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1 Introduction

In the past four decades an immense amount of research has been devoted to the returns to

schooling literature. This field is generally attributed to Mincer (1974) who proposed what

is now commonly referred to as a Mincer regression model (or simply a Mincer regression).

In this model, earnings are regressed on schooling and experience. The most common form

in the literature includes log earnings on the left-hand-side and schooling, experience and

the square of experience on the right-hand-side of the regression equation. A linear schooling

variable suggests that an additional year of schooling gives the same percentage increase in

earnings independent of the level of education. Sheepskin effects may be one of many reasons

why this assumption may not hold true (Spence, 1973).

Many prominent authors have taken up this calling and proposed alternative models to

capture possible nonlinearities and heterogeneity. Articles have proposed adding quadratic,

cubic or quartic experience terms (e.g., Murphy and Welch, 1990). Considering the limitless

possibilities that can be attempted, as expected, a consensus is not seen. This has led some

to take an extreme stance and employ fully nonparametric regression (e.g., Heckman et al.,

2008). The former estimators are believed to be inconsistent as they do not fully capture

the underlying technology and the latter are deemed problematic because they do not place

much structure on the function and result in too much variability.

In this paper we consider an intermediate approach. We want to relax the functional

form assumptions on both schooling and experience, but we do not want a full blown non-

parametric model. It is well known that nonparametric models suffer from the curse of

dimensionality and a more parsimonious estimator may better explain the data.

The model we have in mind is a nonparametric additive regression model. These models

allow regressors to enter nonparametrically, but separate from each other, hence avoiding the

curse of dimensionality problem. However, in this strand of the econometric literature, little

research has focused on obtaining the gradient of the conditional mean. In our particular

problem, as well as many other problems in economics, we are interested in the partial effects.

We use the nonparametric additively separable model with interaction terms and addi-

tional linear controls to look at changes in earnings with respect to increases in schooling.

This is our take on the classic Mincer (1974) model. This has been studied via kernel meth-

ods before (e.g., Heckman et al., 2006), but these methods are typically fully nonparametric

and have a large amount of variability. We propose a more parsimonious model which leads

not only to estimates with less variability, but also less extreme returns. In fact, we do not
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find evidence of negative returns to schooling as was found in Henderson et al. (2011).1

Our results confirm past research that heterogeneity in returns to schooling estimates

exists both across and within standard sub-groups (race, sex and marital status). We also

confirm past evidence that minorities receive higher rates of return to schooling on average

than non-Hispanic whites.2 However, by exploiting the heterogeneity, we are able to look

deeper and find new results. First, for married males, while whites have lower returns on

average, they typically possess the highest returns in the sample. Second, while minorities

have higher mean returns, this may simply be a function of lower average levels of schooling.

If we have a concave function (which is often assumed true for men, but not women, see

Polachek, 1975), lower levels of schooling will result in higher returns, all else constant.

We therefore further analyze our results by solely looking at individuals with fixed levels of

education. Specifically, we look at individuals in each group whose highest level of education

is a high school diploma and individuals whose highest level of education is a college degree.

For example, whereas in the full sample of females (married or single), Hispanics uniformly

possess higher returns to schooling (confirmed by first-order dominance tests), when we look

at high school graduates, these uniform gains go away, but persist for college graduates. We

further break down the results for Hispanic females based on ethnicity.

The remainder of the paper proceeds as follows: Section 2 gives a brief summary of

the returns to schooling literature focusing on nonlinearities and parameter heterogeneity.

Section 3 summarizes the conditional mean estimator of Kim et al. (1999), gives the gradient

estimator and considers semiparametric extensions to the model. Section 4 describes the

data, while Section 5 gives the empirical results. Section 6 concludes.

2 Nonlinearities and Heterogeneity in the Returns To

Schooling Literature

It is impossible for us to summarize all of the developments in the returns to schooling

literature in this paper. Those who are interested in this should consult the excellent survey

by Polachek (2008). Instead, we are going to focus on past research analyzing functional

form specifications and parameter heterogeneity within the Mincer framework.

Mincer (1974) himself proposed models that included higher-order terms for both school-

1 For completness, we also obtained empirical results with an additive local-linear estimator which are available
by request. Most of the results are similar, but we do find some differences which we report in Section 5.2.3.

2 Non-Hispanic whites will be referred to as whites hereafter.
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ing and experience. Other earlier work on this topic includes Heckman and Polachek (1974)

who look at several alternative models and conclude that the log earnings specification is

appropriate. Polachek (1975) shows a nonlinear relationship for both men and women, but

that the age-earnings path is non-monotonic for women. Later research by Card (1999),

Heckman et al. (2006), Murphy and Welch (1990) and others argue that the quadratic spec-

ification of the experience term does not fit the data well and fails to capture the actual

curvature of the age-earnings profiles. Card (1999) mentions that even a cubic specification

fails to capture the data. Murphy and Welch (1990) conclude that a quartic specification for

the experience term is better. Although this amount is relatively smaller than the cubic and

quadratic alternatives, in their paper they still find some amount of bias. Belman and Hey-

wood (1991), Park (1994) and others also criticize the linearity of schooling. Many of these

studies start from the ‘sheepskin effect’ assumption and analyze the years that credentials

are received and find nonlinearities around those years.

The complete separability assumption of the Mincer setting is also questioned (Card,

1999). It has been argued that the assumption of complete separability between experience

and schooling is an important misspecification point (Card, 1999; Heckman et al. 2003).

Basu and Ullah (1992) also question the specification assumptions made in the aforemen-

tioned papers. They attempt to ameliorate these problems by flexible nonparametric meth-

ods and argue that relaxing those restrictive assumptions provides more accurate age-earning

relationships.

Beyond functional form, in his survey, Card (1999) considers heterogeneity as potentially

important in determining returns to schooling. Griliches (1977) also expects the slopes of the

earning functions to vary with different groupings. Other attempts analyzing heterogeneity

can be found in Welch (1973) and Card and Krueger (1992a). Some of the possible sources of

variation considered are school quality, family background and ability. Two recent examples

with regards to the heterogeneous returns to schooling literature includes Koop and Tobias

(2004) who analyze the heterogeneity issue using a flexible Bayesian approach. Henderson

et al. (2011), using nonparametric kernel methods, focus on the same issue, but different

from Koop and Tobias (2004), analyze within subgroup heterogeneity in addition to the

heterogeneity between groups. They find significant heterogeneity both across and within

groups.
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3 Additive Nonparametric Estimation

Nonparametric methods are praised because they do not require a priori functional form

specification and allow for interactions in an unknown way. However, one of the main draw-

backs is the dreaded ‘curse of dimensionality’ problem (Stone, 1980). In Henderson et al.

