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The Regression Kink (RK) design is an increasingly popular empirical method, with more 
than 20 studies circulated using RK in the last 5 years since the initial circulation of Card, 
Lee, Pei and Weber (2012). We document empirically that these estimates, which typically 
use local linear regression, are highly sensitive to curvature in the underlying relationship 
between the outcome and the assignment variable. As an alternative inference procedure, 
motivated by randomization inference, we propose that researchers construct a distribution of 
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which has no policy kinks – and we find that statistical significance based on conventional p-
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results of a recent Regression Discontinuity study and a Difference-in-Difference study. 
Finally, we propose estimating RK models with a modified cubic splines framework and test 
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1 Introduction

The Regression Kink (RK) design has become an increasingly popular tool for causal inference

in economics. Since the initial circulation of Card, Lee, Pei, and Weber (2012), abbreviated

as CLPW in the following, more than 20 new studies have appeared using the RK design,

as shown in Table 1. In the RK design, the effect of a continuous policy (e.g., the level of

unemployment benefits, marginal tax rates) on an outcome of interest (e.g., unemployment

duration, college enrollment) is evaluated by exploiting a change in the slope of the policy

function that assigns the level of the policy based on a running variable (e.g., taxable income)

at the kink point. The change in the slope of the relationship between the outcome variable

and the running variable at the kink point divided by the change in the slope of the policy

variable at the kink point identifies a treatment-on-the-treated parameter of interest under

mild regularity conditions. In most applications of the RK design where the researchers use

only data close to the kink point, local linear or quadratic regression is used.

Using a linear specification for estimating the change in slope at the kink point is problem-

atic: any curvature in the conditional expectation function of the outcome variable results in

a first-order bias in the RK estimate.1 To illustrate how curvature in the relationship between

the outcome and the running variable biases linear RK estimates, we have generated data

with a piecewise linear data generating process (DGP) featuring a kink and a quadratic DGP

with no kink. The top panel of Figure 1 shows the relationship between the outcome vari-

able and the running variable for both the piecewise linear and the quadratic DGP. Visually,

the relationships between the outcome and the running variable seem to be quite similar. In

the second panel of Figure 1, we display the data for the piecewise linear DGP and add the

predictions from a local linear model.

The point estimate for the slope change is statistically highly significant (t-statistic over

10) and close to the actual slope change in the underlying DGP.2 The third panel of Figure
1See Calonico, Cattaneo, and Titiunik (forthcoming) who derive the asymptotic properties of regression

discontinuity estimators. Applying their results to the case of linear RK estimators, one finds that the first
order bias of the estimator is proportional to curvature, i.e., the sum of second derivatives at the kink point.

2In the RK literature, following the recommendation of CLPW, practitioners typically report
heteroskedasticity-robust standard errors. We refer to these as “conventional” standard errors, so as to dis-
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1 shows predictions from a linear RK model estimated on the quadratic DGP which features

no kink. Even though the change in slope is in fact zero at the point where we allow for

a slope change in the local linear regression model, the RK point estimate is similar to the

one in the piecewise linear model and statistically highly significant (t-statistic over 10). This

illustrates how curvature can bias linear RK estimates. In the regression discontinuity (RD)

context (Hahn, Todd, and Van der Klaauw, 2001) – where the object of interest is a change in

the level of a function at a point – it is widely accepted that local linear regression (or higher

order polynomial regression) has superior properties compared to estimators which compute

the difference in mean levels around the discontinuity (Porter, 2003; Imbens and Lemieux,

2008).

We explore ways in which data outside the estimation region typically used by local polyno-

mial regressions can be used to improve inference and estimation in RK models. We propose

a simple relabeling permutation test to assess how RK estimates are affected by curvature

inspired by Fisher’s randomization inference. Randomization inference has a long tradition in

the statistics literature (Fisher, 1935; Lehmann and Stein, 1949; Welch and Gutierrez, 1988;

Welch, 1990; Rosenbaum, 2001; Ho and Imai, 2006, see Rosenbaum, 2002, for an introduction)

and has seen new interest in recent years from econometricians (see, for instance, Bertrand,

Duflo, and Mullainathan, 2004; Imbens and Rosenbaum, 2005; Chetty, Looney, and Kroft,

2009; Abadie, Diamond, and Hainmueller, 2010; Abadie, Athey, Imbens, and Wooldridge,

2014; Cattaneo, Frandsen, and Titiunik, forthcoming). In the RD setting, for instance, Im-

bens and Lemieux (2008) suggest “testing for a zero effect in settings where it is known that the

effect should be 0”. Lee’s (2008) seminal RD study of the impact of incumbency on reelection

plots the data for a wide bandwidth and notes:

As apparent from the figure, there is a striking discontinuous jump, right at the 0

point. [...] The causal effect is enormous: about 0.45 in probability. Nowhere else

is a jump apparent, as there is a well-behaved, smooth relationship between the

tinguish them from the Calonico et al. (forthcoming)’s inference procedure, which they call “robust” standard
errors.
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two variables, except at the threshold that determines victory or defeat.

In a sense, the Imbens and Lemieux (2008) suggestion can be thought of as a formalization of

Lee’s quoted argument. In this spirit, we relabel the location of the policy kink by estimating

slope changes in regions where there is no change in the slope of the policy. Under a null

hypothesis that treatment has no effect on the outcome and the assumption that the policy

kink is placed at random, the placebo estimates provide a null distribution for the test statistic

at the policy kink.

To assess the properties of RK estimators and the permutation test, we apply our method-

ology to three empirical settings. First, we evaluate its performance in a setting which has no

policy kinks or discontinuities. We estimate changes in the slope of the relationship between

earnings and age drawing on a 5% sample of the 1980 US Census (IPUMS).3 Since there are

no policy kinks, the change in slope of the age-earnings relationship should be zero at any

given point under the assumptions of the RK design. The number of observations, 4.4 million,

is similar in order of magnitude to that found in administrative data sets. We obtain a distri-

bution of placebo RK estimates at other placebo kinks from age 22 to age 50. The p-values

of a linear RK estimate at age 27 based on conventional standard errors are much lower than

the p-values based on the distribution of placebo estimates.

Next, we apply the permutation test to two recent applications of the RK design that

assess the effect of unemployment benefits on unemployment duration in Austria (CLPW)

and the United States (Landais, 2012). In the Austrian setting, we find that the permutation

test-based p-values are larger than the conventional ones based robust standard errors and,

moreover, the placebo estimates are not centered at zero. This suggests that some of the

estimated slope change at the policy kink in this setting may be unrelated to the impact of

the policy itself. In the case of unemployment benefits in the US, we conduct permutation tests

with bandwidths that are smaller than the one used in Landais (2012) due to data limitations.

