that, due to the flat plate assumption, in our test case, the

pressure p0 is constant and thus the pressure derivatives p0
1 and p0

1,2 at the wall

drop out in (4.7).

In Figure 10 three configurations are compared for different spacing of the rough-

ness: s = 5ε, 10ε, 20ε. The values of the effective constants, defined, accordingly to

(4.1), as the mean of χ, φ and π on Γup, are collected in Table 3. It is evident

that the shape of the roughness influences the values of the effective constants. In

addition we list in Table 4 the mean values for a smaller roughness height ε that

will be considered later on in our computations as well.

Finally we discuss the influence of the zeroth order solution on the cell problem.

Although the zeroth order solution varies strongly over the flow domain, cf. Figure

8, there is only a small influence on the effective constants 〈χ〉 and 〈π〉, cf. Figure

11. For 〈φ〉 the effect is significant, but it does not enter in the effective problem.
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Fig. 10. Solution of the cell problem for ε = 5 · 10−5/L̃∗. First column: s = 5ε, second column:

s = 10ε, third column: s = 20ε. First row: χ1, second row: χ2, third row: π, fourth row: φ.

In the incompressible case, Achdou et al. 1 neglect the transport and the com-

pressibility effects. Doing so as well we end up with the following cell problem of

Stokes type

∇y · χ = 0 in Y,

ηε∆yχ−∇yπ = 0 in Y,
(5.13)

with boundary conditions

χ = −y2e1 on W,

(ηε∇χ− πI) n = 0 on Γup,
(5.14)
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s = 5ε s = 10ε s = 20ε

〈φ〉 −4.90814 −8.64206 −26.3629

〈π〉 −1.15412 · 10−12 −2.15373 · 10−9 −3.45109 · 10−8

〈χ1〉 −0.875871 −0.808255 −0.730548

〈χ2〉 −1.41259 · 10−5 −1.03003 · 10−5 −9.09652 · 10−6

Table 3. Effective constants for ε = 5 · 10−5/L̃∗.

s = 5ε s = 10ε s = 20ε

〈φ〉 −9.7812 −23.5512 −101.694

〈π〉 1.16638 · 10−9 4.37567 · 10−11 −3.23961 · 10−12

〈χ1〉 −0.760638 −0.632163 −0.590297

〈χ2〉 −1.30475 · 10−5 −9.21817 · 10−6 −8.67632 · 10−6

Table 4. Effective constants for ε = 10−5/L̃∗.

Fig. 11. Constants 〈χ1〉, 〈χ2〉, 〈π〉 and 〈φ〉 for different values of x1, computed for ε = 5 · 10−5/L̃∗

and s = 10ε.

and periodic boundary conditions on Γper. The numerical solution is shown in Figure

12, for ε = 5 ·10−5/L̃∗ and s = 10ε. The corresponding computed effective constants
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are

〈χ1〉 = −0.576257, 〈χ2〉 = −3.72344 · 10−16, 〈π〉 = −2.90587 · 10−19 . (5.15)

They strongly differ from the one listed in the second column of Table 3. Thus we

conclude that the macroscale quantities cannot be neglected in the compressible

case. Later on we will discuss their influence on the effective solution.

Fig. 12. Solution of the cell problem (5.13), (5.14) for ε = 5 · 10−5/L̃∗, s = 10ε: χ1 (left), χ2

(center), π (right).

5.3. Numerical solution of the effective problem

Having solved the cell problem and computed the effective constants 〈χ〉, we may

now solve the effective problem (2.12), (2.13). This is discretized numerically using

the solver QUADFLOW 10.

Solver. The QUADFLOW package solves the compressible Navier-Stokes equa-

tions using a cell-centered finite volume method on locally refined grids. Mesh adap-

tation is based on multiscale analysis 40 instead of classical gradient- or residual-

based error estimators. The computational grids are represented by block-structured

parametric B-Spline patches 35 to deal with complex geometries. In order to reduce

the computational load to a tolerable amount, these tools are equipped with par-

allelization techniques based on space-filling curves 12 to run the simulations on

distributed memory architectures.

