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1 Introduction

The analysis of duration or survival data using large samples is widespread in biostatistics,

economics, actuarial science, and engineering. In each field, it is of primary concern that

the model to be estimated is not unduly restrictive. Semiparametric models provide a

balance between flexibility and limited dimensionality. Typically, these models contain a

part that is unrestricted and a part that is parametric. Different semiparametric models are

estimated with different methods, focusing on different parameters or functions of interest.

In survival analysis, it is often natural to take the hazard rate as the focal point of model

specification. The most common semiparametric model is the Cox proportional hazard

model for the (possibly stochastic) hazard rate λ(t),

λ(t) = exp(β′W (t))α(t) (1)

in which the covariate effects β are the parameters of interest and the dependence α(t) of

the hazard rate on the elapsed duration or time is unspecified; see Cox(1972). The partial

likelihood estimator of the parameter β does not depend on the functional form of α.

However, the estimator requires the assumption that the covariates W (t) affect the

hazard rate by way of the parametric functional form exp(β′W (t)). Perhaps ironically, there

is often more consensus about the functional form of α(t) than about the functional form

of the effect of W (t) on the hazard rate. More precisely, there is often more prior knowledge

about how the hazard rate varies with the elapsed duration or time t than about how it

varies with covariates W (t). For example, in the study of mortality, it is natural to model

the effect of age t on the mortality rate by way of the Gompertz specification exp(θt) or

by small modifications of this functional form. This functional form is not controversial

especially if very high ages are not taken into consideration. At the same time, there

is no well-established functional form for the dependence of the mortality rate on socio-

economic class, level of education, income and so on. Empirical studies often discretise such

explanatory variables into a few categories and estimate effects of corresponding binary

indicators using model (1). If the underlying causal pathways are smooth functions of the

individual characteristics then the estimated effects may be biased for many values of the

covariates.

Another example is provided by the literature on unemployment durations and job du-

rations. Job search theory aims to explain the variation in these durations across individuals

by modeling the job search behavior of individuals in labor markets where individual and

external circumstances change over time. These theoretical models make precise predictions

on how the hazard rates of the unemployment duration and the job duration distributions

depend on labor market fluctuations (van den Berg, 2001). The latter can be measured by

the ratio of the current unemployment and vacancy rates. This provides a functional form
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for the time-varying profile of these hazard rates. It is more difficult to acquire theoretical

guidance on how individual characteristics such as work experience, job complexity and

number of children affect the level of the hazard rates.

If the functional form of the covariate effects on the hazard rate is unknown then the

partial likelihood method used for the estimation of model (1) does not apply. In the current

paper we propose a general semiparametric model that does not specify the functional form

of covariate effects on the hazard rate, and we develop an estimation method for this model.

The model has the form

λ(t) = α{X(t); θ}g{Z(t)} (2)

Here, g(·) is unspecified while α(·; θ)θ∈Θ is a parametric class of functions. The vectors

X(t) and Z(t) are covariate or marker processes, and their elements may include the

elapsed duration (or time) t. We show that this model has many existing semiparametric

models as special cases. Note that it also includes nonproportional hazard rate models. In

applications, the researcher may be particularly interested in the function g, for example

if Z(t) includes a policy instrument or treatment regime or if it includes a marker used to

predict future outcomes. However, in other applications θ may be the parameter of interest.

In that case, if the functional form of g is unknown, the estimation of a model that assumes

a specific functional form for g may result in biased estimates of θ.

The estimator that we develop is a three-stage estimator inspired by the two-stage

estimator of Nielsen, Linton and Bickel (1998) for a more restrictive semiparametric model.

In our first stage, we estimate g best possible under the assumption that θ is actually known.

In the second stage, we use this estimator ĝθ of g in a profile likelihood, recognizing that

the stochastic hazard α{X(t); θ}ĝθ{Z(t)} actually has a parametric specification family

of hazards, enabling the application of standard maximum likelihood methodology; see

Borgan (1984). In a third estimation stage, we estimate g by ĝθ̂ using local linear kernel

hazard regression. A major methodological contribution of our paper is that we improve on

the asymptotic analysis in the existing literature for semiparametric hazard rate inference

by using the improved asymptotic approximation theory of counting process martingales

developed in Mammen and Nielsen (2007). In effect, our estimator of θ is square-root-n

consistent, asymptotically normal and efficient.

We apply our newly devised estimation method to the study of the effect of birth

weight on longevity. Recently, the interest in long-run effects of conditions in utero has

been strongly growing. It has been shown that a range of diseases and death causes at

high ages have “developmental origins”, i.e. can be caused by conditions in utero. In the

epidemiological literature, these conditions are often summarised by birth weight indicators

across the full normal range of birth weight values (see e.g. overviews and meta-studies in

Poulter et al., 1999, Rasmussen, 2001, Kuh and Ben-Shlomo, 2004, Davey Smith, 2005,
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and Huxley et al., 2007). Such indicators have also been used in social sciences as markers

of in-utero conditions (see the overview in Almond and Currie, 2011). The studies in these

literatures do not estimate the effect of birth weight on morbidity and mortality in a

nonparametric fashion. Instead, the effect is postulated to be parametric. Some studies use

discrete indicators for whether birth weight lies in one of a small number of exhaustive

weight intervals. For example, the landmark study by Leon et al. (1998) distinguishes

between four intervals for birth weight in its effect on mortality due to ischaemic heart

disease. Osler et al. (2003) use three categories among which 3500+ grams captures the

highest birth weight values. Many studies simply use a binary indicator for whether birth

weight is “low” (i.e., below 2500 grams) or not. Alternatively, a monotonous parametric

continuous functional form is used, e.g. a linear relation between log birth weight and the

log of the rate of the occurrence of some adverse health outcome.

Such parametric functional forms may be problematic. First, although most studies

are concerned with adverse effects of low birth weight, it is known that a very high birth

weight may also give rise to adverse health outcomes later in life. Ahlgren et al. (2007)

demonstrate positive associations between birth weight and the rates of almost any type of

cancer at higher ages. For certain cancer types the association is especially strong at birth

weights above 4000 grams. This suggests that the birth weight effect on mortality is not

monotonous.1 Secondly, the continuity of the underlying biological mechanisms implies

that effects of discretised birth weight indicators provide biased estimates of effects at

specific birth weights. If medical protocols postulate interventions that condition on birth

weight then the benefits of the intervention depend on the accuracy with which the relation

between birth weight and outcome are estimated.

This calls for a semiparametric approach in which the long-run effect of birth weight

on the mortality rate is not restricted by a parametric functional form. Our method is

particularly suitable for this because of the high degree of consensus about the functional

form for the age dependence of the mortality rate at ages up to 90. Specifically, we may

adopt the Gompertz functional form for this. It is well known that the parameters of this

functional form vary by gender and socio-economic class. Contrary to earlier semiparamet-

ric estimation methods, our method can deal with this as well as with the possibility that

the birth weight effect varies by these personal characteristics.

Clearly, the application requires data of individuals born many decades ago, for whom

birth weight and age at death are recorded with high accuracy. We use the Uppsala Birth

Cohort Study (UBCoS) which is a lifelong follow-up study of a representative sample of

1Suggestive additional evidence for this is provided by the large number of studies reporting a positive

association between birth weight and adult obesity (see Parsons et al., 1999, for a literature overview).

This association seems to be driven by higher birth weight individuals (see e.g. Rasmussen and Johansson,

1998, and Curhan et al., 1996).
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individuals born in 1915–1929. Upon birth, the birth weight was recorded in grams by

qualified nurses. The data set contains additional information registered at birth, notably

the socio-economic characteristics of the parental household. By now, over half of the

sample members have died. We conjecture that this data set provides the best data in the

world to relate birth weight and high-age mortality. The estimation results can be used to

obtain an improved classification of the birth weight levels that indicate high-age health

risks. This may be useful for health policy. In particular, neonatal interventions are often

determined by whether the birth weight is above or below 2500 grams (see e.g. Almond,

Chay and Lee, 2005). Our results indicate whether this is a sensible cut-off value if interest

is in late-life mortality.

The paper is organised as follows. Section 2 presents our semiparametric model and

explains how it contains models in the literature as special cases. In Section 3 we introduce

the counting process formulation of our model. In Section 4 we define the estimators for the

parameter θ and the nonparametric function g. In Section 5 we introduce the asymptotic

distribution theory. In Section 6 we derive the local linear version of our estimator g and

show the simulation results for the local constant and the local linear estimator to assess

their performance under different bandwidth selection techniques. Section 7 contains the

empirical application. Section 8 concludes.

2 The semiparametric model

This section presents the semiparametric model and explains how it contains models in the

literature as special cases. Our model has the stochastic hazard rate

λ(t) = α{X(t); θ}g{Z(t)} (3)

Here, α(·; θ)θ∈Θ is a parametric class of functions whereas g(·) is unspecified apart from

smoothness assumptions to be discussed below. Obviously, α and g must be nonnegative.

