AMTLICHE BEKANNTMACHUNG RWTHAACHEN

NUMMER 2014/202

SEITEN 1 - 21

DATUM 08.12.2014

REDAKTION Sylvia Glaser

2. Ordnung zur Änderung der Prüfungsordnung

für den Master-Studiengang

Werkstoffingenieurwesen

der Rheinisch-Westfälischen Technischen Hochschule Aachen

vom 03.12.2014

Aufgrund der §§ 2 Abs. 4, 64 des Gesetzes über die Hochschulen des Landes Nordrhein-Westfalen (Hochschulgesetz – HG) vom 31. Oktober 2006 (GV. NRW S. 474), zuletzt geändert durch Artikel 1 des Hochschulzukunftsgesetzes Nordrhein-Westfalen vom 16.09.2014 (GV. NRW S. 547), hat die Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) folgende Prüfungsordnung erlassen:

NUMMER 2014/202 2/21

Artikel I

Die Prüfungsordnung für den Master-Studiengang Werkstoffingenieurwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH) vom 26.11.2010, in der Fassung der ersten Ordnung zur Änderung der Prüfungsordnung vom 05.02.2014 (Amtliche Bekanntmachungen der RWTH Aachen, Nr. 2014/012), wird wie folgt geändert:

- 1. Ab dem Wintersemester 2014/2015 wird das Hauptvertiefungsfach "Korrosion und Korrosionsschutz" mit der gleichnamigen Nebenvertiefung angeboten. Eine aktualisierte Auflistung der Haupt-, Neben- und Wahlvertiefungsfächer mit den zugehörigen Modulen befindet sich in Anlage 1 dieser Änderungsordnung.
- 2. Ab dem Wintersemester 2014/2015 wird der Modulkatalog um folgende Module erweitert:
 - Korrosionsgerechtes Design in der Werkstofftechnik (Hauptvertiefungfach Korrosion und Korrosionsschutz)
 - Korrosionstechnische Herausforderungen in Schlüsselindustrien (Nebenvertiefungsfach Korrosions und Korrosionsschutz; Wahlvertiefung)
 - Anwendungstechnik Keramik (Nebenvertiefungsfach Keramik und feuerfeste Werkstoffe; Wahlvertiefung)
 - Fundamentals of Materials Interface and Interface Engineering (Wahlvertiefung)

Die Modulbeschreibungen befinden sich in Anlage 2 dieser Änderungsordnung.

- 3. Ab dem Wintersemester 2014/2015 werden die Modulbeschreibungen der folgenden Module durch die entsprechenden Fassungen in Anlage 3 dieser Änderungsordnung ersetzt:
 - Hochleistungskeramik
 - Herstellung, Verarbeitung, Vergütung von Glas

Studierende, die die geänderten Module vor dem Wintersemester 2014/2015 begonnen haben, können diese nach den bisherigen Bedingungen bis zum Ende des Wintersemesters 2014/2015 beenden. Auf Antrag an den Prüfungsausschuss können die neuen Module gewählt werden.

Artikel II

Diese Änderungsordnung wird in den Amtlichen Bekanntmachungen der RWTH veröffentlicht, tritt am Tage nach ihrer Bekanntmachung in Kraft und findet auf alle in den Master-Studiengang Werkstoffingenieurwesen eingeschriebenen Studierenden Anwendung.

NUMMER 2014/202 3/21

Ausgefertigt aufgrund des Beschlusses des Fakultätsrates der Fakultät für Georessourcen und Materialtechnik vom 26.11.2014.

Der Rektor der Rheinisch-Westfälischen Technischen Hochschule Aachen

Aachen, den 03.12.2014

gez. Schmachtenberg
Univ.-Prof. Dr.-Ing. E. Schmachtenberg

NUMMER 2014/202 4/21

Anlage 1: Auflistung der Haupt-, Neben- und Wahlvertiefungsfächer mit den zugehörigen Modulen

1. Auflistung der Hauptvertiefungsfächer des M.Sc. Werkstoffingenieurwesen und der zugehörigen Lehrveranstaltungen

Jedes der 10 Hauptvertiefungsmodule besteht aus zwei Veranstaltungen. Zum erfolgreichen Abschluss des Hauptvertiefungsmoduls sind drei Teilleistungen zu erbringen:

- 1) erste Teilveranstaltung → Klausur von 90 bis 120 Minuten
- 2) zweite Teilveranstaltung → Klausur von 90 bis 120 Minuten
- 3) mündliche Prüfung von 20 bis 30 Minuten über beide Teilveranstaltungen

Abhängig von der Teilnehmerzahl kann der Lehrstuhl anstelle der Klausur eine mündliche Prüfung ansetzen. Die genaue Klausurlänge (bzw. Details zur mündlichen Prüfung) wird durch den Lehrstuhl zu Beginn der jeweiligen Teilveranstaltung bekannt gegeben.

a)

Allgemeine Metallkunde und Metallphysik	
Hauptvertiefungsmodul	Werkstoffwissenschaft der Metalle I
	Werkstoffwissenschaft der Metalle II

b)

Bildsame Formgebung	
Hauptvertiefungsmodul	Grundlagen und Lösungsverfahren der Umformtechnik
	Prozessketten der Umformtechnik

c)