Here we find that the distribution of slope changes at 26 policy kinks we analyze is similar

to the distribution of slope changes at placebo kinks which do not feature any policy slope
3See Ruggles et al. (2014).
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changes. This suggest that some of the slope changes observed at the true policy kinks may

be due to broader curvature in the underlying relationship between unemployment duration

and earnings.

Finally, we apply the permutation test to the regression discontinuity study by Lee (2008)

on the effect of incumbency on election outcomes and to work by Dube et al. (2010) which uses

a difference-in-difference strategy to evaluate the impact of the minimum wage on employment.

Here, we find that the intervals produced by the relabeling test are similar to those produced

by asymptotic standard errors. These results affirm that our test produces sensible results in

empirical settings where the behavior of asymptotic standard errors is well understood.

Next, we assess the performance of different estimation procedures in Monte Carlo simu-

lations in settings where the outcome function has both curvature and a policy kink. Local

linear RK specifications have poor empirical coverage because of the first-order bias discussed

above. The local quadratic specification has either much longer confidence intervals under

a cross-validation bandwidth selection procedure or empirical coverage below 75% using a

bandwidth selection procedure for a quadratic bias-correction model proposed by Calonico,

Cattaneo, and Titiunik (forthcoming) (abbreviated as CCT in the following). We also assess

the properties of an estimator based on a modified cubic splines framework (see Green and

Silverman, 1994, for an introduction) with equally spaced knots (chosen based on a general-

ized cross-validation criterion Wahba, 1990) and a potentially discontinuous slope and second

derivative at the policy kink.

We find that CCT’s bandwidth choice for a model with cubic bias-correction has excel-

lent performance, with good empirical coverage and relatively small interval lengths. When

there is little curvature in the data-generating process, local quadratic robust regressions also

perform well. We also find that cubic splines estimators have good empirical coverage and

interval lengths. The use of a flexible global model for RD/RK - such as cubic splines - has

some precedent in the literature: Lee’s (2008) seminal RD paper used a global fourth-order

polynomial, rather than the local polynomial methods which are currently popular in the RD

literature. Rau (2011) documents that a penalized spline approach for RD estimation yields
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preferable results compared to local polynomial approaches in Monte Carlo experiments.

Our paper builds on important previous work critically evaluating RK and RD designs.

CCT assess the role of bias for RD and RK estimators. Their procedure estimates higher-

order derivatives around the discontinuity to correct for higher-order bias. Our placebo test,

in contrast, uses data at non-kink points to assess the potential for higher-order bias (through

randomization inference). These methods are complementary: CCT are careful to note that

estimates of higher-order terms are usually imprecise, while using data away from the kink

may be unattractive or infeasible in some empirical settings. Ando (2013) uses Monte Carlo

simulations to argue that linear RK estimates are biased in the presence of plausible amounts of

curvature. We share Ando’s concerns about linear RK and make three additional contributions:

we propose a specific placebo test for practitioners, we use our test to reassess existing empirical

RK results and we suggest the use of cubic splines as an alternative estimation strategy and

compare the empirical performance of different estimation methods for the RK design.

We recommend that practitioners: (1) avoid using linear and quadratic RK estimates,

(2) use the distribution of placebo estimates to detect whether they will have power to detect

economically meaningful results in their context, (3) report p-values constructed by comparing

their point estimate to the distribution of placebo estimates, and (4) use cubic splines or CCT’s

robust procedure to estimate kinks.

Section 2 describes the permutation test. Section 3 implements the test in five empirical

settings. Section 4 reports the results of RK estimation in Monte Carlo studies based on

different estimators, including cubic splines. The last section concludes.

2 Relabeling: A Fisher-Style Permutation Test

We propose a simple permutation test to assess the null hypothesis that treatment has no

effect on the outcome of interest. In Fisher’s classic randomization test, he randomly relabeled

the treatment status of his observations, while holding fixed their observed outcomes, and then

re-calculated his test statistic. At the heart of our test is the assumption that the location of
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the policy kink can be considered as randomly drawn from a known interval - an assumption

that needs to be evaluated in the context of the specific research design under scrutiny. In this

interval, we can reassign the location of the kink and calculate RK estimates at these placebo

kinks. Our test procedure builds on a suggestion for RD by Imbens and Lemieux (2008) of

“testing for a zero effect in settings where it is known that the effect should be 0.”4

The thought experiment underlying randomization inference is different from the one un-

derlying asymptotic inference. Whereas the idea underlying asymptotic inference is one of

sampling observations from a large population, the thought experiment in randomization in-

ference is based on a fixed population that the econometrician observes in the data and in

which the assignment of treatment is sampled repeatedly. In the latter approach, treatment

assignment is thought of as the random variable. Rosenbaum (2002) builds on one of the

original settings of randomization inference - Fisher’s (1935) lady tasting tea - to illuminate

the differences between the thought experiment underlying randomization inference and the

one underlying asymptotic inference and notes:

The Lady is not a sample from a population of Ladies, and even if one could
imagine that she was, there is but one Lady in the experiment and the hypothesis
concerns her alone.

Analogously, our test does not treat the sample as being drawn from some (super) population

but rather takes the observed sample as given and tests hypotheses regarding this particular

sample, treating the location of the policy kink as a random variable.

By drawing on data away from the kink, this permutation test offers a finite sample in-

ference procedure which researchers can use as alternative to inference based on conventional

robust standard errors which will be misleading when curvature in the data biases RK esti-

mates. This test assesses the extremeness of the estimated change in the slope at the kink

point relative to estimated slope changes at non-kink points under the null hypothesis that

the policy does not affect the outcome.
4Engström et al. (2011) consider a similar test for the RK design, holding bandwidth fixed and computing

the regression kink estimator at other locations shown in Figure 11 in their paper. Unfortunately, they only
report placebo tests of the linear RK estimator �1 over a narrow region close to the policy kink.
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Following CLPW, we assume a data generating process Y = y(B, V, U) where V is a

running variable, B is continuous treatment, U is unobservable, and y maps these variables

into an outcome. There is a policy function B = b(V ) whose slope with respect to V changes

from 

� below the kink to 

+ above the kink. Without loss of generality, the kink is located

at V = 0. y1 is the derivative of y with respect to B. CLPW develop conditions under

which an RK estimator identifies the following average effect of treatment on outcome Y :

E(y1(b(0), 0, U)|V = 0). Appendix A recaps the CLPW framework in more detail.

