
Sampling Rules for Tensor Reconstruction

in Hierarchical Tucker Format

Melanie Kluge∗

Bericht Nr. 392 April 2014

Key words: tensor completion, tensor approximation, tensor train

AMS Subject Classifications: 15A69, 65F99

Institut für Geometrie und Praktische Mathematik

RWTH Aachen

Templergraben 55, D–52056 Aachen (Germany)

∗
Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen,
Germany, Email: kluge@igpm.rwth-aachen.de. Financial support from the DFG SPP-1324 under
grant GRA2179/2-1 gratefully acknowledged.

Sampling Rules for Tensor Reconstruction
in Hierarchical Tucker Format

Melanie Kluge ∗

April 16, 2014

The subject of this article is the development of an algorithm that re-
constructs a high-dimensional tensor by a hierarchical (H-) Tucker tensor
with the help of a non-adaptive sampling rule. This sampling rule supports
our approximation scheme coming from the matrix cross approximation and
guarantees that we can build a tensor AH in the desired format from only
a few entries of the original tensor A. Under mild assumptions AH is a
reconstruction of A. In the numerical experiments we obtain convenient
approximations also for tensors without low rank representation and for per-
tubed tensors.
Keywords: Tensor Completion, Tensor Approximation, Tensor Train
MSC: 15A69, 65F99,

1 Introduction

The aim of high-dimensional tensor reconstruction is to obtain the structure of a tensor
from a small subset Ω of its entries coming from a calculation routine or a measurement
process. The problem situation considered here allows one interaction with this routine
or process and no further entry maybe requested. To motivate this task we consider an
abstract scenario with a calculation routine and an applied scenario with a measurement
process.
We start with an abstract scenario in the field of uncertainty quantification. A quantity
of interest is, e.g., the expected value of a functional coming from a PDE solution, where
the PDE solution is very expensive in terms of computational complexity and hence,
the calculation routine maybe located externally. Then, only a few interactions with the
routine are practicable. Let φ : Γ→ R be a functional with Γ ⊂ Rd and defined as

φ(y) :=

∫
S

Φ(u(x, y)) dx S ⊂ R3

∗Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen,
Germany. Email: kluge@igpm.rwth-aachen.de. Financial support from the DFG SPP-1324 under
grant GRA2179/2-1 gratefully acknowledged.

1

where u : S×Γ→ R is a parameter dependent PDE solution with spatial variable x ∈ S
and an uncertain variable y ∈ Γ, e.g. a stochastic PDE solution as considered in [1, 2].
Let f := f1⊗. . .⊗fd : Γ→ [0,∞) be a d-dimensional density function, then the expected
value is given by:

E(φ) =

∫
Γ
φ(y)f(y) dy.

Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods [3] approximate this integral
value via a finite sum of N pseudorandom or quasirandom sampling points yj

E(φ) ≈
N∑
j=1

φ(yj)F (yj),

where F := F1 ⊗ . . . ⊗ Fd : Γ → [0, 1] is the distribution function. The set of the
sampled points yj is generated independently from the structure of φ and hence, only
one interaction with the calculation routine to obtain the values φ(yj) is necessary. Their
independence from the structure of φ may also be a disadvantage. If the functional has
a low rank structure or a low rank approximation, this information is not used in the
sampling strategy.
In this article we describe a sampling rule that supports the structure of a low rank
approximation. We consider the following discretization over a tensor grid:

ET (φ) =

n1∑
i1=1

. . .

nd∑
id=1

φ(νi1,...,id)︸ ︷︷ ︸
=:Ai1,...,id=:Ai

L1,i1(y1)F1(y1) · . . . · Ld,id(yd)Fd(yd)

with 1-dimensional Chebyshev points νi` of order n`−1 and the corresponding Lagrange
polynomials L`,i` (` = 1, . . . , d). The value ET (φ) is given in a Tucker representation [4],
which is known to suffer from the curse of dimensionality, and an approximation of the
core tensor A in a low-rank tensor format becomes interesting.
We continue with an applied scenario where the object of interest is a high-dimensional
functional Φ : Γ → R describing a physical phenomenon. If a representation of Φ is
not known, a way to handle this is to discretise it over a tensor grid G ⊆ Γ. Then
the resulting object is a high-dimensional tensor A := (Φ(yj))j∈G. In practice the mea-
surement process restricts the amount of measuring positions yj and a reconstruction
of A is desired. If it also restricts the time interval for data collection, e.g. in case of
seismic data as considered in [5] or of EEG data as considered in [6], each measurement
process is a nonrecurring one and hence, more than one interaction with the process is
impossible.
We have these abstract and applied scenario in mind by considering the tensor recon-
struction with the hierarchical Tucker format as the selected tensor format. The aim of
this article is to develop a reconstruction algorithm with a sampling rule that

1. is an non-adaptive one, to handle the situation of one possible interaction with the
calculation routine or measurement process to obtain tensor entries, and

2

2. supports an approximation scheme in the hierarchical Tucker format, to get a
reconstruction or even a convenient approximation of the original tensor A.

In the following section we define the hierarchical Tucker format and give important prop-
erties. We start the third section with the formulation of the reconstruction problem
in this format and consider the reconstruction with a random sampling strategy. After-
wards, we adapt a matrix approximation technique to the tensor format and develop a
non-adaptive sampling rule. We merge all considerations in section four by the recon-
struction algorithm itself. In the last section the algorithm is applied to high-dimensional
unperturbed and perturbed tensors. The examples verify that the reconstruction is suc-
cessful under mild assumptions and also that we obtain convenient approximations for
tensors not fulfilling these assumptions or for perturbed ones.

