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In October 2012, the Deutsche Gesellschaft für Inter-
nationale Zusammenarbeit (GIZ) GmbH on behalf of 
the German Federal Ministry for Economic Coop-
eration and Development (BMZ) commissioned the 
Parmenides Foundation to conduct a desk study on 
Early Grade Development and Numeracy, particularly 
in low income countries, as part of a series of studies 
on numeracy. Two other studies would examine the 
Assessment of Early Grade Numeracy and Mobile 
Learning and Numeracy.

We, the authors, propose a multi-dimensional ap-
proach to numeracy. We review the important findings 
on low income countries, which reveal that there 
already are significant efforts to improve learning 
outcomes in numeracy, e.g. in African countries, but 
that there were only weak positive effects on learning. 
These findings elicit the question: What other factors 
play a role in transferring knowledge from teachers to 
students? We focus especially on motivational aspects 
that increase the commitment and interest of chil-
dren, parents and teachers to learn, respectively, teach 
numeracy.

From a scientific point of view, numeracy requires 
the interplay of several well distinguishable cognitive 
systems. There are three quantification processes, 
which can be distinguished: a) counting, b) subitizing 
and c) estimation. It is assumed that we represent 
quantities on an internal number line. In particular, 
Dehaene proposed a modular concept, which states 
that three distinct systems (Triple Code Model) are in-
volved when people perform mathematical operations 
(respectively, a system that represents mathematical 
knowledge in visual and auditory format, and a more 
general module that is responsible for the analog 
magnitude representation and suspected to be closely 
related to the “number sense”). Neuro-scientific studies 
provide some evidence for the validity and the appli-
cability of this model to different brain regions.

One key region is the intraparietal sulcus (IPS). It is 
assumed that the IPS is responsible for the approx-

imate representation of quantities (mental number 
line). During development, the number line changes 
from a logarithmic to a more linear representation. 
There is first evidence that intuitive basic number 
processing measured by the distance or the ratio 
effect can predict mathematical abilities, but not 
automatic processes, such as the size-congruity effect. 
These findings might have interesting implications 
for the diagnostics of early number processing in 
children. Given the scientific evidence, it seems 
worthwhile to focus more strongly on approximate 
and less on exact numeracy abilities. Increasing the 
resolution and representation of the mental number 
line may positively affect children’s achievement.

There is evidence that early mathematical education, 
starting already in preschool, has a sustainable impact on 
the subsequent mathematical abilities in school or high 
school. Fostering mathematical skills has to take into ac-
count that children do not only need to learn procedures 
or algorithms (“malgorithms” and misconceptions), 
but also comprehend the underlying conceptual and 
structural knowledge. There are cultural variations in 
numeracy that either depend on educational priorities 
or on topicalities of the used number system. 

In general, it seems difficult to translate the results of 
basic research to teaching. There is a strong need for 
scientific studies that investigate, evaluate and foster 
exactly this transfer.
 
The Parmenides Learning to Think Project suggests 
a dual-process account (analytic and constellatory 
thinking) and provides detailed thinking operations, 
which serve as general and cross-cultural base for 
mathematical thinking. We have developed typical 
educational modules starting with numeracy educa-
tion at the age of one up to school age. We emphasize 
the necessity of a multi-method approach, which 
takes individual aspects (analysis of misconceptions, 
motivation) and contextual aspects (teacher, parents, 
etc.) into account. 

Executive Summary
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We conclude that numeracy has to start at an early age, 
while being insight-oriented and discovered on one’s 
own, has to be taught and experienced joyfully and 
motivationally and – last but not least – there has to be 
a stronger focus on constellatory thinking processes 
than on pure analytical processes. 

The study provides recommendations for the acquisi-
tion of numeracy competencies with a special focus on 
the situation in low income countries. We emphasize 
that it is crucial to increase the intrinsic motivation 
to acquire numeracy. Teachers, parents and, most 

importantly, children have to realize that mathematics 
is a science that requires only few resources to gain 
deep insights. 

At the end of the study, we illustrate how to use 
modern technologies (eLearning) in order to foster, 
evaluate and improve individual mathematical 
thinking, and recommend video analysis methods to 
improve the quality of teaching, evaluating students’ 
performance and providing new insights into the 
study of children’s mathematical development.

 This study was commissioned by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Education Section on 
behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ). The views expressed are those of the authors 
Dr. Michael Öllinger, Dr. Andreas F. Ströhle and Prof. Dr. Albrecht von Müller (Parmenides Foundation) and do not necessarily reflect the 
position of the GIZ and BMZ.



Our study focuses on selected scientific evidence con-
cerning the research of mathematical thinking and 
teaching, fostering numeracy and on particular educa-
tional aspects of numeracy in low income countries. 
We aim at determining the main driving factors, which 
hold true for a variety of different cultures. According to 
Grisay & Mahlck (1991) there are three quality dimen-
sions of education, which have to be considered:

 1. “input“: human and material resources   
 2. “process”: teaching practices
 3. “output”: performance of the students

Furthermore, we want to highlight a certain phenome-
non, which has to be taken seriously and which is 
an explicitly cultural obstacle to establishing better 
numeracy achievements in low income countries. The 
Uwezo East Africa Reports 2011 & 2012 revealed that 
despite the availability of appropriate human and 
material resources students do not seem to learn. 
This is a crucial finding. It demonstrates that providing 
resources (like schools, teachers, teaching materials) are 
a necessary pre-condition, but do not inevitably ensure 
educational success, because there might be mediators 
that prevent the impact of those means. Such media-
tors, like individual motivation, or cultural attitudes 
have to be identified and taken into account when 
planning educational interventions (see Figure 1).

The two Uwezo reports summarize the problem of 
numeracy and literacy in the following statements: 

“Bad results inevitably lead to the question, 
what next? The findings of this report suggest 
that policy makers would do well to question 
approaches used so far, instead of doing more 
of the same. While different investments can 
have positive effects, some are likely to have 
greater or more lasting impact than others, or 
present better value for money. In a context 
where resources are limited, it is crucial to exa-
mine the evidence carefully for what is likely to 
contribute to greater impact.” (Uwezo, 2011)

“Despite important gains in access to primary 
schooling throughout the region, evidenced by 
generally high enrolment rates, large numbers of 
children are simply not learning.” (Uwezo, 2012)

Even if we believe that it is necessary to give attention to 
some neglected, crucial aspects of fostering numeracy, 
there are, of course, more problems to fostering nu-
meracy in low income countries than a positive attitude 
toward mathematics. 

The main body of our desk study begins with detailed 
information on various aspects of numeracy and briefly 
summarizes the scientific state of the art in this field. 

Introductory Remarks
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Figure 1: Essence from the Uwezo East Africa Reports 2011 & 2012.
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Prerequisites for Numeracy
Numeracy requires a broad range of cognitive abilities: 
Seeing and comprehending the written numbers, de-
coding and understanding the heard numbers, writing 
down the result of a calculation, activating an abstract 
representation, activation of the motor system in case 
we are moving or changing objects in the world, e.g. 
moving beads on an abacus or putting quantities in a 
container, mapping the quantity of a set into a mental 
representation.
 
The concerted interplay of those systems is necessary 
and can be disturbed by misconception, or by failure 
or deficits of parts of the neural system. We propose 
that for fostering numeracy each of these components 
have to be taken into account.

In general, a number can be defined as the property of 
a set of objects (see Figure 2). In this picture, quantifica-
tion is the act of mapping the perceived set of elements 
into a mental number or token. Three quantification 
processes can be distinguished (Klahr, 1973): a) count-
ing, b) subitizing and c) estimation (see Figure 2).

Counting 
A dominant opinion in regard to teaching math-
ematics is that counting is the basic principle to start 
with arithmetic.

Characterization: According to Gellman and Gallistel 
(1978), at least five principles can be defined:

The principles illustrated in Figure 3 emphasize the 
complex act of counting. There are several insights we 
can derive from the model and abilities children have 
to learn. For example, when counting a set of objects, 
e.g. apples, the sequence does not play a role, but it is 
important to map exactly one apple to one number. 
The next step is to abstract from the concrete apple to 
a general understanding of cardinality etc. 

There is a long discussion whether children should 
use fingers to learn counting. It was shown that using 
finger digits and body parts, as African and New-
Guinean tribes do, might support counting. This 
finding supports our assumption of the interplay of 
embodied cognition and numeracy substantially (see 
below). Moreover, it is assumed that the ability to 
count and the ability to speak are mostly independent 
(Gellman and Gallistel, 1992). 

Phylogenetic: From a phylogenetic point of view, it 
is interesting that number processing can already be 

Figure 2: Different perspectives and levels on quantification.

Figure 3: Properties for counting.
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observed in animals (Verguts et al. 2004, rats, chim-
panzees, birds). It is assumed that some animals have a 
number sense and use a pre-verbal counting mech-
anism that also is present in infants. 

Development: There are two concurrent approaches 
that try to explain the development of counting in 
children. Gellman and Gallistel assume that there are 
innate principles like cardinality, abstraction, order-
irrelevance that guide counting abilities – because of 
the assumption of innate principles, this is called the 
principle-first account vs. the principle-after account, 
according to which counting principles are progres-
sively abstracted during children’s maturation (e.g. 
Greeno et al. 1984).  For the latter account speaks that 
there is evidence that understanding cardinality and 
the ability of a flexible abstraction requires some time 
in development.

Subitizing
Characterization: Subitizing is the ability to determine 
the quantity of a set without counting. Generally, 
between the range of 1 to 4 participants show fairly fast 
numerosity judgments (Kaufman et al., 1949). Mandler 

and Shebo (1982) propose a model of canonical con-
figurations (constellations) of visual items assuming 
that people tend to build perceptual units that can be 
subitized. 

Development: Subitizing can be very impressively 
studied in young infants: Already 4-day-old babies 
can differentiate between 1 and 2 object displays. They 
only failed when they had to compare 4 versus 6 object 
displays.
 
In a very famous study Wynn (1992) presents infants 
with a theater display (see Figure 4). Children see 
that two puppets wander behind a curtain. When the 
curtain is lifted and unexpectedly only one puppet 
appears children older than 5 months do not habitu-
ate. This is taken as an indicator that children detect 
the violation of their expectation, and this requires 
a rudimentary understanding that the number of 
objects is incorrect. 