The convective fluxes are determined by solving quasi–one–dimensional Riemann

problems at the cell interfaces. Several approximate Riemann solvers (Roe, HLLC,

AUSMDV) and upwind schemes (van Leer) have been incorporated. A linear, mul-

tidimensional reconstruction of the conservative variables is applied to increase the

spatial accuracy. In order to avoid oscillations in the vicinity of local extrema and

discontinuities, limiters with TVD property are used. Concerning the computation

of the viscous fluxes, the gradients of the variables at cell interfaces are determined

using the divergence theorem. Finally, the time–integration is performed by an ex-

plicit multistage Runge–Kutta scheme and a fully implicit Newton–Krylov type

method for unsteady and steady state problems, respectively.
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For computing a stationary solution with the flow solver, an implicit Euler back-

ward time integration scheme is used with local time steps determined by a global

CFL number. The following CFL evolution strategy

CFLk+1 = min(CFLmin · 1.01k, CFLmax), (5.16)

is used with the parameters CFLmin = 0.1 and CFLmax = 500 (exact problem)

or CFLmax = 100 (effective problem). Here the index k enumerates the number

of time steps since the last grid adaptation, i.e., after each adaptation the CFL

number is again set to CFLmin. This is essential because by each grid adaptation a

perturbation of the steady-state solution corresponding to the old grid is introduced

that triggers some unsteady waves on the new grid. When approaching the steady

state on a grid, larger CFL numbers are admissible.

In the course of the computation, grid adaptation is applied whenever the aver-

aged density residual has dropped by four orders of magnitude. Note that the first

L− 1 adaptation steps, where L denotes the number of refinement levels, are only

used to generate an initial guess for the iteration on the final adaptive grid. There-

fore these have not to be fully converged in time. Since in each adaptation step an

additional refinement level can be introduced, the final adaptive grid corresponds

to L.

Computations. The effective problem is solved in the domain shown in Figure 6

(right) for different effective constants 〈χ〉 corresponding to the roughness deter-

mined by (5.12) using the following parameter settings:

(C1) ε = 5 · 10−5/L̃∗: (a) s = 10ε, (b) s = 20ε,

(C2) ε = 10−5/L̃∗ : (a) s = 5ε, (b) s = 10ε .

The effective problem is solved on a smooth domain with boundary Γσ on top

of the roughness Γε, see Fig. 6 (right), with σ = ε. The boundary portions Σ0

upstream and downstream of this region are also lifted. For both Γσ and Σσ we

employ the effective boundary conditions with 〈χ〉 6= 0 and 〈χ〉 = 0, respectively.

In addition, we compute the solution of the exact problem (2.7), (2.8) on the rough

domain, see Figure 6 (left), referred to as direct numerical simulation (DNS) where

the roughness is fully resolved by the discretization. To appropriately resolve the

leading edge of the boundary layer, we add an additional region in front of the plate,

where we prescribe symmetry conditions, i.e.,

ρ = ρ∞, p = p∞, u1 = u∞,
∂u2

∂n = 0, on Σsym. (5.17)

The DNS and the effective solution are computed using different discretizations.

To resolve the roughness in the rough domain we locally need a discretization much

smaller than ε. On the other hand, for the effective problem on the smooth domain

a much coarser discretization is sufficient. For our computations we use L = 8

refinement levels, for the exact and the effective problem. For comparison we also
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perform computations of the zeroth order problem that corresponds to a flat plate

where we replace Γε by Γ0 in Fig. 6 (left).

Flow field. The results of our computations are shown in Fig. 13. First of all we

consider the DNS solution, see Figures 13(a), 13(c), 13(e) and 13(g), where we show

the streamlines and the streamwise velocity component in a small region near the

rough boundary Γε. In the sinks of the roughness clockwise-rotating vortices may

develop depending on the roughness ε and the spacing s. This can best be seen in

Fig. 13(a) for large ε and small s. However the parallel flow, which is characteristic

for a laminar boundary layer, is only perturbed due to the roughness near the wall

and, most importantly, stays inside the boundary layer. This can be concluded from

the fact that at the boundary layer edge, where the streamwise velocity reaches 99%

of the free-stream velocity, the streamlines are horizontal again.

In the effective solution, see Figures 13(b), 13(d), 13(f) and 13(h) the roughness

is not resolved. However, comparing the effective solution with the DNS above the

roughness shows a similar behavior. To investigate this in more detail we will next

compare the results in some cross-section in wall-normal direction.

Wall-normal direction. In order to compare the effective and the exact solution

in the boundary layer we introduce the wall shear stress τw and the wall shear

velocity uτ

τw := η∞
∂u0

1

∂x2

∣∣∣∣
Γ0

, uτ :=

√
τw
ρ∞

.

Then we define the dimensionless wall distance x+
2 and the dimensionless streamwise

velocity u+
1 by

x+
2 :=

uτ
ν∞

x2, u+
1 :=

u1

uτ
,

where ν∞ = η∞
ρ∞

denotes the kinematic viscosity coefficient. By means of these

quantities the streamwise velocity profile in the boundary layer can be plotted with

respect to dimensionless wall units.