(2011), their returns to schooling estimates have substantial variability and while we agree

that heterogeneity exists, it may be the case that this is exacerbated by the estimation

method.3 In other words, their approach may make the population seem too heterogeneous.

In fact, their research shows a substantial amount of negative returns and we wish to inves-

tigate this further.

By imposing an additivity constraint on the nonparametric regression model, we can

reach an additively separable model which has the form

m (X) = c+m1 (X1) +m2 (X2) + · · ·+md(Xd),

where the left-hand-side is the conditional mean function, and ms(Xs) for s = {1, · · · d}
on the right-hand-side is a smooth function of the corresponding element Xs. Stone (1985)

proves that the optimal rate of convergence in the additive model is independent of the

number of regressors. This circumvents the curse of dimensionality problem. The two

most common kernel-based methods used for estimating models of this kind are marginal

integration (Tjøstheim and Auestad 1994; Newey 1994; Linton and Nielsen 1995) and back-

fitting methods (Buja et al. 1989). The method we consider in this paper, the oracle

estimator of Kim et al. (1999), is a combination of these two methods.

Related work in this literature includes Martins-Filho and Yang (2007) who examine

the local-polynomial conditional mean estimator in the identically distributed case (noting

that obtaining the gradient is straightforward); Linton and Mammen (2008) who consider a

single-step conditional mean estimator in the weakly dependent case; and Cai (2002) who

uses a two-step conditional mean estimator in the weakly dependent case that is similar to

Linton (1997, 2000).

3.1 Conditional Mean

In the additive model, the conditional mean is modeled as a sum of smooth additive functions.

Y is our left-hand-side variable and X = (X1, X2, · · ·Xd) is a d× 1 vector of regressors. For

3 These authors also use a cross-validation procedure which could possibly lead to a poor stochastic bandwidth
choice.
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ease of exposition, we consider the case where d = 2.4 With this restriction, our model

becomes

Y = c+m1 (X1) +m2 (X2) + U,

where U is our mean zero additive error. For identification, it is typically assumed that

E [m1 (X1)] = E [m2 (X2)] = 0 and hence E (Y ) = c is our intercept term.

If we were to directly nonparametrically regress Y on X1, we would have that

E (Y |X1 = x1) = c+m1 (X1) + E [m2 (X2) |X1 = x1] .

The final term E [m2(X2)|X1 = x1] creates a bias in estimation. In order to eliminate this

bias, Kim et al. (1999) propose an instrument function, w(x1, x2), such that

E [w (X1, X2) |X1 = x1] = 1

E [w (X1, X2)m2 (X2) |X1 = x1] = 0.

If we have such an instrument, then it can be shown that

E [w(X1, X2)Y |X1 = x1] = c+m1(x1) (3.1)

and this weighted conditional mean solves the bias problem and hence additive separability

is achieved.

The exact instrument they propose is

w(x1, x2) =
f1 (x1) f2 (x2)

f (x1, x2)
,

where f1 (x1), f2 (x2) and f (x1, x2) are the marginal and joint probability densities, respec-

tively. In practice, these can be estimated via kernel methods. We know that this is a valid

instrument because ∫
w (x1, x2)

f (x1, x2)

f1 (x1)
dx2 =

∫
f2 (x2) dx2 = 1

and ∫
w (x1, x2)m2 (x2)

f (x1, x2)

f1 (x1)
dx2 =

∫
m2 (x2) f2 (x2) dx2 = 0.

To estimate (3.1), we can replace the densities defined in the instrument function by their

4 See Henderson and Parmeter (2014) or Li and Racine (2007) for the general case.
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estimates. Formally, if we have n observations on Y , X1 and X2, {Yi, X1i, X2i}ni=1, our

estimator of (3.1) is

γ̂1 (x1) =
1

nh0

n∑
j=1

k

(
X1j − x1

h0

)
f̂2 (X2j)

f̂ (X1j, X2j)
Yj, (3.2)

where k (·) is a univariate kernel function with scalar bandwidth h0 and our kernel estimators

of the marginal and joint densities are

f̂2 (x2) =
1

nh0

n∑
j=1

k

(
X2j − x2

h0

)

and

f̂ (x1, x2) =
1

nh20

n∑
j=1

k

(
X1j − x1

h0

)
k

(
X2j − x2

h0

)
.

We can think of (3.2) as a one-dimensional local-constant regression of a weighted Y on X1.

Note that γ̂2 (x2) is similarly estimated by interchanging terms as necessary.

This estimator is less efficient than marginal integration and to obtain an efficient esti-

mator we require an additional step, backfitting. The idea of the second-step originates from

the oracle efficiency principle. Assume that we know m2 (x2). In order to estimate m1 (x1)

efficiently, we first construct Y oracle
1 , which is a partial residual obtained assuming m2 (x2) is

known:

Y oracle
1i = Yi −m2 (X2i)− c.

If we knew Y oracle
1 , we could run a local-constant regression of Y oracle

1 on X1 as

m̂oracle
1 (x1) =

∑n
j=1 k

(
X1j−x1

h

)
Y oracle
1j∑n

j=1 k
(

X1j−x1

h

) (3.3)

where h is the second-stage bandwidth (different from h0) used for estimation of the smooth

function of X1.

However, m2(x2) and c are unknown, and thus this estimator is infeasible. We can replace

c with the sample mean of Y (Ȳ ) and m2 (x2)+c with γ̂2 (x2). The feasible version of Y oracle
1

(Y 2−step
1 ) is constructed as

Y 2−step
1i = Yi − γ̂2 (X2i) . (3.4)

This leads to our second-step estimator of m1 (x1), which is obtained by replacing Y oracle
1
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with Y 2−step
1i in equation (3.3).

Kim et al. (1999) show that under this approach, the local-polynomial version of the

second-step estimator m̂1 (x1) has the same asymptotic distribution as the local-polynomial

version of the oracle estimator. In other words, it is oracle efficient. Our focus here will be a

local-constant estimator of the conditional mean and gradients. This choice is based purely

on the plausibility of our resultant estimates in the empirical section.