The data are a vector of n observations each with (y
i

, v

i

, b(v
i

)). Let y denote the vector

of y
i

values, let v denote the vector of v
i

realizations and let v

P

0 be the policy kink. (In the

next section, we label placebo kinks at locations v

P

c

, c � 1.)
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ṽ(vP
c
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and let v
c

⌘ ṽ(vP
c

). CLPW propose a linear RK estimator for E(y1(b(vP0 ), v
P

0 , U)|V = v

P

0 )

as e

0
3

(+�

�) (v
0
0v0)

�1
v0y0 where e

0
3 = ( 0 0 1) , using observations within bandwidth h of

the policy kink (|v
i

� v

P

0 |  h) and a uniform kernel.5 Based on this estimator, we can define

the following test statistic

T (v,y, vP0 ) ⌘ e

0
3

�
v

0
0v0

��1
v

0
0y, |v

i

� v

P

0 |  h

which corresponds to the reduced form of CLPW’s estimator.

Suppose that we are interested in the distribution of the statistic T (v,y, vP0 ). Consider

the hypothesis:

Hypothesis: Treatment Irrelevance Outside Kink Treatment does not affect out-

comes outside the policy kink: y1(b(v), v, U) = 0 8v 2 [v,�h] [ [h, v̄].6

5In this section and in the next section, following CLPW and the majority of RK studies that we are aware
of, we always use a uniform kernel.

6In Appendix B.1, we show that it is possible to calculate p-values under the assumption that treatment
does not affect outcomes at any v: y1(b(v), v, U) = 0. This assumption in the Appendix is closer in spirit to
Fisher’s randomization test. If the policy does have an impact (y1(b(0), 0, U) 6= 0) the assumption above will
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To test this hypothesis, the researcher must choose v

min

and v

max

as the domain over

which she thinks that the slope relating control variable V and outcomes Y follows the same

data-generating process. Given a bandwidth h that is used for estimation, permissible placebo

kinks can be in the range [v,�h][ [h, v̄] with v ⌘ v

min

+ h and v ⌘ v

max

� h.7 Next, consider

an alternative test statistic:

T (v,y, vP
c

) ⌘ e

0
3

�
v

0
c

v

c

��1
v

0
c

y |v
i

� v

P

c

|  h

with v

P

c

2 [v, v]. We can compute this test statistic with the same data used to calculate

T (v,y, vP0 ) by simply using different labels v

P

c

2 [v, v] to denote the location of the policy

kink. We call this “relabeling” because we have held fixed the outcome data y and we have

renamed the v values by using a different label for the location of the policy kink. This leads

to the following assumption which is the basis for the permutation test of the hypothesis of

treatment irrelevance:

Assumption: Random Kink Placement (v

P

0 ⇠ Unif[v, v]).

Under the Treatment Irrelevance Hypothesis and the Assumption of Random Kink Place-

ment, we can compute the distribution of possible estimates which could have arisen had the

policy kink been at a different location in the same dataset. Because the kink locations v

are continuous, there is a continuum of values for the test statistic {T (v,y, v)}. Under the

assumption above, all kink locations v are equally likely, so the CDF of this distribution for

test statistic T is

P (T > t) =

´
v

v

1(T (v,y, v) > t)dv´
v

v

dv

Interval: Suppose the researcher is interested in determining the lowest and highest values

of the test statistic which would achieve a p-value of ↵ on each side. For a one-sided test, this

value ⌧

↵ is identified as the 1� ↵ quantile of the distribution of the test statistic. By finding

produce smaller p-values and is more likely to reject the hypothesis for a given set of data.
7A natural assumption that we make in the following is that vP0 2 [v, v̄].
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⌧̄

↵ such that P (⌧̄↵ > T ) = 1� ↵, and ⌧

↵ such that P (T > ⌧

↵) = 1� ↵ one can construct an

interval [⌧↵, ⌧̄↵] with a coverage rate of 1 � 2↵. Even before constructing an estimate at the

policy kink, researchers can examine this interval to see whether they would be able to detect

economically meaningful effects.

P (⌧̄↵ > T > ⌧

↵) =

´ �h

v

1(⌧̄↵ > T (v,y, v) > ⌧

↵)dv +
´
v

h

1(⌧̄↵ > T (v,y, v) > ⌧

↵)dv´ �h

v

dv +
´
v

h

dv

= 1� 2↵

(1)

P-value: With a point estimate of T (v,y, vP0 ) at the policy kink, the one-sided p-value

for observing a test statistic of T (v,y, vP0 ) or larger under the null hypothesis given this

distribution is

P (T > T (v,y, vP0 )) =

´ �h

v

1(T (v,y, v) > T (v,y, vP0 ))dv +
´
v

h

1(T (v,y, v) > T (v,y, vP0 ))dv´ �h

v

dv +
´
v

h

dv

(2)

We generalize this approach to incorporate alternative null hypotheses, alternative band-

width choice procedures, discrete kink locations, and higher-order polynomials in Appendix

B.1. We also show how a similar approach can be used to inference for Regression Discontinuity

and Difference-in-Difference designs in Appendix B.2.

3 Randomization Inference: Empirical Examples

In this section, we demonstrate the usefulness of the empirical procedures from the previ-

ous section in three separate empirical RK settings: the age-earnings curve in the US (which

features no policy kinks) to illustrate the permutation test, search duration and unemployment

insurance in Austria (which features policy kinks) and search duration and unemployment in-

surance in the US (which also features policy kinks). For all three settings, we calculate the

distribution for the RK estimator under the assumption that the kink location is chosen ran-

domly. We find evidence of substantial curvature in regions with no policy kinks, casting doubt
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on the accuracy of p-values when using the linear RK estimator with associated conventional

standard errors.

Then, we show the results of our permutation test in two other empirical settings in order

to assess whether our plabeo test delivers p-values that are quantitatively comparable to ones

based on asymptotic inference in settings where the properties of asymptotic standard errors

are well understood. To this end, we apply our test to a regression discontinuity model based

on work by Lee (2008) for the effect of incumbency on elections and a difference-in-difference

model for the effect of minimum wage on employment by Dube et al. (2010).

3.1 RK: Earnings and Age

We study the age-earnings curve in the US as an example of how curvature may affect

an RK estimator. This is an attractive setting to study the performance of RK estimators:

because there are no policy kinks with age among working-age adults, the RK estimator

relating earnings and age should be zero. The top-left panel of Figure 2 plots the age-earnings

curve from the 5% 1980 Census sample. This sample has about 4.4 million people with positive

earnings, comparable to sample sizes one might find when working with administrative data.

