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1 Introduction

The treatment evaluation literature has traditionally focussed on the assessment of the total

impact of a treatment on an outcome of interest, such as the average treatment effect (ATE).

However, in many economic problems, not only the ATE itself appears relevant, but also the

causal mechanisms through which it operates. In this case, one would like to disentangle the

direct effect of the treatment on the outcome as well as the indirect ones that run through one

or more intermediate variables, so-called mediators.

We subsequently consider a few examples. When assessing the employment or earnings effects

of an active labor market policy, one may want to know to which extent the total impact stems

from increased search effort, increased human capital, or other mediators that are themselves

affected by the policy. When analyzing the health effect of education one might be interested

in whether or how much any impact is driven by the fact that higher educated people also have

higher incomes. Considering e.g. the effect on smoking, education on the one hand increases

incomes which permits consuming more cigarettes. On the other hand, education might have a

direct effect on health-related behavior leading to a reduction of smoking. Similarly, interventions

in primary school on adult outcomes may be mediated by higher education. When for instance

evaluating the earnings effects of math education as in Rose and Betts (2004), math courses

likely affect the decision to obtain further education and may also have a direct effect on earnings

(conditional on total years of education). Analogously, reductions in class size during compulsory

education could affect the probability of obtaining a college degree while also having a direct effect

on productivity not mediated by college attainment. As a final example, it has been noted that

migration can have at least two effects on the family left behind. On the one hand, migration often

triggers remittances, which are expected to alleviate household budget constraints and thereby

reduce child labor and improve schooling. On the other hand, the absence of the migrated family

members may increase the need for (child) labor in the left-behind households and could also

have negative psychological consequences on children’s school outcomes. See e.g. Antman (2011),

Bargain and Boutin (2014), Binzel and Assaad (2011) or Mu and van de Walle (2011).
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Early work on the evaluation of causal mechanisms, frequently referred to as mediation ana-

lysis, includes Cochran (1957), Judd and Kenny (1981), and Baron and Kenny (1986). There-

after, mediation analysis has become very popular in social sciences, see for instance Heckman,

Pinto, and Savelyev (2013) for an example in the field of economics. While earlier studies of-

ten relied on tight linear specifications, more recent research focuses on non- and semiparametric

identification of causal mechanisms, see for instance Pearl (2001), Robins (2003), Petersen, Sin-

isi, and van der Laan (2006), Simonsen and Skipper (2006), Flores and Flores-Lagunes (2009),

van der Weele (2009), Imai, Keele, and Yamamoto (2010), Albert and Nelson (2011), and Huber

(2013). With the exception of studies assessing causal mechanisms within subpopulations based

on principal stratification, see Rubin (2004) and Mealli and Rubin (2003), the vast majority of

the literature assumes that the treatment and the mediator are conditionally exogenous given

observed covariates to obtain identification.

In contrast to most other studies, this paper allows for treatment and mediator endogeneity

which cannot be tackled by observed covariates alone. As main contribution we demonstrate non-

parametric identification via instrumental variables (IV) when both the treatment and the medi-

ator are endogenous due to the non-observability of important confounders. We use distinct (i.e.

at least two) instruments to control for both treatment endogeneity —e.g., due to imperfect com-

pliance with treatment randomization in experiments—and mediator endogeneity. In our hetero-

genous treatment effect model with a binary treatment, identification relies on particular mono-

tonicity and exogeneity assumptions of the instruments. The latter may only be conditionally

valid given a set of observed covariates, which is similar in spirit to Frölich (2007) for the eval-

uation of the total effect on the compliers (known as local average treatment effect, LATE), the

subpopulation whose treatment state reacts on the instrument. Under the imposed assumptions

the proposed methods allow disentangling the LATE into the (local) direct and indirect effects

on compliers. Our identification strategies consider both continuous and discrete mediators. As

special cases, our results also cover the scenarios of a random treatment, which corresponds to

a situation with perfect compliance, or of unconditional instrument validity, implying that one
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need not control for observed confounders.

The present work appears to be the first one to use (at least) two distinct instruments to tackle

the endogeneity of the treatment and the mediator in a nonparametric treatment effect model. In

contrast, most of the comparably few IV approaches suggested in the mediation literature use a

single instrument and therefore cover less general identification problems. Robins and Greenland

(1992) and Geneletti (2007) consider an exogenous treatment and an endogenous mediator for

which a ‘perfect’instrument is at hand in the sense that it forces the mediator to take a particular

(and desired) value. This is equally attractive as directly manipulating the mediator exogenously,

see for instance the discussion on perfect manipulation in Imai, Tingley, and Yamamoto (2013).