Eisenhüttenkunde	
Hauptvertiefungsmodul	Werkstofftechnik der Stähle
	Werkstoffdesign der Metalle

d)

Gießereiwesen	
Hauptvertiefungsmodul	Prozesstechnik der Gießverfahren
	Technologie der Gusswerkstoffe

e)

Glas und keramische Verbundwerkstoffe	
Hauptvertiefungsmodul	Werkstofftechnik Glas
	Thermochemie und Reaktionskinetik mineralischer Werkstoffe

f)

Hochtemperaturtechnik	
Hauptvertiefungsmodul	Industrieofentechnik
	Berechnung und Auslegung von Industrieöfen

NUMMER 2014/202 5/21

g)

Keramik und feuerfeste Werkstoffe	
Hauptvertiefungsmodul	Werkstofftechnik Keramik
	Feuerfeste Werkstoffe und Bauweisen

h)

Metallurgie, Eisen und Stahl	
Hauptvertiefungsmodul	Eisen- und Stahlmetallurgie
	Stahlmetallurgie

i)

Metallurgische Prozesstechnik und Metallrecycling	
Hauptvertiefungsmodul	Thermische Gewinnungsprozesse der Nichteisenmetalle
	Thermische Raffinationsprozesse für Nichteisenmetalle

j)

Korrosion und Korrosionsschutz	
Hauptvertiefungsmodul	Korrosion und Korrosionsschutz
	(gemeinsam mit Lehrstuhl für Eisenhüttenkunde)
	Korrosionsgerechtes Design in der Werkstofftechnik

2. Katalog der Nebenvertiefungsfächer des M.Sc. Werkstoffingenieurwesen (in Abhängigkeit von der gewählten Hauptvertiefung)

Mit der Wahl der Hauptvertiefung wird auch der Katalog aus der die Nebenvertiefung gewählt werden muss festgelegt. Jedes Nebenvertiefungsfach wird durch eine Klausur von 90 bis 120 Minuten Dauer abgeprüft. Abhängig von der Teilnehmerzahl kann der Lehrstuhl anstelle der Klausur eine mündliche Prüfung ansetzen. Die genaue Klausurlänge (bzw. Details zur mündlichen Prüfung) wird durch den Lehrstuhl zu Beginn der Veranstaltung bekannt gegeben.

a) Nebenvertiefungskatalog zur Hauptvertiefung

Allgemeine Metallkunde und Metallphysik	
Intern	Metallphysikalische Grundlage der Aluminium-Werkstoffe
	Metallische Verbundwerkstoffe und Werkstoffverbunde
	Prozess- und Werkstoffmodellierung
Lehrstuhl für Metallurgische Prozesstechnik und Metallrecycling	
extern	Metallurgie und Eigenschaften von AL-Schmelzen

NUMMER 2014/202 6/21

b) Nebenvertiefungskatalog zur Hauptvertiefung

Bildsame Formgebung		
Intern	Modellierung von Umformprozessen	
Lehrstuhl für allgemeine Metallkunde und Metallphysik		
extern	Werkstoffwissenschaft der Metalle II	
	Prozess- und Werkstoffmodellierung	
Lehrstuhl für Eisenhüttenkunde		
extern	Werkstofftechnik der Stähle	
Lehrstuhl für Gießereiwesen		
	Prozesstechnik der Gießverfahren	
extern	Entwicklungsaufgaben in der Werkstoffoptimierung, Bauteil-	
	gestaltung und Prozessplanung	
Lehrstuhl für Metallurgische Prozesstechnik und Metallrecycling		
extern	Metallurgie und Eigenschaften von AL-Schmelzen	

c) Nebenvertiefungskatalog zur Hauptvertiefung

Eisenhüttenkunde		
	Grundzüge der Oberflächentechnik	
Intern	Korrosion und Korrosionsschutz	
	Schweißen von Stahl	
Lehrstuhl für Bildsame F	ormgebung	
	Prozessketten der Umformtechnik	
extern	Modellierung von Umformprozessen	
	Walzwerkstechnik und Elektroband	
Lehrstuhl für Metallurgie		
	Eisen- und Stahlmetallurgie	
extern	Stahlmetallurgie	
	Kontinuierliches Gießen – Continuous Casting	
	Rohstoffe und spezielle Reduktionsverfahren für Eisenerz	
Lehrstuhl für allgemeine	Metallkunde und Metallphysik	
	Werkstoffwissenschaft der Metalle I	
extern	Werkstoffwissenschaft der Metalle II	
	Metallphysikalische Grundlagen der Aluminium-Werkstoffe	
	Metallische Verbundwerkstoffe und Werkstoffverbunde	
	Prozess- und Werkstoffmodellierung	
Lehrstuhl für Hochtempe	Lehrstuhl für Hochtemperaturtechnik	
extern	Industrieofentechnik	