From our computations we extract data in wall-normal direction for the effective

problem, the rough problem and the flat plate in wall-normal direction at x1 =

0.9375 that corresponds to the middle of the roughness interval. In Figure 14 we

compare the results for ε = 6.25 · 10−4 (top) , i.e., ε+ = 7.0825, and ε = 1.25 · 10−4

(bottom) , i.e., ε+ = 1.4165, for different spacings. Note that for all computations

we use the wall shear stress and the wall shear velocity of the flat plate to compute

the dimensionless wall distance and velocity. This seems to be reasonable because

for vanishing ε we expect convergence of the DNS and the effective solution to the

flat plate solution.

The vertical lines in the pictures indicate the position of Γσ (lower boundary in the

effective domain) and Γup (upper boundary in the cell domain). Here we choose

γ = 0.01, because this corresponds to a position outside the boundary layer of the



Effective boundary conditions for Compressible Flows over Rough Boundaries 31

(a) C1a: DNS (b) C1a: Effective

(c) C1b: DNS (d) C1b: Effective

(e) C2a: DNS (f) C2a: Effective

(g) C2b: DNS (h) C2b: Effective

Fig. 13. Streamlines and streamwise velocity component of DNS (left) and effective problem (right).

flat plate solution. Thus in the microscale this becomes γy = 16 and γy = 80 for

ε = 6.25 · 10−4 and ε = 1.25 · 10−4, respectively, characterizing the upper boundary

Γup in the cell domain.



32 Deolmi, Dahmen, Müller

(a) C1a (b) C1b

(c) C2a (d) C2b

Fig. 14. Streamwise velocity in wall normal direction at x1 = 0.9375 (middle of roughness). The
vertical line on the left of each picture is located at σ+ = ε+, the one on the right at γ+ = 0.01 uτ

ν∞
.

There is a good qualitative agreement between the effective solution and the exact

solution, for both large and small roughness height and spacing, respectively. We

note that for all parameter settings both the DNS uε,+1 and the effective solution

ueff,+1 are close to the flat plate solution u0,+
1 = u∞

uτ
= 44.3303 in the far field.

For decreasing roughness parameter ε both the DNS and the effective solution are

approaching the solution of the flat plate.

Streamwise direction. In order to further investigate the approximation error we

again extract the streamwise velocity component in streamwise direction, i.e., x2 =

σ = ε, for the flat plate solution u0, the DNS solution uε and the effective solution

ueff , see Fig. 15, for ε = 6.25 ·10−4 (top) and ε = 1.25 ·10−4 (bottom) and different

spacings. We observe a good qualitative agreement between the effective and the

DNS solution. In particular, the streamwise velocity of the effective solution also

decreases on top of the roughness region similar to the exact solution. Furthermore,

upstream of the roughness region the velocity in the effective solution and the DNS

coincide with the flat plate solution. Downstream the roughness regime we observe
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some discrepancy for the larger roughness height, see Figs. 15(a) and 15(b), that

reduces with decreasing roughness height, see Figs. 15(c) and 15(d).

In addition, we also computed the effective solution using the cell problem (5.13),

(5.14) of Stokes type in 1,28,27,23 that does not account for the zeroth order solution

u0. We note a significant difference in the solutions that underlines the necessity to

account for u0 in the cell problem.

(a) C1a (b) C1b

(c) C2a (d) C2b

Fig. 15. Streamwise velocity in streamwise direction at x2 = ε.

Skin friction and drag. Now we consider the skin friction coefficient

cf =
η
(
∂ u1

∂ x2
− ∂ u2

∂ x1

)
0.5 ρ∞ u2

∞
= c̃f Re

at the wall. It is shown in Figures 16 for the DNS, the effective solution and the

zeroth order solution for a flat plate. For the DNS we observe an oscillating behav-

ior on top of the roughness, where the skin friction reduces above the sinks and

increases again at the elevations because the flow is locally expanding or compress-

ing. Typically, the skin friction is smaller with increasing spacing s and decreasing
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height ε, respectively. At the leading edge of the roughness it is higher, because

there the unperturbed flow hits the obstacle first. For the effective solution we ob-

serve a similar behavior but without oscillations. It stays between the maximum

and minimum values of the DNS, but above the similarity solution of the flat plate.