2 Hierarchical Tucker format

The hierarchical (H-) Tucker format [7] of a d-dimensional tensor A ∈ RI1×...×Id is
defined by the hierarchy of certain matricizations and their corresponding matrix ranks
organized in a dimension tree.

2.1 Definition of the format

We obtain a matricization of the tensor A ∈ RI by splitting the index set I := I1×. . .×Id
into a row index set It and a column index set It̂.

Definition 1 (t-Matricization) Let A ∈ RI and t ⊆ D := {1, . . . , d} be a non-empty
and fixed subset of the dimensions with the complement set t̂ := D \ t. Then the t-
matricization A(t) ∈ RIt×It̂ with It =×µ∈ t Iµ and It̂ =×ν∈ t̂ Iν is defined by

A
(t)
(iµ)µ∈ t, (iν)ν∈ t̂

:= Ai1,...,id ∀(i1, . . . , id) ∈ I.

We remark that the determination of the matrix rank kt = rank(A(t)) is independent
of the index order. For simplicity we choose the lexicographical order. In the next
example we illustrate the Definition 1 by a small 3-dimensional tensor.

Example 2 (Matricization) Let a 3-dimensional tensor A be given entry-wise by the
formulation Ai1,i2,i3 := i1 + (i2 − 1) · 2 + (i3 − 1) · 4 for all (i1, i2, i3) ∈ {1, 2}3. Then all
possible t-matricizations are

A({1}) =

(
1 3 5 7
2 4 6 8

)
= (A({2,3}))T (Figure 1),

A({2}) =

(
1 2 5 6
3 4 7 8

)
= (A({1,3}))T , A({3}) =

(
1 3 2 4
5 7 6 8

)
= (A({1,2}))T

and A({1,2,3}) =
(

1 2 3 4 5 6 7 8
)
.

3

I1

I2

I1

I3 I3I2 x

Figure 1: Left: 3-dimensional tensor A with 8 entries and the black marked fibre
(A1,2,1, A2,2,1)T . Right: Matricization A({1}), where the black marked fibre
in the tensor is the same vector as the second column in the matrix.

The idea to build a hierarchy of certain matricizations comes from the following nest-
edness property.

Lemma 3 (Nestedness property) Let t := {q, . . . , s} ⊆ D be split into the disjoint
subsets t1 := {q, . . . , r} and t2 := {r + 1, . . . , s} with q ≤ r < s. Then the corresponding
matricizations are nested as follows:

span
(
A(t)

)
⊂ span

(
A(t1) ⊗A(t2)

)
(1)

Proof: We follow the proof of Lemma 3.1 in [8]. Select an arbitrary column index

j ∈ It̂ and define a vector v with v(iµ)µ∈ t := A
(t)
(iµ)µ∈ t, j

∈ RIt . Then the t1-matricization

v(t1) = (v(t2))T fulfills the relation span
(
v(t1)

)
⊂ span

(
A(t1)

)
. By means of the Moore-

Penrose pseudoinverse Z+ of Z, we can determine v(t1) by

v(t1) = A(t1) (A(t1))+ (v(t2))T = A(t1) (A(t1))+ v(t1) [(A(t2))+]T (A(t2))T .

This property motivates to organize the hierarchy in a binary tree.

Definition 4 (Dimension tree) A dimension tree TD is a binary tree with root D,
where each node ∅ 6= t ∈ TD is either

(i) a leaf or singleton t = {µ} with no successor (belongs to L(TD)) or

(ii) an interior node with two successors (named sons) t1 and t2, such that t = t1
·
∪ t2

(belongs to I(TD)).

With the dimension tree as a binary tree we may use matrix techniques for an H-
Tucker tensor like a hierarchical form of the SVD [9]. The dimension r ∈ {q, . . . , s} of
Lemma 3, where the set {q, . . . , s} splits into t1 and t2, is not further specified. The two
following, most popular settings lead to different dimension trees and hence, different
rank tuples k = (kt)t∈TD [10]:

(1) The canonical tree: The set t = {q, . . . , s} halves into t1 = {q, . . . , d q+s2 e} and
t2 = {d q+s2 e+ 1, . . . , s}.

(2) The TT-tree [11]: The set t = {q, . . . , s} divides into the first dimension t1 = {q}
and the remaining ones t2 = {q + 1, . . . , s}.

4

The choice of the tree is of high importance for the quality of the approximation.
Finding an optimal dimension tree to a given problem is NP-hard and it is not part of
this article. In [12] an algorithm to find a tree in an adaptive way is constructed. Under
the assumption that

rank(A(t)) ≤ K ∀t ⊆ D (2)

a dimension tree can be fixed a priori. Then, the choice of the tree mainly influences
the storage complexity of the resulting low-rank tensor representation. We prefer the
canonical tree, cf. Figure 2, because it has the minimal depth p = blog2(d)c and we may
parallelize the calculation.

{1}

{2}

{4}

{5}

{1,...,6}

{1,2,3} {4,5,6}

{2,3} {5,6}

{3} {6}

Figure 2: Left: Canonical tree for dimension d = 6 with minimal depth p = 3. Right:
The scheme of the corresponding matricizations shows that in the root of the
tree the tensor entries are lined up in one long vector and by going down to
the leaves the entries are rearranged to more columns and fewer rows.