The estimate of m̂2 (x2) is similarly obtained. With both estimates, we can obtain the

fitted values for our additive regression as

m̂ (X1i, X2i) = Y + m̂1 (X1i) + m̂2 (X2i) .

3.2 Gradients

In this section we derive the analytic gradients for the second-step estimator. Formally,

∂m̂ (x)

∂x1
=

∂m̂1 (x1)

∂x1
≡ β̂1 (x1) .

In order to estimate β̂1 (x1), we re-define our second-step estimator as

m̂1 (X1j) =

1
nh

∑n
j=1 k

(
X1j−x1

h

)
Y 2−step
1j

1
nh

∑n
j=1 k

(
X1j−x1

h

) ≡ ĝ1 (X1j)

f̂1 (X1j)
,

where ĝ1 (X1j) ≡ 1
nh

∑n
j=1 k

(
X1j−x1

h

)
Y 2−step
1j and f̂1 (X1j) ≡ 1

nh

∑n
j=1 k

(
X1j−x1

h

)
. With this

notation, we can show that

β̂1 (x1) =
1

f̂1 (x1)

[
ĝ
(1)
1 (x1)− m̂1 (x1) f̂

(1)
1 (x1)

]
, (3.5)

where f̂
(1)
1 (x1) ≡ ∂f̂1 (x1) /∂x1 and ĝ

(1)
1 (x1) ≡ ∂ĝ1 (x1) /∂x1 where

ĝ
(1)
1 (X1j) = − 1

nh2

n∑
j=1

[
k(1)

(
X1j − x1

h

)
Y 2−step
1j

]
(3.6)

where k(1) (·) is the first-derivative of the kernel function with respect to x1.
5

We wish to emphasize that we do not give any asymptotic results here. However, unre-

5 The second step can alternatively be estimated using local-linear least-squares regression (see Martins-Filho
and Yang, 2007).
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ported simulations show that the conditional mean and gradient estimators work quite well

in both the i.i.d. and weakly dependent cases. For those intersted in rigorious proofs in ad-

ditive models, we suggest consulting Cai (2002), Kim et al. (1999), Mammen et al. (1999),

Mammen et al. (2012), Martins-Filho and Yang (2007), Severance-Lossin et al. (1999) and

Yang et al. (2003).

3.3 Interaction Terms

Additive models are attractive because they avoid the curse of dimensionality, but one poten-

tial drawback is they assume separability. It has been argued (Card, 1999) in Mincer models

that an interaction term is needed between schooling and experience. Here we consider the

case where the interaction is a known parametric function. Formally, we consider the model

Y = c+m1 (x1) +m2 (x2) + ψ (x1x2, θ) + u,

where ψ (·) is a known function with unknown parameter θ. Manzan and Zerom (2005) and

Schick (1996) provide methods to model the term linearly. For the linear interaction term,

we use the technique described by Manzan and Zerom (2005). In the case of two regressors,

our model becomes

Yi = c+m1 (X1i) +m2 (X2i) + θX1iX2i + Ui, i = 1, 2, . . . , n. (3.7)

We can estimate this model by exploiting the weighted conditional expectation we used

before. We do so by taking the weighted conditional mean with respect to each element in

x as

E [w (X1, X2)Yi|X1 = x1] = E {w (X1, X2) [c+m1 (X1i) +m2 (X2i) + θX1iX2i + ui] |X1 = x1}

= c+m1 (X1i) + θE [w (X1, X2)X1iX2i|X1 = x1] (3.8)

and

E [w (X1, X2)Yi|X2 = x2] = E {w (X1, X2) [c+m1 (X1i) +m2 (X2i) + θX1iX2i + ui] |X2 = x2}

= c+m2 (X2i) + θE [w (X1, X2)X1iX2i|X2 = x2] . (3.9)
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Subtracting (3.8) and (3.9) from (3.7) gives us

Yi − E [w (X1, X2)Yi|X1 = x1]− E [w (X1, X2)Yi|X2 = x2]

= −c+ θ

{
X1iX2i − E [w (X1, X2)X1iX2i|X1 = x1]

−E [w (X1, X2)X1iX2i|X2 = x2]

}
+ ui,

where the intercept is (1− d) c = −c when d = 2.

After estimating E [w (X1, X2)Yi|X1 = x1] , E [w (X1, X2)Yi|X2 = x2],

E [w (X1, X2)X1iX2i|X1 = x1] and E [w (X1, X2)X1iX2i|X2 = x2] each via one-step marginal

integration, the parameter θ can be estimated via least-squares. Once an estimate of θ is

obtained, we can move the estimated parametric term to the left-hand-side and the addi-

tive functions are again estimated via the additive estimator. For further details see Li and

Racine (2007) or Manzan and Zerom (2005).

3.4 Partially Linear Model

In addition to adding interaction terms, we may also be interested in including additional

explanatory variables linearly. For example, in Mincer models, it is common to include

control variables such as region of residence or number of children. These variables can be

used to help control for sub-group heterogeneity. Once we add these control variables, our

model (with the interaction term) can be written as

Yi = c+m1 (X1i) +m2 (X2i) + θX1iX2i + Ziγ + Ui, i = 1, 2, . . . , n, (3.10)

where Zi is a 1 × q vector of control variables with q × 1 parameter vector γ. All other

variables and parameters are the same as before.

This model is estimated using a three-step approach. First, we obtain conditional ex-

pectations via kernel regression for our estimate of γ, a la Robinson (1988). Second, we

estimate the interaction term θ̂ as above (Manzan and Zerom, 2005) where our left-hand-

side variable is now Yi − Ziγ̂, where γ̂ is our estimate of γ from the first-step. Third, now

that we have estimated both θ and γ, we can use our additive estimator for a regression of

(Y − θ̂X1X2 − Zγ̂) on X1 and X2.
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4 Data

In this paper we use the March 2010 U.S. Current Population Survey (CPS) data which was

obtained through the IPUMS-CPS database (Integrated Public Use Microdata Series). The

CPS is a monthly U.S. household survey with a size of over 50,000 households and it is under

control of the U.S. Census Bureau and the Bureau of Labor Statistics. IPUMS-CPS is the

organized version of March-CPS, by the Minnesota Population Center (King and Tertilt,

2003; King et al., 2010).