The vectors X(t) and Z(t) are covariate or marker processes with dimensions dx and dz,

respectively. For sake of exposition, we take dx ≥ 1 and dz ≥ 1. Note that dz = 0 leads to

a fully parametric model while dx = 0 leads to a fully nonparametric model. The elements

of X(t) and Z(t) may include the elapsed duration (or time) t. The elements of the vector

X(t) can be discretely or continuously distributed. Concerning the elements of Z(t), for

obvious reasons, we restrict attention to continuously distributed variables. We discuss

exogeneity requirements on the covariate processes below.

The Cox model with a time-varying covariate process is obtained as a special case by

taking Z(t) := t and α{X(t); θ} := exp{θ′X(t)}. In this setting, g is the baseline hazard

capturing duration dependence of the hazard whereas α is the so-called systematic part
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of the hazard. The Stratified Cox model (Kalbfleisch and Prentice, 1980) extends the Cox

model by allowing strata to have different baseline hazards. This can be captured in our

model by specifying Z(t) := (W, t) with W being discrete and finite, and α{X(t); θ} :=

exp{θ′X(t)}. Here, different values of W capture different strata.

Nielsen, Linton and Bickel (1998) consider a model with X(t) := t and in which Z(t)

has only one element,

λ(t) = α(t; θ)g{Z(t)}, (4)

Clearly, this model is motivated by the same concerns as our own model, as it does not

impose a functional form on the covariate effect. However, it is more restrictive in that

it does not allow the time effect α(t; θ) to depend on individual characteristics, and it

only deals with one covariate Z. In general, in survival analysis, it is advisable to include

all relevant observed covariates in the model, to prevent bias due to omitted unobserved

heterogeneity (see the overview in van den Berg, 2001).

Dabrowska (1997) considers a model that can be expressed as

λ(t) = exp{θ′X(t)}g{Z(t)} (5)

in the same notation as above. This is a special case of our model because it assumes a

specific functional form for the function α.

Our general model lends itself to other interesting specifications, for example the case

where

λ(t) = α(t; θ)gβ(Z(t)) (6)

where gβ is a parametric function that does not necessarily satisfy gβ{Z(t)} = exp{β′Z(t)}.
One could for example imagine instead that gβ{Z(t}) = β′Z(t).

In general, the inclusion of t as an element of X(t) and/or Z(t) allows for nonpro-

portional hazard specifications, that is, specifications where the hazard effects of t on the

one hand and the covariates on the other are not multiplicative. Allowing for nonpropor-

tionality is useful, as proportionality is often hard to justify. For example, in the study of

mortality, where it is natural to model the parametric effect of age t on the hazard by way

of exp(θt), the coefficient θ varies with the gender of the individual. In the study of unem-

ployment durations, the hazard rate of interest is the transition rate out of unemployment

into employment. Economic-theoretical models predict that the decrease of this rate with

the elapsed unemployment duration is stronger if aggregate labor market conditions are

unfavorable (Blanchard and Diamond, 1994) or if the difference between the unemploy-

ment insurance level and the welfare level is large (van den Berg, 1990, 2001). Such studies

warrant survival models that allow for nonproportional hazard specifications.
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At this stage we should emphasise that our model does not rule out that X(t) and Z(t)

have common elements. As we shall see, the estimation method deals with this automati-

cally. If for example the hazard rate equals exp(θt) · t2 and if we specify α(t; θ) = exp(θt)

then the estimator ĝ(t) will converge to t2 asymptotically. Scale parameters of α and g are

not identified from each other, meaning that one should impose an arbitrary and innocuous

normalization on these.

Semiparametric models are typically developed in conjunction with estimation methods

tailored to the model. The Cox model and the corresponding partial likelihood estimation

method are a case in point. It is useful to discuss some key properties of the estimators

developed for the semiparametric models of Nielsen et al. (1998) and Dabrowska (1997) and

other models and contrast them with properties of the estimator developed in our paper.

Nielsen et al. (1998) show that their estimator of θ in (4) is efficient. This estimator has

two stages. In the first stage, they estimate g best possible under the assumption that θ is

actually known. In the second stage, they use this estimator ĝθ of g in a profile likelihood,

recognizing that the stochastic hazard

λ̂(t) = αθ(t)ĝθ{Z(t)} (7)

actually has a parametric specification family of hazards, enabling the application of stan-

dard maximum likelihood methodology; see Borgan (1984). Clearly, our estimator is valid

under weaker conditions than in Nielsen et al. (1998), since our model is more general.

As we shall see, one reason that we are able to achieve this is that we use the improved

asymptotic approximation theory of counting process martingales developed in Mammen

and Nielsen (2007). In effect, our estimator of θ is square-root-n consistent, asymptotically

normal and efficient.

Dabrowska (1997) proves asymptotic square-root-n consistency and asymptotic nor-

mality of her estimator of θ. However, she does not achieve efficiency as we do with our

approach.

We end this section by mentioning fully nonparametric approaches to statistical infer-

ence as an alternative approach to nonparametric inference. As we shall see, our estimator

for the function g will be inspired by the nonparametric estimators developed in Nielsen

and Linton (1995) and Nielsen (1998). These studies develop local constant and local linear

kernel hazard estimators, respectively, for a model framework where the stochastic hazard

is fully unspecified as a function of a vector Z(t) which may include t. As methods for

statistical inference on hazard rates, such estimators have the advantage that they do not

rely on arbitrary functional-form assumptions, but the disadvantage that they suffer from

the curse of dimensionality. Of course, this also applies to other estimators for nonpara-

metric survival models, such as the estimators of Dabrowska (1987) and Spierdijk (2008).

The advantage and disadvantage also apply (but to a lesser extent) to the estimator of
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Linton, Nielsen and van de Geer (2003) for a model that is a hybrid between a semipara-

metric and nonparametric model; it assumes that the stochastic hazard is a multiplicative

or additive function of unspecified functions of single elements of Z(t). In this paper we

do not consider this model. Neither do we consider semiparametric transformation models

for survival data, since these are difficult to interpret in terms of hazard rate properties.

See Dabrowska (2006) for an example of an estimator for such a model. Towards the end

of the paper we briefly discuss semiparametric models with single-index structures for the

dependence of the hazard rate on Z(t).

3 Counting process formulation of the model

We follow the model formulations of Mammen and Nielsen (2007) and restrict ourselves

to an independent identically distributed sampling and the one-jump counting process

case. Let N(t) = (N1(t), ..., Nn(t)) be an n-dimensional collection of n one-jump counting

processes with respect to an increasing, right-continuous, complete filtration Ft ∈ [0, T ];

that is, N is adapted to the filtration and has components Ni taking values in {0, 1},
indicating, by the value 1, whether or not an observed jump has been registered for the i

th individual. The Ni’s are right-continuous step functions, zero at time zero, with jumps of

size one. The variable Ni(t) records the number of observed failures for the i’th individual

during the time interval [0, t] and is defined over the whole period [0, T ], where T is finite.

Suppose that Ni has predictable intensity (see Andersen et al., 1993),

λi(t)dt = E{dNi(t)|Ft−} = α{Xi(t); θ0}g{Zi(t)}Yi(t)dt (8)

where Yi is a predictable process taking values in {0, 1} indicating, by the value 1, when the

ith individual is at risk, whereas Xi is a dx dimensional and Zi a dz dimensional predictable

covariate process with support in some compact set X ⊆ Rdx and Z ⊆ Rdz , respectively.

We assume that the stochastic processes (N1, X1, Z1, Y1), ..., (Nn, Xn, Zn, Yn) are inde-

pendent and identically distributed for the n individuals. Let

Ft,i = σ{Ni(u), Xi(u), Zi(u);u 6 t} and Ft = ∨ni=1Ft,i . It follows that λi is predictable

with respect to Ft,i and hence Ft, and the processes Mi(t) = Ni(t)−Λi(t), i = 1, ..., n, with

compensators Λi(t) =
∫ t

0
λi(u)du, are square integrable martingales with respect to Ft,i on

the time interval [0, T ]. Hence, Λi(t) is the compensator of Ni(t) with respect to both the

filtration Ft,i and the filtration Ft.
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4 Definition of the estimators of θ and g

4.1 Three-step approach

To estimate θ we use a semiparametric profile likelihood method. In general (i.e. in paramet-

ric models) profile likelihood estimation allows the researcher to “profile out” the nuisance

parameter, i.e. not the parameter that is of primary interest. In essence, one evaluates

the likelihood function for the parameter of interest at all values for the nuisance param-

eter (i.e. the likelihood function depends on the nuisance parameter as if it were known).

This has the advantage of being able to construct confidence intervals for the parameter

of interest without needing to construct confidence intervals for the nuisance parameter.