Definition 5 (Hierarchical Tucker tensor) Let TD be a canonical tree for dimen-
sion d and k = (ks)s∈TD a tuple of ranks. A tensor is a hierarchical Tucker tensor with
dimension tree TD and at most hierarchical (H)-rank k, if it is an element of the set

HT (TD, k) :=
{
A ∈ RI : rank

(
A(t)

)
≤ kt ∀ t ∈ TD

}
.

The nestedness property of Lemma 3 and the H-rank of Definition 5 lead to a data-
sparse representation of an H-Tucker tensor in the following way: Let A(t) = Ut V

T
t

be a representation with Ut ∈ RIt× kt and Vt ∈ RIt̂× kt for all t ∈ TD. Then, there
exist three-dimensional transfer tensors Bt ∈ Rkt1× kt2× kt which satisfy the nestedness
equation

(Ut)j =

kt1∑
α=1

kt2∑
β=1

(Bt)α,β,j (Ut1)α ⊗ (Ut2)β j = 1, . . . , kt (3)

with t = t1
·
∪ t2 and t1, t2 ∈ TD. The tuple (Us)s∈TD is called a frame tree, cf Figure 3.

2.2 Properties of the format

From Definition 5 and equation (3) it follows that a tensor in the H-Tucker format
is represented by the frames Uµ ∈ Rnµ×kµ in the leaves µ and the transfer tensors

5

U
{1,...,6}

B
{1,...,6}

B
{1,2,3}

B
{4,5,6}

U
{6}

B
{5,6}

B
{2,3}

U
{3}

U
{2,3}

U
{5,6}

U
{4,5,6}

U
{1,2,3}

U
{1}

U
{4}

U
{2}

U
{5}

Figure 3: Left: Frame tree for dimension d = 6 with transfer tensors in the interior
nodes. Right: The scheme of the corresponding matrix and tensor sizes gives
an impression of the fact that the matrix Ut is smaller than A(t) and Bt again
is usually smaller than Ut.

Bt ∈ Rkt1×kt2×kt in the interior nodes t = t1
·
∪ t2. The storage complexity is with

n := max
µ∈L(TD)

nµ and k := max
t∈TD

kt given by

Storage
(
(Uµ)µ∈L(TD), (Bt)t∈I(TD)

)
= O

(
dnk + (d− 1)k3

)
and hence, linear in the dimension. If an H-Tucker approximation with H-rank k is
founded by Z, then there exist robust algorithms that approximate Z by a tensor Z in
this format with smaller H-rank r. In [9] an error bound for a truncation by the H-SVD
is determined in terms of the best H-Tucker approximation Z̃ with H-rank r:∥∥Z − Z∥∥

2
≤
√

2d− 3
∥∥∥Z − Z̃∥∥∥

2
.

It is calculated in O(dnk2 + (d− 1)k4) with k and n from above.
The linearity in the dimension and the existence of robust truncation algorithms make
the H-Tucker format to an often used tensor format. For a more detailed introduction,
also of other tensor formats, we refer the reader to [13].

3 Sampling rules

In the introduction we describe the tensor reconstruction problem in a general form.
Now we specify it to the H-Tucker format:

Let the original tensor A fulfill the restriction (2). Then the task is to find an
H-Tucker tensor AH with a canonical tree TD and an H-rank k with kt ≤ K
that approximates A in the known entries of Ω as good as possible:

A∗H = argmin
AH∈HT (TD,k)

‖A−AH‖Ω with ‖Z‖Ω :=

√∑
i∈Ω

Z2
i . (4)

We will see in subsection 4.1 that the H-rank k can be determined in an adaptive
way if a rank bound K is known. In this case the reconstruction of the original tensor

6

is successful. In the case where K is not known, we assume that A∗H is a convenient
approximation of A if the error in Ω does not exceed a given tolerance. In general we
can verify this by determining the error outside of Ω, but due to the problem scenario
only informations in Ω are given. A convenient possibility to handle this situation is
to generate a test set. Therefore, we split the measured set Ω into a calculation set
ΩC , used to compute the approximation AH, and a test set ΩT , only used to check the
approximation. The quality of the reconstruction does not only depend on the amount
of the sampled points in ΩC but also on the structure of ΩC as exemplified in the next
subsection.

3.1 Why a sampling rule

In the introduction we remark that a standard choice for the sampling points are pseu-
dorandom or quasirandom points coming from MC or QMC methods. Thereby, the
points are for example uniformly distributed. If they are generated by QMC they pro-
vide greater uniformity.
We will now assume that a random sampling with uniformly distribution took place.

