
D
I

S
C

U
S

S
I

O
N

 
P

A
P

E
R

 
S

E
R

I
E

S

Forschungsinstitut 
zur Zukunft der Arbeit
Institute for the Study 
of Labor 

When Is Voting Optimal?

IZA DP No. 8706

December 2014

Ruth Ben-Yashar
Leif Danziger



 
When Is Voting Optimal? 

 
 
 
 

Ruth Ben-Yashar 
Bar-Ilan University 

 
Leif Danziger 

Ben-Gurion University 
and IZA 

 
 
 
 
 

Discussion Paper No. 8706 
December 2014 

 
 
 

IZA 
 

P.O. Box 7240 
53072 Bonn 

Germany 
 

Phone: +49-228-3894-0 
Fax: +49-228-3894-180 

E-mail: iza@iza.org 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
The IZA research network is committed to the IZA Guiding Principles of Research Integrity. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post Foundation. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 8706 
December 2014 

 
 
 
 
 
 
 

ABSTRACT 
 

When Is Voting Optimal? 
 
We consider a framework where the optimal decision rule determining the collective choice 
depends in a simple way on the decision makers’ posterior probabilities of a particular state 
of nature. Nevertheless, voting is generally an inefficient way to make collective choices and 
this paper sheds light on the relationship between the optimal decision rule and voting 
mechanisms. The paper derives the conditions under which the optimal decision rule is 
equivalent to some well-known voting procedure (weighted supermajority, weighted majority, 
and simple majority) and shows that these are very stringent. The paper also considers more 
general voting procedures, as for example allowing for abstentions, and shows that the 
conditions for reaching the optimal collective choice remain very stringent. 
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1 Introduction

Group decision making is a common practice and has been extensively studied, especially for

the case in which the decision makers share a common goal but may differ about what action

should be implemented. In particular, there is a large theoretical literature about the use

of voting to aggregate the opinions of different decision makers in order to choose the most

desirable action. The standard assumption in this literature is that each decision maker

must cast his vote either for or against a proposal and perhaps be permitted to abstain.

However, even though some voting procedures weigh the votes according to the decision

makers’ abilities, using voting to aggregate the decision makers’ opinions is generally an

inefficient way of making collective choices.

If different proposals are preferred in different states of nature, the degree of certainty with

which a decision maker can identify the state of nature is critical. A fundamental weakness

of all common-goal voting mechanisms that we are familiar with is the presumption that

each decision maker has a known and invariant probability of correctly identifying the state

of nature and must vote in favor of one proposal or another.1 Therefore, a decision maker

may vote in favor of a proposal both if he believes it to be the correct collective choice with

probability 0.99 and if he believes it to be the correct collective choice with probability 0.51.

It is clear that his vote should be given considerably more weight in the former case, and the

optimal collective choice may well be to accept the proposal if the probability is 0.99, but to

reject it if the probability is 0.51. However, within a voting framework the decision maker

is unable to signal his precise assessment of the probability that he correctly identifies the

state of nature. Essentially, it is assumed that in all cases where the optimal collective choice

1 Recent contributions include Ben-Yashar and Kraus (2002), Baharad and Nitzan (2007a, 2007b), Berend
and Sapir (2007), Visser and Swank (2007), Christensen and Knudsen (2010), Dietrich (2010a), Dietrich and
List (2010), and Csaszar and Eggers (2013). These authors all assume that each decision maker has a known
decision-making ability (as perhaps derived from the decision maker’s track record) represented by a given
probability of correctly identifying the state of nature.
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is to accept a proposal, a particular decision maker has the same probability of correctly

identifying when acceptance is the preferred action. In reality, though, the probability that

the decision maker correctly identifies the preferred action is not uniquely given and depends

on the decision maker’s idiosyncratic circumstances for the particular case.

This paper is the first to consider a rule for group decision making that is generally

superior to any other rule for the case in which the decision makers share a common goal

but may differ about what action should be implemented. The major innovation is that each

decision maker provides his posterior probability of a particular state of nature. Importantly,

the posterior probability is not limited to taking just two possible values as is implicitly or

explicitly assumed in most of the voting literature. Within this framework, the optimal

decision rule determining the collective choice depends in a simple way on the decision

makers’ posterior probabilities of a particular state of nature. Nevertheless, the optimal

decision rule cannot, in general, be formulated as a voting rule where the individual decision

makers vote for or against a proposal.