Even though perfect instruments may exist in some clinical trials, they are hard to find in most

economic problems including our two applications. Imai, Tingley, and Yamamoto (2013) also

discuss nonparametric identification in experiments (again with an exogenous treatment) based

on imperfect and discrete instruments for the mediator.1 Under a very specific experimental

design they identify the average indirect effect in the subgroup of individuals whose mediator

value reacts on the instrument ("mediator compliers"). In contrast, in our paper we identify

the effects on the entire complier population, which is larger than the mediator compliers in

Imai, Tingley, and Yamamoto (2013). A further distinction is that we also allow for treatment

endogeneity.

Joffe, Small, Have, Brunelli, and Feldman (2008) assume a single instrument for both the

treatment and the mediator and discuss identification and estimation in linear models under a

particular set of assumptions. However, in a nonparametric framework, a single instrument for

both endogeneity problems is generally not suffi cient for identification. An exception is Yamamoto

(2013), who considers nonparametric identification based on an instrument for the treatment

and a latent ignorability assumption similar to Frangakis and Rubin (1999) with respect to the

mediator. This allows controlling for the endogeneity of the latter despite the absence of a second

1See their Section 4.2 on cross-over encouragement designs or the corresponding discussion in Imai, Keele,
Tingley, and Yamamoto (2011). Also Mattei and Mealli (2011) consider a random treatment and a binary instru-
ment for the mediator to derive bounds on direct effects within principal strata defined upon potential mediator
states (as a function of the treatment), so called principal strata direct effects.
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instrument for the mediator. However, identification generally fails if latent ignorability, i.e. the

exogeneity of the mediator conditional on treatment compliance (and possibly further observed

covariates), is not satisfied. As an alternative strategy, we therefore base identification on distinct

instruments for the treatment and the mediator. Powdthavee, Lekfuangfu, and Wooden (2013)

is one of the very rare studies also using two instruments. Considering Australian data, they

estimate the indirect effect of education on life satisfaction running via the mediator income by

using regional differences in the timing of changes in schooling laws as instrument for education

and income shocks (inheritance, severance pay, lottery wins) as instruments for total personal

income. However, Powdthavee, Lekfuangfu, and Wooden (2013) consider a fully parametric model

with linear equations characterizing the outcome, the mediator, and the treatment, which does

not permit treatment-mediator interaction effects and thus, heterogeneity in direct and indirect

effects across treatment states. In contrast, the nonparametric identification results of our paper

naturally allow for heterogenous direct and indirect effects across treatment states and observed

covariates.

We provide a few examples for potential applications where two distinct instruments for the

treatment and the mediator may exist, as required by our identification results. In the case

of migration, historical migration networks in the origin region, travel costs, and distance to

destination countries as pull factors for out-migration of, usually male, household members may

serve as instruments for the treatment ‘migration’and transaction costs of transferring funds,

exchange rate appreciation and changes in labor market conditions in the destination countries

as instruments for the mediator ‘non-labor income’(including remittances) of the (left-behind)

household. When assessing the direct effect of mother’s education on child’s birth weight as well as

its indirect impact via mother’s smoking habits, changes in compulsory schooling might be used as

instrument for mother’s education (treatment), and variation in cigarette taxes as instrument for

smoking. In the best case, the first (or even both) instruments stem from randomized assignment

(with imperfect compliance). An example in the field of educational interventions is the Project

STAR experiment, see for instance Krueger (1999), in which early graders were randomized into
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small classes (treatment). To assess its direct and indirect impacts on adult outcomes, one may

instrument the mediator ‘college degree’by the variation in tuition fees or distance to college, see

for instance Card (1995) and Kane and Rouse (1995).

In this paper, we provide empirical illustrations for two further research questions: Firstly,

we disentangle the effect of education (treatment) on the health outcome ‘social functioning’

into a direct component and an indirect impact running via income (mediator). To this end,

we instrument education by compulsory schooling laws and income by windfall income (such as

lottery wins). While we use similar instruments as in Powdthavee, Lekfuangfu, and Wooden

(2013), our data (coming from the British Household Panel Survey), outcome of interest, and

methodology differ. Secondly, we analyze experimental data from the U.S. Job Corps program

aimed at increasing the human capital of disadvantaged youth. We use randomization into Job

Corps as instrument for first year program participation (treatment) to disentangle the earnings

effect among female compliers in the third year into an indirect effect mediated by hours worked

and a direct effect that likely reflects productivity gains, as it is conditional on working hours.