Furthermore we assume that]I = nd for simplicity and]ΩC ≤ nd
d
2
e. For the recon-

struction process, we have in mind that we want to use the matrix hierarchy of the
format and hence, do not consider the direct optimization over the representation sys-
tem

(
(Uµ)µ∈L(TD), (Bt)t∈I(TD)

)
. The probability is almost one that in every column at

most one entry is known irrespective of the t-matricization under consideration. Let JΩ
t

be the set of columns with a known entry, itj the corresponding rows and IΩ
t the set of the

rows with known entries. Then, we can determine a rank-1-approximation Mt ∈ RIt×It̂
which is exact in the given entries:

Mt = ut v
T
t with (ut)i =

{
1, i ∈ IΩ

t

0, otherwise
and (vt)j =

{
(A(t))itj ,j , j ∈ JΩ

t

0, otherwise

This examination leads to a H-Tucker tensor AH with (D = s
·
∪ ŝ):

Uµ = uµ ∀µ ∈ L(TD)

Bt ∈ R with Bt =

{
=

∑
i∈ΩC

Ai

]Ωc
, t = ŝ(best choice)

= 1, otherwise
∀t ∈ I(TD)

The error ‖A−AH‖Ω is the standard deviation of the known entries. It is unlikely that
the reconstruction in the unknown entries is successful.
A sampling rule that chooses a more convenient set ΩC is an important aspect of our
algorithm. Therefore, we use a matrix approximation technique extended to our tensor
format as described in [14]. It is a specified form of the adaptive cross approximation
ACA of [15] explained in the next Subsection 3.2 and changed to a non-adaptive strategy
in Subsection 3.3.

7

3.2 Cross approximation

The name of the technique implicates to define a cross over a matrix element called
pivot element. Let Mp1,q1 6= 0 be a chosen pivot element of the matrix M ∈ RI×J with
]I = m1 and]J = m2. Then, the column M |I×q1 , the pivot element and the row M |p1×J
define a cross as shown in Figure 4.

q
1

p
1

−1

Figure 4: Left: Define a pivot element Mp1,q1 6= 0 with the pivot column M |I×q1 and the
pivot row M |p1×J . Right: Then a rank-1 cross approximation of M is given

by equation (5) visualised here.

We obtain a rank-1 cross approximation of M by:

M̃1 := M |I×q1 ·
(
M |p1×q1

)−1
· M |p1×J . (5)

This approach will be improved by a rank-1 cross approximation of the remainder M −
M̃1, leading to a rank-2 cross approximation, and so on. If we select r pivot elements
and define Pr := {p1, . . . , pr} and Qr := {q1, . . . , qr} then a rank-r approximation is
described by

M̃r := M |I×Qr ·
(
M |Pr×Qr

)−1
· M |Pr×J . (6)

Thereby, the following question arises: Is there an error estimation for M − M̃r? A
known existence result for an approximation similar to M̃r is given in [16]: Assume that
M,F ∈ Rm1×m2 , rank(M − F) ≤ r and ‖F‖2 ≤ ε for some ε > 0. Then there exist
r columns C := M |I×Qr and r rows R := M |Pr×J which determine a pseudo skeleton

component CGR with G ∈ Rr×r such that

‖M − CGR‖2 ≤ ε (1 + 2
√
rm1 + 2

√
rm2) .

If G is the inverted intersection of C and R then the error gets the additional term
ε
(
1 + 5r

√
m1m2

)
. The same authors motivate in [17] and [18] the idea to identify G

with an (r × r) - submatrix in M of maximal determinant in modulus called maximum
volume. The main results therein are build upon the knowledge of the rank of M . In
[15] a strategy is given that can handle matrices without knowing their ranks. A rank-h
submatrix is searched in an adaptive way by rank-1 approximations described above
with the following full pivot choice (full ACA):

The pivot element with index (ph, qh) in step h is best chosen if∣∣∣∣(M − M̃h−1

)
ph,qh

∣∣∣∣ ≥ ∣∣∣∣(M − M̃h−1

)
i,j

∣∣∣∣ ∀(i, j) ∈ I × J, h = 1, . . . , r (7)

8

with M̃0 = 0 ∈ RI×J .

If the matrix M has rank r then the strategy finds a representation after r steps. But
until r is reached an error estimation for the rank-h approximation is not known. In [14]
this procedure is reduced to the search of only quasi-maximal elements and adapted to
the H-Tucker format.

3.3 The non-adaptive sampling rule

The assumption (2) gives an upper bound for every matricization rank kt ≤ K. The
cross approximation finds a representation

A(t) = A(t)
∣∣∣
It×Pt̂

·
(
A(t)

∣∣∣
Pt×Pt̂

)−1

· A(t)
∣∣∣
Pt×It̂

=: Ct S
−1
t Rt (8)

after kt steps and the relation span(Ct) = span(A(t)) holds. It is meaningful to restrict
the pivot selection for the cross approximation in the sons of t based on the following
lemma.

Lemma 6 Let t = t1
·
∪ t2 be an interior node of the canonical tree TD and span(Ct) =

span(A(t)). Then Ct contains also the structure of A(t1) and A(t2):

span
(

(Ct)
(t1)
)

= span(A(t1)) and span
(

(Ct)
(t2)
)

= span(A(t2))

Proof: Select an arbitrary column A
(t)
j of the matricization A(t), which is determined

by the columns of Ct. The t1-matricization of A
(t)
j leads to vectors (A

(t)
j)

(t1)
j2
∈ RIt1 for

j2 ∈ It2 described by

(A
(t)
j)

(t1)
j2

= A
(t1)
(j2,j)

=

kt∑
ν=1

cjν

(
(Ct)

(t1)
ν

)
j2

The t2-matricization of A
(t)
j leads to a similar formulation.