The purpose of this paper is to shed light on the relationship between the optimal decision

rule and voting mechanisms, a topic which, to the best of out knowledge, has hitherto been

ignored by the literature. Thus, we derive the conditions under which the optimal decision

rule is equivalent to a voting rule and show that the conditions for equivalence are very

stringent. To wit, the optimal decision rule can be represented by a weighted supermajority

(also called a qualified majority) voting rule2 if and only if each decision maker’s posterior

probability of a particular state of nature can take at most two values. If the environment

is symmetric (as defined in section 2), the optimal decision rule can be represented by a

weighted majority voting rule if and only if these two posterior probabilities are complements

(i.e., sum to unity), and by a simple majority voting rule if and only if the two values are

2 See Ben-Yashar and Nitzan (1997) and Fey (2003).
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complements and identical for all the decision makers.3

The framework also allows us to consider more general voting schemes. In particular, if

decision makers are allowed to abstain, then the optimal decision rule can be represented by

a weighted supermajority voting rule with abstentions if and only if each decision maker’s

posterior probability of a particular state of nature can take at most three values.

In many voting models of collective choice, a tacit assumption is that a decision maker’s

vote is based on a single private signal which is what limits a decision maker’s posterior

probability of a state of nature to taking just two values.4 However, in this paper we

consider a more general framework where a decision maker’s posterior probability of a state

need not be limited to having only two possible values. The warranted interpretation is

that a decision maker may receive numerous private signals whose informational contents

he combines to obtain his posterior probability of a particular state of nature. Indeed, we

illustrate the inferiority of the simple majority voting rule in two cases where decision makers

may receive more than a single private signal.

2 The Model

We consider a group of I ∈ N+ decision makers who collectively need to decide between two

mutually exclusive proposals A and B. There are two possible states of nature, sA and sB.

The true state of nature is unknown at the time the collective choice must be made but the

decision makers do know that the prior probability of state sA is pA ∈ (0, 1) and of state sB

is 1− pA.

Each decision maker i ∈ {1, 2, ..., I} provides his posterior probability pAi ∈ (0, 1) which

3 See Nitzan and Paroush (1982), Shapley and Grofman (1984), Harstad (2005), and Barberà and Jackson
(2006).

4 See Ladha (1995), Young (1995), Nageeb et al. (2008), and Ben-Yashar and Danziger (2011, forth-
coming). An exception is Austen-Smith and Banks (1996) who also consider the possibility that a decision
maker receives two signals.
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is based on all his available information zi that sA is the state of nature. Specifically, decision

maker i’s posterior probability pAi is given by Bayes’ theorem

pAi =
pA Pr(zi | sA)

pAPr(zi | sA) + (1− pA) Pr(zi | sB)
. (1)

Therefore, the odds ratio that the ith decision maker attaches to sA being the true state is

ψAi ≡
pAi

(1− pAi)γ

=
Pr(zi | sA)

Pr(zi | sB)
,

where γ ≡ pA/(1− pA) is the common prior odds of state sA.

Let

πA ≡
pAPr(z1,z2, ..., zI | sA)

pAPr(z1,z2, ..., zI | sA) + (1− pA) Pr(z1,z2, ..., zI | sB)

denote the collective probability that the I decision makers attach to sA being the true state.

Assuming that the zi’s are conditionally independent of the state of nature, we have that

πA ≡
pA
∏
i Pr(zi | sA)

pA
∏
i Pr(zi | sA) + (1− pA)

∏
i Pr(zi | sB)

=
1

1 + (1/γ)
∏
i [Pr(zi | sB)/Pr(zi | sA)]

.

Furthermore, let

ΨA ≡
πA

(1− πA)γ

denote the collective odds ratio that the decision makers attach to sA being the true state.

It follows that5

ΨA =
∏

i

Pr(zi | A)

Pr(zi | B)

=
∏

i

ψAi. (2)

5 See Bordley (1982), Barrett and Pattanaik (1987), Dietrich (2010b), and Allard et al. (2012).
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The gain from implementing proposal A in state sA (sB) is G(A, sA) (G(A, sB)), and the

gain from implementing proposal B in state sA (sB) is G(B, sA) (G(B, sB)). We assume

that G(A, sA) > G(B, sA) and G(B, sB) > G(A, sB) so that the largest gain in state sA is

obtained by choosing proposal A and the largest gain in state sB is obtained by choosing

proposal B.

The expected gain from choosing A given the collective probability πA that the decision

makers collectively attach to sA being the correct state of nature is

πAG(A, sA) + (1− πA)G(A, sB).

Similarly, the expected gain from choosing B given the collective probability πA is

(1− πA)G(B, sB) + πAG(B, sA).

The common objective of the decision makers is to maximize the expected gain from

choosing either A or B. Let G ≡[G(A, sA), G(B, sA), G(A, sB), G(B, sB)] denote the pro-

file of the gains, and let pA ≡ (pA1, pA2, ..., pAI) denote the profile of the decision makers’

posterior probabilities that sA is the true state. The optimal decision rule is a function

f(pA, pA,G) that chooses A or B for any combination of the posterior probabilities and

the environmental parameters, namely, the prior probability and the gains from choosing

correctly and incorrectly in each state, in order to maximize the expected gain from the

collective choice.