Semiparametric profile likelihood estimation allows efficient estimation (i.e. the usual
√
n

rate of convergence) under some restrictions on the bandwidth b (see for example Davison,

2002). For expositional reasons we follow the notation of Nielsen, Linton and Bickel (1998)

as closely as possible. This implies formulating the procedure via a Nadaraya-Watson type

estimator, which we call the local constant estimator. The approach immediately gener-

alises to the notationally slightly more burdensome local linear approach. The finite sample

analyses in our paper illustrates that the local linear methodology performs on average bet-

ter in practice than the local constant approach.

We generalise the approach of Nielsen, Linton and Bickel (1998) for our semiparametric

setting.

Step (i). First, the nonparametric function g is estimated under the assumption that the

true parameter θ is known. This estimator of g depends on θ and on a smoothing parameter

b. We make use of a leave-one-out version denoted by ĝb,θ,−i(z) if the i-th observation is

left out.

Step (ii). Second, we derive the likelihood function for the observable data assuming that

the true g is known. The parameter θ is now estimated from the pseudolikelihood that

arises when g is replaced by ĝθ(z). This estimator depends on a value b1 of the bandwith

b and we therefore denote the estimator by θ̂b1 .

Step (iii). The final estimator of g is now calculated by assuming that θ̂ is the true parameter

and by using kernel smoothing using a bandwidth b2. Therefore, the final estimator of g is

of the form ĝb2,θ̂b1
(z).

The two bandwidth vectors b1 and b2 should be not chosen identically. In order to

obtain an asymptotically unbiased estimator of θ we need an undersmoothing bandwidth

b1. Thus b1 should be of smaller order than b2. In our empirical application, we will choose

the tuple (b1, b2) jointly data-adaptively such that an overall cross-validation criterion is

minimised; see Subsection B.2 in the appendix.
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4.2 Definition of ĝθ

In this subsection we present the local constant estimator of the nonparametric function

g. For any value of θ, we use the following leave-one-out procedure:

ĝb,θ,−i(z) =

∑
j 6=i
∫
Kb{z − Zj(u)}dNj(u)∑

j 6=i
∫
Kb{z − Zj(u)}α{Xj(u); θ}Yj(u)du

,

where K is a multivariate kernel function with Kb(·) = b−1
prodK(B−1·) for any multivariate

b = (b0
1, ..., b

0
dz

)T . Here, B is the diagonal matrix with diagonal entries b0
1, ..., b

0
dz

and bprod =

b0
1 · ... · b0

dz
. We will not always indicate dependence on the bandwidth b and write ĝθ,−i(z)

instead of ĝb,θ,−i(z). Under our regularity conditions, we have that ĝθ,−i(z)− ĝθ(z) = oP (1),

uniformly in θ, i and z, where

ĝθ(z) = ĝb,θ(z) =

∑n
j=1

∫
Kb{z − Zj(u)}dNj(u)∑n

j=1

∫
Kb{z − Zj(u)}α{Xj(u); θ}Yj(u)du

.

Furthermore, ĝθ0 consistently estimates g(z) (see Nielsen and Linton, 1995), and, away

from the true parameter value,

ĝθ(z)→p gθ(z) ≡ g(z)eθ0(z)

eθ(z)
, (9)

where eθ(z) =
∫
α{x; θ}fu(x, z)y(u)du dx with y(u) = P (Yi(u) = 1). Let

g∗θ,−i(z) =

∑
j 6=i
∫
Kb{z − Zj(u)}λj(u)du∑

j 6=i
∫
Kb{z − Zj(u)}α{Xj(u); θ}Yj(u)du

(10)

and note that

ĝθ,−i(z)− g∗θ,−i(z) =

∑
j 6=i
∫
Kb{z − Zj(u)}dMj(u)∑

j 6=i
∫
Kb{z − Zj(u)}α{Xj(u); θ}Yj(u)du

. (11)

As we show below, this quantity can be analyzed by martingale methods. We call g∗θ,−i(z)−
gθ,−i(z) the stable and ĝθ,−i(z)− g∗θ,−i(z) the variable part of ĝθ,−i(z).

4.3 Definition of θ̂

In this subsection we present the expression for the estimator θ̂ of the parameter θ. We

use maximum likelihood. The standard (conditional on Y,X and Z) log-likelihood for a

counting process is
∑n

i=1

∫
lnλi(u)dNi(u) −

∑n
i=1 λi(u)du (see Aalen, 1978). If g(z) were

known, we would maximise the following likelihood function over θ

`(θ) =
n∑
n=1

∫
µθ{Xi(u), Zi(u)}dNi(u)−

n∑
n=1

∫
exp[µθ{Xi(u), Zi(u)}]Yi(u)du (12)
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where µθ(x, z) = ln[α(x; θ)g(z)] is the logarithmic hazard. Consequently, the maximum

likelihood estimator for θ given known g (denoted as θ̂g) is given by

θ̂g = arg max
θ

n∑
n=1

∫
µθ{Xi(u), Zi(u)}dNi(u)−

n∑
n=1

∫
exp[µθ{Xi(u), Zi(u))}]Yi(u)du (13)

Since g(z) is not known, we substitute µ̂θ,−i(x, z) for µθ(x, z) where µ̂θ,−i(x, z) =

ln[α(x; θ)ĝθ,−i(z)]:

ˆ̀(θ) =
n∑
n=1

∫
µ̂θ,−i{Xi(u), Zi(u)}dNi(u)−

n∑
n=1

∫
exp[µ̂θ,−i{Xi(u), Zi(u)}]Yi(u)du. (14)

The pseudo-maximum likelihood estimator θ̂ is defined as

θ̂ = arg max
θ∈N0

ˆ̀(θ). (15)

Here, N0 is a fixed compact subset of Θ having θ0 as an interior point.

5 Asymptotic distribution theory

We will show that Qn(θ) = n−1{ˆ̀(θ) − ˆ̀(θ0)} converges in probability, uniformly in a

neighborhood N0 of θ0, to a nonrandom function Q(θ) that is uniquely maximised at θ0.

In fact, we will first show that Qn(θ) can be approximated by Qn(θ) = n−1{`(θ)− `(θ0)},
where

`(θ) =
n∑
i=1

∫
µθ{Xi(u), Zi(u)}dNi(u)−

n∑
i=1

∫
exp[µθ{Xi(u), Zi(u)}]Yi(u)du (16)

with µθ(x, z) = ln[α(x, θ)gθ(z)]. We show in the appendix that Qn(θ) approaches

Q(θ) =

∫ ∫ [
ln

{
α(x; θ)eθ0(z)

α(x; θ0)eθ(z)

}
− α(x, θ)eθ0(z)

α(x; θ0)eθ(z)
+ 1

]
α(x; θ)fu(x, z)y(u)du dz, (17)

in probability, uniformly over any compact neighborhood of θ0. This will imply consistency

of θ̂.

In a next step we will show asymptotic normality of θ̂. Let ŝθ (the score vector) and

Ĥθθ (the Hessian matrix) be the first and second derivatives of the pseudolikelihood ˆ̀

standardised by sample size:
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ŝθ(θ) =
1

n

n∑
i=1

∫
∂µ̂θ,−i
∂θ
{Xi(u), Zi(u)}dNi(u) (18)

− 1

n

n∑
i=1

∫
∂µ̂θ,−i
∂θ
{Xi(u), Zi(u)}α{Xi(u); θ}ĝθ,−i{Zi(u)}Yi(u)du,

Ĥθθ(θ) = n−1

n∑
i=1

∫
∂2µ̂θ,−i
∂θ∂θT

{Xi(u), Zi(u)}dNi(u)

−n−1

n∑
i=1

∫ {
∂2µ̂θ,−i
∂θ∂θT

+
∂µ̂θ,−i
∂θ

∂µ̂θ,−i
∂θT

}{Xi(u), Zi(u)}α{Xi(t); θ}ĝθ,−i{Zi(t)}Yi(u)du.

By the mean value theorem

0 = n1/2ŝθ(θ0) + Ĥθθ(θ̆)n
1/2(θ̂ − θ0), (19)

where θ̆ lies between θ0 and θ̂. We first analyze the pseudoscore vector evaluated at the

true θ0, using (18) with θ = θ0

ŝθ(θ0) =
1

n

n∑
i=1

∫
∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}dMi(u) +
1

n

n∑
i=1

∫
∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}dΛi(u)

− 1

n

n∑
i=1

∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}α{Xi(u); θ0}g{Zi(u)}Yi(u)du (20)

− 1

n

n∑
i=1

∫
∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}α{Xi(u); θ0} [ĝθ0,−i{Zi(u)} − g{Zi(u)}]Yi(u)du.