Lemma 6 motivates to select the pivot elements for the son cross approximation from
the pivot columns Pt̂ ⊂ It̂ of the father.
We start the sampling strategy from the top of the dimension tree. The root D has
only one column. Hence, we choose the first pivot elements in a son t of the root. We
randomly generate Kt admissible pivot elements (pti, q

t
i) in the sense that they are in

different rows and columns, and so]Pt =]Pt̂ = Kt. The second son t̂ of the root can

use the same elements due to the relation A(t) = A(t̂)T . Afterwards, in both sons of t
(respectively t̂), the pivot selection is restricted as seen in Algorithm 1.

It is done equivalently for the other son t2, and for their sons and so on. This restricted
pivot selection is the core of the sampling rule.

9

Algorithm 1 Restricted pivot selection in son t1
1: Given: t1, brother t2 and father columns Pt̂
2: for j = 1, . . . ,Kt1 do
3: Choose randomly and admissible: pj ∈ It1 and qj ∈ It2 × Pt̂
4: Pt1 = Pt1 ∪ pj and Pt̂1 = Pt̂1 ∪ qj
5: end for
6: Return: Pt1 and Pt̂1

Remark 7 (Rank initialisation) In most situations the representation H-rank k or
the rank bound K of the original tensor is not known. Hence, the initialisation ranks
Ks should be chosen large enough for all s ∈ TD. If the approximations do not achieve
a given tolerance the first step is to increase the ranks Ks. It is obvious that in this case
we do not discard the entry set Ω of the first run. With the pivot selection strategy (7),
we can estimate the cross approximation of A(s) by the last selected pivot element. If a
second interaction to obtain tensor entries is possible, we use this information to increase
the entry set for every node s ∈ TD individually. Then, we start the reconstruction again.

4 Reconstruction

The hierarchical Tucker format with its binary tree structure enables us to use matrix
techniques for calculations in the tensor case. We choose the cross approximation and
restrict the choice of the pivot elements. The next subsection contains the calculation
of the format ingredients.

4.1 Main theorem

Theorem 8 (Representation) Let a cross approximation of s ∈ TD be given by

A(s) = Cs S
−1
s Rs + Fs

with Cs, Ss and Rs of equation (8) and an error matrix Fs ∈ RIs×Iŝ for two sons
t1, t2 ∈ TD \D of an interior node t ∈ I(TD) \ root(TD). Then a representation of A(t)

in the selected columns Pt̂ is described by:

(
A(t)

∣∣∣
It×Pt̂

)
(i1,i2),j

=

kt1∑
α=1

kt2∑
β=1

(Bt)α,β,j (Ct1)i1,α (Ct2)i2,β + (Ft)(i1,i2),j

10

with (Bt)α,β,j =
∑

p1∈Pt1

∑
p2∈Pt2

(
S−1
t1

)
α,p1

(
A(t)

∣∣∣
(Pt1×Pt2)×Pt̂

)
(p1,p2),j

(
S−1
t2

)
β,p2

and (Ft)(i1,i2),j =
1

2

 ∑
p1∈Pt1

(
Ct1 S

−1
t1

)
i1,p1

(Ft2)i2,(p1,j) + (Ft1)i1,(i2,j)

+
∑

p2∈Pt2

(
Ct2 S

−1
t2

)
i2,p2

(Ft1)i1,(p2,j) + (Ft2)i2,(i1,j)

for all (i1, i2) ∈ It and j ∈ Pt̂.

Proof: We prove the theorem by first rearranging A(t) to A(t1) and use the cross approxi-

mation above and second rearranging Rt1 to R
(t2)
t1

and use again the cross approximation:(
A(t)

∣∣∣
It×Pt̂

)
(i1,i2),j

=
∑

p1∈Pt1

kt1∑
α=1

(Ct1)i1,α
(
S−1
t1

)
α,p1

(
A(t1)

∣∣∣
Pt1×(It2×Pt̂)

)
p1,(i2,j)

+ (Ft1)i1,(i2,j)

=
∑
p1

∑
α

(Ct1)i1,α
(
S−1
t1

)
α,p1

 ∑
p2∈Pt2

kt2∑
β=1

(Ct2)i2,β
(
S−1
t2

)
β,p2

(
A(t2)

∣∣∣
Pt2×(Pt1×Pt̂)

)
p2,(p1,j)

+(Ft2)i2,(p1,j)

]
+ (Ft1)i1,(i2,j)

The equivalence A(t2)
∣∣
Pt2×(Pt1×Pt̂)

= A(t)
∣∣
(Pt1×Pt2)×Pt̂

gives the description of the trans-

fer tensor. The expression of the error matrix in the theorem is symmetric in the sons
of t. Therefore, we change the role of t1 and t2, leading to the same description of the
transfer tensor as before, and take the average.

Corollary 9 (Reconstruction) If in Theorem 8 the matrices Ss fulfill:

rank(Ss) = rank(A(s))

for all s ∈ TD, then all error matrices Fs vanish and the reconstruction is successful.

We calculate the transfer tensor Bt with t = t1
·
∪ t2 by inverting St1 and St2 . If the

initialisation ranks Kt1 and Kt2 are large enough, then these matrices are singular or
ill-conditioned. This problem is handled by truncating the approximations.

Remark 10 (Truncate the Approximation) Let Ss be singular or ill-conditioned.
We approximate Ss by the cross approximation with pivot selection of (7) until the cur-
rent pivot element in modulus is smaller than a given tolerance. Then, Ps and Pŝ with
]Ps =]Pŝ = Ks are reduced to the subsets P s and P ŝ with]P s =]P ŝ = ks and we
found a reduced cross representation Ss.Thereby, the calculation in Theorem 8 does not
change. We only replace Ps by P s, Pŝ by P ŝ and Fs by F s for s ∈ {t1, t2, t, t̂}. To keep
the notation as simple as possible we skip the over lined mark if not needed.