Consider a sample linear RK estimate at age 27 drawing on data from age 24 to 30 (or 12

quarters of birth on each side). When using robust standard errors, as is standard practice in

the RK literature, we find a highly statistically significant slope change at higher bandwidths.

We construct point estimates and one-sided p-values for the “kink” at age 27 at a variety

of bandwidths. We compute the cumulative distribution function of the RK estimator under

the assumption that the “kink” was placed randomly between age 22 and 50. At a bandwidth

of four quarters of birth, we calculate a p-value of 0.73 using equation 2, implying that 73% of

placebo estimates have more extreme values than the estimate at age 27. This p-value is larger

than that which emerges from the robust standard errors (0.45). With a bandwidth of eight

quarters, the p-value based on conventional standard errors is much lower (p < 0.0001) than

the one based on the placebo exercise (p = 0.30). This illustrates the idea that in a region

with substantial curvature, the linear RK estimator as conventionally implemented can yield

misleading results. With a bandwidth of 12 quarters, the point estimate is even larger because
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bias grows when larger bandwidths are used, and we find an even lower p-value. Even though

the RK estimator is larger in absolute terms with this higher bandwidth and the asymptotic p-

value indicates more precision, the Fisher p-values indicates no statistically significant change

in slope. The remaining three panels of Figure 2 illustrate the results visually. A linear

specification with an overly large bandwidth yields false precision.

3.2 RK: Search Duration and Unemployment Insurance in Austria

Next, we apply our permutation test to a setting with a true policy kink – the unem-

ployment insurance system in Austria analyzed in CLPW. The top panels of Figure 3 show

that benefits rise more sharply with prior earnings above a policy kink and that the slope of

durations with respect to prior earnings changes as well. The bottom-left panel of Figure 3

shows the global distribution of search duration with respect to income. Much as we used

the age-earnings distribution from ages 22 to 50 to compute a null distribution for the test

statistic, here we use other parts of the income distribution to compute a null distribution,

with the CDF shown in the bottom-right panel of Figure 3. Our analysis is not based on the

administrative data directly but rather uses the data outside the CLPW estimation region

provided in the the bottom-left panel of Figure 3 for estimation. We scale up the reduced

form placebo coefficients by the coefficient of the first stage relationship reported in CLPW so

that the estimates are interpretable in elasticity units.

We use equation 1 to compute the lowest value of the test statistic under which we would

reject the null hypothesis with 95% confidence using a two-sided test. We compute that the

minimum detectable elasticity is 1.7.8 CLPW review the literature on benefit elasticities in

Appendix Table 6 of their paper. In that table, the median estimate is 0.7.9 If our assumption

about the randomly selected kink location holds, then the linear RK estimator cannot detect

economically meaningful parameter values given these data.

Next, the solid vertical line in the top panel of Figure 3 shows the point estimate reported

in CLPW Figure 10. This slope change at the true policy kink is larger than many of the
8The minimum detectable elasticity for a two-sided test with 90% coverage is 1.58.
9When a study reports a range of estimates, we take the mean of the min and the max and count it as one

observation.
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placebo estimates and we compute a p-value of 0.038 using equation 2. Although this p-value

is larger than CLPW’s asymptotic p-value (t-statistic around 4 implying a p-value of less

than 0.001), it is consistent with rejecting the null hypothesis that the level of unemployment

benefits has no impact on search duration at a 5% level (one-sided test).

3.3 RK: Search Duration and Unemployment Insurance in the US

As a third empirical example, we analyze the US UI system studied by Landais (2012)

using the Continuous Wage and Benefit History (CWBH) sample.10 In US states, benefits

are rising as a function of prior income, up to a maximum benefit. This induces a kinked

relationship between prior income and UI benefits. Landais uses linear RK models to estimate

the impact of benefits on search duration. His bandwidth choice of $2500 uses 89% of the

population data. Unlike in the Austrian setting, there is very little data far from the kink

which can be used to generate placebo estimates. As a substitute, we compare estimates from

a two-part linear spline (one potential kink) and from a four-part linear spline (three potential

kinks).

The left panel of Figure 4 shows estimates from Louisiana. Here, a two-part linear spline

finds a highly statistically significant kink at zero. Our estimates with a four-part linear spline

find a highly statistically significant slope change at -$1000 and a wrong-signed slope change

at zero. This suggests that the apparent kink at zero in the two-part linear spline may arise

from global curvature.

Next, we construct linear RK estimates for 26 different state-period cells in the relevant

CWBH sample. The right panel of Figure 4 displays the distribution of point estimates based

on four-part linear splines. The blue line denotes the distribution of point estimates for the

actual policy kink. In the spirit of the permutation test, the green and maroon lines denote

the distribution of point estimates at placebo kinks at $1000 and -$1000, respectively. The

distribution of slope changes are the true policy kink and at the -$1000 kink are fairly similar.

Two lessons arise from this exercise. The results from the -$1000 kink suggest that the slope

changes observed at the true policy kink may be consistent with broader curvature of expected
10Our empirical estimates reported below with a single kink are broadly consistent with those in Landais

(2012)
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duration with respect to earnings.

3.4 Comparison to RD and DD and Summary

We also implement our permutation test for two well-known empirical examples: Lee’s

(2008) RD study of the effect of winning an election on a party’s subsequent victory in a con-

gressional house election two years later and Dube et al. (2010)’s (henceforth, DLR) Difference-

in-Difference study of the effect of the minimum wage on employment using contiguous county

pairs. Appendix C describes construction of placebo estimates in more detail.

To summarize our results from this section, we compare intervals from our permutation

test to confidence intervals based on asymptotic standard errors in Figure 5. For the age-

earnings curve and for CLPW with linear RK models, the permutation intervals are much

longer than the asymptotic intervals. Evidently, first-order bias is empirically important here.

In contrast, for Lee (2008) and DLR, the permutation intervals are, if anything, shorter than

the asymptotic intervals. This suggests that our relabeling procedure delivers sensible results

in empirical settings where the properties of asymptotic standard errors are well understood.