NUMMER 2014/202 7/21

d) Nebenvertiefungskatalog zur Hauptvertiefung

Gießereiwesen		
Intern	Entwicklungsaufgaben in der Werkstoffoptimierung, Bauteil-	
	gestaltung und Prozessplanung	
	•	
Lehrstuhl für allgemein	e Metallkunde und Metallphysik	
extern	Werkstoffwissenschaft der Metalle I	
	Werkstoffwissenschaft der Metalle II	
	Prozess- und Werkstoffmodellierung	
	Metallische Verbundwerkstoffe und Werkstoffverbunde	
	Metallphysikalische Grundlagen der Aluminium-Werkstoffe	
Lehrstuhl für Bildsame	Formgebung	
extern	Prozessketten der Umformtechnik	
Lehrstuhl für Eisenhüttenkunde		
extern	Werkstofftechnik der Stähle	
	Werkstoffdesign der Metalle	
	Korrosion und Korrosionsschutz	
Lehrstuhl für Hochtemp	Lehrstuhl für Hochtemperaturtechnik	
extern	Industrieofentechnik	
Lehrstuhl für Keramik u	Lehrstuhl für Keramik und feuerfeste Werkstoffe	
extern	Feuerfeste Werkstoffe und Bauweisen	
Lehrstuhl für Metallurgie von Eisen und Stahl		
extern	Kontinuierliches Gießen – Continuous Casting	
Lehrstuhl für Metallurgi	sche Prozesstechnik und Metallrecycling	
extern	Metallurgie und Eigenschaften von Al-Schmelzen	
weitere nacl	h Vereinbarung und Antrag beim Prüfungsausschuss	

e) Nebenvertiefungskatalog zur Hauptvertiefung

Glas und keramische Verbundwerkstoffe		
Intern	Herstellung, Verarbeitung, Vergütung von Glas	
Lehrstuhl für Eisenhütten	kunde	
extern	Grundzüge der Oberflächentechnik	
Lehrstuhl für Hochtemperaturtechnik		
extern	Berechnung und Auslegung von Industrieöfen	
Lehrstuhl für Keramik und feuerfeste Werkstoffe		
extern	Silicattechnik	
	Feuerfeste Werkstoffe und Bauweisen	

NUMMER 2014/202 8/21

f) Nebenvertiefungskatalog zur Hauptvertiefung

Hochtemperaturtechnik			
Intern	Anlagentechnik		
Lehrstuhl für allgemeine Metallkunde und Metallphysik,			
extern	Metallphysikalische Grundlagen der Aluminium-Werkstoffe		
Lehrstuhl für Bildsame Formgebung			
extern	Prozessketten der Umformtechnik		
Lehrstuhl für Eisenhüttenkunde			
extern	Werkstofftechnik der Stähle		
Lehrstuhl für Metallurgie	Lehrstuhl für Metallurgie von Eisen und Stahl		
extern	Stahlmetallurgie		
	Kontinuierliches Gießen – Continuous Casting		
Lehrstuhl für Glas und keramische Verbundwerkstoffe			
lextern	Herstellung, Verarbeitung, Vergütung von Glas		
Lehrstuhl für Keramik und feuerfeste Werkstoffe			
extern	Feuerfeste Werkstoffe und Bauweisen		
Lehrstuhl für Metallurgische Prozesstechnik und Metallrecycling			
extern	Thermische Gewinnungsprozesse der Nichteisenmetalle		
	Thermische Raffinationsprozesse für Nichteisenmetalle		
	Ressourceneffizienz beim Metallrecycling		
	Metallurgie und Eigenschaften von Al-Schmelzen		

g) Nebenvertiefungskatalog zur Hauptvertiefung

Keramik und feuerfeste Werkstoffe		
Intern	Silicattechnik	
	Anwendungstechnik Keramik	
Lehrstuhl für Metallurgie	von Eisen und Stahl	
extern	Eisen- und Stahlmetallurgie	
Lehrstuhl für allgemeine Metallkunde und Metallphysik		
extern	Werkstoffwissenschaft der Metalle I	
	Metallische Verbundwerkstoffe und Werkstoffverbunde	
Lehrstuhl für Hochtempe	Lehrstuhl für Hochtemperaturtechnik	
extern	Industrieofentechnik	
Lehrstuhl für Prozessleittechnik		
	Methoden und Modelle der Produktionsleitebene	
	weitere nach Vereinbarung und Antrag beim Prüfungsaus-	
	schuss	

NUMMER 2014/202 9/21

h) Nebenvertiefungskatalog zur Hauptvertiefung

Metallurgie, Eisen und Stahl		
Intern	Kontinuierliches Gießen – Continuous Casting	
Lehrstuhl für allgemeine	Metallkunde und Metallphysik	
extern	Werkstoffwissenschaft der Metalle I	
	Prozess- und Werkstoffmodellierung	
Lehrstuhl für Bildsame Formgebung		
extern	Grundlagen und Lösungsverfahren der Umformtechnik	
	Walzwerkstechnik und Elektroband	
Lehrstuhl für Eisenhüttenkunde		
extern	Werkstofftechnik der Stähle	
	Korrosion und Korrosionsschutz	
	Schweißen von Stahl	
Lehrstuhl für Gießereiwesen		
extern	Prozesstechnik der Gießverfahren	
	Entwicklungsaufgaben in der Werkstoffoptimierung, Bauteil-	
	gestaltung und Prozessplanung	
Lehrstuhl für Hochtemperaturtechnik		
lextern	Industrieofentechnik	
	Berechnung und Auslegung von Industrieöfen	
Lehrstuhl für Prozessleittechnik		
extern	Methoden und Modelle der Produktionsleitebene	