11

To sum up, we obtain a frame of a leaf s from the tensor entries of Is × Pŝ and the

transfer tensor of an interior node t = t1
·
∪ t2 from the entries of Pt1 × Pt̂1 , Pt2 × Pt̂2 ,

and the coupled set Pt1 × Pt2 × Pt̂.

4.2 Tensor Reconstruction Algorithm with a non-adaptive sampling rule

The reconstruction process starts with the detemination of ΩC by the non-adaptive
sampling rule of Algorithm 2 calling a function ’determine omegac’ of Algorithm 3.
After the entries are sampled, the ingredients of AH are recursively calculated by the
function ’ht ingredients’ of Algorithm 4 beginning with the call ’ht ingredients(D, ht,
ΩC ,AΩC)’.

Algorithm 2 Determine ΩC

1: Given: canonical tree TD, root D = t
·
∪ t̂ and t̂ = t̂1

·
∪ t̂2

2: Left son t: determine omegac(t,ΩC)
3: Right son t̂: determine omegac(t̂1,ΩC) and determine omegac(t̂2,ΩC)
4: Return: sampling set ΩC

Algorithm 3 determine omegac(t,ΩC)

1: Given: node t, set ΩC and father pivot columns Pf̂ if t is not direct son of D
2: if t is the left son of D then
3: unrestricted pivot selection
4: else
5: restricted pivot selection of Algorithm 1
6: end if
7: if t has sons t1 and t2 then
8: determine omegac(t1,ΩC) and determine omegac(t2,ΩC)
9: ΩC = ΩC ∪ (Pt1 × Pt2 × Pt̂) ∪ (Pt × Pt̂)

10: else
11: ΩC = ΩC ∪ (It × Pt̂)
12: end if
13: Return: ΩC

In the next section we test the reconstruction for a perturbed and an unperturbed
high dimensional problem.

5 Numerical Examples

We consider tensors where we know a low rank approximation in the H-Tucker format.
The reasons are first of all the relative 2-norm L2 of an H-Tucker tensor is directly
determinable as seen in [9]. Second, the possibility to obtain the tensor entries of our
special sampling rule. The calculation of the relative maximum error is not applicable.

12

Algorithm 4 ht ingredients(t, ht, ΩC ,AΩC)

1: Given: node t, structure of ht to fill, sampling set ΩC and entry set AΩC

2: if t has sons t1 and t2 then
3: reduce St1 to St1 with the full ACA
4: if t is the root D then
5: Bt =

(
St1
)−1

6: else
7: reduce St2 to St2 with the full ACA and calculate Bt (Theorem 8)
8: end if
9: ht ingredients(t1, ht, ΩC ,AΩC) and ht ingredients(t2, ht, ΩC ,AΩC)

10: else
11: Ut = Ct (Theorem 8)
12: end if
13: Return: ht

Thus, we randomly generate a test set ΩT of 105 entries and calculate the maximum
error L∞ over the subset Ω:

L2 :=
‖A−AH‖2
‖A‖2

and L∞ :=
‖A−AH‖∞,Ω
‖A‖∞,Ω

(9)

The numerical experiments are focused on the following questions:

1. Does the restricted pivot selection of Algorithm 1 motivated by Lemma 6 lead to
a suitable approximation of the original tensor, or even of one matricization?

2. Does the reconstruction algorithm find the representation ranks k, if the original
tensor A fulfills assumption (2) as in Example 12, or convenient approximation
ranks, if A does not fulfil (2) as in Example 11?

3. Does the reconstruction in the perturbed case achieve an accuracy close to the
perturbation?

For simplicity, we set the mode sizes all equal to nµ = n. We choose the discretization
of a smooth function as the first example.

Example 11 (Smooth function) The d-dimensional smooth function

f(x) :=

√
d

‖x‖2
with xi ∈ [1, 2] ∀i = 1, . . . , d

has function values in the interval
[

1
2 , 1
]
. The discretization over a tensor grid leads to

a tensor A given entrywise by

Ai1,...,id :=
√
d

 d∑
µ=1

(
miµ

)2− 1
2

with miµ := 1 +
iµ − 1

nµ − 1
and iµ ∈ Iµ ∀µ. (10)

13

It has a very close approximation AE ∈ RI with
∥∥A−AE∥∥∞ ≤ 7.315 10−10 [19] by

exponential sums

AEi1,...,id :=
K∑
j=1

wj

d∏
µ=1

exp

(
−m2

iµ
αj

d

)
∀(i1, . . . , id) ∈ I

with weights (wj)j=1,...,K and exponential parts (αj)j=1,...,K coming from the webpage
’http://www.mis.mpg.de/scicomp/EXP SUM’. In [9] it is converted to an H-Tucker ten-
sor AEH and used here, instead of A, to calculate the L2 errors of (9) directly.