Young children are also aware that adding two small 
quantities augment the size, but they were in general 
not able to calculate the exact number.

Figure 4: Early quantity judgments. 

Retrieved from: http://web.uvic.ca/~lalonde/psyc335/notes/images/numerical-knowledge.jpg 
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Estimation and the Number Line
Characterization: Estimation is the attempt to find an 
approximate quantity of a large set of objects without 
counting.

Experimental Evidence: Data analysis of number com-
parisons (same – different, less than – greater than) 
revealed that numbers were recoded and compared 
as quantities (Dehaene, 1992) – this is known as the 
distance effect. According to Dehaene et al. (1990), the 
digital code is converted into an internal magnitude 
that is placed on an internal mental number line. Fur-
ther evidence for the existence of a mental number 
line were provided by experiments on the SNARC 
effect (spatial numerical association of response code), 
which show that participants react faster with their 
left hand to lower numbers and with their right hands 
to higher numbers. Shaki et al. (2009) demonstrated 
that the SNARC effect might result from the reading 
habits common in a particular culture. They found 
that Canadian students that read from left to right 
showed the typical SNARC effect. Palestinian students 
that read from right to left showed a reversed SNARC 
effect and Israeli students that read Hebrew text from 
right to left, but also read Arabic numbers from left to 
right showed no SNARC effect. 

The concept of a number line can also be used to 
explain arithmetic operations.  According to Restle 
(1970), addition can be interpreted so that the op-
erands represent segments of the number line and 
by aligning the second segment behind the first, the 
result can easily be read out. 

A Cognitive Model of 
Number-Processing
Given the detailed evidence presented above, it is 
conceivable that distinct systems are responsible for 
number processing (Dehaene, 1992). The first system 
processes numbers as symbols. The second system 
aligns the numbers on a number line as approximate 
quantities. Moreover, there is evidence from neuro-
psychological lesion studies, which suggests that 
clearly distinguishable brain regions are responsible 
for different aspects of numeracy (see below). 

Dehaene (1992) postulates three different domains 
that are important for numerical competence: a) 
transcoding, b) quantification and c) approximation.  
In his Triple-Code-Model (TCM) he postulates three 
different representational systems – verbal, visual and 
analog magnitude representation (see Figure 5). In the 
auditory, verbal word frame, an analog of a number 
word is mentally manipulated. In the visual, Arabic 
number form, Arabic codes are manipulated on a 

spatially extended representational medium. In the 
analog magnitude representation, numbers are rep-
resented on an analog mental number line that obeys 
Weber’s laws (the same distance between numbers 
(e.g. 1-4, 41-44, 5001-5004) is perceived as smaller the 
larger the size of the number). 

Neuro-Cognitive Evidence 
on Numeracy
In the last 20 years neuro-scientific studies have 
shed light on the details of brain regions and mental 
processes involved when humans comprehend and 
produce numbers or do calculations. Neuropsycho-
logical evidence showed that the different numeral 
abilities, according to Dehaene’s model, could be 
mapped to dissociable brain regions. For example, if 
number comprehension is impaired after a stroke, 
number production can still be intact. 

Evolutionary Foundations of Number Processing: In 
an introductory review article, Dehaene et al. (2004) 
present research on the neural basis of the human 
ability to do arithmetic to validate the hypothesis that 
a “number sense” is a basic capacity of the human 
brain and, thus, “hard-wired via evolution”, and 
provide neural evidence for his Triple-Code Model. 
In fact, the authors are able to dissociate a few brain 
regions that can be attributed to the three core 
elements of the model. 

The Intraparietal Sulcus: One key region pointed 
out in almost all studies on numerical processing is 
the intraparietal sulcus (IPS). The IPS might play an 
important role in the approximate quantity represen-
tation (see Figure 6). For example, its activation was 
recorded when subjects had to estimate the number 
magnitudes of visual, as well as of auditory objects. 

Figure 5: Dehaene’s Triple-Code model of number processing 
(adapted from Dehaene, 1992). 
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They found that parsing mathematical expressions 
bilaterally activated the occipito-temporal cortices, as 
well as the right parietal and precentral cortex. A small 
increase in activation was observed in the left inferior 
frontal gyrus and the posterior temporal sulcus, which 
are linguistic regions of interest, when faced with 
more complex expressions. The authors conclude 
that trained adults rely on visuo-spatial areas that are 
mainly language independent.

Animal Models: Animal models help to gain more 
detailed insights into the neural underpinnings of nu-
meracy (Hubbard et al. 2008). Animal studies revealed 
rudimentary number skills and a “number sense” in 
animals. While it is known that several species, such 
as lions, dolphins or macaques possess some form of 
number sense, the neural underpinnings still remain 
unclear. Studies using electrophysiological techniques 
on trained monkeys have yielded some insights into 
this area of research. They suggest that numerosity 
is first computed in the parietal cortex before being 
transmitted and held by prefrontal activity. The 
latency in these processes is identical only for the nu-
merosities 1-5 (subitizing), but not for serial counting.
 
Rhesus monkeys were tested on whether they could 
carry out a nonverbal addition task and the results 
were compared to human college students com-
pleting the same task. In a number space from 1 to 17, 
the rhesus monkeys were able to solve these addition 
problems in accordance with Weber’s law similarly to 
the human participants. Thus, non-symbolic, non-

Ansari (2008) reviews the role of the intraparietal 
sulcus in the processing of numerical magnitude, i.e. 
quantity.

It was frequently replicated that numerical distance 
negatively correlates with activation of the IPS. This 
finding provides evidence that the IPS might play 
an important role for the mental number line. This 
distance effect is explained by the tuning curves of 
neurons with preferred numerosities: The rationale 
is that if the number distance is small, the neurons 
overlap more than if the distance is large.

Activation of the IPS region seems to be independent 
of representation, i.e. independent of mode and lan-
guage. It is assumed that the angular gyrus is involved 
in linguistic (verbal) operations (see Figure 6), and the 
fusiform gyrus is processing the visual number form.

However, whether the IPS is the number module in 
the brain or not is still a contested issue, with different 
studies reporting partly contradictory results or at 
least providing alternative interpretations (Ansari, 
2008).

Complex Skills: Maruyama et al. (2012) investigate 
more complex arithmetic skills in adults who parsed 
mathematical expressions such as operators via fMRI 
and MEG. They were interested in understanding 
whether a mathematical expression relies on language 
systems or on language independent networks. They 
selected mathematically trained adults as participants. 

Figure 6: Brain regions involved in number processing (Deheane et al. 2004). HIPS: horizontal segment of the IPS 
(intra parietal sulcus). AG: angular gyrus. IFG: inferior frontal gyrus. FuG: fusiform gyrus.
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any training (see above), attaining more complex 
arithmetic competencies depends on the acquisition 
of formal skills, as well as on the development of 
language. For example, it is well known that young 
children solve arithmetic problems in a different 
way than adults regarding addition. Children rely 
on counting, whereas adults retrieve results from 
memory. 

There are different strategies used by children:
 
1. Children take the larger operand and count 

upward as far as the smaller operand indicates, 
e.g. 5 + 4. Children start with 5 and count 6, 7, 8, 
9 – this is called the “min strategy”. 

2. In the “counting all strategy” children count up 
the number of times the first operand indicates 
and continue with the number of times the 
second indicates (1, 2, 3, 4, 5 – 6, 7, 8, 9). Other 
strategies are guessing, decomposing (7 + 2 = 
(5+2) + 2).

Heine et al. (2010) use eye movement data to inves-
tigate the development of basic numerical skills. The 
study focuses on the mismatch between explicit and 
implicit knowledge in a number magnitude task in 
6 to 9 year old children. The behavioral data suggests 
that the shift from a logarithmic scale of number 
representation to a linear model takes place at some 
point between first and second grade. Furthermore, 
Heine et al. were able to show that although young 
children lacked explicit knowledge about numerical 
magnitude, the eye-movement pattern showed that 
they had already implicit knowledge, since the eyes 
shifted more often to the correct response even when 
the overt behavioral response was false. This provides 
evidence that body-movements can reveal very early 
changes in the explicit mathematical knowledge. 

Ansari (2008) shows that how and which brain regions 
are activated in number processing co-varies with 
age. He illustrates that children more strongly activate 
prefrontal brain regions than adults (as mentioned 
above for animals). This might indicate a higher cog-
nitive effort in children, and indicates more automatic 
and optimized procedures in adults. There is also an 
age-related increase in activation of the left inferior 
parietal cortex – termed fronto-parietal shift. Overall, it 
seems that the recruitment of distinct parietal circuits 
depends on learning as well as development.
 
The following studies give a detailed overview on 
neural correlates observed in the development of 
numeracy. 

Cantlon et al. (2006) compare numerical processing 
in young children (4 years old), who had no formal 

verbal arithmetic was shown to be a basic cognitive 
process not restricted to humans. In another study, 
monkeys were trained to associate numerosity to 
symbol-like numerical representation. It was found 
that many neurons in the lateral prefrontal cortex and 
the intraparietal cortex coded for quantity, regardless 
of whether the quantities were presented symbolically 
or non-symbolically. However, when recording 
single-cell activity, it was found that many neurons 
in the prefrontal cortex, which responded to the 
visual shapes of the symbols, reflected the associated 
numerosity. This is consistent with the fact that 
human children who are inexperienced with symbolic 
number representation show increased activity in 
their prefrontal cortex when faced with symbolic 
ordinality. This might be evidence that the prefrontal 
cortex plays an important role in establishing a link 
between symbolic and non-symbolic number rep-
resentation. 