Here we have substituted N by M + Λ and ĝθ0,−i by g + ĝθ0,−i − g. By the definition of

Λi, we find that the second and third term on the right hand side of (20) cancel. We then

break ĝθ0,−i−g into stable and variable terms. Using the decomposition (11), we find, after

interchanging the order of summation and integration, that

n∑
i=1

∫
∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}α{Xi(u); θ0}{ĝθ0,−i − g∗θ0,−i}{Zi(u)}Yi(u)du

=
n∑
i=1

∫
∂µ̂∗θ0,−i
∂θ

{Zi(u)}dMi(u),

where

∂µ̂∗θ0,−i
∂θ

{Zi(u)} =
n∑
j 6=i

∫
(∂µ̂θ0,−j/∂θ){Xj(t), Zj(t)}α{Xj(t); θ0}Yj(t)Kb{Zj(t)− Zi(u)}∑

k 6=j
∫
Kb{Zj(t)− Zk(r)}α{Xk(r); θ0}Yk(r)dr

dt.

12



Now substitute ∂µθ0/∂θ + ∂ ln ĝθ0,−i/∂θ − ∂ ln gθ0,−i/∂θ for ∂µ̂θ0,−i/∂θ in the first term

on the right hand side of (20). Collecting everything together we obtain that

ŝθ(θ0) = n−1

n∑
i=1

∫
∂µθ0,−i
∂θ

{Xi(u), Zi(u)}dMi(u) (21)

−n−1

n∑
i=1

∫
∂µ̂∗θ0,−i
∂θ

{Zi(u)}dMi(u)

+n−1

n∑
i=1

∫ {
∂ ln ĝθ0,−i

∂θ
− ∂ ln gθ0

∂θ

}
{Xi(u)}dMi(u)

−n−1

n∑
i=1

∫
∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}α{Xi(u); θ0}{g∗θ0,−i − g}{Zi(u)}Yi(u)du.

We have written ŝθ as a sum of four terms: the last term is a stochastic average of

g∗θ0,−i − g that arises from the bias obtained in the estimation of g: it is asymptotically

negligible if a sufficiently small bandwidth is chosen. Undersmoothing is necessary in many

semiparametric estimation problems; see Bickel et al. (1993) for a discussion. In the ap-

pendix we will show that the second and third term on the right hand side of (21) are also

op(n
−1/2). Because the integrands converge to zero, in probability, this would immediately

follow if the integrands are predictable. But the latter is not the case, and therefore the

formal proof is more complicated (see the appendix). The proof makes use of the approach

to the predictability issue developed in Mammen and Nielsen (2007). We have that

n1/2ŝθ(θ0) = n1/2seθ(θ0) + op(1), where (22)

seθ(θ0) = n−1

n∑
i=1

∫
∂µθ0
∂θ
{Xi(u), Zi(u)}dMi(u).

since ∂ lnµθ{Xi(u), Zi(u)}/∂θ is a predictable process, we can apply Rebolledo’s martingale

central limit theorem to seθ(θ0) and we get that

n1/2seθ(θ0)→ N(0, I0), in distribution, (23)

where

I0 =

∫ ∫
∂µθ0
∂θ

∂µθ0
∂θT

(x, z)α(x, θ0)g(z)fu(x, z)y(u)du dz

with
∂µθ0
∂θ

(x, z) =
∂ lnα

∂θ
(x, θ0)− ∂ ln eθ0

∂θ
(z).

In the appendix, we also show that the Hessian matrix Ĥθθ(θ) satisfies

sup
θ∈Nn
|Ĥθθ(θ)− I0| →p 0, (24)

13



for Nn = {θ : |θ− θ0| ≤ δn}δn → 0 is a shrinking neighborhood of θ0. In conclusion, we get

from (19), (22), (23) and (24) that n1/2(θ̂ − θ0)→ N(0, I−1
0 ), in distribution.

The following theorem summarises our discussion. The assumptions and the proof of

the theorem are in the appendix.

Theorem 1. (i) Make the assumptions (A1)–(A4). With probability tending to one,

there exists a maximiser θ̂ in (15). All (measurable) choices of the maximiser re-

sult in a consistent estimator: θ̂
p→ θ0.

(ii) Make the additional assumptions (A5)–(A8). Then

n1/2(θ̂ − θ0)
d→ N(0, I−1

0 ). (25)

(iii) The asymptotic covariance matrix I−1
0 is consistently estimated by Ĥ−1

θθ (θ̂).

We now argue that our estimator achieves the semiparametric efficiency bound. For

this purpose consider the following parametric specification of the hazard function:

λi(t; θ) = α{Xi(t); θ}gθ{Zi(t)}Yi(t). (26)

The pseudo-maximum likelihood estimator in the model is given as maximiser θ of the

likelihood function `(θ). By classical theory one gets that

n1/2(θ − θ0) = I−1
0 n−1/2

n∑
i=1

∫
∂µθ0
∂θ
{Xi(u), Zi(u)}dMi(u) + oP (1).

Thus, θ has the same asymptotic limit distribution as θ̂ and the specification (26) is the

hardest parametric submodel of our semiparametric model. In particular, we get that I0

is the semiparametric information matrix.

In our simulations and in our empirical application we also use a local linear estimator

of the functions gθ. It can be shown that this also leads to efficient estimation of θ.

In the final estimation step an estimator of g is calculated. This can be done by ĝb∗,θ̂(z)

where θ̂ is plugged in for the parameter θ. As discussed above, the bandwidth vector b∗

should differ from b. We also consider a local linear estimator ĝLL
b∗,θ̂

(z). For a definition of

ĝLL
b∗,θ̂

(z) see Appendix B.1.

Corollary 1. Suppose that assumptions (A1)-(A8) hold, and that n1/5b∗ converges to a

limit 0 ≤ γ <∞. Then

n2/5{ĝb∗,θ̂(z)− g(z)} → N(β(z), ν(z)),

n2/5{ĝLL
b∗,θ̂

(z)− g(z)} → N(βLL(z), ν(z)),
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where

β(z) =
γ2

2
µ2(K)

{
2
∂g

∂z
(z)

∂ ln eθ0
∂z

(z) +
∂2g

∂z2
(z)

}
,

βLL(z) =
γ2

2
µ2(K)

∂2g

∂z2
(z),

ν(z) = γ−1||K||2 g(z)

eθ0(z)

with µ2(K) =
∫
K(t)2dt. Furthermore,

ν̂(z) =
nb∗
∑

i=1

∫
Kb∗{z − Zi(u)}2dNi(u)

[Kb∗{z − Zi(u)}α{Xi(u); θ̂}Yi(u)du]2

is a consistent estimator of ν(z), i.e.

ν̂(z)→p ν(z).

6 Simulation study

To study the performance of our estimator, we simulate data from the following models:

Model 1: λ(t) = exp{θt}γ × z(1− z),

Model 2: λ(t) = γθtθ−1 exp

{
−1

2
cos(2πz)− 3

2

}
,

Model 3: λ(t) = exp{θt} exp

{
−1

2
cos(2πz)− 3

2

}
,

Model 4: λ(t) = tθ−1(1− t)z(1− z). (27)

with θ = 1.5 and γ = 1. The two-dimensional hazards as functions of t and z are shown in

Figure 1.

We report the estimation results from 100 simulated samples using a discretised version

of the local constant estimator and the local linear estimator (see Subsection B.3 in the

appendix). We simulate on a grid R × R′ with size 100 × 100 (i.e., R = 100, R′ = 100)

which seems sufficient for our purposes. The sample size is either n = 10000 or n = 5000

observations. Our estimator is evaluated along three dimensions: (1) bandwidth selec-

tion: We evaluate whether feasible bandwidth selection methods work to choose the two

bandwidths b1 and b2, (2) parameter estimate: we compare the true parameter θ with its

estimate, and (3) Integrated Squared Error (ISE): we evaluate the integrated squared

error of our estimator of the function g. Table 1 reports the results for the cross-validated
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Figure 1: The two-dimensional hazard functions of Models 1–4, see (27).
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Figure 2: The empirical distributions for the ISE with an optimally chosen b1 (solid line

and dashed line) and with a fixed b1 (the dotted line and the dot-dash line, for the local

constant and the local linear estimator, respectively.)

bandwidths, the ISE bandwidths and the resulting parameter estimates in terms of the

average absolute deviation from the true parameter. In general, the estimator performs

well regardless of the true form of the hazard and independent of whether we use the ISE

bandwidths or the bandwidths selected by minimising the cross-validation criterion. The

parameter is estimated with precision, regardless of the method, and the parameter esti-

mates are in general not sensitive to bandwidth choice. It seems that the local constant is

as good or even better as the local linear estimator for estimating the parameter, although

the differences are small. Overall, the local linear estimator performs slightly better than

the local constant estimator (in terms of the distribution of the ISE), which suggests that

the local linear is better suited to capture the nonparametric function, which is not a sur-

prising result, considering the well-known shortcomings of the local constant estimator in

boundary regions.