To control for mediator endogeneity, we use the number of children younger than 6 and 15 in the

household as instruments for hours worked. For all instruments in either application, we discuss

several methods for (partially) testing IV validity.

The remainder of this paper is organized as follows. In Section 2, a nonparametric model

for mediation analysis is introduced and the effects of interest are defined: (natural) direct and

indirect effects as well as the controlled direct effect. Section 3 discusses different approaches to

the identification of these effects based on distinct instruments for the treatment and the mediator.

While the treatment and its instrument are always binary (even tough the exposition could be

easily extended to non-binary instruments for the treatment), we present various settings with

either continuous or discrete mediators and continuous or discrete instruments for the mediator.

In Section 4, we analyze the properties of some estimators in a brief simulation study. Section

5 presents two empirical applications: In the first application, we disentangle the health effects

of education, which may be mediated via income, based on the identifying assumptions under a
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continuous instrument of the mediator (windfall income). In the second application, we separate

the direct earnings effect of Job Corps from the indirect one running through hours worked and

assume the instrument of the mediator to be discrete (number of children). Section 6 concludes.

2 Model and parameters of interest

2.1 Direct and indirect effects in nonparametric model

We are interested in disentangling the total effect of a binary treatment D on an outcome variable

Y into a direct effect and an indirect effect operating through some scalar mediator M .2 Identi-

fication will be based on two instruments Z1 and Z2 for the endogenous variables D and M . To

this end, we postulate the following structural model consisting of a non-separable nonparametric

system of equations characterizing the outcome, the mediator, and the treatment:

Y = ϕ(D,M,X,U), (1)

M = ζ(D,Z2, X, V ), (2)

D = 1 ( χ(Z1, X,W ) ≥ 0 ) , (3)

where ϕ, ζ, χ are unknown functions. 1 (·) is the indicator function which is equal to one if its

argument is true and zero otherwise. U, V,W comprise unobservables and may be arbitrarily

correlated, so that the treatment and the mediator are in general endogenous. X is a (possibly

empty) set of observed covariates. The latter are not necessarily always required for identification

and for most of the intuition of the main identification channels it is in fact helpful to ignoreX, i.e.

suppose that it corresponds to the empty set. Yet, some of the assumptions discussed later on may

be more plausible after conditioning on observable characteristics. For instance, monotonicity

assumptions with respect to V or W or conditional independence assumptions may be more

reasonable within subpopulations that have the same values of X. Note that the X variables are

2Extensions to vector valued mediators are possible, but would require additional instrumental variables, which
might be diffi cult to find in applications. We thus leave the multivariate mediator extension for future research.
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not required to be exogenous. The X variables may be correlated with the unobservables and,

they might even be causally affected by D as long as the subsequent assumptions are satisfied

(which clearly places some limits on the causal endogeneity of X).

Z1 is the instrument for treatment D, henceforth denoted as the first instrument. For ease of

exposition, we assume Z1 to be binary, albeit the discussion could be extended to multi-valued

instruments with bounded support as in Frölich (2007). Z2 denotes the instrument for mediator

M , referred to as the second instrument hereafter, and for most of the paper it is assumed to be

continuous.

   U

W
Y

D
M

   Z1 Z2 V

Based on a causal diagram, Figure 1 provides a graphical example of causal relations between

observed and unobserved variables that satisfy our structural model and the identifying assump-

tions, however, omitting any covariates X for ease of exposition.3 Each one-sided arrow repres-

ents a causal impact, two-sided arrows permit causation in either direction. In addition, if X

was non-empty, there would be additional arrows from X to D, M , and Y . Further, X could be

arbitrarily associated with U, V,W as well as the two instruments.

Identification of the total (local) average treatment effect has been shown in Imbens and

Angrist (1994) and Angrist, Imbens, and Rubin (1996). In this paper, we aim at disentangling

the total effect into the part which is mediated by M and a remainder which directly affects Y

3See for instance Pearl (1995) for a discussion of causal diagrams.
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(but could in principle run via further mediators other thanM). Two endogeneity problems arise

in this context. The first one stems from the permitted association between W and U , even after

conditioning on X. The first instrument Z1 is used to tackle this issue by assuming instrument

independence and monotonicity, where we permit that the IV may be valid only conditional on X,

as in Abadie (2003) and Frölich (2007). A second issue is that the mediator, which may be discrete

or continuous, is confounded by V , which is possibly related to U and W as well. We therefore

exploit the second instrument Z2 to induce variation in M that is independent of variation in D.