i) Nebenvertiefungskatalog zur Hauptvertiefung

Metallurgische Prozesstechnik und Metallrecycling		
Intern	Hydrometallurgie	
	Ressourceneffizienz beim Metallrecycling	
	Metallurgie und Eigenschaften von Al-Schmelzen	
Lehrstuhl für Hochtemperaturtechnik		
extern	Industrieofentechnik	
Lehrstuhl für Metallurgie von Eisen und Stah		
extern	Kontinuierliches Gießen – Continuous Casting	
Lehrstuhl für Gießereiwesen		
extern	Prozesstechnik der Gießverfahren	
Lehrstuhl für Bildsame Formgebung		
extern	Prozessketten der Umformtechnik	
Lehrstuhl für Keramik und	Lehrstuhl für Keramik und feuerfeste Werkstoffe	
extern	Feuerfeste Werkstoffe und Bauweisen	

NUMMER 2014/202 10/21

j) Nebenvertiefungskatalog zur Hauptvertiefung

Korrosion und Korrosionsschutz		
Intern	Oberflächenfunktionalisierung	
	Korrosionstechnische Herausforderungen in Schlüsselin-	
	dustrien	
Lehrstuhl für allgemeine	Metallkunde und Metallphysik	
extern	Werkstoffwissenschaft der Metalle I	
	Werkstoffwissenschaft der Metalle II	
	Metallphysikalische Grundlagen der Aluminiumwerkstoffe	
	Metallische Verbundwerkstoffe und Werkstoffverbunde	
Lehrstuhl für Eisenhüttenkunde		
extern	Werkstofftechnik der Stähle	
	Werkstoffdesign der Metalle	
	Grundzüge der Oberflächentechnik	
Lehrstuhl für Gießereiwesen		
extern	Technologie der Gusswerkstoffe	
Lehrstuhl für Glas und ke	Lehrstuhl für Glas und keramische Verbundwerkstoffe	
extern	Werkstofftechnik Glas	
Lehrstuhl für Keramik un	Lehrstuhl für Keramik und feuerfeste Werkstoffe	
extern	Hochleistungskeramik	
Lehrstuhl für Metallurgische Prozesstechnik und Metallrecycling		
extern	Thermische Gewinnungsprozesse der Nichteisenmetalle	
	Hydrometallurgie	
	Ressourceneffizienz beim Metallrecycling	

Dieser Katalog wird jedes Jahr im Wintersemester in der ersten Sitzung der Fachgruppe aktualisiert. Bei Änderungsbedarf wird eine entsprechende Änderungsordnung verfasst und veröffentlicht.

3. Katalog der Wahlvertiefungsfächer des M.Sc. Werkstoffingenieurwesen

Aus dem Katalog der Wahlvertiefungsfächer muss der Student nach Belieben zwei Module auswählen (Wahlpflichtfächer). Doppelbelegungen durch Überschneidungen mit der Hauptoder Nebenvertiefung sind hierbei nicht zulässig. Als Prüfungsleistung ist in jedem Wahlvertiefungsfach eine Klausur von 90 bis 120 Minuten Dauer vorgesehen. Abhängig von der Teilnehmerzahl kann der Lehrstuhl anstelle der Klausur eine mündliche Prüfung ansetzen. Die genaue Klausurlänge (bzw. Details zur mündlichen Prüfung) wird durch den Lehrstuhl zu Beginn der Veranstaltung bekannt gegeben.

a) Wahlvertiefungsfächer am Lehrstuhl für allgemeine Metallkunde und Metallphysik

Lehrstuhl für allgemeine Metallkunde und Metallphysik	
Wahlvertiefungsfächer	Werkstoffwissenschaft der Metalle I
	Werkstoffwissenschaft der Metalle II
	Metallphysikalische Grundlagen der Aluminiumwerkstoffe
	Metallische Verbundwerkstoffe und Werkstoffverbunde
	Prozess- und Werkstoffmodellierung

NUMMER 2014/202 11/21

b) Wahlvertiefungsfächer am Lehrstuhl für Bildsame Formgebung

Lehrstuhl für Bildsame Formgebung	
Wahlvertiefungsfächer	Grundlagen und Lösungsverfahren der Umformtechnik
	Prozessketten der Umformtechnik
	Modellierung von Umformprozessen
	Neuere Entwicklungen in der Umformtechnik
	Walzwerkstechnik und Elektroband

c) Wahlvertiefungsfächer am Lehrstuhl für Eisenhüttenkunde

Lehrstuhl für Eisenhüttenkunde	
Wahlvertiefungsfächer	Werkstofftechnik der Stähle
	Werkstoffdesign der Metalle
	Grundzüge der Oberflächentechnik
	Korrosion und Korrosionsschutz
	Schweißen von Stahl

d) Wahlvertiefungsfächer am Lehrstuhl für Gießereiwesen

Lehrstuhl für Gießereiwesen	
	Prozesstechnik der Gießverfahren
	Technologie der Gusswerkstoffe
Wahlvertiefungsfächer	Entwicklungsaufgaben in der Werkstoffoptimierung,
	Bauteilgestaltung und Prozessplanung

e) Wahlvertiefungsfächer am Lehrstuhl für Glas und keramische Verbundwerkstoffe

Lehrstuhl für Glas und keramische Verbundwerkstoffe						
Werkstofftechnik Glas						
Wahlvertiefungsfächer	Thermochemie und Reaktionskinetik mineralischer Werkstoffe					
	Herstellung, Verarbeitung, Vergütung von Glas					

f) Wahlvertiefungsfächer am Lehrstuhl für Hochtemperaturtechnik

Lehrstuhl für Hochtemperaturtechnik				
	Industrieofentechnik			
Wahlvertiefungsfächer	Berechnung und Auslegung von Industrieöfen			
	Anlagentechnik			