In almost all cases, the standard errors on b1 are rather large, at least compared with

the standard errors on b2. This result reflects how little the parameter estimate depends

on the bandwidth choice. This suggests that applied researchers might find it practical to

fix b1 to be very small and only consider different bandwidths for b2. To illustrate this, we
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calculated the ISE for 100 samples for the case where we fix b1 at the smallest bandwidth.

In Figure 2 we plot the empirical distribution of the ISE for both when b1 is fixed and

when b1 is optimally chosen. When comparing the two curves it is clear that (at least in

this case) fixing b1 does not lead to a strong decrease in performance.

Figure 3 visualizes the empirical distribution of the integrated squared error for all 100

samples, for both sample sizes and the two different estimators and for all four models.

In general, the local linear estimator performs better than the local constant estimator.

Increasing the sample size leads on average to a reduction of the ISE and a reduction in the

variance of the distribution of the ISE. However, while we can retrieve the parameter with

relative precision, cross-validation tends towards undersmoothing in many of the cases that

were considered. While this is not surprising, better feasible bandwidth selection methods,

such as “do-validation” (Gámiz Pérez et al., 2013) might improve performance.

We also compare the ISE for the nonparametric local constant and local linear esti-

mators to the ISE for our semiparametric estimator. In our simulation setting, the former

estimators target a function that has a dimensionality that exceeds the dimensionality of

the function g with one. We find that if the semiparametric model is true, then - unsupris-

ingly - it improves estimation accuracy enormously to impose this semiparametric structure

from the outset rather than using a fully nonparametric approach. In all cases, local linear

estimation performs significantly better than local constant estimation, irrespectively of

whether a semiparametric or a nonparametric is considered. These results are unsurprising

and the results are not listed here; however, they do provide us with a helpful sanity check

of the estimation and modelling approach of this paper.

7 Empirical application: the effect of birth weight on

later-life mortality

7.1 The Uppsala Birth Cohort Study data

The Uppsala Birth Cohort Study is a lifelong follow-up study of birth cohorts of individuals

born in Uppsala in 1915–1929.2 Information on early-life characteristics of these newborns

and social characteristics of their parents was retrieved from the neonatal register of the

hospital in Uppsala. Mortality is observed from parish records and national death registers.

Loss of follow-up due to emigration is observed from censuses (starting with the 1960

census), routine administrative registers (starting in 1961 or later), and archives. In the

data at our disposal, individuals are followed over time up to the end of 2002, so that the

2Rajaleid, Manor and Koupil (2008) demonstrate that it is representative of birth cohorts in Sweden

in the years 1915–1929.
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Integrated Squared Error

Model n Bandwidths Parameter, e

LC LL LC LL

b1 b2 b1 b2

1
10000 0.3084 (0.1709) 0.078 (0.0126) 0.2244 (0.2269) 0.1476 (0.0179) 0.011 0.031

5000 0.2872 (0.1858) 0.0872 (0.0126) 0.1688 (0.1985) 0.1674 (0.0237) 0.02 0.035

2
10000 0.1044 (0.1701) 0.1346 (0.0249) 0.1024 (0.1761) 0.1398 (0.0244) 0.01 0.01

5000 0.0418 (0.1082) 0.1466 (0.0246) 0.0456 (0.1214) 0.1448 (0.0254) 0.027 0.027

3
10000 0.4049 (0.0998) 0.1235 (0.016) 0.4571 (0.0974) 0.1305 (0.0147) 0.014 0.022

5000 0.325 (0.1888) 0.1314 (0.0266) 0.3474 (0.1965) 0.1432 (0.0264) 0.015 0.023

4
10000 0.1642 (0.2643) 0.1628 (0.0258) 0.15 (0.2373) 0.2468 (0.0357) 0.03 0.03

5000 0.136 (0.1839) 0.1684 (0.038) 0.1302 (0.1703) 0.2354 (0.0495) 0.054 0.054

Cross-Validation

Model n Bandwidths Parameter, e

LC LL LC LL

b1 b2 b1 b2

1
10000 0.177 (0.1554) 0.026 (0.0117) 0.276 (0.225) 0.029 (0.0164) 0.028 0.03

5000 0.104 (0.1159) 0.021(0.0034) 0.19 (0.2028) 0.021 (0.0052) 0.038 0.039

2
10000 0.035 (0.0643) 0.022 (0.0095) 0.036 (0.0727) 0.022 (0.0095) 0.011 0.011

5000 0.193 (0.2427) 0.021 (0.0001) 0.691 (0.0192) 0.626 (0.009) 0.031 0.034

3
10000 0.182 (0.1505) 0.038 (0.0154) 0.213 (0.1792) 0.039 (0.0154) 0.036 0.036

5000 0.171 (0.1577) 0.032 (0.0061) 0.202 (0.1946) 0.032 (0.0064) 0.033 0.033

4
10000 0.092 (0.1809) 0.032 (0.006) 0.082 (0.1692) 0.032 (0.0058) 0.031 0.031

5000 0.101 (0.1508) 0.031 (0.0044) 0.098 (0.1469) 0.031 (0.0039) 0.055 0.055

Table 1: Simulation results for the models in equation (27), with θ0 = 1.5 as the true

parameter, for two different sample sizes (5000, 10000). The numbers are averages over

100 simulated samples. The upper panel shows the results for bandwidths chosen by the

infeasible strategy of minimizing the ISE. b1 and b2 refer to the two associated bandwidths.

Standard errors are in parentheses. The lower panel shows the results for bandwidths chosen

by the feasible bandwidth selection criterion of minimizing the cross-validation score (CV).

LC and LL refer to the use of the local constant and the local linear estimator, respectively.

In the last column, the parameter estimate is reported in terms of the average of the

estimation error e = abs(θ̂b1 − θ0) over 100 samples.
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Figure 3: The smoothed distribution of the integrated squared error over 100 samples. The

solid line represents the local constant estimator with n = 10000, the dashed line represents

the local linear estimator with n = 10000. The dotted line represents the local constant

estimator with n = 5000 and the dot-dash line represents the local linear estimator with

n = 5000.
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highest observed death age is 87. Leon et al. (1998) and Rajaleid, Manor and Koupil (2008)

provide detailed descriptions of the data.

The birth and death dates and the resulting individual lifetime durations are observed

in days. Not all variables are observed for all of individuals, but birth date, lifetime duration

(or time until loss of follow-up) and birth weight are observed for virtually every individual.

We omit all individuals who were stillborn or died within one day. This leads to a sample

size of 13668 individuals.

Birth weight was recorded in grams. We trim the data by discarding 2 observations

with birth weight below 1000 g and 27 observations with birth weight above 5000 g. For 13

of the remaining individuals, birth weight is not observed. This leads to the final sample

size of n = 13639 individuals. The socio-economic status or social class at birth is a

grouped hierarchically ordered version of the Swedish SEI code which in turn is based on

the occupation of the main breadwinner in the household. The values run from 1 (highest

class) to 7.

In the sample, 50% are observed to die before 2002 and 50% have right-censored lifetime

durations (almost all of the latter are still alive at the end of 2002). Table 2 gives some

sample statistics of the main variables that were made accessible for our study.

To interpret the results it is useful to emphasise that living conditions in Sweden in the

birth years 1915–1929 were relatively good in comparison to most other countries at the

time and in comparison to many developing countries today. Life expectancy was among

the highest in the world, and infant mortality among the lowest (around 5%). The public

health care system was modern, with institutionalised maternal and child health care in

urban areas. At the time of birth, most individuals in our data resided in or around the

city of Uppsala. In the years 1915–1929, the population of the city of Uppsala was stable

at the level of around 30,000 inhabitants. The two largest sectors in the city’s labor market

were manufacturing and trade, occupying 45% and 25% of the workforce, respectively.

Electricity was available everywhere. Lobell, Schön and Krantz (2007) provide details of

the Swedish economy in these years and the surrounding decades. National Central Bureau

of Statistics (1969) provide detailed descriptions of demographic developments. Sundin

and Willner (2007) contains a detailed history of public health in Sweden. Modin (2002)

describes local conditions in Uppsala around the 1920s. Notice that contemporary birth

weight values are in the same ball park as those in the data.

The data have been used by a number of studies on long-run effects of birth weight.

All of these estimate Cox Proportional Hazard models with partial likelihood. Leon et al.