The optimal decision rule takes a simple form:

f(pA, pA,G) =






A if ΨA > Ψ∗

A,

B if ΨA < Ψ∗

A,

A or B if ΨA = Ψ∗

A,

where

Ψ∗

A ≡
G(B, sB)−G(A, sB)

[G(A, sA)−G(B, sA)]γ

5



is the critical value of the collective odds ratio. Any decision rule that chooses A for some

ΨA < Ψ∗

A or B for some ΨA > Ψ∗

A is inferior. This includes all rules entailing that the decision

makers’ available information is not used efficiently (for example, voting rules constraining

the decision makers to vote in favor of either one or the other of the proposals) or attaching

importance to irrelevant information (for example, the order in which the decision makers

provide their pAi or a hierarchical structure of the decision makers).

The collective choice between alternatives A and B is determined by comparing the

collective odds ratio ΨA with its critical value Ψ∗

A. Hence, the larger the expected gain

from choosing A rather than B if the state is sA, the smaller is the critical odds ratio for

which A will be chosen. In particular, if the environment is symmetric (i.e., γ = 1 and

G(A, sA) − G(B, sA) = G(B, sB) − G(A, sB) so that the expected gain from choosing A

rather than B if the state is sA equals the expected gain from choosing B rather than A if

the state is sB), then Ψ∗

A = 1. In that case, A is chosen if ΨA > 1, B is chosen if ΨA < 1,

while A or B is chosen if ΨA = 1.

The optimal decision rule presumes that the decision makers are truthful when providing

their posterior probabilities that sA is the true state. It is clear, however, that it is a Nash

equilibrium that each decision maker i is truthful when providing his pAi.
6

3 When Is Voting Optimal?

In our model, there is no constraint on the distributions of the possible values of the decision

makers’ posterior probabilities pAi’s, and, hence, on the possible values of their odds ratios

ψAi’s. Therefore, our framework is more general than the voting models where the decision

makers are constrained to only providing dichotomous information by voting for proposal

6 With a nonoptimal decision rule, strategic considerations may play an important role. See Austen-
Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1998), Dekel and Piccione (2000), Persico (2004),
Gerardi and Yariv (2007), Ben-Yashar and Milchtaich (2007), and Oliveros (2013).
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A or proposal B. Accordingly, if at least one decision maker’s available information pAi

can take more than two different values, the decision maker will be unable to provide exact

information about his pAi as he is forced to make the same vote for at least two different

pAi values. Hence, his available information cannot be precisely represented by a vote for

proposal A or proposal B.

Consider the special case that each decision maker’s pAi and hence ψAi can take at most

two different values. We now prove that only in this special case is the optimal decision rule

equivalent to the optimally weighted supermajority voting rule. A weighted supermajority

voting rule, which is the most refined voting mechanism, gives the different decision makers’

votes for A and B different individualized weights, and A is chosen if the value of the sum of

the weighted votes for A less the sum of the weighted votes for B exceeds a certain threshold,

B is chosen if this value is less than the threshold, and A or B is chosen if the value equals

the threshold.

Theorem 1: The optimal decision rule f(pA, pA,G) can be represented by a weighted

supermajority voting rule if and only if each decision maker’s odds ratio can take at most

two different values, i.e., ψAi ∈ {ξi, ξ
′

i} ∀i.

Proof: (1) We first prove that if each decision maker’s odds ratio can take at most two

different values, the optimal decision rule can be represented by a weighted supermajority

voting rule. Suppose that the ith decision maker votes for A if ψAi = ξi, for B if ψAi = ξ′i

and ξi �= ξ′i, and for A or B if ξi = ξ′i. Furthermore, suppose that his vote is weighted by

lnψAi if he votes for A and by − lnψAi if he votes for B.7 If IA ⊆ I denotes the set of

decision makers who vote for A, then the weighted votes for A less the weighted votes for B

7 If ξi = ξ
′

i
, then ψAi = 1. In this case, lnψAi = 0 and it does not matter whether the decision maker

votes for A or B. Similarly, in the proofs of Corollary 1 and 2 and Theorem 2, if ψAi = 1, then lnψAi = 0
and it does not matter whether the decision maker votes for A or B (or, in the case of Theorem 2, abstains).
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is

∑

i∈IA

ln ξi −
∑

i/∈IA

(− ln ξ′i)

=
∑

i∈IA

ln ξi +
∑

i/∈IA

ln ξ′i

= lnΨA.