NUMMER 2014/202 12/21

g) Wahlvertiefungsfächer am Lehrstuhl für Keramik und feuerfeste Werkstoffe

Lehrstuhl für Keramik und feuerfeste Werkstoffe						
	Feuerfeste Werkstoffe und Bauweisen					
Wahlvertiefungsfächer Hochleistungskeramik						
	Keramische Produktionstechnik					
	Anwendungstechnik Keramik					
Fundamentals of Materials Interface and Interface Engi						
	ing					

h) Wahlvertiefungsfächer am Lehrstuhl für Metallurgie von Eisen und Stahl

Lehrstuhl für Metallurgie von Eisen und Stahl						
Eisen und Stahlmetallurgie						
Wahlvertiefungsfächer	Stahlmetallurgie					
	Kontinuierliches Gießen – Continuous Casting					
	Rohstoffe und spezielle Reduktionsverfahren für Eisenerz					

i) Wahlvertiefungsfächer am Lehrstuhl für Metallurgische Prozesstechnik und Metallrecycling

Lehrstuhl für Metallurgische Prozesstechnik und Metallrecycling						
	Thermische Gewinnungsprozesse der Nichteisenmetalle					
Wahlvertiefungsfächer Thermische Raffinationsprozesse für Nichteisenmetalle						
	Hydrometallurgie					
	Ressourceneffizienz beim Metallrecycling					
Metallurgie und Eigenschaften von Al-Schmelzen						
Planung und Wirtschaftlichkeit metallurgischer Anlagen						

j) Wahlvertiefungsfächer am Lehrstuhl für Prozessleittechnik

Lehrstuhl für Prozessleittechnik				
Wahlvertiefungsfächer	Methoden und Modelle der Produktionsleitebene			

k) Wahlvertiefungsfächer am Lehrstuhl für Korrosion und Korrosionsschutz

Lehrstul	Lehrstuhl für Korrosion und Korrosionsschutz							
Wahlver	tiefungsfächer	Korrosionsgerechtes Design in der Werkstofftechnik						
		Oberflächenfunktionalisierung						
		Korrosionstechnische Herausforderungen in Schlüsselir dustrien						

I) Lehrstuhlübergreifende Wahlvertiefungsfächer

Mehrere Lehrstühle	
Wahlvertiefungsfächer	Biowerkstoffe

NUMMER 2014/202 13/21

Anlage 2: Neue Module

Klausur/mündl. Prüfung

MODUL TITEL:	Korrosionsge	erechtes Design	in der	We	rkstofftechnik					
ALLGEMEINE A	ANGABEN									
Fachsemester	chsemester Dauer Kreditpunkte SWS Häufigkeit Turnus Start Sprache									
2	1	8	7	7 Jedes 2. Semes		SS 2015	De	eutsch		
INHALTLICHE ANGABEN										
Inhalt Lernziele										
fahren von Nichten und Polyme herstellungsspez Eigenschaften u	Grundlegende Eigenschaften und Herstellungsverfahren von Nichteisen-Metallen sowie Eisenwerkstoffen und Polymeren, Werkstoff-charakteristische und herstellungsspezifische korrosive und mechanische Eigenschaften unter elektrochemische Anforderun- Wissen / Verstehen Den Studierenden wird ein grundlegendes Werkstoffverständnis vor dem Hintergrund der Korrosion vermittelt. Sie verstehen den Zusammenhang von Herstellung, Mikrostruktur und Korrosionseigenschaften.									
gen sowie beim Hochtemperatureinsatz, korrosionsgerechte Werkstoffauswahl und Konstruktion Anwenden / Analyse Sie verstehen den Zusahang von Herstellung, Mikrostruktur und Korrosigenschaften und können dies in die betriebliche übertragen. Synthese / Beurteilen Die Studierenden sind Lage die Einsatzfähigkeit von Werkstoffen ganz zu beurteilen und optimierte, korrosionsgerechte al- und Bauteilkonzepte zu erarbeiten.					Corrosionsei- liche Praxis sind in der ganzheitlich					
Voraussetzung	en			В	enotung					
Teilnahme an der Klausur nur nach erfolgreicher Absolvierung des Praktikums möglich (Anwesenheitspflicht nach §5a im Praktikum).										
LEHRFORMEN	/ VERANSTA	LTUNGEN & ZU	SEHÖR	IGE	PRÜFUNGEN					
daud					Prüfungs- dauer (Minuten)	СР	sws			
Vorlesung							0	2		
Übung							0	2		
Praktikum	Praktikum 0 3									

8

120

0

NUMMER 2014/202 14/21

MODUL	. TITEL:	Korrosionst	echnische	Herausfor	derungen	in :	Schlüsselindustrien
-------	----------	-------------	-----------	-----------	----------	------	---------------------

ALLGEMEINE ANGABEN

Fachsemester	Dauer	Kreditpunkte	sws	Häufigkeit	Turnus Start	Sprache
2	1	8	7	Jedes 2. Semester	SS 2015	Deutsch

INHALTLICHE ANGABEN

Inhalt Lernziele

Charakteristische, korrosionsspezifische Herausforderungen in: Automobilindustrie, Luft- und Raumfahrt, Öl- und Gasindustrie, Energie- und Prozess- sowie Chemieindustrie und Medizintechnik.