4 Simulation Study

To understand the coverage properties of different estimators for the RK model, we conduct

a Monte Carlo simulation study to assess the performance of local polynomial specifications

and recently proposed robust bias-corrected estimators (CCT). In addition, we assess the per-

formance of modified cubic spline models (see Green and Silverman, 1994, for an introduction

to cubic splines that we follow in this paragraph). Given a set of knots {t
j

}n
j=1 on an interval

[a, b], a cubic spline g is a cubic polynomial on each of the intervals (t
j

, t

j+1) for j 2 {1, .., n}

and on (a, t1) and (t
n

, b) such that g and its first and second derivatives are continuous at

each t

j

. Cubic splines are an attractive framework for estimation because they are shown to

be the solution to an optimal interpolation problem.11 We adjust the cubic splines framework

so that it can be used for estimation of an RK model by placing a knot at 0 and additionally
11More precisely, the solution to the problem of finding the smoothest function that interpolates point (t

i

, y
i

)
is a natural cubic spline. A cubic spline is a natural cubic spline if it is linear on the extreme intervals [a, t1]
and [t

n

, b].
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allowing for a change in the first and second derivative at this special knot. We choose the

total number of equally-spaced knots based on a generalized cross-validation criterion (Wahba,

1990).

We assume a data-generating process with substantial curvature as well as a true policy

kink at zero:12

E(y|x) = 10x1
x>0 + sin(15(x−0.1)) + x

2

This function is shown in Figure 6. x is distributed uniformly on [-1,1]. A single draw

consists of 10,000 observations with y = E(y|x) + " with " ⇠ N(0, 0.5). We consider two

different methods for bandwidth choice: generalized cross-validation (GCV) which seeks to

minimize the MSE of the estimated conditional mean function (minimizes E(ŷ � y)2) and

methods proposed by CCT which seek to minimize the MSE of the point estimate (minimizes

E(⌧̂
RK

� ⌧

RK

)2).

For each polynomial order from linear to cubic, we evaluate models with (1) bandwidth

chosen by the GCV, (2) estimation bandwidths chosen by CCT, and (3) CCT’s bias-corrected

specification with bandwidths chosen by CCT.13 Because CCT’s bias-correction procedure

adds an additional polynomial term, we label their procedure by the highest polynomial used in

estimation.14 At the optimal bandwidth(s), we compute an RK estimate and a 95% confidence

interval using asymptotic heteroskedasticity-robust standard errors or CCT’s standard errors

for their bias-corrected estimators. Coverage denotes the fraction of confidence intervals - for a

given specification - that cover the true slope change of 10. |Error| denotes the mean absolute

error of the estimate of the slope change at zero. Interval length is the average length of the

confidence interval for a given estimation method.

Both linear models have quite low empirical coverage of the true estimate. The quadratic

model, with bandwidth chosen using the GCV, has an empirical coverage rate of 74% but

the average length of the nominal confidence intervals is very large (61.77). While interval
12This data-generating process - combining a sine function and polynomials - is similar to processes evaluated

in Sun’s (2005) analysis of RD estimators.
13CCT use two different bandwidths in estimation: one for point estimation (”CCT h”) and a second for

bias-correction (”CCT b”).
14For example, rdrobust, p(1) q(2) is labeled “Local Quad (CCT Bias-Correct)”.
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lengths are shorter for linear and quadratic specifications with CCT bandwidth choice or CCT

bias correction, the empirical coverage rates are at most 72% in all specifications (with the

exception of model 8, discussed below).

Cubic specifications come close to attaining 95% nominal coverage. The local cubic model

with bandwidth chosen by GCV is not attractive, however, as it is associated with very

large interval lengths (141.40). Local cubic and local cubic robust regressions, both with

bandwidths chosen by CCT’s procedure, have relatively similar coverage rates (95% and 96%)

and similar mean interval lengths (22.26 and 26.80). Model #8 (local quadratic model with

bandwidth chosen as part of the cubic bias-correction) delivers similar coverage (91%) and

interval length (21.25). Evidently, the effectiveness of CCT’s procedure comes primarily from

good bandwidth choice in standard local polynomial models, rather than bias-correction in

point estimation. The cubic spline model attains coverage of 88% but has short confidence

intervals and mean absolute error comparable to local cubic and local cubic robust regressions

with CCT bandwidth choice. We conclude that in this setting, “nothing beats cubic”, in the

sense that cubic models always deliver good coverage, while this is not true for lower order

polynomials.

We conduct an additional Monte Carlo where we repeat the same exercises as described

above but choose a function with less curvature (E(y|x) = 10x1
x>0+sin(5(x−0.1))+x

2, see Figure 7).

Again, we find that the cubic models that performed well in the previous exercise have good

coverage properties and relatively short intervals. In addition, we find that local quadratic

regression with CCT bandwidth choice as well as local quadratic robust regression have good

coverage (96%) and feature short intervals comparable to those of cubic specifications.

This suggests that quadratic specifications are a viable complement to cubic specifications

when there is little curvature in the data-generating process. As our simulations document

that cubic specifications have good coverage with reasonably short intervals in both settings we

consider, researchers are well advised to use such cubic specifications as preferred estimation

method.
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5 Conclusion

We conclude with some recommendations for practitioners:

1. Avoid using the linear and quadratic RK specification when possible.

2. Assess power by comparing the distribution of placebo RK estimates to economically
meaningful magnitudes.

3. Compute p-values for the test statistic using the distribution of placebo RK estimates.

4. Use cubic specifications, in particular, CCT’s rdrobust command or, in addition, when
there is sufficient data, global cubic splines, with generalized cross-validation for knot
placement.

In this paper, we examined the properties of RK estimators. The RK estimator has become

increasingly popular in economics research in the last five years. When there is curvature

in the global function, linear RK estimates are first-order biased. Linear RK specifications

fail to follow the advice of Fan and Gijbels (1996) and Porter (2003) in using a model with

higher-order polynomial terms than the object of interest. In three empirical examples, we

showed that such bias is quantitatively important and that standard asymptotic inference may

be misleading.
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Figure 1 – Piecewise linear and quadratic Simulated DGPs
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Notes: The data generating process (DGP) is either linear with a kink (blue dots) or quadratic
(red dots) without a kink. We generate 1000 observations with a variance of 12 and plot the data in
40 bins. We estimate a linear Regression Kink model with heteroskedasticity-robust standard errors
and a uniform kernel. Both the true linear DGP with a kink and the quadratic no-kink DGP yield
highly significant regression kink estimates.
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Figure 2 – RK Inference Example With No Policy Kink:

Age-Earnings Curve in US
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Notes: The first panel shows age-earnings relationship in the 1980 US Census. The next three
panels assess the behavior of asymptotic and permutation-based intervals. The solid vertical lines
denote the linear RK point estimates for the slope change at age 27; the dashed lines mark the
corresponding 95% asymptotic confidence intervals based on heteroskedasticity-robust standard errors.
Using linear RK specifications, we estimate the slope change in the age earnings relationship for each
quarter of birth between ages 22 and 50 for bandwidths of 4, 8, and 12 quarters of birth and report
the distribution of point estimates based on these specifications in the three figures above. Although
the asymptotic confidence intervals suggest that there is a highly statistically significant slope change
at age 27, the placebo distributions show that the age 27 slope change is in fact not unusual.
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Figure 3 – RK Inference Example: UI Benefits in Austria
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Notes: Top panel plots are from Figure 3 and Figure 5 of Card et al. (2012). T-min refers to the earnings
threshold at which benefits start to rise. Coefficients are from Table 2. The bottom-left panel is supplemental
data shared with the authors by Andrea Weber.