Dehaene (2009) points out that concerning the 
arrangement of “numerosity” neurons in the intrapar-
ietal cortex, there is experimental evidence from the 
study of macaque monkeys that showed that there are 
specialized neurons for number coding, but that these 
are not highly discretized. Instead they more likely 
overlap with neurons coding other quantitative pa-
rameters. Number-coding neurons have been detected 
in the intraparietal sulcus of the macaque monkey. 
These neurons show Gaussian variability on a log-
arithmic scale and are thought to be analogous to the 
human neural number sense. Experiments regarding 
Weber’s law point to preferential treatment of small 
numerosities: While this law predicts identical treat-
ment of numbers in the range of 1-8 and 10-80, it was 
clearly violated in the higher ranges. This supports the 
hypothesis that there is a system dedicated to small 
numerosities.

Cognitive Development  
of Numeracy
Posner and Rothbart (2007) analyze the development 
of numeracy. They detail strategy changes in chil-
dren’s numeracy processing. In a cross section study 
that compared children’s and adults’ performance 
comparing 5-year-olds and adults, they found that 
the same brain regions were activated in both groups, 
whereas the overall reaction times were significantly 
longer for the children. These results suggest that the 
systems involved in estimation of quantity are devel-
oped before schooling systematically fosters higher 
arithmetic abilities.

It is further assumed that, whereas 5-year-olds pos-
sess these number comparison skills even without 
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the authors recorded the activation of brain regions 
via EEG. The results showed that for the approximate 
solution, mainly bilateral parietal areas were activated. 
Calculation of the exact sum, however, required activa-
tion of the language areas of the left hemisphere. This 
provided further evidence for the Triple-Code model.

Development of internal representations: Ansari (2008) 
evaluates the hypothesis that cultural numerical 
symbols acquire their meaning by being mapped onto 
non-symbolic representations in the brain. Thus, 
the study implicitly also touches on the important 
question how symbolic representations evolve. He 
presents a model introduced by Veguts and Fiat (2004) 
in which symbolic and non-symbolic inputs are 
internal differently place-coded representations and 
processed via different pathways. Non-symbolic inputs 
are encoded via an intermediate step into a summed 
representation. This model predicts that children learn 
symbolic representations by associating non-symbolic 
inputs with internal representations of numerical 
magnitude.

At a cellular level, this assumption was specified by the 
given evidence that neurons react differently accord-
ing to whether they code symbolic or non-symbolic 
magnitudes (see also above). Neurons coding symbolic 
magnitudes do so more precisely than neurons coding 
non-symbolic magnitudes in the left IPS than in 
the right IPS. Overall, it seems likely that acquiring 
symbolic representation either changes pre-existing 
representations or leads to the construction of format-
specific representations.

These differences in symbolic and non-symbolic rep-
resentations challenge the assumption that symbolic 
representation rests solely on an innate non-symbolic 
representation: It seems evident that there are other 
processes involved and it is conceivable that these 
two representations rest on different neuro-cognitive 
processes. There is some experimental evidence to 
support this claim, for example the independence 
between understanding the meaning of counting and 
approximate numerical magnitude representation in 
children between two and four years old.

It has been found that there is a strong correlation to 
activity of the left angular gyrus during neural coding 
and the acquisition of arithmetic knowledge. This is 
further supported by the fact that subjects scoring low 
on mathematical ability also displayed a decreased 
activation of their angular gyrus.

Mathematical Performance: Another interesting point 
is whether it is possible to predict from basic math-
ematical processes whether a child has higher or lower 
mathematical ability. This is particularly interesting 
when considering early diagnostics that reveal existing 

mathematical education, with adults. Again, the key 
region is the intraparietal sulcus (IPS) in symbolic, as 
well as non-symbolic numerosity in adults, as well as 
children. Both groups were presented with non-sym-
bolic numerical values such as displayed sets of visual 
elements. The two groups show very similar activation 
patterns in the intraparietal sulcus. The result dem-
onstrates that the IPS is a source of basic numerical 
abilities and not a consequence of developed numeri-
cal abilities observed in adults. A remarkable difference 
is that, whereas adults display number-related bilateral 
activation in the intraparietal sulcus, children show 
a stronger lateralized predominant activation of the 
right intraparietal sulcus.
 
As a follow-up Houde et al. (2010) conducted a large 
meta-analysis including 52 studies and 842 children 
to answer the same question. They also found that 
children used the same structures, but also showed a 
stronger frontal activation. The important outcome 
was that children probably extend more cognitive ef-
fort and attentional resources on numerical tasks than 
adults. 

In summary, the studies show that the IPS plays a role 
in numeracy very early. Differences appear in the effi-
ciency of the application of mathematical procedure. 
Children more extensively activated frontal networks. 

Accordingly, Dehaene (2009) shows that whenever 
adults are engaged in tasks of comparison, addition or 
subtraction, there is a consistent bilateral activation of 
the horizontal segment of the left intraparietal sulcus 
(see Figure 6). This holds true for Arabic numerals as 
well as for spoken number words. It is consistently 
shown that the parietal cortex already responds to 
number processing tasks in 4-year-old children. Fur-
thermore, analyzing the ERPs of infants showed that 
already at the age of seven months they were able 
to detect errors in simple non-symbolic arithmetic 
operations.

Dehaene also reviews studies that investigate the 
development of the understanding of cardinality and 
ordinality of numbers: Judging which number is larger 
is a different task than judging whether, say, 9 comes 
after 7. The cerebral substrate for ordinal knowledge is 
similar to that for cardinal knowledge. While informal, 
intuitive mathematics rely on a logarithmic represen-
tation, it seems that further learning and formalization 
leads to a linearization of mathematical intuition. As 
shown above (Heine et al. 2010), the differentiation 
might occur between the first and second grade of 
school. 

Dehaene et al. (1999) presented children with arith-
metic tasks. They had to verify which one of two sums 
was either true or approximately true. During the task 
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A recent fMRI study conducted by Bugden et al. (2012) 
investigates the neural correlates that are revealed 
when children learn arithmetic. The study aims at 
investigating the relationship between the number 
ratio effect and arithmetic fluency. 17 children 
between 8 and 9 years were tested. Brain activation 
in three different regions of interest was monitored 
during symbolic number magnitude processing and 
subsequently correlated with arithmetic achievement 
scores. The three regions of interest were the inferior 
frontal gyrus, the left superior frontal gyrus and the 
left intraparietal sulcus (see Figure 6). A significant 
correlation was found between mathematical fluency 
scores and the ratio effect in the left IPS. The ratio 
effect was not significant in the SFG and the left IFG. 
Thus, the study could demonstrate that activation of 
the left intraparietal sulcus during a basic intentional 
number processing task is related to arithmetic per-
formance.
 
DeSmedt et al. (2011) are interested in extending 
the existing neuro-scientific evidence from very 
basic numeracy skills, such as number magnitude 
processing, to arithmetic competence in children 
aged 10-12 years. The main interest was to observe 
brain activation changes when children become more 
arithmetically fluent. Firstly, it was analyzed what 
brain regions were activated for easier, in comparison 
to more difficult, arithmetic operations. Secondly, the 
developmental trajectory was investigated. The basic 
observation was that smaller problems are solved via 
fact retrieval and, thus, activate the left-lateralized 
language areas. Larger arithmetic problems are solved 
using quantity-based procedural strategies and, there-
fore, involved the intraparietal sulcus more strongly 
than the smaller problems.

As expected, the study revealed that the activation 
was driven by the problem size (small or large), the 
type of operation (addition or subtraction) and the 
individual level of arithmetical fluency (typical or 
low). Larger problems and the operation type sub-
traction more strongly activated a fronto-parietal net-
work including the intraparietal sulci, while the left 
hippocampus was active during the solution of small 
problems. The different levels of arithmetical fluency 
modulated brain activation patterns in the right in-
traparietal sulcus. The group of children with a typical 
level of arithmetical fluency showed less activation, 
when solving small problems in contrast to larger 
problems, in comparison to children with low levels 
of arithmetical fluency.

deficits in number processing. It is suggested that the 
ability of basic number processing correlates positively 
with the mathematical ability of normally devel-
oping children (Bugden & Ansari, 2011). However, the 
question is: What kind of basic process is actually a 
good predictor? Number magnitude processing can be 
investigated by the use of different methods. Bugden 
& Ansari (2011) test two different number processing 
tasks and administered how these relate to higher 
mathematical competence – the ratio effect vs. size 
congruity effect.

Firstly, the ratio effect refers to intentional number 
magnitude processing. It measures the judgment 
time when comparing two numbers. Here Weber’s 
law states that as the ratio between two numbers in-
creases, so does the reaction time, meaning that people 
can differentiate more quickly between 2 and 4 than 
between 12 and 14 (see above). The ratio effect is com-
plementary to the distance effect (Holloway & Asari, 
2009, see also above) that indicates how acurately the 
distances on a mental number line can be discrimi-
nated. It was shown that the response time decreases 
over developmental time. Interestingly, it was shown 
that children with larger distance effect showed lower 
mathematical abilities.

Secondly, an example of automatic processing is the 
size congruity effect. This effect can also be referred 
to as the “Number Stroop” task. Participants were 
asked to concentrate on either the numerically (8 
greater than 2) or the physically larger (2 larger than 8) 
number and to ignore the irrelevant dimension. Au-
tomatic processing refers to the fact that this happens 
without conscious monitoring on the subject’s part.

119 children in 1st and 2nd grade were tested. The 
ratio effect was measured using single-digit numbers, 
where children had to find the larger number as fast 
as possible. The size congruity task also contained 
only single-digit numbers. Mathematical ability was 
measured using two standardized mathematical tests 
in order to assess higher mathematical abilities. In 
general, the study was able to replicated previous 
findings insofar performance in the ratio effect test 
was related to performance in the tests measuring 
mathematical performance. This implies that the 
ability to intentionally discriminate between numbers 
is related to more complex mathematical ability. The 
automatic size congruity effect was also found, but 
no correlation was found between this effect and 
individual performance on the standardized tests. 
Furthermore, no correlation between the ratio effect 
and the size congruity effect was found. The authors 
concluded that higher mathematical abilities are 
related to intentional, but not to automatic processing 
of Arabic numerals. 
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Cultural Differences
In general, we can suppose that across all human 
cultures and including preschoolers and infants, a 
non-symbolic number sense is present and intuitive 
processes such as comparison, addition and sub-
traction have been confirmed experimentally across 
all cultures and ages. Nevertheless, there is various ev-
idence showing that differing cultural factors have an 
impact on numeracy abilities. These differences result 
on the one hand from different settings of priorities in 
mathematical education (comprehension vs. learning 
by heart), on the other hand from cultural particular-
ities, e.g. easier and more regular number systems and 
languages quantifiers. 