Bsp.: Hybride Leichtbauweise (Kontaktkorrosion), Pipeline (Biofilmkorrosion), Ölförderung (Sauergaskorrosion), Offshore-Energie (wässrige Korrosion), Prothesenwerkstoffe (in-vivo Korrosion), Chemische Verfahrenstechnik (Säurekorrosion) Wissen / Verstehen Den Studierenden werden aktuelle und zukünftige korrosionstechnische Herausforderungen an hochentwickelten Werkstoffen in bedeutenden Industriezweigen vermittelt.

Anwenden / Analyse Die Anwendung erfolgt in Form einer Schadensfallanalyse.

Synthese / Beurteilen Die Studierenden sind in der Lage anwendungsspezifische Herausforderungen der werkstoffseitigen Korrosion zu beurteilen und sind für die Notwendigkeit innovativer, hochentwickelter Korrosionsschutzkonzepte sensibilisiert.

Voraussetzungen

Voraussetzung: erfolgreich bestandenes Praktikum + Teilnahme an Exkursion. Das Praktikum ist dann erfolgreich absolviert wenn das Gesamttestat erteilt worden ist.

Benotung
Klausur gewichtet 100% (120 Min.)

LEHRFORMEN / VERANSTALTUNGEN & ZUGEHÖRIGE PRÜFUNGEN

Titel	Prüfungs- dauer (Minuten)	СР	sws
Vorlesung		0	4
Übung		0	2
Praktikum		0	1
Klausur/mündl. Prüfung	120	8	0

NUMMER 2014/202 15/21

MODUL TITEL: Anwendungstechnik Keramik

ALLGEMEINE ANGABEN

Fachsemester	Dauer	Kreditpunkte	sws	Häufigkeit	Turnus Start	Sprache
2	2	8	7	jedes 2. Se- mester	WS 2014/15	deutsch

INHALTLICHE ANGABEN

Inhali

• Keramische Werkstoffe für die Energietechnik:

Elektrokeramiken (keramische Isolatoren, Elektronenleiter, NTC/PTC, Supraleiter, Thermoelektrika, Piezokeramiken, Ionenleiter); Brennstoff- und Elektrolysezellen; Gastrennmembrane; Wärmedämmschichten; Batterieanwendungen; Herstellungsmethoden, Bauteilcharakteristika.

- Thermodynamische und kinetische Grundlagen. Flüssigkeitskorrosion, Schmelzkorrosion, Verschlackung, Gaskorrosion, Salzschmelzkorrosion, Passivierung, thermodynamische Simulation, Fallbeispiele aus der Technik
- Tribotechnische Systeme, technische Oberflächen, Kontaktvorgänge, Reibung. Oberflächenzerrüttung, Abrasion, Adhäsion, tribochem. Reaktionen, Maßnahmen zur Verschleißminderung. Reibungs- und Verschleißprüftechnik, Oberflächenmesstechnik und -analytik, Ergebnisdarstellung tribologischer Prüfungen. Plastische Verformung spröder Strukturen, Einfluss von Glasphasen und Korngrenzen, Kriechen.

Lernziele

Wissen / Verstehen: Wechselwirkungen zwischen Kristallstruktur, chemischer Zusammensetzung, Gefüge und Materialeigenschaften der Hochleistungskeramiken sind vertieft verstanden

Anwenden / Analyse Anhand spezifischer Beispiele können die physikalischen, chemischen und thermomechanischen Einsatzgebiete und Anwendungsgrenzen abgeleitet werden. Geeignete Prüf- und Charakterisierungsmethoden können ausgewählt, durchgeführt und in ihren Ergebnissen interpretiert werden.

Synthese / Beurteilen Die Fähigkeit zur problemorientierten Werkstoffauswahl und zur Schadensanalytik ist gefestigt.

Voraussetzungen

Keine

Benotung

Klausur gewichtet 100% (120 Min.) und /oder mündliche Prüfung. Die Klausur wird 3-mal jährlich angeboten.