With lnΨ∗

A being the threshold, A is chosen if ΨA > Ψ∗

A, B is chosen if ΨA < Ψ∗

A, and A or

B is chosen if ΨA = Ψ∗

A. Thus, there exists a weighted supermajority voting rule that leads

to the optimal decision.

(2) We next prove that if at least one decision maker’s odds ratio can take three or more

different values, the optimal decision rule cannot be represented by a weighted supermajority

voting rule. The logic is that at least one of the decision makers is forced to cast the same

vote for two or more different odds ratios. Specifically, we will show that there will be at

least two cases where one decision maker votes for A and the other for B, with the optimal

collective choice being A in one of the cases and B in the other. That is, the collective choice

may not be optimal.

Since the optimal decision rule is defined for any given combination of the profile of

posterior probabilities pA and the environmental parameters pA and G, it suffices to show

this impossibility for particular values of the ψAi’s in a symmetric environment. Suppose

that there are two decision makers. Further, suppose that decision maker 1 has two possible

odds ratios, ψA1 ∈ {v
−1, v}, v > 1, and that decision maker 2 has at least three possible

odds ratios, ψA2 ∈ {v
−2, 1, v2, v3, .......vn}, n ≥ 2, and that Ψ∗

A = 1. The optimal collective

choice is then A if ψA2 ∈ {v
2, v3, .......vn}, or if ψA1 = v and ψA2 = 1. The optimal collective

choice is B if ψA2 = v−2, or if ψA1 = v−1 and ψA2 = 1.

If decision maker 2 votes the same whether he has ψA2 ∈ {v
2, v3, .......vn} or ψA2 = 1,

and the collective choice is A if ψA2 ∈ {v
2, v3, .......vn} (which is optimal), then the collective

choice is also A (which may not be optimal) if ψA2 = 1, independently of ψA1. That is,

8



if ψA2 = 1 and ψA1 = v−1, then B will not be chosen even though it is optimal. On the

other hand, if decision maker 2 votes the same whether he has ψA2 = v−2 or ψA2 = 1, and

the collective choice is B if ψA2 = v−2 (which is optimal), then the collective choice is also

B (which may not be optimal) if ψA2 = 1, independently of ψA1. That is, if ψA2 = 1 and

ψA1 = v, then A will not be chosen even though it is optimal. Finally, if decision maker

2 votes the same whether he has ψA2 ∈ {v
2, v3, .......vn} or ψA2 = v−2, then the collective

choice does not depend on decision maker 1’s odds ratio. That is, the collective choice is

not optimal. It follows that the optimal decision rule cannot be represented by a weighted

supermajority voting rule if at least one of the decision maker’s odds ratio can take three or

more different values. �

Accordingly, if the optimal decision can be reached by a weighted supermajority voting

rule, knowledge of the decision makers’ odds ratios is equivalent to knowing how each of the

decision makers vote and possessing the information needed to calculate the optimal weight

for each decision maker’s vote.

To obtain an important implication of Theorem 1, suppose that each decision maker’s

pAi and hence their odds ratio can take at most two different values, and also that the pAi’s

are complements and hence the odds ratio are reciprocals, i.e., ξ′i = 1/ξi, ∀i. Furthermore,

suppose that the environment is symmetric so that Ψ∗

A = 1. Theorem 1 then implies that the

optimal decision rule f(pA, pA,G) that chooses A or B for any combination of the posterior

probabilities and the environmental parameters is equivalent to a weighted majority voting

rule. That is, the different decision makers’ votes are given different individualized weights

that are identical for A and B, and A is chosen if the value of the sum of the weighted

votes for A less the sum of the weighted votes for B is positive, B is chosen if the value is

negative, and A or B is chosen if the value equals zero. In other words, Theorem 1 implies

the following corollary:

9



Corollary 1: Suppose that the environment is symmetric. Then the optimal decision rule

f(pA, pA,G) can be represented by a weighted majority voting rule if and only if each decision

maker’s odds ratio can take at most two values that are reciprocals, i.e., ψAi ∈ {ξi, 1/ξi} ∀i.

Proof: (1) We first prove that the optimal decision rule can be represented by a weighted

majority voting rule. Assume, without loss of generality, that ξi ≥ 1, and suppose that the

ith decision maker votes for A if ψAi > 1, for B if ψAi < 1, and for A or B if ψAi = 1.

Furthermore, suppose that his vote is weighted by lnψAi if he votes for A, and by − lnψAi

if he votes for B. The weighted votes for A less the weighted votes for B is

∑

i∈IA

ln ξi −
∑

i/∈IA

− ln

(
1

ξi

)

=
∑

i∈IA

ln ξi +
∑

i/∈IA

ln

(
1

ξi

)

=
I∑

i=1

lnψAi

= lnΨA.