The primary variables of interest are years of schooling, potential experience and earn-

ings. There are a couple of important points when it comes to data selection in the Mincer

framework. First, how do we define the earnings variable’s duration and form? The pop-

ular form adopted in the literature is logarithmic earnings on the left-hand-side (Mincer,

1974). Heckman and Polachek (1974) discuss several functional forms and conclude that

the so-called semi-logarithmic function performs best. Card (1999) supports this popular

form considering the normal distribution proximity of the left-hand-side variable and the

so-far success of the transformed functions. Following those papers’ lead, we also model our

left-hand-side variable in the logarithmic form.

The other issue regarding earnings is the choice of time frame. Card (1999) states that

since individuals with higher schooling will be prone to working more, they also will be

earning more. Therefore, any returns to schooling estimation based on weekly or annual

earnings will be higher than hourly counterparts. Following the annual earnings description

by Card (1999) and imitating the CPS Stock and Watson (2007) data, we perform our

estimations using average hourly earnings.

A second issue concerning data for the Mincer (1974) regression model is the reporting

of the schooling variable. About three decades ago, the CPS database changed its reporting

to a degree completion system and this made it difficult to estimate the usual Mincer type

models (Card, 1999). The March-CPS (after 1990) has a mixed version. For those that have

degrees under high school, they record the highest school grade completed, but only report

intervals. After high school, only degrees/diplomas obtained are reported. In order to solve

this discrete data problem, we follow the midpoint approach (Lemieux and Card, 2001).

Here we hope to examine two types of heterogeneity: across pre-specified sub-groups

and within pre-specified sub-groups. We divide our sample into 12 distinct groups: white

married male, white married female, white single male, white single female, black married

male, black married female, black single male, black single female, Hispanic married male,
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Hispanic married female, Hispanic single male, and Hispanic single female workers. We note

here that we prefer to create subgroups with respect to gender, ethnicity and marital status.

We consider gender to be able analyze female and male workers separately, considering the

different labor market conditions they face. Ethnicity is included as one of the main source

of heterogeneity and this is parallel to the examples in the literature. Marital status on the

other hand is included, to be able to capture any existing marriage premium and to consider

the different labor supply characteristics of single and married workers. The alternative

would be to include dummy variables and/or discrete regressors. The former assumes the

additive nonparametric functions are the same between groups and the latter would require

theory which is beyond the scope of the paper.

The descriptive statistics for these groups, including sample size used for each, can be seen

in Table 1. We run separate parametric and nonparametric regressions for each sub-group

to allow for parameter heterogeneity and/or different functional forms across sub-groups.

The one point we wish to emphasize here is the difference in the average (or median)

number of years of schooling. We see that the median years of education is generally lower

for Hispanics. If we, for example, have a concave function, this would suggest higher returns

to an additional year of education for Hispanics on average, all else constant. We will return

to this point in Section 5.2.2.

We also include a number of control variables. In order to maintain a relatively large

sample, we include a dummy variable indicating whether an individual is not a citizen, a

dummy variable indicating whether the individual has a child under age 5, the number of

siblings and controls for geographical region. Region is represented by three dummies for

North East, Midwest and South. We also considered other controls such as mother’s educa-

tion. These resulted in no major qualitative differences in the returns to schooling results,

but substantially reduced the sample size. The results from these additional regressions are

available from the authors upon request. These variables are included in our regressions in

order to control for individual and demographic characteristics. They are chosen from those

which are already employed in the existing literature. Citizenship is expected to influence the

schooling effects as it directly effects employment decisions. Geographical location and num-

ber of young children on the other hand are expected to control for household characteristics,

whereas the number of siblings is a control for family/background.

Finally, following the literature, we restricted our sample following Card (1999) (as his

approach is the least restrictive version we found in the literature). Specifically, we only

include full-time workers age 16-66 with positive hours of work, experience and education.
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Further, those with average hourly earnings below $2 and above $150 are dropped. The data

set used in the regressions is available from the authors upon request.

5 Returns to Schooling Estimates

In this section we focus on the returns to schooling estimates from both the parametric and

nonparametric models. We first consider linear and nonlinear parametric models. These

results are available in Table 2. We then formally test for correct parametric specification

using the test introduced by Ullah (1985). After rejecting each parametric specification, we

turn to our preferred specification. We give a summary of the returns to schooling from

the nonparametric procedure in Table 3. This table can show heterogeneity across groups,

but hides the heterogeneity within sub-groups. Given that we obtain an estimate of returns

to schooling for each individual, we analyze the empirical cumulative distribution functions

(ECDF) constructed with these estimates to look at returns both within and across sub-

groups. We look at the ECDFs for all individuals in a specific sub-group as well as look

at ECDFs constructed with just people of a given education level. Specifically, we look at

the empirical distributions for people in each sub-group whose highest level of education is

a high school diploma as well as those whose highest level of education is a college degree.

We end this section with a note on endogeneity.

Before diving into the results, we need to discuss an issue with respect to female sub-

groups. In the case of females, estimating earnings functions can be problematic when we

use the standard metric to obtain the experience variable (Age - schooling - 6). This is a

problem because there may be gaps in the labor force participation of women mainly due to

child-rearing. One solution to this issue comes from Buchinsky (1998) and Martins (2001).

They add interaction terms for experience and the total number of children to the main

earnings function. We follow the same approach.6 Thus, for female subsamples, we have

two additional interaction variables; total number of children times experience and total

number of children times the square of experience. This helps control for gaps in potential

experience, but does not fully solve the problem. Therefore, we should be careful when

interpreting differences between men and women.

6 Note that the aforementioned papers are primarily concerned with sample selection problems.
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5.1 Parametric

A variety of extensions to the classic Mincer (1974) specification has been proposed in the

literature. Each one attempts to improve upon the former. Here we consider several para-

metric models, not only to compare to the previous literature, but also as an intermediate

step between the basic parametric specification and nonparametric methods.