LEHRFORMEN / VERANSTALTUNGEN & ZUGEHÖRIGE PRÜFUNGEN

Titel	Prüfungs- dauer (Minuten)	СР	sws
Vorlesung: Keramische Werkstoffe für die Energietechnik, Prof. Dr. O. Guillon		0	2
Vorlesung/Übung: Funktionskeramik [MSWstl -263.cii/2010], Dr. Meulenberg, Dr. Menzler		0	3
Vorlesung - Korrosion (Option 1) [MSWstl -263.bii/2010], falls nicht bereits in einem anderen Vertiefungsfach belegt; Priv. Doz. Dr. M. Spiegel		0	2
Vorlesung – Tribologie und Hochtemperaturverhalten keramischer Werkstoffe (Option 2) [MSWstl -263.bii/2010], falls nicht bereits in einem anderen Vertiefungsfach belegt; Prof. Dr. R. Telle		0	2
Klausur/mündl. Prüfung - Anwendungstechnik Keramik	120	8	7

NUMMER 2014/202 16/21

MODUL TITEL: Fundamentals of Materials Interface and Interface Engineering

ALLGEMEINE ANGABEN

Fachsemester	Dauer	Kreditpunkte	sws	Häufigkeit	Turnus Start	Sprache
Summer se- mester	1	8	7	Jedes 2. Semester	SS 2015	English

INHALTLICHE ANGABEN

Inhalt

Interfaces play critical role in determing many physical and chemical properties of materials. The increasing importance of complex interfaces in materials, such as composites, polymers, metals, and semiconductors, requires the concerted efforts of all the classical fields of materials science. This course covers the fundamentals of interfaces in typical materials and related interface engineering partaining to designing and synthesizing materials with desired functionalities.

- Interface formation (physical and chemical interfacial interaction)
- Interfaces in metal and ceramic composites (microstructure of interfaces, composition analysis, structure characterization)
- Interfaces in polymer and fiber reinfored composites
- Interfaces in thermal engineering (thermal interface materials, thermal insulators)
- Characterization of physical properties of interfaces (mechanics: friction, wear, fracture, adhesion; thermal science: interfacial thermal resistance)

Lernziele

Wissen / Verstehen

Students know the basics of interface physics in various materials, especially for composites, and are able to use different methods to describe and characterize typical physical properties of interfaces. Students also know how to engineering the interfaces for synthesizing new materials with anticipated purposes.

Anwenden /Analyse

Regular exercises are assinged for students, which help them undertand the lectures more clearly and deeply. Students learn various interface technical procedures and characterization methods and then are able to apply to real systems. The excersices are well defined based on lectures and in the form of either questions or numerical simulations. Mini-projects are also applicable and completed in groups.

Synthese / Beurteilen

Through theoretical foundations from lectures and practical activities from exercises, students are able to engineer interfaces for a given application and to evaluate interface properties in materials.

Not applicable. Benotung 100% examination

NUMMER 2014/202 17/21

LEHRFORMEN / VERANSTALTUNGEN & ZUGEHÖRIGE PRÜFUNGEN						
Titel	Prüfungs- dauer (Minuten)	СР	sws			
Vorlesung		0	4			
Übung		0	2			
Praktikum		0	1			
Klausur	120	8	0			

NUMMER 2014/202 18/21

Anlage 3: Geänderte Modulbeschreibungen

MODUL TITEL: Hochleistungskeramik

ALLGEMEINE ANGABEN

Fachsemester	Dauer	Kreditpunkte	sws	Häufigkeit	Turnus Start	Sprache
2	2	8	7	jedes 2. Se- mester	SS 2009	deutsch

INHALTLICHE ANGABEN

Inhalt

- Grundlagen der Bruchmechanik; Bruchfestigkeit von Keramiken: Einfluss von Fehlern, Belastungsarten, Weibull-Statistik; Bruchzähigkeit und R-Kurve: Rissüberbrückung, Prozesszonenmechanismus; Kinetische Einflüsse: unterkritisches Risswachstum, mechanische Beschreibung des Sinterns; Kontaktbelastung; Prüfverfahren
- Gefügevarianten von Verbundwerkstoffen, Mischungsregeln zur Beschreibung der integralen Eigenschaften; bruchmechanische Grundlagen der Dispersions- und Faserverstärkung; Raumtemperatur- und Hochtemperatureigenschaften; keramische Dispersionswerkstoffe: Herstellung, Eigenschaften, Anwendungen; faserverstärkte Keramiken: Faserherstellung (Kurzfasern, Langfasern), Matrixsysteme, P/M-Methoden, Infiltrationsverfahren (Flüssigsilizierung, Gasinfiltrationsverfahren, Polymerinfiltration und Pyrolyse); Anwendungen. Keramische Verbundwerkstoffe mit metallischen Komponenten (Hartmetalle, Cermets, Metcers), Herstellung über pulvermetallurgische Methoden, In-situ-Reaktionsverfahren, RBAO, Lanxide, Dimox, ternäre Boride, MAX-Phasen), Gradientenwerkstoffe.
- Elektrokeramiken: Keramische Isolatoren, Elektronenleiter, NTC/PTC, Supraleiter, Piezokeramiken, Ionenleiter; Brennstoff- und Elektrolysezellen; Gastrennmembrane; Wärmedämmschichten; Batterieanwendungen; Herstellungsmethoden, Bauteilcharakteristika.
- Thermodynamische und kinetische Grundlagen. Flüssigkeitskorrosion, Schmelzkorrosion, Verschlackung, Gaskorrosion, Salzschmelzkorrosion, Passivierung, thermodynamische Simulation, Fallbeispiele aus der Technik
- Praktikumsversuche zur Herstellung von Hochleistungskeramik/Verbundwerkstoffen, Prüfung mechanischer und/ oder elektrischer Eigenschaften, Anwendung der Weibull-Statistik, Interpretation der Messergebnisse

Lernziele

Wissen / Verstehen Die Kenntnis der Wechselwirkung zwischen Kristallstruktur, Gefüge und Materialeigenschaften der Hochleistungskeramiken sind vertieft verstanden.