(1998) and Rajaleid, Manor and Koupil (2008) use discrete birth weight indicators based

on a small number of weight intervals. van den Berg and Modin (2013) assume that the

log cardiovascular mortality rate is a linear function of the log birth weight.
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variable 10th mean 90th

percentile perc.

right-censored durations 0.50

duration (years) if uncensored 0.9 54.6 80.0

duration (years) if censored 73.7 77.6 84.6

birth weight (grams) 2750 3416 4080

birth year 1916 1922.6 1928

social class at birth (1 to 7: high to low) 2 4.2 6

male 0.52

male birth weight 2810 3478 4140

female birth weight 2700 3349 4000

Table 2: Summary statistics of the sample

7.2 Model specification and results

As a parametric baseline function we choose the Gompertz function that has been shown to

accurately model the age dependence of mortality for the ages covered by our observation

window (up to age 87). Specifically,

λ(t) = exp{θt}g(z) (28)

with z being the birth weight. In model extensions we allow θ to vary with other covariates

x (see below).

We discretise the time dimension in 150 intervals and the covariate in 100 intervals

(R = 150, R′ = 100). We use the Epanechnikov Kernel given by K(u) = 3
4
(1−u2)I|u≤1|. As

a robustness check we also use the kernel used in Nielsen and Tanggaard (2001), but the

choice of kernel does not alter our results in any substantial way. The confidence intervals

are calculated using the bootstrap procedure for kernel hazard estimators introduced by

Fledelius et al. (2004).

The estimate of the shape parameter θ is practically unaffected by the bandwidth

choice. The first line of Table 3 gives estimates for the local linear estimator.

Figure 4 shows the estimates of the nonparametric function g, using the local linear

estimator. The confidence bands are calculated using the bootstrap method of Fledelius

et al. (2004). The x-axis depicts birth weight and the y-axis shows the estimated values of

the nonparametric part of the hazard function. The estimated function varies over z in an
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inverted J- or a U-shape, indicating that mortality risk decreases as birth weight increases

and then increases again at very high birth weights. The results can be interpreted in the

following way: In relation to an infant born in the optimal birth weight range of about

3000-3500g, the relative risk is about 21
2

as high as for an infant born with 1000g and 11
2

times as high as for an infant born weighting 5000g.

The local constant estimator does not perform satisfactorily. Specifically, it loses struc-

ture very quickly and becomes flat when the bandwidth is increased. This did not occur

in the simulations and may be due to the scarcity of observations in the boundary regions

in the application (we use a rescaled covariate z to lie on the unit interval [0, 1], according

to the formula zu = (z − zmin)/(zmax − zmin)). Using a local linear framework is therefore

strictly preferred.

The association between birth weight and mortality at low ages may be strongly affected

by medical interventions in the first years of life. In contrast, at higher ages, biological

mechanisms may drive the association. At the same time, survival up to late adulthood

means survival into the 1960s and beyond, allowing the individual to benefit from medical

innovations in the mid 20th century. A single function g is not necessarily able to fit such

widely differing explanations. It is therefore interesting to see whether the estimated g

changes if we truncate longevity from below at, say, age 40. Figure 7 plots the shape

of g for that case. The results do not fundamentally differ from those in Figure 4. The

mortality rate at very low birth weights is now point-estimated to be lower. This may be

due to improvements in medical technology in the mid 20th century. Alternatively, dynamic

selection may cause the frailest individuals among those with low birth weight to have died

before age 40, causing an attenuation of the association beyond age 40. The “dynamic

selection” explanation is at odds with the model that does not allow for systematic ex ante

unobserved heterogeneity. However, note that the truncation of low longevities does not in

fact entail the kind of simple attenuation of birth weight effects that one may expect to

observe in case of dynamic selection. Specifically, the point estimate for the “optimal birth

weight” shifts slightly to the right and lies now at about 4000g. In any case, whatever the

differences between Figures 4 and 7, one should keep in mind that the confidence bands in

Figure 7 are wider than in Figure 4, especially at extreme birth weight values.

7.3 Comparison to a parametric specification for g

To compare the performance of the estimator with a parametric specification, we replace

the nonparametric function g with a quadratic polynomial,

g(z; β) = exp{β0 + β1z + β2z
2} (29)

The parameters β0, β1 and β2 are estimated with maximum likelihood. The estimates
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Figure 4: Estimation results for g using the

local linear estimator. The y-axis reports the

estimated hazard, the x-axis depicts birth

weights.
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Figure 5: Estimated parametric covariate

hazard function.
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Figure 6: The estimated nonparametric

function with social class contained in the

covariate vector, included in the baseline

hazard, full range of birth weights.
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Figure 7: The estimated g when us-

ing a truncated sample of individuals with

longevity exceeding age 40.
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θ̂1 θ̂2

Semiparametric Model (only θ2) – 0.000096 (0.000000000003)

Semiparametric Model 0.041 (0.000042) 0.00095 (0.000000003)

Parametric Model 0.042 (0.0000048) 0.00095 (0.0000000003)

Men 0.04 (0.000007) 0.0001 (0.000000000005)

Women 0.036 (0.0001) 0.001 (0.00000000008)

Table 3: Parameter estimates for θ1 and θ2 in a model with parental social class at birth,

standard errors are shown in parentheses.

(standard errors) for β1 and β2 are: −4.64(0.65) and 3.98(0.44), respectively. Further, θ̂ =

9.56e− 05(2.67e− 12), which is very close to what we find in the semiparametric analysis.

The results are shown in Figure 5. While the differences are not large, the parametric

analysis overestimates the mortality risk at high birth weights. The larger point is, of

course, that it is not possible, ex-ante, to know the exact parametric form of the hazard.

One may argue that the inclusion of z2 as a covariate in the parametric g(z; β) in (29)

is likely to lead to a bad fit at very high values of z. As an alternative, we replace z and

z2 in g(z; β) by log z and (log z)2. However, it turns out that the estimation results do not

add new insights to those above.

7.4 Including additional covariates

Social class at birth. Our approach allows us to extend the vector X(t) to include

more covariates than just time t. As mentioned above, it is important to avoid omitted

covariates in order to prevent unobserved heterogeneity bias. To proceed, we parameterise

our parametric function as αθ(X(t)) = exp{θ1X
d + θ2t}, where Xd denotes parental social

class at the birth of the individual. The relevant estimation results are depicted in Figure 6.

The shape of the estimated risk is not materially different from the estimate ignoring social

class. The parameter estimates are reported in the first line in Table 3. Belonging to a lower

social class increases mortality hazard. For a fully parametric model the results are in row

2 in Table 3. The parameter estimates are very similar to those for our semiparametric

model.

25



1000 2000 3000 4000 5000

0.
00

5
0.

01
0

0.
01

5
0.

02
0

Birthweight

H
az

ar
d

Males.

1000 2000 3000 4000 5000

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

0.
01

6
Birthweight

H
az

ar
d

Females.

Figure 8: Semiparametric estimation results for g using the local linear estimator, con-

trolling for social class at birth and stratified by gender.

Stratifying by gender. Gender is known to have a large effect on mortality. We stratify

our empirical analysis by gender and estimate the impact of birth weight, age and social

class separately for men and women. The parameter estimates are shown in Table 3. The

estimates for the impact of social class (θ1) do not differ substantially between men and

women, whereas the age dependence estimate (θ2) is larger for men than for women. For

birth weight, the effects differ by gender; see Figure 8. The left panel depicts the effect for

men and the right panel for women. The increased risk at high birth weight is much more

pronounced for men than for women. Apparently, birth weights above 4000g present a risk

factor for men but not for women.

8 Conclusion

In the paper we specify a very general class of semiparametric survival models and we

develop an estimation technique for these models. The class of models includes models in

which the hazard rate is a nonparametric function of covariates. We argue that our paper

serves a need for estimation methods for such models, since they cannot be recast in the

Cox model. Indeed, our class of models is more general than other semiparametric model
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classes studied in the literature. We prove that our estimator is consistent and efficient. In

simulations we show that our estimator performs well with sample sizes that are common

in epidemiology and econometrics. In the estimation procedure, we recommend to use local

linear kernel estimation for the nonparametric function of the covariates.

We apply the estimator to study the association between birth weight and late-life mor-

tality, which is seen as an issue of great interest due to its relevance for the “developmental

origins” theory of late-life health. This application allows us to assess the performance

of the estimator under realistic empirical conditions, with a sample size of about 13,000

individuals of which about half have right-censored lifetimes. We find a nonmonotonic rela-

tionship. This is preserved if we control for social class at birth. The relationship cannot be

captured with a simple parametric polynomial, confirming the usefulness of our approach.

Separate analyses by gender show that the nonmonotonicity is mostly due to an increased

later-life mortality risk for men with high birth weight.

The application very much focuses on the flexible estimation of covariate effects. We

should point out that our approach is also useful if one aims to estimate a parametric part

of the hazard rate in the presence of some covariates whose effects cannot be captured

parametrically because there is insufficient prior knowledge on their functional form. The

effects of such covariates are then nuisance functions, but they nevertheless need to be

taken into account when estimating the parameters of interest. Our approach deals with

that.