In a symmetric environment Ψ∗

A = 1 ⇔ lnΨ∗

A = 0. It follows then that A is chosen if

ΨA > 1, B is chosen if ΨA < 1, and A or B is chosen if ΨA = 1. Thus, there exists a

weighted majority voting rule that leads to the optimal collective choice.

(2) We next prove that if at least one decision maker’s odds ratios can take more than

two values or if the decision maker’s odds ratios are not reciprocals, the optimal decision rule

cannot be represented by a weighted majority voting rule. Since a weighted majority voting

rule is a special case of a weighted supermajority voting rule, we only need to show that if

the decision makers’ odds ratio can take only two values, the optimal decision rule cannot

be represented by a weighted majority voting rule unless the odds ratios are reciprocals.

Since the optimal decision rule is defined for any given profile pA, it suffices to show this

impossibility for particular values of the ψAi’s. Suppose, therefore, that there are two decision
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makers and that ψA1 ∈ {v
−1, v2} and ψA2 ∈ {v

−1, v2}, v > 1. The optimal decision is then A

if ψA1 = v2 or if ψA2 = v2, and B if ψA1 = ψA2 = v−1. Thus, if the weight of decision maker

1 is w1 and of decision maker 2 is w2, then in order for A to always be chosen if ψA1 = v2 it

must be the case that w1 − w2 > 0, while in order for A to always be chosen if ψA2 = v2 it

must be the case that w2 − w1 > 0, which is impossible. �

Suppose, as above, that the decision makers’ pAi’s can take at most two values which are

complements, and hence their odds ratios can take at most two values which are reciprocals,

and in addition that the decision makers are homogeneous. Then {ξi, ξ
′

i} = {ξ, 1/ξ}, ∀i. It

then follows that in a symmetric environment, the optimal decision rule is equivalent to a

simple majority voting rule. That is, A is chosen if a majority votes for A, B is chosen if a

majority votes for B, and A or B is chosen if the same number of decision makers vote for

A and B. More precisely, Theorem 1 also implies the following corollary:

Corollary 2: Suppose that the environment is symmetric. Then the optimal decision

rule f(pA, pA,G) can be represented by a simple majority rule if and only if the decision

makers are homogeneous and each decision maker’s odds ratio can take at most two values

that are reciprocals, i.e., ψAi ∈ {ξ, 1/ξ} ∀i.

Proof: (1) We first prove that the optimal decision rule can be represented by a simple

majority voting rule. Assume, without loss of generality, that ξi ≥ 1, and suppose that the

ith decision maker votes for A if ψAi > 1, for B if ψAi < 1, and for A or B if ψAi = 1.

Suppose also that the decision maker’s vote is weighted by lnψAi if he votes for A, and by

− lnψAi if he votes for B. The weighted votes for A less the weighted votes for B is

∑

i∈IA

ln ξ −
∑

i/∈IA

− ln

(
1

ξ

)

=
I∑

i=1

lnψAi

= lnΨA.

11



Furthermore,

ΨA � 1

⇔ ξIA−(I−IA) � 1

⇔ IA � 1
2
I.

It follows that A is chosen if ΨA > 1⇔ IA >
1
2
A, B is chosen if ΨA < 1⇔ IA <

1
2
A, and A

or B is chosen if ΨA = 1 ⇔ IA = 1
2
A. Consequently, a simple majority voting rule leads to

the optimal decision.

(2) We next prove that if at least one decision maker’s odds ratios can take more than two

values, or if the decision makers are not homogenous, or if the decision maker’s odds ratios

are not reciprocals, the optimal decision rule cannot be represented by a simple majority

voting rule. Since a simple majority voting rule is a special case of a weighted majority voting

rule, we only need to show that if the decision makers’ odds ratio can take only two values

that are reciprocals, the optimal decision rule cannot be represented by a simple majority

voting rule unless the decision makers are homogenous. Since the optimal decision rule is

defined for any given profile pA, it suffices to show this impossibility for particular values of

the ψAi’s. Suppose, therefore, that there are three decision makers and that ψA1 ∈ {v
−3, v3},

ψA2 ∈ {v
−1, v}, and ψA3 ∈ {v

−1, v}, v > 1. The optimal decision is then A if ψA1 = v3

and B if ψA1 = v−3, independently of ψA2 and ψA3. However, if ψA1 = v3, ψA2 = v−1, and

ψA3 = v−1, and the optimal decision is A, a simple majority voting rule would choose B. �

The standard voting model forces decision makers to vote for one of two options and does

not permit abstentions. However, it is simple to generalize that model to include abstentions.