This requires Z2 to affect M conditional on X, but to be excluded from the outcome equation.

Some form of monotonicity condition is needed for identification and two distinct approaches

are considered: We either assume monotonicity of the mediator in the unobservable V , leading

to a control function approach, or alternatively, monotonicity of the mediator in the instrument

Z2. While the second approach has the advantage of implying testable restriction, it has the

disadvantage of not identifying all parameters of interest.

To ease our discussion of direct and indirect effects, we make use of the potential outcome

framework advocated by, among many others, Rubin (1974) and also used in the direct and

indirect effects framework for instance by Rubin (2004), Ten Have, Joffe, Lynch, Brown, Maisto,

and Beck (2007), and Albert (2008). Let Y d,Md denote the potential outcome and the potential

mediator state under treatment d ∈ {0, 1}. We may also express the potential outcome as a

function of both the treatment and the potential mediator: Y d,Md′
. This is useful for the definition

of the effects of interest further below. In terms of our model, these parameters are defined as

Md
i ≡ Md

i ≡ ζ(d, Z2i, Xi, Vi),

Y d,Md′

i ≡ ϕ(d,Md′ , Xi, Ui),

for d, d′ ∈ {0, 1} and i indexing a particular subject in the population.

Similarly, we define potential treatment states for z1 ∈ {0, 1}

Di(z1) = 1 ( χ(z1, Xi,Wi) ≥ 0 ) .
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As discussed in Angrist, Imbens, and Rubin (1996), the population can be categorized into four

subpopulations or types (denoted by T ), according to the treatment behavior as a function of

the first instrument: The always takers (Ti = at) take treatment irrespective of Z1, i.e. Di(0) =

Di(1) = 1. The never takers (Ti = nt) do not take treatment irrespective of Z1, i.e. Di(0) =

Di(1) = 0. The compliers (Ti = co) take treatment only if Z1 is one, i.e. Di(0) = 0, Di(1) = 1.

Finally, the defiers (Ti = de) take treatment only if Z1 is zero, i.e. Di(0) = 1, Di(1) = 0. We

will assume that the last group has probability mass zero, i.e. defiers do not exist. Note that the

type Ti is a function of Xi and Wi as it is uniquely determined by χ(1, Xi,Wi) and χ(0, Xi,Wi).

This further implies that in subpopulations conditional on X, the type is a function of W only.

It would be straightforward to extend the model defined by (1) to (3) to

Y = ϕ(D,M,X,U),

M = ζ(D,Z2, X, V ),

D = 1 ( χ(Z1, Z2, X,W ) ≥ 0 ) ,

so that both instruments entered the treatment equation. This model is more general as it permits

the second instrument to also influence treatment choice.4 The main implication of this extension

is that the type Ti is a function of Z2i, Xi and Wi, because the potential treatment states are

obtained from χ(1, Z2i, Xi,Wi) and χ(0, Z2i, Xi,Wi). There are still three main types (compliers,

always- and never takers) and since all subsequent identification approaches only make use of the

type identifier but not of the structure of the treatment equation itself, most of the later results

would go through for this extended model with few modifications of the assumptions.

4This model bears some similarities with the idea of an "included instrument" in D’Haultfoeuille, Hoderlein,
and Sasaki (2014), since the instrument Z2 appears in the choice and in the outcome equation.

9



On the other hand, a model where

Y = ϕ(D,M,X,U),

M = ζ(D,Z1, Z2, X, V ),

D = 1 ( χ(Z1, X,W ) ≥ 0 ) ,

i.e. where both instruments Z1 appear in the mediator equation, is not admissible in this frame-

work. The reason is that M is an (intermediate) outcome variable and identification requires an

instrument that shifts D, for a given type, without affecting outcomes (unless we would restrict

the outcome equation ϕ).

After establishing the model, we now define the treatment effects of interest. Our nonpara-

metric IV strategy will allow identifying total, (natural) direct and indirect, as well as controlled

direct effects in the subpopulation of compliers. The total average effect among compliers corres-

ponds to the local average treatment effect (LATE), also known as complier average causal effect

(CACE):

∆ = E[Y 1 − Y 0|T = co] = E[Y 1,M1 − Y 0,M0 |T = co].