The bottom-right figure shows the cumulative distribution functions of placebo RK estimates of the rela-
tionship between unemployment duration and previous earnings. Using linear RK specifications, we estimate
slope changes at placebo kinks outside the CLPW estimation region. This analysis is not based on the ad-
ministrative data directly but rather uses the data provided in the the bottom-left panel for estimation. The
coefficients are scaled up by the coefficient of the first stage relationship at the true bottom policy kink to
be interpretable in elasticity units. The dashed green line denotes the 97.5th percentile of the distribution
of placebo RK estimates. The solid maroon line denotes the reduced form estimate reported in CLPW. The
dashed vertical lines in maroon denote the 95% confidence interval based on the standard errors reported in
CLPW Table 2.
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Figure 4 – RK Inference Example: UI Benefits in US
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Notes: Landais (2012) implements linear RK estimates for the US using data from the Continuous Wage
and Benefit History data. Following Landais, we estimate a linear RK specification (two-part linear spline in
blue) and find a highly statistically significant kink at zero, as shown in the top panel. For comparison, we
estimate four part linear spline shown in red and find negative slope changes at the placebo kinks.

In the bottom panel, we estimate four-part linear splines for each of the 26 state-period pairs of the
CWBH data, constrained to be continuous at each knot, so that we have estimates for two placebo kinks and
one true policy kink. (Because the estimation bandwidth (from -$2500 to $2500) is typically about 90% of the
population support, there is not enough data to estimate placebo kinks using data outside the kink region. )
The distribution of these estimates is plotted in the bottom panel. The distribution of slope changes are the
true policy kink and at the -$1000 kink are fairly similar, suggesting that the slope changes observed at the
true policy kink may be consistent with broader curvature of expected duration with respect to earnings. Two
point estimates at placebo kink of -$1000 (0.007 and -0.052) are omitted for readability.
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Figure 5 – Randomization Inference for RK, RD, and DD
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RK: Card Lee Pei Weber (2012)

DD: Dube Lester Reich (2010)

RD: Lee (2008)
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Notes: This figure plots an interval of the 5th and 95th percentile of placebo estimates for a variety
of specifications. The 5th and 95th percentiles of the distribution were normalized by subtracting the
actual point estimate and dividing by 1.645 times the asymptotic standard errors. This implies that
the 5th and 95th percentile of the distributions of placebo estimates will be plotted at -1 and 1,
respectively, if they correspond to the lower and upper limit of the asymptotic confidence interval,
respectively.
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Figure 6 – Local Polynomials and Cubic Splines Simulation I
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Table 2 - Simulation Study of RK Estimation Models

Mean from 250 Replications

Model h Criteria Coverage h |Error| Interval Len

1. Local Linear GCV 0.40 0.06 12.74 19.11
2. Local Quadratic GCV 0.74 0.08 15.76 61.77
3. Local Cubic GCV 0.86 0.11 28.67 130.90
4. Cubic Spline GCV 0.88 0.10 4.84 20.58
5. Local Linear CCT h 0.23 0.04 9.87 13.97
6. Local Quadratic CCT b 0.11 0.14 9.01 10.05
7. Local Quad (Bias-Correct) CCT 0.72 0.14 5.96 16.13
8. Local Quadratic CCT h 0.93 0.08 4.65 21.25
9. Local Cubic CCT b 0.95 0.15 4.42 22.26
10. Local Cubic (Bias-Correct) CCT 0.96 0.15 5.18 26.80

Note: To understand the coverage properties of different models used for RK estimation, we conduct a Monte Carlo

exercise based on 250 iterations. We assume a data-generating process with substantial curvature as well as a true policy

kink at zero: E(y|x) = 10x1
x>0 + sin(15(x−0.1)) + x

2
. x is distributed uniformly on [-1,1]. We construct a single

Monte Carlo draw by drawing 10,000 observations wit y = E(y|x) + " where " ⇠ N(0, 0.5). In rows 1-3, we evaluate the

performance of local linear, local quadratic and local cubic models. We also analyze a cubic spline model in row 4 which

analyzes all the data using splines between equally-spaced knots, allowing for a discontinuous slope change at the policy

kink. In rows 1-4, we choose the bandwidth - or the knot spacing - based on a generalized cross-validation criterion

(Wahba, 1990). At the optimal bandwidth, we compute an RK estimate and a 95% confidence interval using robust

standard errors. We also analyze the performance of different versions of the “robust” estimator proposed by CCT. CCT

propose using two bandwidths: one for point estimation (”h”) and a second for bias-correction (”b”). In rows 5-7, we

evaluate the linear model with quadratic bias-correction and in rows 8-10, we evaluate the quadratic model with cubic

bias-correction. Coverage denotes the fraction of confidence intervals - for a given specification - that cover the true

slope change of 10. |Error| denotes the mean absolute error of the estimate of the slope change at zero. Interval length

is the average length of the confidence interval for a given estimation method.
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Figure 7 – Local Polynomials and Cubic Splines Simulation

II
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Table 3 - Simulation Study of RK Estimation Models

Mean from 250 Replications

Model h Criteria Coverage h |Error| Interval Len

1. Local Linear GCV 0.60 0.09 4.13 16.12
2. Local Quadratic GCV 0.96 0.12 12.00 54.51
3. Local Cubic GCV 0.93 0.12 27.86 129.39
4. Cubic Spline GCV 0.95 0.25 1.37 5.83
5. Local Linear CCT h 0.70 0.10 1.57 4.41
6. Local Quadratic CCT b 0.96 0.24 0.93 4.57
7. Local Quad (Bias-Correct) CCT 0.95 0.24 1.15 5.88
8. Local Quadratic CCT h 0.96 0.25 0.91 4.24
9. Local Cubic CCT b 0.96 0.43 0.96 4.72
10. Local Cubic (Bias-Correct) CCT 0.99 0.43 1.03 5.55