In particular, if the decision makers have at most three different pAi’s and hence odds ratios,

the optimal decision is equivalent to a weighted supermajority voting rule with abstentions.

That is, suppose that the different decision makers’ votes for A and B as well as their

abstentions are given different individualized weights. Then A is chosen if the value of the

12



sum of the different decision makers’ weighted votes for A less the sum of the weighted votes

for B and the weighted abstentions exceeds a certain threshold, B is chosen if this value is

less than the threshold, and A or B is chosen if this value is equal to the threshold. Thus,

Theorem 2: The optimal decision rule can be represented by a weighted supermajority

voting rule with abstentions if and only if each decision maker’s odds ratio can take at most

three different values, i.e., ψAi ∈ {ξi, ξ
′

i, ξ
′′

i } ∀i.

Proof: (1) We first prove that if each decision maker’s odds ratio can take at most three

different values, the optimal decision rule can be represented by a weighted supermajority

voting rule with abstentions. Suppose, therefore, that the ith decision maker votes for A if

ψAi = ξi, for B if ψAi = ξ
′

i , and abstains if ψAi = ξ
′′

i . Furthermore, suppose that if he votes

for A then his weight is lnψAi, and if he votes for B or abstains then his weight is − lnψAi.

If IB ⊆ I denotes the set of decision makers who vote for B, then the weighted votes for

A less the weighted votes for B and the weighted abstentions are

∑

i∈IA

ln ξi −
∑

i∈IB

(− ln ξ′i)−
∑

i/∈(IA∪IB)

(− ln ξ′′i )

= lnΨA.

With lnΨ∗

A being the threshold, A is chosen if ΨA > Ψ∗

A, B is chosen if ΨA < Ψ∗

A, and A

or B is chosen if ΨA = Ψ∗

A. Thus, there exists a weighted supermajority voting rule with

abstentions that leads to the optimal decision.

(2) We next prove that if at least one decision maker’s odds ratio can take four or more

different values, the optimal decision rule cannot be represented by a weighted supermajority

voting rule with abstentions. Since the optimal decision rule is defined for any given profile

pA and thus for all possible values of ψAi ∀i, it suffices to show this impossibility for particular

values of the ψAi’s. Therefore, suppose that there are two decision makers. Decision maker

1 has three possible odds ratios, ψA1 ∈ {v−1, 1, v}, v > 1, and decision maker 2 has at

13



least four possible odds ratios, ψA2 ∈ {v−2, v−1/2, v1/2, v2, v3, .......vn}, n ≥ 2, and that

Ψ∗

A = 1. The optimal collective choice is then A if ψA2 ∈ {v
2, v3, .......vn}, or if ψA1 = v

and ψA2 ∈ {v
−1/2, v1/2}, or if ψA1 = 1 and ψA2 = v1/2. The optimal collective choice is B if

ψA2 = v−2, or if ψA1 = v−1 and ψA2 ∈ {v
−1/2, v1/2}, or if ψA1 = 1 and ψA2 = v−1/2.

By the same logic as in part (2) of the proof of Theorem 1, there are at least two cases

where one decision maker votes for A and the other for B, with the optimal collective choice

being A in one of the cases and B in the other. The collective choice may therefore not be

optimal. As a consequence, the optimal decision rule cannot be represented by a weighted

supermajority voting rule with abstentions if at least one of the decision maker’s odds ratio

can take four or more different values. �

The crucial assumption in Theorem 2, as in Theorem 1, is that the number of different

voting options is at least equal to the number of a decision maker’s possible pAi’s and odds

ratios. As a result, a decision maker’s vote is able to convey exact information about his

odds ratio. This would not be possible if the number of voting options is less than the

number of a decision maker’s possible pAi’s and odds ratios. Thus, if decision makers are

only allowed to vote for A or B with no possibility of abstention, but have three odds ratios,

then a decision maker’s vote cannot uniquely identify the underlying odds ratio.

Consider the case where decision makers, in addition to being able to vote for A, B, and

to abstain, can also choose not to vote at all. If each decision maker’s odds ratio can take

at most four different values, it is straightforward to show that the optimal decision rule is

equivalent to a weighted supermajority voting rule with abstentions and non-voters, where

each of these four possibilities corresponds to one of a decision maker’s odds ratios.

More generally, suppose that the number of a decision maker’s different voting options is

at least equal to the number of his possible odds ratios (for example, he can “vote strongly

for A”, “vote weakly for A”, etc.). The optimal collective choice can then be reached by a

voting rule which gives different individualized weights to each of a decision maker’s voting

14



possibilities.