We start the numerical experiments with an unperturbed tensor. In the first test we

consider the sampling strategy for the matricization of the left root son t = t1
·
∪ t2 and

its son t1 for dimension d = 8 and mode size n = 10. We run the sampling 100 times
and evaluate the L∞ error of the cross approximation with]ΩT = 104. In Figure 5 we
plot a histogram of the L∞ error.It shows that the cross approximation error with an
unrestricted pivot selection in t lies with 68% mostly in the interval (10−9, 10−8]. For the
son node t1 the cross approximation error with the restricted selection of Algorithm 1 is
in two-thirds of the runnings in (10−11, 10−9]. Hence, the example satisfies the positive
expectations on the restricted pivot selection.

1e−13 1e−10 1e−09 1e−08 1e−071e−12 1e−11

20

10

30

40

50

60

70

80

left son of t

error interval

left root son t

r
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

i
n

%

Figure 5: Cross approximation error
for tensor A (10) with n =
10 and d = 8

2 4 6 8 10

5e−10

7e−10

8e−10

3e−09

4e−09

9e−10

2e−09

6e−10

1e−09

L
2
−
e
r
r
o
r

d=8

d=16

d=32

d=64

factor of oversampling cov

5e−09

Figure 6: Reconstruction error for
tensor A (10) with n = 10
and d = 8, 16, 32, 64

In the next test we consider the dependence of the reconstruction L2 error from the
dimension and the oversampling factor cov as the ratio between the number of sampled
points and the number of variables to represent AH:

cov =
]ΩC

] Variables of AH
.

We run the algorithm 10 times and take the average error. In Figure 6 we plot the L2

error against the oversampling cov and vary the dimension d = 8, 16, 32, 64. The error
difference between all dimensions is smaller than 3e − 10. For cov = 2 the L2 error is
around 5e− 09 and falls down to 1e− 09 for cov = 6. The error seems to be independent
of the dimension and an oversampling factor higher than 6 seems to not improve the
approximation.

14

To answer the second question, we consider the approximation ranks of A in (10) for n =
10 and vary the dimension d = 8, 16, 32, 64 in Table 1. We select cov = 6 corresponding
to an L2 error in (1e − 10, 1e − 09). The orginal tensor A does not fulfil assumption
(2). For the comparison with AH, we truncate the approximation tensor AEH to a node
wise accuracy of 1e − 10 and consider the resulting ranks represented by the efficient

rank reff to the same storage complexity O
(

(d− 1)r3
eff + dnreff

)
. The rank difference

rd := keff − reff to the efficient rank keff of the reconstruction decreases from rd =
1.7 for d = 8 to rd = 1.02 for d = 64. We summarize that the reconstruction finds
approximation ranks close to the quasi-optimal ranks of the same accuracy.

d rreff keff rd

8 5.3 7 1.7
16 4.47 6.05 1.58
32 4.08 5.1 1.02
64 3.52 4.54 1.02

Table 1: Comparison of the efficient
rank reff to node wise ac-
curacy 1e − 10 and the re-
construction efficient rank
keff of A (10) for n = 10
and cov = 6

cov L2 L∞
2 8.5e-10 8.3e-09
4 7.57e-10 2e-09
6 7.57e-10 1.7e-09
8 7.57e-10 1.69e-09
10 7.56e-10 1.5e-09
12 7.56e-10 1.17e-09

Table 2: Comparison of L2 error
and L∞ error of tensor A
(10) for d = 32 and n = 10

In Table 2 we compare the L2 error and the L∞ error for fixed d = 32 and vary the
oversampling. We see that the L2 error is at most a factor of 10 better than the L∞
error and conclude that they are close to each other [20].
We continue with a perturbed tensor Ap := A+X where the tensor A has the form (10)
and the perturbation is entry wise given by:

Xi =

{
random βi ∈ [−1e− 5, 1e− 5] , with probability p = 0.01
0, with probability p = 0.99

We want to answer the third question from above for d = 8 and d = 16 where we fix
n = 10. The algorithm stops the full ACA step to calculate the reduced matrix of S

with rank r if
∣∣∣(S − S̃r)(pr+1,qr+1)

∣∣∣ ≤ 1e−5 and the matrix S is reduced to S as described

in Remark 10. We consider the L∞ error in Figure 7 and the L2 error in Figure 8 in
a histogram for 10 test runnings. The L∞ error is with at least 80% in (1e − 4, 1e − 3]
irrespective of the dimension under consideration. The L2 error is for d = 16 always in
(1e− 5, 1e− 4] and for d = 8 with 80% mostly in (1e− 6, 1e− 5]. We conclude that the
reconstruction error of a perturbed tensor is close to the perturbation.

15

1e−06 1e−05 1e−031e−04

100

80

60

40

20

dimension 8

dimension 16

error interval

r
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

i
n

%

Figure 7: L∞-error for the perturbed
Tensor of (10) with n = 10

1e−06 1e−05 1e−04 1e−03

100

80

60

40

20

error interval

dimension 8

dimension 16

r
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

i
n

%

Figure 8: L2-error for the perturbed
Tensor of (10) with n = 10

The second example is a random H-Tucker tensor.

Example 12 (H-Tucker tensor) The random H-Tucker tensor have constant ranks
K = 7 for all nodes t ∈ TD fulfilling assumption (2). The ingredients of the format
are randomly generated with a uniform distribution in

[
1
2 , 1
]
. Afterwards, the node wise

singular values are forced to decay like αj with j = 1, . . . ,K and α ∈ (0, 1).