It was shown that children (between 9 and 15) from 
Brazil or Africa, who work as merchants in sidewalk 
businesses and sell fruits, soft drinks or sweets, showed 
good applied mathematical competencies. They are 
excellent in determining problems that are embedded 
in their familiar context, but fail in solving problems 
in a more abstract sense.

The TIMSS study (Trends in International Math-
ematics and Science Study) basically revealed that 
8th graders from Japan, Hungary, Hong Kong and 
the Netherlands showed better comprehension of 
mathematical concepts than children in the USA 
(Siegler et al., 2003). It was shown that teaching in the 
more successful countries is more strongly focused on 
understanding the underlying concepts and not mem-
orizing mathematical procedures and algorithms. 

Learning the ability to count varies strongly between 
cultures. 5 year-old Chinese children can usually count 
numbers up to 100. A performance that is much higher 
than in 5 year-olds in the USA. This might be a con-
sequence of an easier and more regular number system.
 
Furthermore, there is also some evidence that different 
learning methods result in different neural activation 
similar to the effects of enculturation. Ansari (2011) 
makes the interesting suggestion to study the inter-
relationship between culture and education via 
changes in brain plasticity. Neural plasticity describes 
how the human brain changes via learning. Cross-cul-
tural brain studies have already shown that cognitive 
functions differ across cultures. More recently, an 
interest in neural plasticity as a function of culture 
has led to increased research in this field and neuro-
imaging methods allow scientists to investigate the 
processes underlying even complex human functions. 
Cultural effects on brain function with respect to 
arithmetic processes have been reported. Apart from 
these effects, a growing body of research focuses on 
how neural plasticity relates to the process of educa-
tion and acquiring numeracy or reading skills.

Tang et al. (2006) show that arithmetic processing and 
neural processes are shaped by culture. Most studies 
were conducted with participants familiar with the 
Arabic number system. In a numerical quantity 
comparison task presented to native English speakers 
as well as native Chinese speakers (age mid-twenties), 
it was found that both groups displayed an activation 
of the inferior parietal cortex. There were differences 
between the two groups regarding number processing. 
The native English speakers displayed greater activa-
tion of the left perisylvian cortex for mental addition, 
whereas the native Chinese speakers activated a visuo-
premotor association network. Therefore, it seems 
that numbers are coded depending on the process of 
language acquisition as well as other cultural factors.

Dyscalculia
Studying the number sense in infants is difficult, since 
neuro-imaging studies are almost impossible to con-
duct. Another way to study the human number sense 
is to investigate its pathologies, such as acalculia or 
dyscalculia. Children who suffer from developmental 
dyscalculia have been found to reduce gray matter 
density of the intraparietal sulcus in comparison to 
not affected children.
 
Characterization: In general, dyscalculia can be 
characterized as learning disability driven by innate 
difficulties in basic arithmetic skills, such as addition, 
subtraction, multiplication and/or division. Without 
the ability to understand or transfer the rules under-
lying mathematical tasks, affected children and adults 
tend to remain at a stage where they operate solely by 
counting. In Germany, the prevalence of dyscalculia 
has been estimated to range around 4-6%, but there 
is a far larger amount of people who do not fulfill the 
criteria of the disorder, but who still show a special 
educational need (15% in Lorenz & Radatz, 1993).
 
Kucian et al. (2006) define “developmental dyscalculia” 
as a deficit in mathematical performance given 
otherwise normal general intelligence. They tested 
18 children with developmental dyscalculia as well as 
20 “normal” children (9-12). Both groups were tested 
on exact, as well as approximate number calculations, 
using both verbal and quantity-based representations 
of numbers. Non-symbolic magnitude comparison 
was also investigated in order to gain data indepen-
dent from the Arabic number system. Both groups 
displayed similar neural network activation during 
number processing. However, there were differences 
in approximate quantities calculations. Here, dys-
calculia children showed weaker activation in almost 
the entire neural numeracy network, but there were no 
differences in the domain of exact counting. The results 
show that dyscalculia impairs exact calculation less 
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A-not-B-Error – Perseverative Error
One of the bases of mathematical thinking is the con-
cept of a container that is either filled with an object 
or is empty (Lakoff & Nunez, 2001). Piaget examined 
search behavior in children and discovered that infants 
at the age of 10 months or younger were only success-
ful in finding an attractive hidden toy, if there was 
just one location. If in a sequence of trials the children 
were shown that the object was hidden under box A, 
they successfully searched in the same place. Then in 
the test condition the attractive toy was hidden under 
box B. In general, 10 months-old children continued 
searching in location A in the first trial. A possible cause 
of this behavior might consist of insufficient inhibitory 
control of the representation of and behavior directed 
toward the first location. What we learn from this task 
is, firstly, that for young children obviously the history 
of success plays an important role for their reasoning 
that completely differs from the behavior of older chil-
dren (over 12 months) and adults. Secondly, it is not a 
given that infants can differentiate between locations 
that are empty or conceal an object.

Misconception in the Understanding of Time
It is often important to take into account the inter-
relationship of variables regarding mathematical 
calculations. 4 year-old children show systematic errors 
when they have to accomplish the interplay of time, 
distance and speed. Children watched two cars starting 
and stopping simultaneously, one car travelling faster 
than the other. When asked why one car had travelled 
further, 4 year-olds explained the outcome by assum-
ing that this car must have been moving for a longer 
time – although they had seen the two cars start and 
stop at the same time. Another misinterpretation of the 
concept of time in 4 year-olds can be observed in their 
belief that they will pass their siblings in age when they 
grow physically. 

Conservation Error
For the understanding of numeracy, it is important 
to understand the invariant of quantities from their 
arrangement, colors, etc. (abstractness and cardinality, 
see above). For example, young children (below 5 years) 
were asked, whether two rows of pellets differ in their 
quantities. Both rows had exactly 10 elements. In the 
first row, the pellets lay close together. In the second 
they were arranged with more space between them. In 
general, children assumed that the number of pellets 
was different. Another task presented children with a 
tall and narrow glass filled with water, which is poured 
into a broader and shorter one. Young children were 
not able to understand that the amount of water was 
still the same and independent from the particular 
shape of the glass.

than the approximate representation of the numbers at 
the mental number line.

Treatment: Consequently, Kucian et al. (2011) investigate 
whether mental number line training fosters approx-
imate quantity calculation. Importantly, it is postulated 
that children with developmental dyscalculia have only 
limited access to this representation. The study inves-
tigated changes in neural plasticity caused by improving 
mental number line skills. The authors compared the 
dyscalculia group with typically achieving children aged 
around nine years. After training for five weeks using 
a computer program, both the experimental and the 
control group showed improved spatial representation 
of numbers and an increased ability to correctly solve 
arithmetic problems.
 
After the training both groups displayed less activation 
in the IPS and frontal areas. This decrease can be at-
tributed to successful automatization of the involved 
mental processes. The authors did not find an increased 
activation in the parietal lobules of the dyscalculia 
group immediately after the training. Five weeks after 
the training, a follow-up test showed an increase in 
the bilateral parietal regions. It seems that the training 
effect requires some time for consolidation. This might 
also be a result of a stronger use of the learned mental 
representation.

Individual Error Analysis
We pose the hypothesis that typical errors and math-
ematical misconceptions are an important indicator that 
children had no insight in the underlying laws, rules, 
structures, and concepts (see below). We plead for an in-
dividual error analysis as the basis for understanding chil-
dren’s thinking and helping to overcome such thinking 
errors. Generally, we can learn at least two things from 
cognitive errors: Firstly, general cognitive deficits that 
prevent the understanding of certain problems by un-
developed brain functions, secondly, biased information 
processing and constrained problem representations.

Jean Piaget realized the potential of a detailed error 
analysis of children’s thinking ability. Piaget gained 
insights into the restrictions of cognitive processes 
during maturation. He deduces the most important 
evidences for his stage model of cognitive development 
from errors. We shortly review Piaget’s approach and 
enlist well-known mathematical misconceptions ob-
served in children. Although most of Piaget’s theoretical 
assumptions are criticized, because Piaget generally un-
derestimates children’s cognitive abilities and he often 
used inappropriate and too difficult tests, his work is 
still an important source for asking the right questions. 
His approach was strongly influenced by formal logic 
and mathematical thinking. 



17Scientific State of the Art

ing describes the tendency that the activation of the 
same calculation increases the likelihood that similar 
equations are affected by the prior equation: Generally, 
facilitating priming effects are found. A problem like 4 + 
11 = 15 is classified faster the second time it is presented 
(Ashcraft, 1992). But, processing 4 x 6 = 24 and then 3 x 7 
increased the probability that the response is also 24 for 
the latter (Dehaene, 1992).

What we can learn from systematic errors children 
make is the mechanism that tries to “repair” acquired 
misconceptions of arithmetic knowledge. Children 
invent their own rules to align the mathematical deficit. 
Due to the fact that many children mechanically apply 
the rules they were taught, promotion of mathematical 
skills in children should focus on understanding the 
basic principles and the meaning underlying the rules 
or algorithm. In order to counter misconceptions, a 
suggestion is engaging children in discussions about 
their reasoning in specific mathematical situations to 
assess the reasons for the underpinning errors (Ryan & 
Williams, 2007). Moreover, investigating the mathemat-
ical knowledge of pre-service teachers revealed some 
misconceptions in their thinking (Ryan, J. & McCrae, B. 
(2005/2006)). Therefore, it might be important to test 
and correct the teachers’ mathematical misconceptions.