As an obvious topic for further research one may consider the inclusion of unobserved

heterogeneity or frailty terms in the individual hazard rates. This is potentially important

because a model specification with many covariates leads to a curse of dimensionality, while

at the same time the omission of covariates without controlling for unobserved heterogene-

ity may lead to biased inference. A different but related topic for further research may

be to reduce the dimensionality of the model by assuming a single-index structure for the

parametric part of the hazard rate as a function of covariates and markers.
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Appendix A Technical Appendix

A.1 Assumptions

We make use of the following assumptions:

(A1) For 0 ≤ t ≤ 1 it holds that Pr{Zi(t) ∈ Z} = 1 and Pr{Xi(t) ∈ X1 × X2} = 1 for

compact subsets Z, X1 of Rdz or Rd1x , respectively, and for a finite set X2 ⊂ Rd2x with

dz ≥ 1 , d1
x, d

2
x ≥ 0 and dx := d1

x+d2
x ≥ 1. The sets Z, X1 and X2 do not depend on t.

The covariate vector (Xi(t), Zi(t)) has a density ft(x, z) with respect to ν = νx × νz
where νz is the Lebesgue measure on Rdz and νx is a product of a d2

x-dimensional

Lebesgue measure and the counting measure on X1. For a neighborhood N0 of θ0 we

assume that for fixed x2 the functions g(z), α(x1, x2; θ) and ft(x1, x2, z) are strictly

positive and continuous on Z, X1×N0, and [0, T ]×X1×Z, respectively. Furthermore,

for θ ∈ N0 and z ∈ Z the second derivatives of g(z) and of eθ(z) with respect to z

exist and are continuous in θ and z. For the definition of eθ see equation (9).

(A2) The function α(x; θ) is Lipschitz continuous w.r.t. θ with a Lipschitz constant that

does not depend on x, i.e. there exists a constant C > 0 such that |α(x; θ1) −
α(x; θ2)| ≤ C‖θ1 − θ2‖ for all θ1, θ2 ∈ N0 and x ∈ X1 ×X2.

(A3) The kernel K is a multivariate kernel function K(y) = k(y1) · ... · k(ydz) where k is a

symmetric, Lipschitz continuous probability density function with compact support,

say [−1, 1]. It holds that bmax := max{b0
1, ..., b

0
dz
} → 0 and that (nbprod)

−1(log n)→ 0.

(A4) For all θ ∈ N0 it holds that α(x1, x2; θ)/eθ(z) 6= α(x1, x2; θ0)/eθ0(z) with positive

ν-measure.

(A5) It holds that bmax = o(n−1/4).

(A6) The function α(x; θ) is twice differentiable w.r.t. θ and the derivative is Lipschitz

continuous w.r.t. θ with a Lipschitz constant that does not depend on x, i.e. there

exists a constant C > 0 such that ‖ ∂2

∂θ∂θT
α(x; θ1) − ∂2

∂θ∂θT
α(x; θ2)‖ ≤ C‖θ1 − θ2‖ for

all θ1, θ2 ∈ N0 and x ∈ X1 ×X2.

(A7) The semiparametric information matrix I0 is finite and nonsingular.

(A8) θ0 is an interior point of Θ.
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A.2 Proof of Theorem 1

A.2.1 Proof of (i).

We will show that

sup
θ∈N0

|Qn(θ)−Q(θ)| = oP (1). (30)

We now argue that this implies the claim of (i). Put

dθ(x, z) = (α(x1, x2; θ)eθ0(z))/(α(x1, x2; θ0)eθ(z)).

From (A1) and (A4) we get that ln dθ(x, z)− dθ(x, z) + 1 6= 0 with positive ν-measure for

θ ∈ N0 with θ 6= θ0. Note that ln(x)−x+1 < 0 for x 6= 1. Thus we have that Q(θ) < Q(θ0)

for θ ∈ N0 with θ 6= θ0. Since Q(θ) is continuous in θ we get the statement of (i), see e.g.

Theorem 5.7 in van der Vaart (2000). It remains to show (30). We will show that

sup
θ∈N0

∣∣Qn(θ)−Qn(θ)
∣∣ = oP (1), (31)

sup
θ∈N0

∣∣Qn(θ)−Q(θ)
∣∣ = oP (1). (32)

Claim (32) follows by a uniform law of large numbers. Note that Qn(θ) is an average of

i.i.d. summands that are continuous in θ and uniformly bounded. For the proof of (31) it

suffices to show that

supθ∈N0
n−1

n∑
i=1

∫ [
ln ĝθ,−i{Zi(u)} − ln gθ{Zi(u)}

]
dNi(u)→p 0,

supθ∈N0
n−1

n∑
i=1

∫
α{Xi(u); θ}

[
ĝθ,−i{Zi(u)} − gθ{Zi(u)}

]
Yi(u)du→p 0;

These two claims follow from

sup1≤i≤n,θ∈N0,z∈Z |ĝθ,−i(z)− gθ(z)| = OP ((nbprod)
−1/2(log n)1/2 + bmax) = oP (1),

see Condition (A3). The result on the uniform convergence of ĝθ,−i follows by standard

kernel smoothing theory. One uses that |ĝθ,−i(z)− ĝθ(z)| = OP ((nbprod)
−1), uniformly for

1 ≤ i ≤ n, θ ∈ N0, z ∈ Z. Then one argues that it suffices to prove uniform convergence

over a grid of points θ and z values where the number of grid points increases polynomially.

At this point one uses Lipschitz continuity of the kernel K and α, see (A1) and (A2). Then

one shows uniform convergence over this grid by application of an exponential inequality

for ĝθ,−i(z)− gθ(z). �
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A.2.2 Proof of (ii).

As outlined in Section (5) we have to show (22) and (24). For the proof of (22) it suffices

to show the following claims, see also (21).

n−1/2

n∑
i=1

∫ {
∂µ̂θ0,−i
∂θ

−
∂µθ0
∂θ

}
{Xi(u), Zi(u)}dMi(u) →p 0,(33)

n−1/2

n∑
i=1

∫
∂µ̂∗θ0,−i
∂θ

{Zi(u)}dMi(u) →p 0,(34)

n−1/2

n∑
i=1

∫
∂µ̂θ0,−i
∂θ

{Xi(u), Zi(u)}[α{Xi(u); θ0}(g∗θ0,−i − g){Zi(u)}Yi(u)du →p 0.(35)

Claim (35) follows from supz∈Z,1≤i≤n |(g∗θ0,−i − g)(z)| = OP (b2) = oP (n−1/2), see (A5). For

the proof of (33) we apply the results in Mammen and Nielsen (2007). For the determination

of
∂µ̂θ0,−i
∂θ

(x, z) one has to calculate

v̂θ,−i(z) = n−1
∑
j 6=i

∫
Kb{z − Zj(u)}dNj(u),

ŵ0
θ,−i(z) = n−1

∑
j 6=i

∫
Kb{z − Zj(u)}α{Xj(u); θ}Yj(u)du,

ŵ1
θ,−i(z) = n−1

∑
j 6=i

∫
Kb{z − Zj(u)}∂α

∂θ
{Xj(u); θ}Yj(u)du.

Define
∂µ̂cθ0,−i
∂θ

(x, z) as
∂µ̂θ0,−i
∂θ

(x, z) but with v̂θ,−i(z), ŵ0
θ,−i(z), ŵ1

θ,−i(z) replaced by

v̂cθ,−i(z) = min

{
c−1,max

{
c, n−1

∑
j 6=i

∫
Kb{z − Zj(u)}dNj(u)

}}
,

ŵ0,c
θ,−i(z) = min

{
c−1,max

{
c, n−1

∑
j 6=i

∫
Kb{z − Zj(u)}α{Xj(u); θ}Yj(u)du

}}
,

ŵ1,c
θ,−i(z) = min

{
c−1,max

{
c, n−1

∑
j 6=i

∫
Kb{z − Zj(u)}∂α

∂θ
{Xj(u); θ}Yj(u)du

}}
.

If c > 0 is chosen small enough one can check that v̂cθ,−i(z) = v̂θ,−i(z), ŵ0,c
θ,−i(z) = ŵ0

θ,−i(z),

ŵ1,c
θ,−i(z) = ŵ1

θ,−i(z) for all 1 ≤ i ≤ n, θ ∈ N0 and z ∈ Z, with probability tending to one.