Note: See notes to Figure 6. The only difference is that E(y|x) = 10x1
x>0 + sin(5(x−0.1)) + x

2
.
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A A Review of the Regression Kink Design

In this section, we recap some of the key results derived in the canonical CLPW framework
to formally introduce the RK design. The framework builds on the following non-separable
model:

Y = y(B, V, U)

with Y as outcome, B a continuous regressor of interest or policy variable, V an observed
covariate, and an error term U . To fix ideas, it may be useful to think of Y as duration
of unemployment of a job-loser, B as level of unemployment benefits, and V as pre-job-loss
earnings. The policy function B = b(V ) maps the covariate V into B. For instance, in the
setting of unemployment insurance (UI), many UI systems – such as the one in Austria –
feature a linear relationship between earnings V and benefits B up until some maximum level
of the benefit after which the level of the benefit is constant. The RK design exploits such
kinks in the policy function b(V ) by estimating whether the slope change in the relationship
between B and V at the kink point can also be found in the relationship between the outcome
variable Y and V around the kink point. To illustrate, Figure 2 shows plots of unemployment
duration and benefits plotted against earnings in the previous year based on Austrian UI data
(CLPW).15

The goal of the RK framework is to identify a causal effect of B on Y . CLPW define a
“treatment on the treated” parameter of interest:

TT

b|v(b, v) =

ˆ
@y(b, v, u)

@b

dF

U |B=b,V=v

(u)

where F
U |B=b,V=v

(u) denotes the c.d.f. of U conditional on B, V equal to b and v, respectively.
This parameter captures the average effect of a marginal increase in b at a specific value of
(b, v) holding fixed the distribution of the unobservables, F

U |B=b,V=v

(.).
CLPW prove that under mild regularity conditions this “treatment on the treated” param-

eter is identified by the change in the slope of the outcome variable w.r.t. V at the kink point
(normalized to be at V = 0 here) divided by the change in the slope of the policy function B

at the kink point:16

lim
v!0+ dE(Y |V = v)/dv � lim

v!0� dE(Y |V = v)/dv

lim
v!0+ db(v)/dv � lim

v!0� db(v)/dv
= TT

b|v = ⌧

RK

Analogous to the RD setting, there are “sharp” and “fuzzy” versions of the RK design. In the
15The policy kink that is featured in these plots is the earnings threshold for minimum benefits: unemployed

individuals below this threshold only qualify for minimum benefits; benefits increase linearly with earnings
above the threshold.

16These assumptions are:
(1) (Regularity) y(., ., .) is a continuous function with @y(b,v,u)

@b

continuous in b for all b, v, and u.

(2) (Smooth effect of V ) @y(b,v,u)
@v

for all b, v, and u.
(3) (First stage) b(·) is a known function, everywhere continuous and continuously differentiable on (�1, 0)

and (0,1), but lim
v!0+ b0(v) 6= lim

v!0� b0(v). In addition, f
V |U=u

(0) is strictly positive for all u 2 A, whereP
u2A

Pr(U = u) > 0.
(4) (Smooth density) F

V |U=u

(v) is twice continuously differentiable in v for all v, u. That is, the derivative
of the conditional probability density function f

V |U=u

(v), @fV |U=u(v)

@v

, is continuous in v for all u.
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fuzzy setting, the econometrician estimates the change in the slop of the policy function at
the kink point – the denominator in the expression above – as in the top panel of Figure 2. In
the sharp RK design, in contrast, the change in the slope of the policy function is treated as
known. To keep our exposition of the RK design as concise as possible, we focus on the sharp
RK design in this paper or, put alternatively, the reduced form relationship between Y and V

(numerator in expression above).
Local polynomial regression techniques (Fan and Gijbels, 1996) are used for estimation

of the change in slope of the outcome variable Y at the kink point. The data is split into
two subsamples to the left and right of the kink point (denoted by + and -, respectively) and
a local polynomial regression is estimated separately for each subsample. This amounts to
solving the following least squares problem:

min
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�
0 = �̃

+
0

⌧̂

P

RK

⌘ �̃

+
1 � �̃

�
1

Here, p denotes the order of the polynomial, K the kernel function, and h the bandwidth used
for estimation. The denominator of the left-hand side of equation X is identified as �̂

+
1 � �̂

�
1 .

All papers in the RK literature that we are aware of have adopted a uniform kernel as choice of
K. CLPW impose the restriction that �̃

+
0 = �̃

�
0 so that the regression function is continuous

at the kink.
CLPW establish the rate of shrinkage for the bandwidth necessary for valid inference and

prove the following asymptotic property of local linear and quadratic sharp RK estimators:17

p
nh

3(⌧̂P
RK

� ⌧

RK

)
d! N(0, C

P

· ⌦
RK

)

where P denotes the order of the polynomial used for estimation and ⌦
RK

=
�

2
Y

(0+)+�

2
Y

(0�)

(+
1 �

�
1 )2f(0)

.18

C

P

is a constant that depends on the order of the polynomial. For the uniform kernel case,
CLPW establish that C1 = 12 and C2 = 192. Building on these results, inference for the RK
design can be conducted using robust standard errors (White, 1980).

17See 3.1.2 of CLPW for the assumptions necessary for the following statement. In particular, they assume
that the bandwidth sequence satisfies h / N�⇢ with ⇢ 2 ( 15 ,

1
3 ) for the linear and and ⇢ 2 ( 17 ,

1
3 ) for the

quadratic case. For this choice of h, the asymptotic approximation for the bias converges to zero faster than
the asymptotic approximation for the variance does. In a finite sample with positive bandwidth the bias will
not be zero, as we detail below.

18Here, �2
Y

(.) denotes the conditional variance of Y and (+
1 ��

1 ) the change in the derivative of the policy
function at the kink point.
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B Extensions to the Permutation Test

B.1 Extensions of the RK Permutation Test

This framework can be modified easily to account for alternative null hypotheses, discrete
distributions, bandwidth selection procedures and quadratic specifications.

Alternative Null Hypothesis: The null hypothesis can be that treatment has no impact
anywhere, including at the policy kink.

Hypothesis: Treatment Irrelevance RK Treatment does not affect outcomes at any

v: y1(b(v), v, U) = 0.