Mathematical Education in 
Young Children
In general, there is one intriguing, still open and hardly 
addressed question: To what extend can the evidence 
from neuro-scientific studies be used to improve 
numeracy education? We conclude from the given 
evidence, which provides interesting insights into brain 
processes, that it might be helpful to develop better 
and more accurate diagnostic means to assess chil-
dren’s number sense. Moreover, it might be interesting 
to increase the education of neglected mathematical 
competencies, such as rough approximation, in a more 
pronounced way to establish a detailed and reliable 
mental representation of numbers (e.g. a linear number 
line). The transfer of basic research results into direct 
classroom educational methods seems fairly difficult. 
Methodologically, it is crucial to be able to conduct 
experimental work in the schools that systematically 
and empirically test the efficiency of instructions and 
teaching strategies. 

In sum, mathematical education is predominantly 
settled within the domain of educational sciences that 
often study and develop certain instructional methods. 
The anchored instructions approach (Young, 1993) 
constitutes one of these and is preferentially applied 
in natural sciences and mathematics classes. Learners 
are involved in a narrative story (e.g. “The rescue of the 

Misconceptions in Mathematical Thinking
Since the 1970s, the exploration of children’s concep-
tual and procedural understandings of mathematical 
concepts received increasing attention. While some 
studies concentrated on the influence of socio-cul-
tural and affective factors (e.g. Brousseau, 1997; Nunes, 
Schliemann & Carraher, 1993), others emphasized the 
value of understanding children’s misconceptions (Hart, 
1981; Bell, Costello & Kuchemann, 1983) and the need to 
develop assessments in order to help teachers identify 
them (Nunes, 2001).

The problem most teachers are faced with in their 
classes is that many children tend to use algorithms 
as purely mechanical procedures without thoroughly 
understanding the underlying processes (Nunes, 2001, 
see below). This leads to inappropriate adaptation or 
overgeneralization of these procedures, which Ruthven 
and Chaplin (1998) refer to as the ‘improvisation of 
malgorithms’.

Many mathematical misconceptions of children can be 
found in the area of multiplication or division (Anghil-
eri, 2001). Generalizations such as “multiplication makes 
bigger, division makes smaller” are comprehensible, but 
lead to severe problems when non-integer numbers 
are introduced (Greer, 1988). In multiplication, chil-
dren also show difficulties with handling zeroes (Hart, 
1981). Concerning division, Anghileri (1998) obtained 
results suggesting – besides difficulties with remainders 
– that although division does not obey the law of 
commutativity, 10-11 year-olds nevertheless try to use 
this formerly learned rule. In a 1999 comparison of 
more than 500 English and Dutch year 5 students, an 
analysis of strategies yielded that procedures based 
on counting and chunking led to better results in 
division problems than procedures based on place 
value (Anghileri, Beishuizen, Van Putten & Snijders, 
1999). There is evidence that multi-digit calculation 
procedures are based on the arithmetic knowledge 
acquired in school. Children calculate column-wise, 
and some children make systematical errors. For 
example, they “forget” to carry over the 1 to the 
next column, when the sum of a column is equal or 
greater than 10, or started with the left column and 
then go to the right, etc. 

In younger children it has often been found that when 
they learn the typical sequence of number words, 
two errors occur: 1. Using a number word in place of 
another (“one”, “two”, “five” , …). According to Dehaene’s 
model (1992), this is due to incomplete lexical knowl-
edge. 2. They invent new number words like twenty-ten, 
indicating that they did not recognize the change of the 
quantifier after twenty-nine was reached. This might 
reflect an over-generalized syntactic mathematical rule 
– the amount of those errors depends strongly on the 
complexity of the cultural number system. Error prim-
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across mathematical concepts such as algebra or multi-
plication. The authors operate under the presumption 
that knowledge and understanding of the underlying 
structure is crucial to understanding mathematical 
concepts. According to the authors, a mathematical 
pattern is any predictable regularity, such as periodically 
arranged rows and columns of the same size in a rec-
tangle. Adults can effortlessly recognize those patterns; 
young children cannot. Pattern recognition and manip-
ulation are crucial across a wide range of mathematical 
fields, such as numbers, measurement and space, and 
early algebra or modeling. The authors propose AMPS 
as a way of integrating these divergent fields. The 
research deals with the question,, whether it is possible 
to consistently construct structural categories across 
a range of tasks. The main question is whether “an 
individual student’s general level of structural develop-
ment [is] related to his/her mathematical achievement”. 
The investigation was conducted with 103 first graders 
solving a wide range of age-appropriate tasks, whose 
solution relied on students’ structural development. Ex-
amples included asking the children to draw features on 
an empty ruler to reconstruct triangular patterns using 
six dots or to find all possible combinations of a number 
multiplication task and to explain their strategies. It was 
subsequently found that children achieving high scores 
also showed a strong achievement in mathematics, 
whereas low-scoring children also performed poorly in 
mathematics. The authors propose four different stages 
of structural development: The pre-structural stage, the 
emergent stage, the partial structural stage and the stage 
of structural development. About 90% of the children’s 
responses could be assigned to one of those categories.

Environmental Influences on Mathematical Abilities
The impact of socioeconomic variations on math-
ematical competences is reviewed by Jordan & Levine 
(2009). It is stated that how well a child does in math-
ematics is often related to his or her socioeconomic 
status; overall, it was often found that children from 
low-income families perform worse in this subject than 
their counterparts from families with a higher income. 
Performance in mathematics does not only depend on 
what a child is taught at school, but also on the number 
sense she acquires before the start of a formal educa-
tion. There are several components to its development, 
such as verbal subitizing, counting, numerical magni-
tude comparison, estimation and arithmetic operations. 
It is with this symbolic representation that children 
with mathematic difficulties grapple with. They might 
display these difficulties in counting procedures, such 
as continuing to rely on the finger counting method 
in an addition problem, or they might display poor 
calculation fluency. Often there are associated reading 
and language difficulties.

eagle”) containing a problem they have to solve. All 
the information needed is contained in the story and 
the children’s task is to develop proposals for a proper 
solution. This contributes to developing self-initiated 
learning processes for the acquisition and application of 
mathematical skills (e.g. Pythagoras’ theorem). Accord-
ingly, in a Swedish study of seventh-graders, Samuels-
son et al. (2008) found that traditional instruction and a 
more interactive approach focusing on the introduction 
of different solvable problems as basis for group dis-
cussions had a positive effect on quantitative concepts 
like knowledge of shapes, sequences, series of numbers 
and the ability to provide missing numbers in patterns 
of numbers, whereas a positive effect of independent 
learning without instruction or interaction could not 
be observed.

Early childhood education aiming at teaching chil-
dren (aged 3-6 years) mathematical concepts typically 
takes place in pre-school settings. There is a general 
agreement that more research, particularly for this age, 
is necessary (see Ginsburg et al. 2008). It was shown 
that preschool mathematical knowledge predicts later 
success in school and even in high school, and corre-
lates with a variety of higher cognitive skills (Clements 
& Sarama, 2011).

Notably, even without formal teaching, young children 
typically develop informal or intuitive mathematical 
skills such as basic addition or subtraction. Ginsburg et 
al. (2008) also pointed out that intuitive mathematics 
includes rudimentary comprehension of the notion of 
space, shape, pattern, as well as numbers and operations. 
There are also indicators that children display inter-
est in mathematical ideas, for example by spontaneous 
counting, by creating patterns with building blocks 
or comparing the height between two building block 
towers. This does not mean, however, that they can 
grasp abstract concepts in the same way adults can with-
out formal instructions: Their difficulties in understand-
ing that an oddly shaped triangle is as much a triangle 
as an even-sided one may be an indicator of their flawed 
abstract concept of a triangle. 

In general, specific programs are necessary that draw the 
attention to explicit mathematical concepts. Educational 
goals in teaching young children mathematics should 
not only include the basic concepts such as numbers, 
operations, geometry of shapes and pattern recognition. 
Ginsburg & Amit (2008) instead suggest the inclusion 
of more challenging topics, such as enumeration and 
understanding the cardinality of a set.

Mulligan and Mitchelmore (2009) introduced an educa-
tional concept called “Awareness of Pattern and Struc-
ture” (AMPS), which focuses on pattern and structures 
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“Building Blocks”, on the other hand, is based on the 
mathematics of children’s everyday activities and uses 
building blocks, art, stories, puzzles and games. It aims at 
developing the number sense as well as spatial and geo-
metric concepts. Again, there is some empirical support 
that this program fosters mathematical skills in children 
from low-income families. These programs contain 
learning trajectories and rely on the entire curriculum, 
including text, software and professional development. 
Learning trajectories are defined as “directions for 
successful learning and teaching”. In order to attain 
a goal, the children are taught at successive levels of 
thinking and integrating the different concepts, skills 
and problem solving.

The authors of the article studied these intervention 
frameworks on a large scale using “Building Blocks”. 
They not only looked at the intervention curriculum, 
but also included collaborations between the admin-
istration, the teachers and the children’s families, as well 
as professional development. Teachers implemented 
the intervention over the course of two years, aided by 
professional development and web applications. This 
experiment had a strong positive effect on children’s 
mathematical abilities, including children from low-
income backgrounds, generally supporting the notion 
that such educational interventions are beneficial to 
children’s mathematical development.

Most importantly, Clement and Sarama (2011) propose 
the concept of the learning trajectory, which helps 
to develop appropriate instructions with respect to 
the conceptual goal, and children’s developmental 
progression. Consequently, it is crucial to know the 
cognitive processes, which are necessary for a particular 
mathematical competence, and design instructions, 
tasks and opportunities so that they foster the devel-
opment of those processes a higher order of thinking 
can be achieved. It was shown that the knowledge early 
childhood teachers had, positively correlated with the 
children’s achievement.

The numerical competence in kindergarten was 
compared to mathematic achievement in third grade. 
The findings indicated that children from low-income 
families lagged behind their peers upon entering kin-
dergarten and they were overrepresented in the group, 
in which the growth trajectory displayed subsequent 
low levels of mathematical ability. Moreover, the study 
showed that numerical competence predicted math-
ematical ability, emphasizing the need to teach young 
children number sense. On average, children from low-
income families start using their fingers about a year 
later than children from medium-income families and 
use them for a longer period of time. Other studies have 
shown that instructional programs can bridge the gap 
in mathematic performance caused by socioeconomic 
status, although it is not known which aspects of the 
programs are effective and which ones are not.