We consider six separate specifications from the literature (from an endless possibility of

models) which include higher-order terms of schooling and experience, but are still linear in

parameters so that we can use least-squares techniques. The list of models considered are

Model Parametric Specification

1 ln (earningsi) = β0 + β1Si + β2Ei + β3E
2
i + Ziγ + Ui

2 ln (earningsi) = β0 + β1Si + β2Ei + β3E
2
i + β4E

3
i + Ziγ + Ui

3 ln (earningsi) = β0 + β1Si + β2Ei + β3E
2
i + β4E

3
i + β5E

4
i + Ziγ + Ui

4 ln (earningsi) = β0 + β1Si + β2Ei + β3E
2
i + β4E

3
i + β5S

2
i + Ziγ + Ui

5 ln (earningsi) = β0 + β1Si + β2Ei + β3E
2
i + β4E

3
i + β5S

2
i + β6S

3
i + Ziγ + Ui

6 ln (earningsi) = β0 + β1Si + β2Ei + β3E
2
i + β4E

3
i + β5S

2
i + β6S

3
i + β7SiEi + Ziγ + Ui

where ln (earnings) is the logarithm of average hourly earnings, S is schooling, and E is

potential experience. Z includes citizenship status, whether the person has children under

age 5, number of siblings and regional dummies. In the case of females, it also includes the

interaction terms discussed above. The parameter β0 is the intercept, β1 through β7 are

the coefficients associated with various incarnations of schooling and experience, and γ is a

vector of coefficients associated with the control variables.

The first model is the standard Mincer (1974) specification which is the most popular

in the applied literature. The second model adds an additional cubic experience term as

discussed in Card (1999). Model 3 adds an additional quartic experience term, similar to

Murphy and Welch (1990). We also estimate several non-standard models. The fourth model

includes a quadratic schooling term and Model 5 adds a cubic schooling term. Each attempt

to capture potential nonlinearity in the schooling variable. Our final parametric model nests

each of the previous models as it includes each of these higher-order terms as well as an

interaction term between schooling and experience.

The results from the parametric models can be found in Table 2. Here we report the

median return to schooling across the population along with its associated standard error

below the estimate in parentheses.7 In Models 1-3, schooling enters linearly and hence the

7 We choose to solely focus on the returns to schooling variable: ∂ ln (earnings) /∂schooling. The other
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estimate in the table is simply the coefficient β1.

For the standard specifications, the results are similar to what is found in the literature. If

we look at the models where we add higher-order schooling terms (Models 6 and 7), we often

find median results which are unsettling. There are several cases where the median return

to schooling is negative (we are likely imposing too much or the wrong type of nonlinearity).

Even though Henderson et al. (2011) found the presence of some negative returns, their

median results were positive and significant. In addition, we find some returns to schooling

which are above unity. We are unaware of any results in the literature which make such a

finding nor would we expect one. In short, adding higher-order terms does not necessarily

solve the nonlinearity concerns and sometimes leads to undesired results.

Even though some of these nonlinear parametric models clearly seem to be misspecified,

we wish to perform formal tests for correct parametric specification. For each of the six

models, for each of the twelve sub-groups, we perform the test developed by Ullah (1985).

In each case, we test the parametric model versus our preferred nonparametric model. The

p-value for each test, obtained via a wild bootstrap, was zero to four decimal places. In other

words, we reject the null that each parametric model is correctly specified. Each test points

toward our semiparametric specification.8 We now focus our attention on our preferred

semiparametric specification.

5.2 Semiparametric

Here we present the results from our preferred semiparametric specification. Specifically, we

consider the specification in equation (3.10). Our model becomes

ln (earningsi) = c+m1 (Si) +m2 (Ei) + θSiEi + Ziγ + Ui,

where c is the intercept term, S is schooling and shows up in the unknown function m1 (·)
and linearly interacted with experience (E). Experience enters the equation through the

unknown function m2 (·) and is interacted linearly with schooling, and for females, with the

total number of children. Z again includes citizenship status, whether the person has children

under age 5, number of siblings and regional dummies. We run separate semiparametric

regressions for each of our twelve sub-groups. We first report the median return to schooling

estimates, such as for the control variables, are in line with the literature and are available upon request.
8 We also performed specification tests for our preferred semiparametric model versus a nonparametric alter-

native and failed to reject the null that the semiparametric model was correctly specified in 10 of the 12
cases - the exceptions being white married males and single black males.
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for each sub-group in Table 3, similar to what we did in the parametric sub-section. We do

this for the pooled sample as well as for given levels of schooling (i.e., high school and college

graduates). However, here we also look at the ECDFs of the returns to schooling estimates.

These are given in Figures 1-3. With these figures, we examine both heterogeneity within

groups and across groups. Further, we use Kolmogorov-Smirnov tests, similar to those in

Eren and Henderson (2008), to look for cases of stochastic dominance between the estimated

returns to schooling across groups where applicable.

Before we discuss our results, we should spend some time to talk about bandwidth selec-

tion. Data driven bandwidth methods (e.g., least-squares cross-validation) can be problem-

atic in this sense because they are stochastic sequences (Martins-Filho and Yang, 2007). In

this study, we use the plug-in bandwidths proposed in Kim et al. (1999) which require the

first-step to be under-smoothed.

5.2.1 Median Returns

The median returns to schooling for each sub-group are given in Table 3. There are several

points worth mentioning here. First, the median returns for each group are substantially

larger than what we saw in the standard parametric models (1-3). This result is not too

surprising given that it is similar to what was found for black and white men in Henderson

et al. (2011). Note that in their study, they only examined males and do not report results

for Hispanics.

Second, black and Hispanic workers have higher median returns than whites. The liter-

ature so far has come to a consensus that individuals from seemingly disadvantaged groups

tend to have larger returns to education (Card and Krueger, 1992b; Welch, 1973). As Card

(2001) argues, the tight financial constraints of these groups and the likelihood of high edu-

cation costs can be an explanation for these relatively higher values. Brand and Xie (2010)

argue that the difference between the sub-population returns can be explained through ad-

vantaged group characteristics. People from more advantageous groups tend to have higher

education levels. It is argued that this increases the likelihood of smaller returns for whites

(Brand and Xie, 2010). Henderson et al. (2011) confirm this result, but they also add that

a high level of heterogeneity is present even within the so-called advantageous groups. We

will exploit this later.