An interval with coverage rate 1-↵ is

P (T > ⌧

↵) =

´
v

v

1(T (v,y, v) > ⌧

↵)dv´
v

v

dv

= 1� ↵

Under this hypothesis, the one-sided “leave-out” p-value is computed as

P (T > T (v,y, vP0 )) =

´
v

v

1(T (v,y, v) > T (v,y, vP0 ))dv´
v

v

dv

Discrete distributions with J potential locations for a policy kink can be accounted for by
computing the CDF as P (T > t) = 1

J

P
j

1(T (v,y, j) > t).
Bandwidth Choice: So far, we have assumed that a fixed bandwidth h is used at each

placebo kink point. However, it is also possible to choose a bandwidth as a function of the
data around each kink, so long as the same bandwidth selection procedure is used at both the
actual policy kink and the placebo kinks.

Alternative Estimators: Finally, the framework can be modified to incorporate other es-
timators, e.g., higher order polynomials or recently proposed robust estimators (CCT). For
instance, in the case of a local quadratic specification, the following design matrix ṽ

Q(vP
c

) is
used instead of ṽ(vP

c
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The test statistic corresponding to a quadratic RK estimator can then be calculated as
follows:

T

Q(v,y, vP0 ) ⌘ e

0
4(v

Q

c

’vQ

c

)vQ

c

’y, |v
i

� v

P

0 |  h
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B.2 Relabeling for Regression Discontinuity and Difference-in-Difference

For Regression Discontinuity (RD), consider a data-generating process Y = y(B, V, U). where
V is a continuous running variable, B is a binary indicator for treatment, and U is a continuous
unobservable. The treatment policy is zero for all observations with V  v

P

0 and one for all
observations with V > v

P

0 . Normalize v

P

0 = 0. The object of interest is the causal impact of
the policy at V = 0: E(Y (1, 0, U) � Y (0, 0, U)). We have n observations (y

i

, b

i

, v

i

) Suppose
that a researcher decides to use a uniform kernel and a local linear regression to estimate an
RD model. Define

v

RD

c

⌘

0

B@
1 v1 1(v1 � v

P

c

)
...

...
...

1 v

n

1(v
n

� v

P

c

)

1

CA

The regression discontinuity estimator, which can be formulated as a test statistic, is:
T

RD(v,y, vP0 ) ⌘ e

0
3

�
(vRD

0 )0vRD

0

��1
(vRD

0 )0y, |v
i

� v

P

0 |  h.

Hypothesis: Treatment Irrelevance RD y(1, v, U) = y(0, v, U)8v.

Under this null hypothesis, and the same assumption of random kink placement from the
RK discussion, we can define a placebo test statistic as TRD(v,y, vP

c

) ⌘ e

0
3 (v

0
c

v

c

)�1
v

0
c

y |v
i

�
v

P

c

|  h.
For Difference-in-Difference (DD) models, consider a data-generating process Y = y(X,U)

where X is a continuous treatment and U is a continuous unobservable. We are interested in
a linear approximation to the regression function of Y on X: Cov(X,Y )

V ar(X) . There are n sample
units. Each panel unit i is a vector of y values y

i

= {y
i1 . . . yiJ}

0 and a vector of x values
x

i

= {x
i1 . . . xiJ}

0 . Define

x ⌘

0

BBB@

1 x1

1 x2
. . . ...

1 x

n

1

CCCA

where 1 is a vector of ones with J elements and y = {y1,y2 . . .yn

}0 . A researcher interested in
Cov(X,Y )
V ar(X) would compute test statistic: TDD(y,x) ⌘ e

0
n+1 (x

0
x)�1

x

0
y. Again, we are interested

in testing the hypothesis of treatment irrelevance:

Hypothesis: Treatment Irrelevance DD Y (x, U) = Y (x0, u)8x, x0, u

In the RK and RD settings, we had exactly one location for the policy kink or discontinuity
and we assumed that location was chosen at random. Here, the treatment structure is more
complex: each sample unit i has multiple outcome realizations and multiple x realizations.
We pursue a relabeling strategy which preserves the serial correlation within the x realizations
and similarly within the y realizations. Consider an alternative design matrix where k =
{k1, k2 . . . kn} is a random re-ordering of integers from 1 to n.

x̃(k) ⌘

0

BBB@

1 x

k1

1 x

k2

. . . ...
1 x

k

n

1

CCCA
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Using matrix, we can compute a placebo test statistic: T (y, x̃(k)) ⌘ e

0
n+1 (x̃

0
x̃)�1

x̃

0
y.

Note that we can construct this placebo statistic under many different k vectors.
Assumption: Random Assignment of Treatment Sequences Treatment sequences

x

i

are assigned randomly to each panel unit i

Under this assumption, the vector {T (y, x̃(k))} with all possible orderings of k is the
distribution of the test statistic under Treatment Irrelevance DD.

C Data Appendix on Lee (2008) and Dube, Lester, and Reich

(2010)

Lee analyzes a sample which uses all of the data and an estimating equation with a fourth-order
polynomial for Democratic vote share and a dummy variable for vote share greater than fifty
percent. Our test formalizes Lee’s remark that there are no jumps in the estimated conditional
mean function except at the policy discontinuity. We use a dataset posted by Caughey and
Sekhon (2011) which analyzes elections for the US House of Representatives from 1942 to 2008.
Following what has become the recommended practice in the RD literature, we use a local
linear regression. At a bandwidth of 2 percent for relative Democratic vote share (so from -2
percent to 2 percent), we estimate a treatment effect of incumbency of about 0.5, which is
very similar to Lee’s estimate. Next, we construct placebo estimates by relabeling other vote
share points from -48 percent through -2 percent and 2 percent through 48 percent (there is
little sample mass below -48 percent and above 48 percent).

DLR’s preferred specification, in their notation, is

ln y
ipt

= ↵+ ⌘ ln(wM

it

) + � ln(pop
it

) + �

i

+ ⌧

pt

+ "

ipt

where i indexes counties, t indexes quarters, and p indexes pairs of contiguous counties. y

ipt

is the employment of restaurant workers, wM

it

is the local minimum wage, and pop

it

is county
population. The results are reported in Table 2, column 6 of their paper.

DLR have made their code and analysis sample publicly available.19 Although DLR’s
analysis uses county pairs, the variation in their data comes from state-level changes to the
minimum wage over time. We apply the relabeling procedure outlined in Section B.2 to their
data, by taking each state’s minimum wage sequence and applying it to a different, randomly
chosen state’s county-level data on employment and population. Note that we preserve the
joint distribution of county employment and county population because county population, in
the language of Abadie, Athey, Imbens, and Wooldridge (2014), is a fixed “attribute” rather
than a “potential cause”.

19

http://dvn.iq.harvard.edu/dvn/dv/restat/faces/study/StudyPage.xhtml?studyId=70784&versionNumber=2

33