Thus,
∂µ̂cθ0,−i
∂θ

(x, z) =
∂µ̂θ0,−i
∂θ

(x, z) for all z ∈ Z and x ∈ X1 × X2, with probability tending

to one. We now apply Corollary 2 in Mammen and Nielsen (2007) with h
(n)
i {Xi(u), Zi(u)}

equal to the leave-one-out version n−1/2
{
∂µ̂θ0,−i
∂θ
− ∂µθ0

∂θ

}
{Xi(u), Zi(u)} and with h

(n)
i,j in
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this corollary equal to two-leave-out analogues. Then Corollary 2 implies (33) if one verifies

that
n∑
i=1

ρ2
i + n

n∑
i=1

δ2
i → 0, (36)

where ρ2
i = E[

∫
h

(n)
i {Xi(u), Zi(u)}2α{Xi(u); θ}g{Zi(u)} du] and δ2

i = max1≤j≤nE[
∫
{h(n)

i −
h

(n)
i,j }{Xi(u), Zi(u)}2α{Xi(u); θ}g{Zi(u)} du]. Now, (36) can be easily verified because of

max1≤i≤n ρ
2
i = O(n−2b−1

prod) and max1≤i≤n δ
2
i = O(n−3b−1

prod). Thus, we get (33).

For the proof of (22) it remains to check (34). Note first that

n−1/2

n∑
i=1

∫
∂µ∗θ0
∂θ
{Zi(u)}dMi(u) →p 0, (37)

n−1/2

n∑
i=1

∫ {
∂µ̂∗θ0
∂θ
− ∂µ∗θ

∂θ

}
{Zi(u)}dMi(u) →p 0, (38)

where

∂µ∗θ0
∂θ
{Zi(u)} = e−1

θ0
{Zi(u)}

∫
∂µθ0
∂θ
{x, Zi(u)}α{x; θ0)}ft{Zi(u), x}y(t)dt dx. (39)

Since

∂µθ0
∂θ

(x, z) =
∂ lnα

∂θ
(x; θ)− ∂ ln eθ

∂θ
(z),

∂eθ
∂θ

(z) =

∫
∂α

∂θ
(x; θ)f(z, x)y(u)du

we have, on substituting this into (39) and using∫
∂α

∂θ
{Xi(t); θ0}f{Zi(u), Xi(t)}y(t)dt = e−1

θ0

∂eθ0
∂θ
{Zi(u)}

∫
α{Xi(t); θ0}f{Zi(u), Xi(t)}y(t)dt,

that ∂µ∗θ0{Zi(u)}/∂θ = 0 and (37) holds immediately. The final proof of (38) is very similar

to that of (33) above.

For the proof of statement (ii) of the theorem it remains to check (24). We will show the

following expansions for sequences δn with δn → 0. These expansions immediately imply

(24).

sup
|θ−θ0|≤δn

∣∣∣∣Ĥ1(θ) +

∫ ∫
∂µθ
∂θ

∂µθ
∂θT

(x, z)α(x, θ)gθ(z)fu(x, z)y(u)dz dx du

∣∣∣∣ = op(1),(40)

sup
|θ−θ0|≤δn

∣∣∣∣Ĥj(θ)

∣∣∣∣ = op(1), for j = 2, ..., 5 (41)
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where

Ĥ1(θ) = −n−1

n∑
i=1

∫
∂µ̂θ
∂θ

∂µ̂θ
∂θT
{Xi(u), Zi(u)}α{Xi(u); θ}gθ{Zi(u)}Yi(u)du,

Ĥ2(θ) = n−1

n∑
i=1

∫
∂2µ̂θ
∂θ∂θT

{Xi(u), Zi(u)}

×[α{Xi(u); θ0}g{Zi(u) − α{Xi(u); θ}gθ{Zi(u)}]Yi(u)du,

Ĥ3(θ) = n−1

n∑
i=1

∫ [
∂2µ̂θ
∂θ∂θT

− ∂2µ̂θ0
∂θ∂θT

]
{Xi(u), Zi(u)}dMi(u),

Ĥ4(θ) = n−1

n∑
i=1

∫
∂2µ̂θ0
∂θ∂θT

{Xi(u), Zi(u)}dMi(u),

Ĥ5(θ) = −n−1

n∑
i=1

∫ {
∂2µ̂θ
∂θ∂θT

+
∂µ̂θ
∂θ

∂µ̂θ
∂θT

}
{Xi(u), Zi(u)}

×α{Xi(u); θ}{ĝθ − gθ}{Zi(u)}Yi(u)du.

Note that Ĥθθ(θ) =
∑5

j=1 Ĥj(θ). For the proof of (40)–(41) one uses results on the uniform

convergence of ĝθ and its first two partial derivatives w.r.t. θ and uniform laws of large

numbers. Compare also the proof of part (i) of the theorem for the proof of (41) for j = 4.

�

A.2.3 Proof of (iii).

This follows immediately from (24) and the consistency of θ̂. �

A.3 Proof of Corollary 1

The asymptotic distribution of ĝ follows directly from Nielsen, Linton and Bickel (1998).
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Appendix B The local linear estimator and the dis-

cretised estimator

B.1 The local linear estimator

In this subsection we give a definition of the local linear estimator ĝLL
b,θ̂

(z). This estimator

is defined as γ0 where (γ0, γ1) solves

0
!

=
n∑
i=1

T∫
0

(
1

z − Zi(s)

)
αθ(X(s))Kb(z − Zi(s))αθ(X(s))−1dNi(s)

−
n∑
i=1

T∫
0

(
1 z − Zi(s)

z − Zi(s) (z − Zi(s))2

)(
γ0

γ1

)
αθ(X(s))2Kb(z − Zi(s))αθ(X(s))−1Yi(s)ds.

Thus we have that

ĝLL
b,θ̂

(z) =
a22(θ)y1 − a12(θ)y2

a11(θ)a22(θ)− a12(θ)2
(42)

with y1 =
∑n

i=1

∫ T
0
Kb(z−Zi(s))dNi(s)ds, y2 =

∑n
i=1

∫ T
0

(z−Zi(s))Kb(z−Zi(s))dNi(s)ds,

a11(θ) =
∑n

i=1

∫ T
0
Kb(z−Zi(s))αθ(X(s))Yi(s)ds, a12(θ) =

∑n
i=1

∫ T
0

(z−Zi(s))Kb(z−Zi(s))
αθ(X(s))Yi(s)ds, and a22(θ) =

∑n
i=1

∫ T
0

(z − Zi(s))2Kb(z − Zi(s)) αθ(X(s))Yi(s)ds.

B.2 Bandwidth selection: integrated squared error and cross-

validation

Our estimated stochastic hazard depends on two bandwidths b1, b2 that we wish to select

from the data. In the following notation ĝθ is equal to ĝLLθ and

λ̂(s) = αθ̂(Xi(s))ĝθ̂(Zi(s)) (43)

where θ̂ depends on b1, while ĝ depends on θ̂ and therefore on both bandwidths b1 and b2.

We want to choose b1, b2 to minimise the cross-validation score, as introduced by Nielsen

and Linton (1995):

QCV (b1, b2) = n{
n∑
i=1

∫
λ̂2
i (Xi(s), Zi(s))Yi(s)ds− 2

n∑
i=1

∫
λ̂i−1
i (Xi(s), Zi(s))dNi(s)} (44)

where λ̂i−1
i (Xi(s), Zi(s)) is the leave-one-out version of the estimator.
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B.3 Discretised estimators

We use a discrete version of the pseudolikelihood equation (14). Let Err′ be the number

of exposures at the point rr′ in the two-dimensional grid (with R × R′ gridpoints) and

Orr′ the number of occurrences (or failures).In case of local constant estimation of g, the

discrete estimator for g is:

ĝθ(z) =

∑R′

r′=1

∑R
r=1Kb(z − Zr′(r))Orr′∑R′

r′=1

∑R
r=1Kb(z − Zr′(r))α(X(r); θ)Err′

(45)

The discrete estimator for θ follows from the discrete version of the likelihood function:

ˆ̀(θ) =
R′∑
r′=1

R∑
r=1

{ln[α(X(r); θ)ĝθ(z)]Orr′} −
R′∑
r′=1

R∑
r=1

{[α(X(r); θ)ĝθ(z)]Err′} (46)

in which (45) can be inserted. This can in turn be straightforwardly modified into a discre-

tised leave-one-out estimator. Bandwidth selection is accordingly modified, along the lines

of Subsection B.2.

With local linear estimation of g, the discrete estimator for g is specified completely

analogously. In notation analogous to above:

y1 =
R′∑
r′=1

R∑
r=1

Kb(z − Zr′(r))Orr′ , y2 =
R′∑
r′=1

R∑
r=1

(z − Zr′(r))Kb(z − Zr′(r))Orr′

a11 =
R′∑
r′=1

R∑
r=1

Kb(z − Zr′(r))αθ(X(r))Err′

a12 =
R′∑
r′=1

R∑
r=1

(z − Zr′(r))Kb(z − Zr′(r))αθ(X(r))Err′

a22 =
R′∑
r′=1

R∑
r=1

(z − Zr′(r))2Kb(z − Zr′(r))αθ(X(r))Err′

Again, this can be straightforwardly modified into a discretised leave-one-out estimator.
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