Regarding the difference between median returns of black and Hispanic workers, we do

not see a clear pattern. We will see that these median returns can be potentially deceiving

when we look at the ECDFs.
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Finally, we want to emphasize that the standard errors for our nonparametric estimates

are relatively small. While these do not appear to be all that much different from those in

the parametric models, they are much smaller than what we would expect in a fully non-

parametric specification. If we take the model of Henderson et al. (2011) as our comparison,

the standard errors on our median returns to schooling estimates are several times smaller

than their (unreported) standard errors (and their model only includes three regressors –

schooling, experience and a dummy for top-coded). If we were to estimate their model using

our full set of regressors, we would expect even more variation in their estimates. That

being said, we should mention that they use least-squares cross-validation to estimate their

bandwidths and this may also help explain the additional variability in their model.

5.2.2 Empirical Distributions of Estimates

As we have extensively emphasized, heterogeneity is an important factor. Using mean or

median results to formulate policy could have a detrimental impact on individuals in the tails

of the distribution if heterogeneity is present. Here we go beyond mean and median estimates

and look at the entire distribution of estimates for each sub-group. This will accomplish at

least two things. First, we can see the heterogeneity within each sub-group. Second, we can

see whether or not there exists uniform dominance between sub-groups. We will look at the

latter formally with Kolmogorov-Smirnov tests. For the critical values of the test statistic,

we use bootstrap procedure (Henderson and Maasoumi, 2014).

We consider two sets of ECDFs. The first set will look at all individuals within a partic-

ular sub-group. This will allow us to examine differences between groups based on race and

marital status. However, as we noted in Section 4, some groups have higher average levels of

education than others and this may affect the returns to schooling estimates. We therefore

consider two other figures. The first will look at all individuals within each sub-group whose

highest level of education is a high school diploma. The second will look at all individuals

within each sub-group whose highest level of education is a college degree. This will allow us

to detach the level of education from the return and hence will let us make ‘more comparable’

estimates between the sub-groups.

All Education Levels In Figure 1 we have four panels (a-d) with three ECDFs in each

panel. Each panel corresponds to a separate sex-marital status combination and each of the

ECDFs within the panel correspond to a particular race.

In panel (a) we have the ECDFs which are constructed from the returns to schooling
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estimates for black, Hispanic and white married males. We want to emphasize at least two

points in this panel. First, we see the heterogeneity in the estimates. We see some individuals

who have very low returns to education (near zero) and some individuals which have very

high returns. This is similar to the results of Henderson et al. (2011). The second point is

more novel. While we see that the average return to schooling for blacks and Hispanics is

larger than that of whites, most of the highest returns are gained by whites. Graphically,

this is shown by the intersection of the ECDFs. These intersections suggest that there is no

first-order dominance relation between whites and blacks or Hispanics and this is confirmed

by the Kolmogorov-Smirnov tests which have p-values that are zero to four decimal places.

Although there are no first-order dominance relations with respect to whites, we do find

evidence of first-order dominance of Hispanics over blacks (p-value = 0.7663). At the lower

tail it is difficult to differentiate the two empirical distribution functions, but we see clear

separation at the higher returns.

To further dissect the results, we examine the attributes of individuals both above and

below where the empirical distributions cross. In the higher return group, we find slightly

lower levels of schooling. Some evidence, albeit weak, to suggest that higher levels of edu-

cation lead to lower returns. In addition, we find higher average levels of experience in the

high return portion. We tried, but were unsuccessful at determining which occupations lead

to the highest returns.

Panel (b) of Figure 1 is also interesting, but different from that of panel (a). We again find

heterogeneity for each sub-group of married females, but now find two dominance relations.

Here we do not see the same gains for whites at the higher end that we saw in panel (a).

In fact, there is some graphical evidence to suggest that married Hispanic women have the

highest returns. Instead of relying on the figures, which are often difficult to decipher, we

prefer to consult the Kolmogorov-Smirnov tests. We find that both blacks and Hispanics

first-order dominate whites with respect to returns to schooling (p-values = 0.6312 and

0.9810, respectively).

The results for single men can be found in panel (c). Here we find similar returns in the

left tail for all races, but more mass for white males in the right tail of the distribution. This

is similar to what we found for married white males, but not to the same extent. We find

no first-order dominance relations between any two groups.

Finally, for single females, the ECDFs for each race can be found in panel (d). Here we

find strong evidence to suggest that the returns for Hispanic females are uniformly greater

than those for black or white single females. The ECDF for the returns to schooling for
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single Hispanic females appears to lie to the right of the other two curves. This result is

confirmed by the Kolmogorov-Smirnov test where we have p-values of 0.9992 and 0.9901 and

hence fail to reject the null of first-order dominance for larger Hispanic returns over both

black and whites, respectively. Note that we do not find a dominance relation for blacks over

whites or vice versa. It is obvious from the figure that these curves intersect.

Fixed Levels of Education The results in Figure 1 help us gain many insights, but they

may also hide some features. As we mentioned in Section 4, Hispanics on average have lower

levels of schooling in our sample. This could be one explanation for their higher average

returns. In this section, we look at the returns to schooling for fixed levels of education

of interest. Specifically, we take the results from above, but select individuals from each

sub-group with a given level of schooling. We consider two groups: those whose highest level

of schooling is a high-school diploma and those whose highest level of schooling is a college

degree. The analogous figures to that in Figure 1 can be found in Figures 2 and 3 for high

school and college, respectively.

Panel (a) of Figure 2 looks a lot like the corresponding panel in Figure 1. Here we

have the returns to schooling for married males with a high school diploma. We again find

smaller average returns to schooling for whites (0.207 versus 0.221 and 0.219 for blacks and

Hispanics, respectively). We also find that the curves cross so that whites often obtain the

highest returns to schooling. If we turn our attention to panel (a) of Figure 3, we find the

same result. In short, this phenomenon appears to hold for both the full sample as well as

the high school graduate and college graduate samples.

For the married female group, we find that the dominance relation no longer exists for

Hispanics for high school education, but does for college graduates. For blacks, there are no

first-order dominance relationships over whites for fixed years of schooling. In fact, we find

that the average returns to schooling are actually relatively similar across the two schooling

distinctions. This downplays the higher returns for ‘less advantageous’ groups, but does not

eliminate it. For the high school graduate case, the average return for married females for

blacks, Hispanics and whites are 0.219, 0.228 and 0.214, respectively. For the college degree

case, those numbers are 0.165, 0.172 and 0.178. One benefit of pointing out these numbers

is to show that higher levels of education are associated with lower returns.

The single male case also does not appear to differ among the schooling levels. In fact,

panel (c) in each figure looks similar. We see that the empirical distributions are difficult to

distinguish from one another at lower returns, but whites appear to have more gains in the
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higher returns portion. In other words, the right tail of the empirical distribution for whites

is thicker.