Levine et al. (2010) conduct a longitudinal study of 44 
pre-school children. The study shows that the relation-
ship between children’s knowledge of numerical 
cardinality was predicted by their exposure to number 
talk in their home environment. The study started when 
the children were 14 months old and mainly consisted 
of a 90-minute visit every four months until the chil-
dren were 36 months of age. The visits focused on the 
natural interactions of one parent with the child. The 
number words of parents and children were counted 
and the children’s understanding of cardinality was 
measured using a Point-to-X task. The parents’ number 
talk significantly predicted the children’s knowledge of 
cardinality at 46 months of age. Thus, parents should be 
encouraged to engage in number talk with their young 
children, since knowledge of cardinality is part of a set 
of numerical abilities, which also predicts later math-
ematical achievement.

Clements & Sarama (2011) review research-based math-
ematic interventions for preschoolers. These inter-
ventions are especially important for children from a 
low socio-economic background, since they might have 
insufficient opportunities to further develop the nec-
essary cognitive functions necessary for learning more 
complex mathematics. They include “Rightstart”, “Pre-K 
Mathematics” or “Building Blocks”, all aimed at 3- to 
5-year-olds. For example, “Rightstart” aims at developing 
certain mathematical ideas such as quantity compar-
ison, counting competencies and initial notions of 
changing set size before integrating them. The program 
included some games that highlighted different types 
of quantities. There is some empirical evidence that 
this program significantly improved the mathematical 
performance of particularly children from low-resource 
backgrounds compared to their peers.



Figure 7: Wertheimer’s parallelogram problem (1959). To calculate the area of the shape, one can realize that a 
triangle can be drawn on the left hand side (gray) that, when moved to the right hand side (black triangle), will 
form a perfect rectangle, thus, rendering calculation of the figure straightforward. 

The Parmenides  
Foundation’s Proposal
Learning to Think (L2T) – The Art of Mathematical Thinking

Our proposal aims at integrating the reviewed infor-
mation into our existing L2T framework. Firstly, we will 
give a brief overview of the motivation of our approach. 
Secondly, we will detail the foundations of our model. 
Thirdly, we will deduce and model some practical im-
plications for teaching mathematics.

A long lasting problem: In 1959 Max Wertheimer, the 
famous Gestaltist, visited mathematic lessons in class-
rooms. Wertheimer was interested in the nature of 
productive thinking, which he strictly demarcated from 
“blind” and reproductive thinking. In one classroom the 
geometrical concept of a parallelogram was introduced. 
The students learned to determine the height and base 
of a parallelogram and to calculate the area accordingly. 
The teacher encouraged the children to repeatedly 
do this for a variety of parallelograms. Wertheimer 
observed the scene and after a while he drew a parallel-
ogram that was rotated by 90 degrees and asked the 
children to calculate the area. Most of the children were 
puzzled and claimed that they do not know how to do 
this, since they never were told. Wertheimer concluded 
that children had no insight in the nature of a parallel-
ogram and did not see the shape and the interrelation-
ship between shape, sizes and equation. The easiest way 

would have been if children had rotated the parallel-
ogram by -90 degrees. Wertheimer realized that it might 
be necessary to represent the problem in a more general 
way. The problem could be understood very easily, if 
the problem solver had the insight that on the left side 
of the parallelogram something is “too much” that “is 
missing” on the other side (Wertheimer, 1959, Figure 
7), and by conveying the “disturbed” figure into a “good 
Gestalt”, children immediately realize what is meant by 
the area of a parallelogram and the close connection to 
the “easier” and more familiar shape of a rectangle.

Wertheimer’s example aims at supporting mathemat-
ical thinking by attaining insight into the underlying 
mathematical principles (e.g. what is meant by an area?). 
That is, the full comprehension of the underlying law 
or idea, and as a result not a blind procedural, but an 
informed conceptual and declarative knowledge, that 
can also very easily be used when faced with rotated 
parallelograms.

The Parmenides Learning to Think project pursues 
exactly the same goal. That is, to identify, describe and 
explain the basic cognitive operators of mathematical 
thinking that underlie a mathematical thought and to 
develop methods of fostering them in a child-oriented 

a) Realization b) Solution
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Figure 8: Examples, for perceptual a) and conceptual constellations b).

a) b)

Gauss’ Formula:  n/2(n+1)➠ ➠

and sustainable way. As mentioned above, one core 
problem when analyzing the misconception of chil-
dren’s, but also of teacher’s mathematical thinking 
was the rigid application of algorithms (e.g. Nunes, 
2001; Ryan, J. & McCrae, B. (2005/2006); etc.), and the 
lack of structural understanding of the mathematical 
concepts. As other authors demonstrate, instructions 
that focus exactly on structural aspects (Mulligan and 
Mitchelmore, 2009) reveal a positive effect on children’s 
achievements.

We basically distinguish between two processes that 
are important in thinking: Analytical and constellatory 
processes (Evans, 2008, Figure 9). Our model incorpo-
rates several aspects of the reviewed state of the art. On 
the one hand, it was shown that the representation of 
abstract and non-abstract representations of math-
ematical objects is an important ability, and can even 
be fostered, as the dyscalculia literature has shown (e.g. 
mental number line – constellatory thinking). On the 
other hand, the insight into the underlying laws and 
rules, and the development and understanding of the 
structure (as mentioned before) is sufficient (analytical 
thinking).

1. Analytical processes are deliberate operations, 
which are applied to mental representations. They 
are slow, limited, but conscious and explicit. 

2. The constellatory operator is implicit, automatic, 
fast and virtually unlimited. Constellations can 
emerge from the given perceptual stimulus. 

3. For example, three given dots are grouped to-
gether and form the shape of a triangle. Concep-
tually, from the mutual interrelationship of the 
given three dots emerges the concept of a triangle 
(Figure 8 a)) and activates prior knowledge, 
meanings and laws (the relationship and relation 
of angles, sides, etc.) 

Conceptually, constellations can also re-structure 
given information, i.e. given the task to sum up the 
numbers from 1 to 100 can be done by a stepwise, 
error-prone and slow strategy: 1 + 2 = 3 + 3 = 6 …, or 
by realizing the underlying symmetry of the given 
series and deducing a more elegant, error-free, fast and 
general principle (Figure 8 b)). 

In more detail, we state that there are at least four 
different mental operators that play a role in math-
ematical thinking. 

1   +   2   +   3   +   4    +      ...+  97  +  98  +  99   +   100

= 50 * 101 = 5050
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the given information, in order to see new 
patterns or underlying laws in the apparently 
unstructured or confusing information – con-
stellatory mode (C4). The basic principle to 
find new structures in the given information, 
emerging new meanings and attaining higher 
order semantic knowledge.

We further assume that the C1, C2, and C3 operators 
build a hierarchically ordered structure. From a 
cognitive perspective, C1 is the most basic and sim-
plest operator while C3 is the most demanding. The 
C4 operator builds an orthogonal dimension. It is 
conceivable that the C4 operator spans a continuum 
from simple perceptual grouping processes (Gestalt 
laws) to complex conceptual re-grouping processes 
(insight problem solving). Thinking, according to this 
model, consists of the collaboration of these four 
basic operations. We assume that the C4 operators are 
established in early childhood. We propose that early 
education of those four operators build the ground 
for mathematical thinking. In the next paragraphs we 
briefly sketch how to foster numeracy by regarding 
developmental aspects of different age groups:

Young infants (1-3 years): We follow Lakoff and Nunez 
(2001) and assume that there is a very close intercon-
nection between the development of mathematical 
concepts and the body experiences children make, 
when they are interacting with their environment. 
For example, infants very early show great pleasure 
in emptying containers filled with objects. What they 

We assume that complex thinking always requires: 

• to compare and evaluate given information 
(comparing: objects, alternatives, thoughts, 
options, situations, etc.) and see differences or 
similarities – comparative mode (C1). For the 
understanding of mathematics this is a very 
basic operator.  As we have seen, e.g. rough es-
timation plays an important role in the devel-
opment of mathematical concepts (greater 
than, less than). Moreover, it is important to see 
numeric equivalence,

• to deduce rules from given information. That is, 
if … then … statements are extracted in order to 
understand the relations between the constit-
uents of the situation – conditional mode (C2). 
This is the basic operator to deduce general 
laws from given information,

• to understand causal relations. That is, it is nec-
essary to apprehend the relationship between 
cause, effect and the “hidden force” that inter-
venes between cause and effect. This operation 
allows gaining deeper insights into the process-
es occurring and controlling the world, and 
enables us to make predictions for upcoming 
events. This holds true for both the social and 
the physical domain – causal mode (C3). This is 
necessary to understand and produce effects, 
when parameters of a system are changed,

• to appropriately reduce, configure or re-con-
figure complex information. That is, building 
new configurations, chunks or clusters from 

Early Grade Development and Numeracy  

Figure 9: Basic operators of thinking. On the left: three analytic operators (C1-C3). On the right: constellatory operator.
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shows, it is crucial to help children to establish an 
appropriate number line representation. This can be 
done by introduction of visual-spatial and imagery 
tasks, and by perspective taking (bird’s eye view).

Primary School: We propose a stronger focus on the 
basic operators of thinking, which in this age group 
can be fostered by more complex and numeracy 
domain specific tasks. We assume that it is worthwhile 
to support children’s representation of numbers and 
the number line by visual-spatial, mental exercises. 
Figure 11 is an example of a new, visual-spatial rep-
resentation of two pairs of numbers, which, when 
multiplied, equal 24 . The idea is that children always 
find “two friends” of the 24, which, when multiplied, 
equal 24. That is, firstly, a perceptual constellation of 
results and operands is provided, which is very easy 
to memorize. Secondly, the idea of “the problem as a 
friend” is implemented. Children are motivated to play 
with friends and not with abstract and lifeless con-
cepts. Thirdly, further discussion about the relation-
ship between the given numbers or the concept of 
prime numbers can be introduced. 

Furthermore, a detailed analysis of children’s typical 
errors and misconceptions to determine individual 
thinking errors should be done. Consequently, inter-
ventions could be exactly aligned with the child’s 
particular requirements. Computer programs can help 
to track children’s reasoning processes, and reveal and 
indicate typical errors or biases.