From the skin friction coefficient we compute the aerodynamic drag coefficient

cD =
1

|Γ|

∮
Γ

cf (n2 cos(α)− n1 sin(α))+(p− p∞) (n1 cos(α) + n2 sin(α))dA = c̃D Re.

For the DNS (Γ = Γε ∪ Σ0) and the effective solution (Γ = Γσ ∪ Σσ) the values

are listed in Table 5. For the flat plate (Γ = Γ0 ∪ Σ0) we obtain cD = 1.224175 ·
10−3 determined by the Quadflow computation for the flat plate. We note that

both the effective solution and the DNS solution show a smaller value for the drag

coefficient than the flat plate solution. On top of the roughness the streamwise

velocity decreases, see Fig. 15. Thus, the velocity gradient in wall-normal direction

is reduced resulting in a smaller skin friction.

Note that the optimization of the roughness structure is beyond the scope of this

work. Related work in this regard for incompressible, laminar flows can be found in
22.

(C1a) (C1b) (C2a) (C2b)

DNS 1.15799 · 10−3 1.189287 · 10−3 1.218292 · 10−3 1.206932 · 10−3

Effective 1.159905 · 10−3 1.159265 · 10−3 1.216035 · 10−3 1.21596 · 10−3

flat plate 1.224175 · 10−3 1.224175 · 10−3 1.224175 · 10−3 1.224175 · 10−3

Table 5. Aerodynamic drag coefficient due to friction cD for DNS, effective solution and flat plate
solution.

Computational effort. Finally we discuss the efficiency of the effective solution in

comparison to the DNS. For this purpose we summarize in Table 6 (left) the number

of cells in the block Bσ = [0.875, 1]× [σ, 0.0375] and Bε = [0.875, 1]× [0, 0.0375]∩Ωε

sitting on top of Γσ and Γε, respectively. Note that in the remaining computational

domain Ωσ\Bσ and Ωε\Bε the resolution is similar for the effective simulation and

the DNS, respectively, because there is no roughness but a flat plate. We note that

the computational load for the DNS is significantly higher than for the effective

solution, because the roughness requires a much finer grid near the boundary Γε
than for Γσ. In particular, when ε is smaller, see the first row in Table 6 (left), the

effective solution becomes increasingly efficient. Note that the number of roughness

elements to be resolved on Γε varies significantly, see Table 6 (right). On the other

hand, we can predict by the cheaper effective solution reasonable approximations

for the local skin friction coefficient and the aerodynamic drag coefficient without

resolving all small scale effects but taking into account their effect on macroscale

variables such as averages just by effective boundary conditions.
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(a) C1a (b) C1b

(c) C2a (d) C2b

Fig. 16. Skin friction coefficient cf for DNS, effective solution and flat plate solution.

(C1a) (C1b) (C2a) (C2b)

DNS 59736 53469 133587 72771

Effective 10924 10978 11104 11098

flat plate 3118 3118 3118 3118

(C1) (C2)

(a) 20 200
(b) 10 100

Table 6. Number of cells of the final grid in [0, 875, 1]× [0, 0.0375] for DNS, effective solution and

flat plate solution; number of roughness elements on Γε (right).

6. Conclusions

In this paper the ideas of Achdou et al. 1 for incompressible low Reynolds number

flow have been adapted to the more complex mathematical model of the compress-

ible Navier-Stokes equations. The zeroth order problem is approximated by van

Driest’s similarity solution for the laminar compressible boundary layer of a flat

plate. From this we compute the macro-scale parameters involved in the cell prob-

lem on the micro scale. In principle, we have to solve the cell problem whenever
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we evaluate the effective boundary conditions when solving the effective problem.

To avoid this we may determine for the solution of the cell problem a parameter

dependent representation where we apply, for instance, reduced basis methods in a

precomputation state. Averaging the solution of the cell problem provides us with

the effective constant that characterizes the Navier wall law in the effective problem

on the smooth domain.

In future work we will investigate laminar as well as turbulent flows over riblet

structures in three dimensions. In contrast to the two-dimensional configuration

considered in the present work the roughness will be aligned in spanwise direction

instead of streamwise direction. This configuration is certainly more appropriate to

reduce drag by influencing turbulence structures near the surface. This technology

might be useful for increasing the efficiency of airplanes with regard to energy

consumption by mounting riblet structures to the airplane wings. Alternatively, one

might think of high-frequency waves actuated in spanwise direction on the surface

of an airplane. Experimental as well as numerical investigations for simple generic

configurations in case of riblets 33,24,22 and surface waves 32,17,18 are promising

although most of the investigations have been performed for incompressible flow.
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