The most interesting case is for single females. In Figure 1, we find uniform dominance

for Hispanic single female returns to schooling over other groups. When we focus solely on

high school graduates, we see the ECDF for Hispanics is to the right of the others for lower

levels of returns to schooling, but less than that of whites for higher returns to schooling. In

fact, this result looks much more like that for married men. Although it is to a lesser degree,

it is clear that there is no longer a uniform dominance for Hispanic single females. The

p-value for the Kolmogorov-Smirnov test is relatively small (0.1912).9 For college graduates,

we continue to see lower returns to be more prominent for Hispanics, but now see that

the higher returns are similar for Hispanics and whites. That being said, we again find a

dominance relation (p-value = 0.9411).

In summary, some of the results for the full sample continued to hold, but some did not.

For example, married males looked very similar in each of the figures. On the other hand,

the uniform dominance we found for Hispanic single females over the other two groups did

not hold for high-school graduates, but continued to hold over whites for college graduates.

Similarly, for Hispanic married females, we found uniformly higher returns for the full sample

and the college graduate sample over that of white married females. The last two sets of re-

sults suggests that we should devote future research efforts towards finding the determinants

of high returns to college degrees for Hispanic females.

5.2.3 Local-Linear Least-Squares

We have mentioned our preference to go with the local-constant estimator, but given the

benefits of local-linear estimators relative to local-constant estimators it makes sense to

examine the local-linear results as well. Appendix B gives the local-linear results for our

application. In general, the main findings do not change much. We find higher returns for

minorities males, but no cases of dominance. We also find higher returns for minority women

and the same dominance relations as for the local-constant case.

As for the differences between the local-constant and local-linear estimates, we also found

evidence for stochastic dominance of returns to schooling for black women with college

degrees over white women with college degrees. For men, the primary difference is that we

no longer find the larger returns for white married males for the local-linear case.

9 In the stochastic dominance literature it is common to use the cut-off value of one-half (0.50) for p-values
(e.g., Eren and Henderson, 2008).
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One difference that occurred over most subgroups was the tendency for negative returns

from a portion of the sample. This result is similar to what was found in Henderson et

al. (2011) who also used a local-linear estimator. However, Henderson et al. (2011) used a

cross-validation routine which often leads to more variability in the estimates. That being

said, given the relatively small proportion of negative estimates (for most cases), it is unclear

whether this difference is economically meaningful.

In summary, we find that the majority of our findings do not change when using a local-

linear estimator. This not only gives us some faith in the empirical exercise, but also for the

performance of our proposed local-constant gradient oracle estimator.

5.2.4 Hispanic Females

Given the interesting results for Hispanic women, we decided to look a bit closer. We could

think of many ways to parse the results, but focus on ethnicity. It has been argued (Landale

et al., 2006) that excluding geographical origin in a study of Hispanics will fail to capture

important cultural differences. Mexicans, Puerto Ricans and Cubans are the three major

Hispanic groups with the largest US-born populations (Duncan et al., 2006). We will look

at these three along with a generic category for Central and South America.

We first divide the estimated returns to schooling values among the individual’s (ances-

tral) country of origin and we further divide these sub-subsamples via marital status and

among different education levels as we did above. Table 4 gives median and mean education

levels for each group: Mexicans, Puerto Ricans, Cubans and South/Central Americans. The

results are in line with the findings from the literature. Cubans tend to have notably high

levels of education and Mexicans tend to have the lowest schooling levels (Schneider et al.,

2006). The descriptive statistics for Mexicans are similar to those of the pooled sample as

they constitute over half the sample.

The returns to education for both married and single Hispanic females are given in Table

5. For each education level, Mexican and Cuban married females get smaller returns than

the related single female subgroups. The opposite result holds true for Puerto Rican and

Central/South American women. This result deserve more attention.

It is also interesting to consider the impact of citizenship (noting that Puerto Rico is a US

territory). Noting that we have a control for this in our regressions, for example, we see that

nearly 60% of married Mexican female college graduates are citizens while only 50% are so

for high school graduates. Around one quarter of married Cuban women with college degrees

are citizens in our sample and this statistic is roughly one fifth for high school graduates.

21



Central/South Americans have even lower percentages of 20 and 10, respectively. This may

be one explanation for the lower median returns for married Mexican women.

5.3 Note on Endogeneity

As pointed out in Henderson et al. (2011), the econometric literature has yet to develop

an approach which will adequately address endogeneity when the effects are heterogeneous.

Specifically, they argue that we may need a unique instrument for each sub-group. This

is potentially feasible, but even if we were able to find such a set of instruments, we would

need to address potential heterogeneity within each sub-group. In other words, if the returns

to education vary across individuals, the instrumental variable (IV) estimates give higher

weight to those individuals more effected by the chosen instrument (Card, 2001; Imbens

and Angrist, 1994). Thus, it may be the case that the IV results are more problematic

than helpful (Harmon et al., 2003; Koop and Tobias, 2004). Harmon et al. (2003) further

argue that ability bias and measurement error often cancel each other out; which leaves

no advantage for an IV model. Ignoring these potential problems, we could also take the

word of Card (2008) who notes that the existing evidence from IV estimations are often quite

similar to the least-squares results. Given these potential problems, we leave the endogeneity

question for future research.

6 Conclusion

In this paper, we used a partially linear additive nonparametric model to model to study the

returns to schooling literature. Using the 2010 March CPS data, we estimated a Mincer style

model. We estimated twelve separate regressions based on race, sex and martial status and

found significant heterogeneity both within and between groups. Similar to past research, we

found that blacks and Hispanics had higher returns on average. Different from past research,

we were able to find some cases of uniformly higher returns. For example, in our full sample,

we failed to reject the null of first-order stochastic dominance for the returns of both single

and married Hispanic females over corresponding white females. That being said, this result

depends upon the level of education. When we only looked at females whose highest level of

education was a high-school diploma, we no longer found first-order dominance. However,

that dominance showed up again when looking at females holding college degrees. In our

male cases, we found higher returns on average for blacks and Hispanics, but found the

highest returns predominantly belonged to whites. This shows the importance of looking at
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heterogeneity and examining the entire distribution of gradient estimates.
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Figure 1: Returns to schooling for the pooled samples
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Figure 2: Returns to schooling for high school graduates
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Figure 3: Returns to schooling for college graduates
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Table 1: Descriptive statistics for our sample. Median and mean values are reported in the table along with the standard
deviation and sample size for each sub-group.