Individual Motivation and Achievement: An impor-
tant aspect is to increase children’s motivation regard-
ing mathematical thinking. We propose to provide an 
individualized and visual performance specification, 
which focuses more strongly on individual devel-
opments and resources than on a deficit-oriented, class 

implicitly learn is that a set consist of elements, a set 
can be changed and, finally, a set can be empty (empty 
set). They also learn that a container is a distinct space 
that includes elements and the number of elements 
can vary. Lakoff and Nunez convincingly demonstrate 
that embodiment and interaction with objects in the 
environment drives the development of metaphors 
and the development of mathematical concepts.

We suggest connecting our dual-process account with 
the embodiment ideas of Lakoff and Nunez. That is, 
we will provide opportunities for the psychomotor 
domain (Cognitope-Principle ™, Figure 10) of young 
children, which are constructed in a way that basic 
mathematical concepts (e.g. coarse estimation, sub-
itizing, counting, categorization) at different percep-
tual levels are fostered. The idea is to provide percep-
tual constellations that elicit a holistic activation of the 
children’s perception and establish rich and general 
conceptual principles, which establish a number sense 
in the children. 

Kindergarten (3-6 years): At the next level, we link 
motor activities more strongly with increasingly ab-
stract concepts to particularly foster basic thinking 
operators (C4). The concept of a number line can be 
introduced as a visual spatial object within a room. 
Programs like “Building Blocks” (see above) exactly use 
children’s daily activities and provide opportunities 
and games, in which children have to identify the 
shape of different objects in a “feely box” for example. 
That is, they have to compare (C1) and apply and de-
duce rules (C2) (Clements & Sarama, 2011). At this age, 
computerized training programs can be an interesting 
supplementary domain to foster thinking (Building 
Block software). Moreover, as the reviewed evidence 
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Figure 10: A simple Cognitope ™, in which children can 
experience being part (element) of an empty container, 
being inside or outside. When inside, they experience the 
boundaries, the whole, the small windows, the view from 
the left or right position, etc.

Figure 11: Find “two friends” of the 24, which, when multi-
plied, equal 24.
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and the detection of misconceptions and systematical 
thinking errors. 

e) Instructions that bridge the gap between the taught 
mathematical concept and the current developmental 
state.

f) Training: Computerized training programs, which 
foster mathematical thinking in a self-paced way, are 
required, and with respect to the individual abilities 
and deficits – adaptive training.

g) Techniques: Computer programs that give detailed 
visual feedback, track changes, motivate to continue, 
to learn and to improve. Programs which identify, and 
evaluate key features of mathematical achievements, 
and determine which elements have to be repeated.

h) Changed Attitudes: Mathematics as a field which 
allows learning problem solving, success, new insights 
and joy, and not a boring subject that is frustrating or 
threatening.

In a nutshell, we recommend starting to foster basic 
numerical concepts, which elicit a reliable number 
sense, as early as possible. Children should be pro-
vided with tasks and instructions which allow them 
to discover mathematical structures and to attain 
insights into the underlying mathematical concepts 
by themselves. The work on mathematical problems 
should be experienced as joyful and motivating (see 
Figure 13).

Early Grade Development and Numeracy  

wide competition and “frustration” model. Children 
should learn to increase their self-efficacy and see 
“problems as a friend”, not as a constant threat to their 
own competencies. 

As suggested by Clements & Sarama 2011, we propose 
the development of instructional activities that are 
aligned with the developmental progression and the 
intended mathematical concept (goal). This requires:

a) Culture: Considering and exploiting cultural typi-
calities and particularities (e.g. language advantage), 
and prior knowledge and experience of the children 
(e.g. contextual calculations – sidewalk sale is used to 
introduce more abstract mathematical principles).

b) Teachers are required to have detailed knowledge 
about developmental trajectories, in general, and for 
individual children, in particular. Teachers have to be 
trained to teach basic mathematical concepts, patterns 
and structures.

c) Parents have to be informed about the development 
of mathematical thinking and the impact of using 
mathematical terms – parental talk – in daily activities 
for the development of mathematical concepts. The 
parents should be encouraged to play games with chil-
dren that foster mathematical concepts, e.g. Parchessi 
fostering counting, estimation, etc.

d) Diagnostics that pinpoint potential individual def-
icits and resources at the level of cognitive processes, 

Figure 12: L2T summary.
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Figure 13: Six recommendations for fostering numeracy.
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After introducing the Learning to Think approach to 
teaching numeracy, we now focus in greater detail on 
the question how to increase the motivation to learn 
numeracy considering the particular problems in low 
income countries.

As pointed out in Figure 1, the successful imple-
mentation of a new program requires to consider at 
least motivational aspects, social attitudes, existing 
stereotypes and cultural aspects. Basically, we have 
to address the needs of different groups of persons, 
as there are “teachers”, “children/students” and 
“parents”. But before we take a look at pure arguments 
for motivating people to learn or foster mathematic 
education, we want to mention the “Cash for Delivery” 
(CoD AID) approach of the Center for Global Devel-
opment. This approach is still in a testing phase (e.g. 
Twaweza, an Uwezo supporting organization, tests 
CoD AID for fostering numeracy and literacy in East 
Africa), so that nothing concluding can be said, but the 
first results seem to indicate that CoD AID could be a 
powerful tool. 

To convince the targeted groups of people of the 
importance of numeracy education, we have to sep-
arately address the perspective of each group (multi-
perspective-account):

1.  Convincing teachers of the importance of numeracy 
and mathematical skills in general should not be 
necessary. But to convince and motivate them to 
apply new and unfamiliar methods might be a great 
challenge. A way of motivating teachers is pointing 
out their importance for the latter success of in-
dividuals and society, and to pay and educate them 
accordingly. According to this logic, society will 
develop, if it has excellent engineers, IT-specialists, 
technicians, scientists, etc. – and mathematics is cru-
cial for these professions.

2.  The title of our desk-study “mathematics – the 
cheapest science for great minds” is far from being 
an empty phrase, since a mathematically gifted child 

Motivational Aspects with Special Focus  
on Low Income Countries

does not need much more than a pencil and paper in 
order to become an excellent mathematician. What 
the child additionally mainly needs is the motivation 
to study mathematics. So it is necessary to inform 
the children about the unlimited possibilities of 
success that studying mathematics offers to them, 
although they stem from a low income country. 
Furthermore, it has to become clear for the children 
why mathematics is important for their life, for their 
career, for their understanding of the world, for their 
self-efficacy, etc. It has to be pointed out that there 
are alternative life designs, which are contrasts to the 
life of their parents, e.g. as farmers. The motivation 
can also be increased to use more cultural relevant 
examples of daily activities and contextual infor-
mation to introduce mathematical concepts. More-
over, this can also be used to increase gender-specific 
interests.

3.  Students’ parents play a crucial role in increasing 
the motivation for their children to learn numeracy. 
It can be emphasized that education can increase 
the future income of their children. When parents 
are convinced of the importance of mathematical 
skills, instructions are needed to inform and support 
parents. The usage of mobile learning applications 
of parents with their children is an adequate mean, 
if a suitable income is available. A crucial problem 
concerning mobile learning applications is to find 
appropriate and child-oriented programs. Easier 
and cheaper, as recommended by the mathematical-
didactic experts of Ludwig Maximilian University 
of Munich, is the play of classical board games like 
the German “Mensch ärgere dich nicht”, the Eng-
lish “Ludo”, the French “Jeu de petits chevaux” and 
others fostering numeracy in early years with simple 
efforts. Playing these games is an excellent first 
numeracy training for young children, and it is very 
easy and fun for children to build adequate versions 
of these games on their own. Even cheaper, but just 
as effective, is the use of parental talk pronouncing 
mathematical concepts like counting, quantifying or 
categorization (see our review).



The usual way of evaluating different teaching 
strategies is testing students, who were taught using 
different strategies, at a certain point in time. That 
procedure is well established and without any doubts 
a powerful instrument for that reason. Nevertheless, 
there are more possibilities of screening and evalu-
ating teaching strategies that can be used additionally, 
as we show in the following. Our approach consists of 
two pillars, recording or live streaming of lessons and 
analyzing the videos, and the use of mobile learning 
applications. After the introduction of our new ap-
proach we will discuss the technological requirements.

Screening and Evaluating 
Teaching Strategies by 
Using Cameras

The evaluation of the efficiency of a newly imple-
mented educational instruction is fairly complicated. 
By recording the mathematical lessons, not only 
achievement at certain time points can be evaluated 
and compared, but also the process can be analyzed. 
This refers to the teacher, as well as to the children. 
It is interesting to reveal misconceptions, problems 
and resources. The usage of cameras is not only an 
excellent method of avoiding that problem. Recording 
teaching lessons is useful in at least three ways:

1. The range of intervention studies could be ex-
tended. 

2. The implementation of recommended teaching 
strategies and applied instructions could be 
evaluated in a much greater detail.

3. Conceptual problems and individual devel-
opmental trajectories could be exactly addressed.

Measurement Approaches and Implica-
tions for Teaching Strategies Concerning 
Numeracy Education in Low Income 
Countries

But there are also disadvantages:

1. Technical problems.
2.  Resentments against monitoring and “control-

ling” teacher and children.
3.  The data analysis can be extremely sophisticated 

and costly.