4 Many Private Signals

Until now we have not discussed the nature of the available information zi that underlies

decision maker ith’s posterior probability pAi that sA is the state of nature. However, we

wish to point out that zi need not consist of a single private signal, but may be based on

many conditionally independent private signals. In this section we show how to express

the collective odds ratio as a function of all the decision makers’ many private signals.

An important implication of such an aggregation is that the optimal decision rule can be

formulated in terms of a critical number of private signals. We use this formulation to

illustrate the inferiority of the simple majority voting rule in two cases where decision makers

may receive more than a single private signal.

Suppose that decision maker i receives ni ≥ 1 random and conditionally independent

private signals about the true state of nature. A signal can be either “A” or “B”. The

signals are drawn from a state-dependent distribution, and each signal correctly reflects the

true state of nature with probability q ∈ (1
2
, 1). In other words, if the state is sA, then q

is the probability that a signal is “A” and 1 − q that a signal is “B”, while if the state is

sB, then q is the probability that a signal is “B” and 1 − q that a signal is “A”. Hence, if

ki of the ni signals are “A”, decision maker i’s privately available information is given by

zi = (ki, ni). Therefore, if the unknown state is sA, the probability that ki of the ni signals

are “A” is

(
ni
ki

)
qki(1− q)ni−ki , while if the unknown state is sB, the probability that ki of

the ni signals are “A” is

(
ni
ki

)
(1− q)kiqni−ki.

Given decision maker i’s information, his posterior probability pAi is

pAi =

pA

(
ni
ki

)
qki(1− q)ni−ki

pA

(
ni
ki

)
qki(1− q)ni−ki + pB

(
ni
ki

)
(1− q)kiqni−ki
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=
1

1 + (pB/pA) [q/(1− q)]
ni−2ki

=
1

1 + (1/γ)αni−2ki
, (3)

where α ≡ q/(1 − q) is the odds that a signal correctly reflects the true state. Hence, the

odds ratio that the ith decision maker attaches to sA being the true state is

ψAi =
pAi

(1− pAi)γ

= α2ki−ni.

Since pAi depends on only ni and ki (for a given α and γ), ψAi depends on only ni and ki (for

a given α). Let N ≡
∑I

i=1 ni denote the total number of private signals that the decision

makers receive, and K ≡
∑I

i=1 ki the total number of “A” signals among them. Then, eq.

(2) implies that the collective odds ratio is

ΨA = α2K−N ,

which depends on only N and K (for a given α).

The optimal decision rule can be formulated as a function of K, N , pA, and G instead

of as a function of pA, pA, and G. That is, A is chosen if K > K∗, B is chosen if K < K∗,

and A or B is chosen if K = K∗, where K∗ ≡ 1
2
(lnΨ∗

A/ lnα+N) is the critical number of

“A” signals.

The collective choice is the same for every combination of ki’s and ni’s that lead to the

same K and N . The only relevant information for determining the collective odds ratio

ΨA that the state of nature is sA is the total numbers K of “A” signals that the decision

makers actually receive and the maximum number N of “A” signals that the decision makers

could possibly receive.8 An important consequence is that the distribution of the possible

8 It is only for simplicity that we have assumed that q > 1

2
. If instead q < 1

2
, then A is chosen if K < K∗,

B if K > K∗, and A or B if K = K∗. If q = 1

2
, then K has no effect on the collective odds ratio ΨA, which

equals unity. Therefore, A is chosen if Ψ∗
A
< 1, B if Ψ∗

A
> 1, and A or B if Ψ∗

A
= 1.
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ΨA’s is the same for a group consisting of N decision makers each of whom receives a single

signal as for a single decision maker who receives N signals. Interestingly, in the case that

K = 1
2
N , the collective probability equals the prior probability. The signals then do not add

any information about the state of nature and we have that ΨA = 1.

Consider now the special case where each decision maker receives only one signal, i.e.,

ni = 1 for all i ∈ I (and hence N = I), and votes A if he receives an “A” signal and votes

B if he receives a “B” signal. The total number of votes for A is then equal to the total

number of “A” signals received by the decision makers. Since all decision makers have the

same probability q of receiving an “A” signal, it follows that the odds ratio can only take two

values that are reciprocals, namely α and 1/α. Therefore, if the environment is symmetric,

Corollary 2 shows that a simple majority voting rule where each decision maker’s vote is

given the same positive weight is optimal.

Consider next the special case where each decision maker receives one or two signals with

at least one decision maker receiving two signals, i.e., ni ∈ {1, 2} for all i ∈ I and ni = 2

for at least one i (and hence I + 1 ≤ N ≤ 2I). At least one decision maker’s odds ratio can

then take three different values so that his vote for A cannot accurately reflect the number

of “A” signals he received. Consequently, Theorem 1 shows that a weighted supermajority

is not generally optimal. However, according to Theorem 2, the optimal collective choice

can be reached by a weighted supermajority voting rule with abstentions.