Married Male Married Female Single Male Single Female
Variable White Black Hispanic White Black Hispanic White Black Hispanic White Black Hispanic

Median 14 13 12 14 13 12 13 13 12 14 13 13
Mean 14.41 13.71 12.03 14.28 14.00 12.53 13.77 13.28 11.97 14.63 13.77 12.90
Std Dev 2.51 2.25 3.14 2.35 2.33 3.31 2.25 2.12 2.67 2.30 2.18 2.82


Median 24 26 22 23 24 22 9 13 10 9 15 12
Mean 24.02 25.34 23.01 23.04 23.18 21.89 12.72 15.43 11.95 12.67 16.54 14.44
Std Dev 10.19 10.13 10.28 9.84 9.67 10.02 10.66 10.93 9.04 9.86 10.28 9.898

ln ()
Median 2.97 2.74 2.59 2.70 2.57 2.42 2.57 2.42 2.27 2.54 2.44 2.34
Mean 3.00 2.75 2.61 2.68 2.62 2.43 2.58 2.47 2.34 2.57 2.47 2.37
Std Dev 0.64 0.62 0.63 0.59 0.58 0.59 0.64 0.63 0.63 0.60 0.58 0.58

 16941 1576 3293 10869 1233 1981 4337 962 1757 2946 1323 1017
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Table 2: Median return to schooling estimate across the sub-group for the parametric models. Heteroskedasticity robust
standard errors are listed below each median estimate.

Married Male Married Female Single Male Single Female
Model White Black Hispanic White Black Hispanic White Black Hispanic White Black Hispanic
1 0.1029 0.1035 0.0776 0.1144 0.1121 0.0893 0.0966 0.1305 0.0701 0.1159 0.1200 0.0851

0.0018 0.0066 0.0034 0.0022 0.0069 0.0043 0.0040 0.0088 0.0057 0.0044 0.0068 0.0068
2 0.1038 0.1051 0.0785 0.1155 0.1125 0.0922 0.0978 0.1310 0.0704 0.1185 0.1253 0.0901

0.0018 0.0066 0.0034 0.0022 0.0069 0.0044 0.0040 0.0088 0.0057 0.0045 0.0070 0.0069
3 0.1038 0.1050 0.0786 0.1155 0.1130 0.0921 0.0978 0.1312 0.0706 0.1190 0.1253 0.0903

0.0018 0.0066 0.0035 0.0022 0.0069 0.0044 0.0040 0.0088 0.0057 0.0045 0.0070 0.0069
4 0.1014 0.1055 0.0767 0.1150 0.1031 0.0917 0.0943 0.1198 0.0713 0.1127 0.1161 0.0999

0.0062 0.0006 0.0350 0.0011 0.0148 0.0349 0.0055 0.0198 0.0404 0.0139 0.0142 0.0371
5 0.3718 0.5718 0.4292 0.1864 0.7610 0.1584 0.2919 0.1803 0.6105 0.3544 0.3709 0.2355

0.1031 0.1659 0.2146 0.0247 0.2506 0.0670 0.0764 0.0397 0.2711 0.0939 0.0973 0.0862
6 0.7923 -1.2653 1.8828 0.4300 0.7997 -0.0913 0.0502 1.4526 1.3542 0.3354 -0.6859 -0.1410

0.1772 0.7827 1.6624 0.0968 0.2469 0.1557 0.4156 1.1338 0.7196 0.0856 0.7507 0.3510
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Table 3: Median return to schooling estimate across the sub-group for the nonparametric specification. Heteroskedasticity
robust (wild bootstrapped) standard errors are listed below each median estimate.

Married Male Married Female Single Male Single Female
White Black Hispanic White Black Hispanic White Black Hispanic White Black Hispanic

Pooled
0.1378 0.2125 0.2163 0.1900 0.2060 0.2053 0.1387 0.1594 0.1569 0.1186 0.1719 0.1949
0.0025 0.0051 0.0041 0.0041 0.0308 0.0041 0.0094 0.0071 0.0064 0.0062 0.0056 0.0844

HS
0.21531 0.2293 0.2062 0.2262 0.2406 0.2183 0.1542 0.1833 0.1540 0.1700 0.1821 0.2117
0.0016 0.0054 0.0095 0.0076 0.0778 0.0074 0.0004 0.0081 0.0.0054 0.0011 0.0125 0.0114

College
0.1072 0.1809 0.1892 0.1512 0.1633 0.1666 0.1079 0.1209 0.1208 0.0762 0.1251 0.1512
0.0015 0.0044 0.0091 0.0071 0.0764 0.0068 0.0003 0.0054 0.0047 0.0011 0.0115 0.0106
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Table 4: Descriptive statistics for Hispanic females. Median and mean values of schooling are reported in the table along with
the sample size for geographic origin.

Married Female Single Female
Schooling  Median Mean  Median Mean
Mexico 1198 12 11.95 524 13 12.71
Puerto Rico 181 14 14.1 141 13 13.51
Cuba 77 14 14.48 36 14 14.16
Central/South America 396 13 12.79 243 12 12.62
Pooled 1981 12 12.53 1017 13 12.90
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Table 5: Hispanic Females - Median return to schooling estimate across the sub-group for the nonparametric specification.
Heteroskedasticity robust (wild bootstrapped) standard errors are listed below each median estimate.

Married Female Single Female
Schooling Mexico Puerto Rico C/S America Cuba Mexico Puerto Rico C/S America Cuba
Pooled

0.2030 0.2026 0.2124 0.2062 0.2236 0.1830 0.1887 0.2085
0.0088 0.0008 0.0086 0.0076 0.0118 0.0012 0.0011 0.0114

High School Degree
0.1958 0.2340 0.2339 0.2594 0.2251 0.2049 0.2117 0.1071
0.0076 0.0067 0.0078 0.0078 0.0111 0.0111 0.0988 0.0107

College Degree
0.1630 0.1732 0.1630 0.2100 0.1512 0.0937 0.1085 0.0619
0.0072 0.0071 0.0070 0.0073 0.0120 0.0619 0.0937 0.0109
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