Using Cameras for Widening the Range of 
Studies in Low Income Countries

In order to evaluate the efficiency of a certain teaching 
strategy fostering numeracy, conducting a case or 
intervention study is an important and necessary 
measure to assure the appropriate application and the 
correct use of the intended strategies. In low income 
countries a lack of available trained professionals 
conducting a study could arise. The use of cameras can 
face and solve this problem, because the local teachers 
can be involved in a reasonable and natural way. In-
stead of having many teams of professional scientists 
for a long period of time in several low income coun-
tries, it is sufficient sending them to the countries, 
which participate in the study, only for a short period 
of time to train the local teachers. After the training, 
the local teachers have to record their lessons with 
cameras and transmit the videos to a central database, 
so that the scientists can evaluate the teaching process. 
If there should be any problems, the scientists can 
intervene and support the teachers in a detailed and 
problem-oriented way. With this procedure large 
studies in low income countries can be executed in 
a fast and efficient way. However, depending on the 
country there could be a language problem. If the 
scientists do not understand the spoken language in 
the classes, translators would be needed and costs for 
the study would rise.
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3.  Developmental trajectories, level of achieve-
ments, deficits and resources can be visualized 
and used for increasing children’s individual 
motivation

There is an increasing amount of learning applica-
tions, but there are, at least to our knowledge, no 
appropriate applications available for our purposes. 
The main reason for that is obviously that we need 
applications, which are complementary to a certain 
curriculum and are connected to a central database, 
so that the data can be analyzed and evaluated by 
scientists and teachers. Nevertheless we should 
think of the benefits of such a kind of application for 
screening and evaluating the implementation process 
of a new teaching strategy in low income countries. 
(The second advantage of mobile learning applica-
tions mentioned above will be discussed below).

Using mobile learning applications has the big ad-
vantage that all data is already digitized. The digitized 
data can be analyzed efficiently and can provide great 
details on the individual learning process, for example 
the already well-known concepts, existing miscon-
ceptions, committed errors, attention spans etc. The 
analyzing software can be adjusted in a manner that 
the scientists, who execute the implementation proc-
ess, are informed, if the performance of the partic-
ipating students does not improve or even begins to 
decrease. Beside this very useful feature the collected 
data can be used for the concluding evaluation of the 
implementation process.

As excellent as the advantages of the usage of cameras 
and applications are, as serious are some of the ob-
stacles, which have to be overcome before they can be 
used, as we show in the next chapter.

Technical Requirements 
for the Usage of Cameras 
and Applications

Due to developmental differences, low income coun-
tries do not possess the same technological infra-
structure as industrialized countries. Thus, it has to be 
examined which technical devices and technologies 
are available and usable in the targeted countries. The 
needed technical devices, respectively technologies, 
are: Cameras (and eventually microphones, depends 
on the quality of the available cameras), smartphones, 
mobile learning applications and internet access. 

The area-wide usage of tablet PCs or smartphones is 
by far harder to put into practice than that of cameras. 

Screening the Implementation of Rec-
ommended Teaching Strategies

The same procedure as described above can be used 
for screening, if a recommended teaching strategy 
is correctly implemented in everyday school life. Of 
course, it is not necessary to review and assess all 
videos. It might be sufficient to take samples. Im-
plementing a recommended teaching strategy does 
not have the same constraints as a study, which has to 
fulfill scientific standards.

An alternative to recording teaching lessons is online 
live streaming. For example, if systematical problems 
occur, it might be worthwhile to live stream a lesson, 
so that the instructor can intervene instantly or talk 
to the teacher directly after the lesson. Whether this 
technique is feasible, depends on the technological 
infrastructure of the countries in question.

Screening and Evaluating 
Teaching Strategies by 
Using Mobile Learning 
Applications

The second pillar of our approach is the usage of 
mobile learning applications. These applications 
have to be easily understandable and adapted to the 
curriculum, so that the students can use them at 
home. It is also very important that the applications 
address children’s “play instinct”. It can be taken as a 
fact that people learn better and faster, if they enjoy 
the learning exercises. In consideration of the fact that 
the use of mobile learning applications at home has 
to be voluntary, it is even more important that the 
applications are entertaining, such as the application 
used in the M4Girls project in 2008 in South Africa.

The applications must have an offline, as well as an 
online mode. The offline mode is necessary so that 
the students can use the applications in areas without 
internet access, too, and the online mode, obviously, 
is crucial for sending data, which is produced by the 
students during the use of the applications, to a cen-
tral database as often as possible. This data can be used 
in at least three ways:

1.  An implemented teaching strategy can be 
screened and evaluated concomitantly to the 
implication, rather than at the end of this process.

2.  The level of performance of every individual 
student can be regarded additional to tests in 
school.
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The most serious problem concerning mobile learning 
applications is the non-existence of appropriate ones 
for our criteria. This means that they have to be devel-
oped and implemented, which in turn means that 
firstly a curriculum has to be developed to which the 
applications can be adjusted; both take a lot of time 
and money. But those efforts, which are necessary in 
order to get appropriate applications, are well invested. 
Once a development aid company has a set of qual-
itatively good applications, the cost for keeping them 
up to date are relatively low and the benefit for the 
students is presumably very high.

The availability of permanent internet access is not by 
all means necessary. Of course, the claim of a constant 
feedback is not fulfilled, if the internet access is not 
permanently given. However, it is still fast enough, 
if the data is sent once a day or every second day at a 
certain time. 

Interestingly, the availability of mobile internet, 
compared to stationary access is more wide-spread in 
most low income countries (UNESCO report “Turning 
on mobile learning - global themes”, p.15). This fact, 
combined with the fast technical development of 
mobile devices, gives hope to an area-wide usage of 
smartphones in the near future of these countries. So 
let us now have a look at mobile learning.

Measurement Approaches and Implications for Teaching Strategies

Ideally, all students have a tablet or smartphone, in 
order to use the learning applications. According to 
the UNESCO report “Turning on mobile learning in 
Africa and the Middle East” (p.12) the proliferation of 
mobile devices in Africa increased by approximately 
30% every year in the last ten years, and there are 
forecasts that by the end of 2012 more than 70% of the 
African population will own a mobile device. In the 
low income countries of Asia the situation seems to be 
equal or even better considering that the data is from 
2010 and 2011 (UNESCO report “Turning on mobile 
learning in Asia”, p. 9-11).

The negative sides of this actually positive trend are 
social and gender inequalities concerning the allo-
cation of mobile devices, so that the probability that 
a rich and/or male person possesses a mobile device 
is much higher than a poor and/or female person. 
Another problem is that the majority of the African 
mobile device owners do not possess smartphones 
at the moment, but this fact is not as problematic as 
it maybe prima facie seems, because the technical 
progress of smartphones develops and prices decrease 
rather quickly. The possibility of equipping all in-
dividual students of a school with smartphones is far 
too expensive, and equipping only some students is 
impossible, because of social reasons. Nevertheless, 
students who already possess smartphones can be 
integrated in studies and sensible mobile learning 
applications can be recommended to them.
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Even if the first mobile learning initiatives were 
started in Europe in the 1980s (UNESCO report 
“Turning on mobile learning in Europe”, p.12), mobile 
learning is still a relatively new phenomenon in 
most countries. It seems to be clear already that its 
importance can hardly be overstated because “… there 
are over 5,9 billion mobile subscriptions worldwide …” 
(UNESCO report “Turning on mobile learning - global 
themes”, p.15) and the market is still growing. Espe-
cially for low income countries mobile learning is a 
great opportunity to generate knowledge, because – as 
already stated above – getting mobile internet access 
in these countries is easier than getting stationary 
internet access.

In the remainder we focus on two initiatives, which 
have implications for numeracy. Furthermore, we in-
troduce an application in development at Parmenides 
Foundation at the moment, of which we think it will 
be very efficient.

A very elaborated and successful project is MoMath, 
which was founded by the South African Department 
of Education and Nokia and won the SAFIPA (South 
African Finland Knowledge Partnership Program) re-
ward for Best Social Impact in 2011. It started in South 
Africa in 2009 through a cooperation of the South 
African Department of Education, Nokia, Mxit (biggest 
African social network), Cell C (mobile provider in 
South Africa), MTN (communications company in Af-
rica), Maskew Miller Longman (textbook publisher in 
South Africa), and SAFIPA. MoMath addresses students 
in the 10th grade to improve their mathematical skills. 
In the beginning MoMath involved 260 students, 
at the end of 2011 the number of participants had 
grown to about 25,000 students, 500 teachers, and 
172 schools; to keep the costs low all students have to 
use their own mobile device. Since more than 10,000 
math exercises, which cover the whole curriculum, are 
completely text based, no smartphones are needed for 
the transmission. In 2010, first results of the project 
were published: Competency in mathematics rose 14% 
and 82% of the participating students used MoMath 
outside of school. The great success of MoMath led to 
a new partner for the project, the Commonwealth of 
Learning, and now the cooperating organizations plan 

Mobile Learning, E-profiling and Adaptive 
Training Configurations

to bring MoMath to another three African countries.
The second mobile learning project mentioned in 
this chapter is something very different to MoMath, 
because, on the one hand, it was a small-scale project 
(one second grade class in Scotland), and, on the other 
hand, it was a portable video game (“Nintendogs”) 
used instead of a real mobile learning application. The 
reason for mentioning this project is to show that the 
fruitful usage of mobile devices does not necessarily 
depend on large-scale and deeply elaborate projects, 
but that it can also be done on one’s own initiative.
In this game the player has to look after a puppy 
including cleaning, playing, taking it to the veterinary 
and dog contests, and so on. Money is an integrate part 
of this game; for example, it can be earned with good 
results in dog contests and spent at the veterinary or 
the dog toyshop. Understanding numeracy is crucial 
for successfully playing the game. The children had 
to write stories about what they experienced with the 
puppies (they were supported by older children of the 
seventh grade) and calculate how much money they 
could spend at the dog toyshop, so that they still had 
enough money for the veterinarian and things like 
that. The guided playing of this video game trained the 
handling of technical devices, writing, mathematics, 
and social skills; furthermore they were excited about 
school and loved going in this class.

The Parmenides Foundation is currently developing an 
application that implements a new, sophisticated and 
individual learning supervisory system, which is called 
“Kairos” (ancient Greek notion for the right moment 
to act). It is based on the fact that for the effortless and 
sustainable recall of learned knowledge there are huge 
differences of effectiveness. This means repeating facts 
too early is often too easy, ineffective and time-con-
suming. Repeating facts too late makes it hard or impos-
sible to recall the facts; the crucial task is to find the 
ideal point for repetition. This will increase the individ-
ual motivation, and improve and foster learning and 
the availability of knowledge. The Kairos-application 
uses algorithms that determine the most appropriate 
moments for repetition by measuring and analyzing 
the reaction time when knowledge is repeated. The 
algorithms and research are developed and investigated 
by Hedderik van Rijn, University of Groningen.
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