4.1 Two Numerical Illustrations

In a framework where decision makers may receive many private signals, what matters in

our model is the total number of private “A” signals that the decision makers actually

receive and the maximum number N of “A” signals that the decision makers could possibly

receive. Consequently, with our approach the informational content of the signals is used

as efficiently as possible. In contrast, in voting models each decision maker combines the
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informational contents of his private signals in order to decide whether to vote for proposal

A or proposal B, with a voting rule employed to make the collective choice. Since a decision

maker may vote the same for many different combinations of signals he receives, the voting

process inevitably destroys some of the informational content of the signals. An essential

difference between our approach and voting models is therefore that only in our approach

the informational content of the signals is always used efficiently.

We now present two examples that highlight the inferiority of the simple majority voting

rule. In both examples the environment is symmetric and the decision makers are homoge-

neous, each receiving three private signals. In the first example we illustrate the advantage

of having an additional decision maker as it always increases the probability of making the

correct collective choice.9 This is in contrast to the simple majority voting rule where, if the

number of decision makers is odd, having an additional decision maker does not increase the

probability of making the correct collective choice.10 In the second example we illustrate

that due to the greater efficiency of the optimal decision rule this rule might have a higher

probability of making the correct collective choice even with a smaller number of decision

makers than the simple majority voting rule. As such, the optimal decision rule may facility

cost savings by reducing the number of decision makers needed to reach a desired minimum

level of the probability of making the correct collective choice.

Example 1: Consider the case in which we start with one decision maker and then add

a second decision maker. With one decision maker there are three signals and with two

decision makers there are six signals. The relative increase in the probability of the correct

9 Increasing the expected gain from choosing either A or B is equivalent to increasing the probability of
making the correct collective choice.

10 Under our assumptions, then commonly used simple majority voting rule is the best possible voting
rule.
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collective choice is

1

q

[
6∑

m=4

(
6

m

)
qm(1− q)6−m + 1

2

(
6

3

)
q3(1− q)3 −

3∑

m=2

(
3

m

)
qm(1− q)3−m

]

= 3q(2q3 − 5q2 + 4q − 1),

which is always positive (it would equal zero for q = 1
2

and q = 1). It reaches its maximum

of 7.4% for q = 2
3
.

On the other hand, with a simple majority voting rule, adding a second decision maker

does not change the probability of making the correct collective choice. More precisely, the

probability that two decision makers make the correct collective choice is equal to the prob-

ability that both decision makers get at least two correct signals plus half of the probability

that only one decision maker gets at least two correct signals. Thus, the probability is

(3q2 − 2q3)2 + (3q2 − 2q3)(1− 3q2 + 2q3) = 3q2 − 2q3,

which is the same as the probability that one decision maker makes the correct choice.

Example 2: Consider the case with six decision makers using the optimal decision rule

vs. seven decision makers using the simple majority voting rule. The difference in the

probability of making the correct collective choice is

18∑

x=10

(
18

x

)
qx(1− q)18−x + 1

2

(
18

9

)
q9(1− q)9

−
7∑

x=4

(
7

x

)[
q3 + 3q2(1− q)

]x {
1−

[
q3 + 3q2(1− q)

]}7−x
,

which is always positive (shown by simulations). That is, six decision makers using the

optimal decision rule have a higher probability of making the correct collective choice than

seven decision makers do using the simple majority voting rule.
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5 Conclusion

In this paper we have considered a superior decision rule for making collective choices. The

framework is very general and only requires that each decision maker provides his posterior

probability that a particular state of nature is the true one. In particular, the decision

makers are not asked to vote in favor of one or another proposal. Given the prior probability

of a particular state, the decision makers’ posterior probabilities can be transformed into

their odds ratios and then into the collective odds ratio. We have showed that a proposal

should be accepted if the collective odds ratio exceeds a critical level and rejected if the

collective odds ratio is less.

In contrast to voting schemes, with our optimal decision rule there is no need to force the

decision makers to provide dichotomous information nor to estimate the different abilities of

the various decision makers. Indeed, we have showed that the conditions under which voting

procedures (weighted supermajority, weighted majority, and simple majority) would lead to

the optimal collective choice are very stringent. For example, in order for the simple majority

voting rule to yield the optimal collective choice, the environment must be symmetric and

each decision maker’s posterior probability of a particular state of nature take at most two

values that are complements and identical for all the decision makers. The framework allows

us to also consider more general voting procedures, as for example allowing for abstentions,

but we show that the conditions under which these more general voting procedures would

lead to the optimal collective choice are still very stringent.
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