Anwenden / Analyse Anhand spezifischer Beispiele können die physikalischen, chemischen und thermomechanischen Einsatzgebiete und Anwendungsgrenzen abgeleitet werden.

Synthese / Beurteilen Die Fähigkeit zur problemorientierten Werkstoffauswahl und zur Schadensanalytik ist gefestigt.

Voraussetzungen

Teilnahme an der Klausur nur nach erfolgreicher Absolvierung des Praktikums möglich (Anwesenheitspflicht nach § 5a im Praktikum).

Benotung

Klausur gewichtet 100% (120 Min.) und /oder mündliche Prüfung Die Klausur wird 3-mal jährlich angeboten. Voraussetzung: Erfolgreich bestandenes Praktikum. **NUMMER** 2014/202 19/21

LEHRFORMEN / VERANSTALTUNGEN & ZUGEHÖRIGE PRÜFUNGEN							
Titel	Prüfungs- dauer (Minuten)	СР	sws				
Vorlesung – Bruchmechanik und mechanische Eigenschaften keramischer Werkstoffe [MSWstl -263.a/2010]		0	2				
Vorlesung - Korrosion [MSWstl -263.bii/2010]		0	2				
Vorlesung - Keramische Werkstoffe für die Energietechnik (Option 1, falls nicht bereits in einem anderen Vertiefungsfach belegt) [MSWstl -263.cii/2010]		0	2				
Vorlesung - Keramische Verbundwerkstoffe (Option 2) [MSWstl -263.ci/2010]		0	2				
Praktikum - Hochleistungskeramik [MSWstl -263.d/2010]		0	1				
Klausur/mündl. Prüfung - Hochleistungskeramik [MSWstl -263.e/2010]	120	8	0				

NUMMER 2014/202 20/21

ALLGEMEINE ANGABEN								
Fac	hsemester	Dauer	Kreditpunkte	sws		Häufigkeit	Turnus Start	Sprache
3	3 1 8 7			7		jedes 2. Se- mester	WS	deutsch
INI	HALTLICH	E ANGABEN						
Inha	alt				Lernzie	ele		
 a) Bauweise und Funktion von Glasschmelzwannen und deren Teilaggregaten (Gemengeaufbereitung, Wärme typischer Probleme und Störfälle und deren Behebung b) Polyvalente Ionen in Glasschmelzen: Fe, Se, Sb, Se Gaslöslichkeiten; Läuterreaktionen; Schwefelund Selenbilanzen c) Entwicklung des Floatglasprozesses, Steuerung des Floatglasprozesses, Bauweise der Floatkammer, Korrosions- und Qualitätsprobleme und 			Die Sider Glagen keinen Anwei Sie si stoffkulabzuru	n / Verstehen tudierenden lerr astechnologie ty ennen. nden / Analyse nd in der Lag ndlichen Konzel ufen, anhand pr r zu korrelieren.	pische industri e, aus zuvor pten die relevar	elle Anwendur erlernten werk nten Kenntniss		
\اــ	deren Behe	errschung			Synthese / Beurteilen Daraus entwickeln sie eigenständig Problemlösur			
deren Beherrschung d) Zwei Fächer aus der Liste - Verbundwerkstoffe mit Glas Eigenschaften, Entwicklung, Charakterisierung und Anwendung von Verbundwerkstoffen, in denen Glas als Matrix oder disperse Phase eingesetzt wird; Anwendungen Biowerkstoffe - Fügen mit Glas Anforderungsprofile für Glaslote; Entwicklung von Lotsystemen nach mechanischen und chemischen Kriterien; Fügen von Glas in Architektur und Automobilbau. - Glas als Sinterwerkstoff e) Verfahren des viskosen Sinterns, Herstellung neuer Werkstoffe auf der Basis amorpher Pulverrückgewinnung, Abgasbehandlung); Fallbeispiele				erkstof- er dis- ntwick- ischen Glas in	strateg			
Vor	Voraussetzungen				Benotu	ıng		
Abs	solvierung de		nach erfolgreiche nöglich (Anweser um).		Schrift	. Prüfung (120 m	nin)	

NUMMER 2014/202 21/21

LEHRFORMEN / VERANSTALTUNGEN & ZUGEHÖRIGE PRÜFUNGEN								
Titel	Prüfungs- dauer (Minuten)	СР	sws					
Vorlesung/Übung - Anlagen in der Glasindustrie [MSWstl -342.a/2010]		0	2					
Vorlesung/Übung/Praktikum - Chemie der Glasschmelze [MSWstl -342.b/2010]		0	2					
Vorlesung/Übung - Technologie des Flachglases [MSWstl -342.c/2010]		0	2					
Vorlesung - Fügen von und mit Glas (Option 1) [MSWstl -342.di/2010]		0	1					
Verbundwerkstoffe mit Glas (Option 2) [MSWstl -342.dii/2010]		0	1					
Vorlesung - Glas als Sinterwerkstoff (Option 3) [MSWstl -342.diii/2010]		0	1					
Schrift. Prüfung - Herstellung, Verarbeitung, Vergütung von Glas [MSWstl - 342.e/2010]	120	8	0					