We consider the cross approximation error in the matricization of the left root son
t and the reconstruction error for 100 test runnings with d = 8, n = 10, cov = 3
and]ΩT = 105. We call the reconstruction successful if the reconstruction error is in
(1e − 15, 1e − 13]. In the first 50 runnings we set α = 0.25 shown in Figure 9 and in
the second 50 runnings α = 0.75 shown in Figure 10 by histograms again. The singular
values decrease for α = 0.25 faster than in the case α = 0.75. The cross approximation
error is always smaller than 1e− 11 and often better than 1e− 15. The reconstruction
error is always better than 1e− 7 and most of the time smaller than 1e− 13. Figure 9
shows a few test runnings with an error in (1e − 9, 1e − 7]. Therein, the resulting rank
kt of the observed node t is every time 5 instead of 7. In all other cases the H-rank k of
the representation AH is node wise in {6, 7}. In summary, the reconstruction algorithm
mostly finds the representation ranks of the original tensor.

1e−19 1e−17 1e−15 1e−13 1e−11 1e−09 1e−07

40

20

60

80

100 cross approximation

error interval

reconstruction

r
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

i
n

%

Figure 9: Random H-Tucker tensor
with d = 8, n = 10 and 50
test runnings for α = 0.25

1e−19 1e−17 1e−15 1e−13 1e−11 1e−09 1e−07

40

20

60

80

100

reconstruction

error interval

cross approximation

r
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

i
n

%

Figure 10: Random H-Tucker tensor
with d = 8, n = 10 and 50
test runnings for α = 0.75

16

6 Conclusion

In this article we present a non-adaptive sampling rule for high-dimensional tensor re-
construction based on an approximation scheme in the H-Tucker format. For tensors
with H-rank k the developed algorithm finds a reconstruction if the pivot matrix fulfills
rank(St) = kt for all nodes t of the canonical tree TD. The numerical examples show
that the reconstruction was successful, even if the resulting ranks are only close to the
original ones. In the case where the tensor A has no low rank representation the algo-
rithm found convenient approximation ranks.
In contrast to the non-adaptive sampling rule, the adaptive rule needs the interaction
with the generation routine during the whole time. If this interaction is possible, an
adaptive sampling as in [14] may lead to higher approximation accuracy.
In the field of tensor completion where one interaction is possible, the non-adaptive
strategy may be useful.

References

[1] B. N. Khoromskij and I. V. Oseledets. Quantics-tt collocation approximation of
parameter-dependent and stochastic elliptic pdes. Comp. Meth. in Applied Math.,
10(4):376394, 2010.

[2] A. Litvinenko, H. G. Matthies, and T. A. El-Moselhy. Low-rank tensor approxima-
tion of the response surface. accepted by MCQMC, 2013.

[3] R. E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numer., 7:1–49,
1998.

[4] J. Ballani. Fast evaluation of singular BEM integrals based on tensor approxima-
tions. Numer. Math., 121(3):433–460, 2012.

[5] C. Da Silva and F. J. Herrmann. Hierarchical tucker tensor optimization - ap-
plications to tensor completion. SampTA 2013, 10th International Conference on
Sampling Theory and Application, Jacobs University Bremen, 2013.

[6] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup. Scalable tensor factorizations
for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–
56, March 2011.

[7] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. The
journal of Fourier analysis and applications, 15(5):706–722, 2009.

[8] C. Tobler. Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems.
PhD thesis, ETH Zürich, 2012.

[9] L. Grasedyck. Hierarchical Singular Value Decomposition of Tensors. SIAM J.
Matrix Anal. Appl., 31:2029–2054, 2010.

17

[10] L. Grasedyck and W. Hackbusch. An introduction to hierarchical (mathcalH-)
rank and TT-rank of tensors with examples. Computational methods in applied
mathematics, 11(3):291–304, 2011.

[11] I. V. Oseledets. Compact matrix form of the d-dimensional tensor decomposition.
Preprint 09-01, Institute of Numerical Mathematics RAS, Moscow, Russia, 2009.

[12] J. Ballani and L. Grasedyck. Tree adaptive approximation in the hierarchical tensor
format. DFG SPP 1324 Preprint, 141, 2013.

[13] W. Hackbusch. Tensor spaces and numerical tensor calculus, volume 42 of Springer
series in computational mathematics. Springer, Heidelberg, 2012.

[14] J. Ballani, L. Grasedyck, and M. Kluge. Black box approximation of tensors in
hierarchical Tucker format . Linear Algebra Appl., 438(2):639–657, 2013.

[15] M. Bebendorf. Approximation of boundary element matrices. Numer. Math.,
86(4):565–589, 2000.

[16] S. A. Goreinov, E. E Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseu-
doskeleton approximations. Lin. Alg. Appl., 261:1–22, 1997.

[17] S. A. Goreinov, E. E Tyrtyshnikov, and N. L. Zamarashkin. Pseudo-skeleton ap-
proximations by matrices of maximal volume. Mathematical Notes, 62(4):515–519,
1997.

[18] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L.
Zamarashkin. How to find a good submatrix. in: Matrix Methods: Theory, Algo-
rithms,Applications,(World Scientific, Hackensack, NY), pages 247–256, 2010.

[19] W. Hackbusch. Entwicklung nach Exponentialsummen. Technical Report TR
4/2005, Max Planck Institute for Mathematics in the Sciences, 2005.

[20] Wolfgang Hackbusch. l∞ estimation of tensor truncations. Numerische Mathematik,
125(3):419–440, 2013.

18

	IGPM392-Deckblatt.pdf
	IGPM392-Original