The (natural) direct effect among compliers is given by the mean difference in outcomes when

exogenously varying the treatment, but keeping the mediator fixed at its potential value for

D = d, which shuts down the indirect causal mechanism:

θ(d) = E[Y 1,Md − Y 0,Md |T = co], for d ∈ {0, 1}. (4)

Analogously, the (natural) indirect effect among compliers corresponds to the mean difference

in outcomes when exogenously shifting the mediator to its potential values under treatment and

non-treatment, but keeping the treatment fixed at D = d:

δ(d) = E[Y d,M1 − Y d,M0 |T = co], for d ∈ {0, 1}. (5)

10



Because (4) and (5) refer to the compliers alone, they are local versions of the natural or pure

direct and indirect effects discussed in Robins and Greenland (1992), Pearl (2001), and Robins

(2003), respectively. For convenience, we will simply call them direct and indirect effects in the

subsequent discussion.

It is worth noting that the LATE is the sum of the direct and indirect effects defined upon

opposite treatment states:

∆ = E[Y 1,M1 − Y 0,M0 |T = co]

= E[Y 1,M1 − Y 0,M1 |T = co] + E[Y 0,M1 − Y 0,M0 |T = co] = θ(1) + δ(0)

= E[Y 1,M0 − Y 0,M0 |T = co] + E[Y 1,M1 − Y 1,M0 |T = co] = θ(0) + δ(1).

The notation θ(1), θ(0), δ(1), δ(0) makes explicit that direct and indirect effects may be hetero-

genous with respect to the treatment state, which permits interaction effects between the treat-

ment and the mediator.

Finally, the controlled direct effect is the mean difference in compliers’outcomes when exo-

genously varying the treatment, but (exogenously) setting the mediator to a particular value, say

m, rather than the potential mediator state5

γ(m) = E[Y 1,m − Y 0,m|T = co], for d ∈ {0, 1}.

That is, contrary to the (natural) direct effect, which is the direct impact conditional on the

mediator state that would ‘naturally’occur as a reaction to a particular treatment, the controlled

direct effect is obtained by forcing the mediator to take a particular value.

Which of these parameters is of primary interest depends on the research question at hand.

Suppose we would like to assess the effectiveness of the first program in a sequence of two labor

market programs (e.g., a job application training followed by a computer course) aimed at in-

5Note that there is no equivalent to the controlled direct effect in terms of indirect effects, see the discussion in
Pearl (2001).
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creasing employment and earnings. The natural direct effect then assesses the effectiveness of

the first program (D) conditional on the participation in the second one (M) that would in the

current state of the world follow from participation or (non-)participation in the first program.

This may be interesting for assessing the (relative or absolute) effectiveness of the first program

under status quo program assignment rules to the second program. However, if these rules can

in principle be changed, then also evaluating whether the first program is effective conditional on

enforcing (non-)participation in the second one appears interesting in order to optimally design

program sequences. Therefore, the controlled direct effect may provide additional policy guid-

ance whenever mediators can be prescribed. In contrast, if prescription is unrealistic, the natural

direct effect, which relies on status quo mediator response to treatment, appears to be the only

parameter worth considering. We refer to Pearl (2001) for further discussion of what he calls the

‘descriptive’and ‘prescriptive’natures of natural and conditional effects.

Without further assumptions, neither of these parameters is identified for several reasons.

Firstly, only one potential outcome out of Y 1,M1
and Y 0,M0

is known for any observation.

Secondly, Y 0,M1
and Y 1,M0

are never observable and therefore inherently counterfactual, as a

person cannot be treated and non-treated at the same time. Thirdly, the type of any observation

cannot be uniquely determined. Therefore, identification of direct and indirect effects hinges

on the generation of exogenous variation in the treatment and mediator, in our case based on

instrumental variables.

2.2 Potential outcomes, quantile treatment effects and effects on inequality

The following sections focus on the identification of the means of Y 1,Md
, Y 0,Md

, Y 1,m, and Y 0,m,

rather than the mean effects θ(d), δ(d), and γ(m) only, as the mean potential outcomes provide

richer information than their differences alone. In particular, one may use the formulae derived

in the following theorems to estimate not only average treatment effects, but also distributional

effects. To this end, note that the cumulative distribution function of Y d′,Md
(with d, d′ ∈ {0, 1}),
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denoted by F
Y d′,Md , can be written as

F
Y d′,Md |T=co

(a) = E
[
1
(
Y d′,Md ≤ a

)
|T = co

]
. (6)

Even though the subsequent theorems provide identification results for E
[
Y d′,Md |T = co

]
, using

(6) we immediately obtain the results for F
Y d′,Md among compliers by replacing Y with 1 (Y ≤ a)

in those theorems throughout. This allows estimating the distribution functions F
Y 1,M1 , FY 1,M0 ,

F
Y 0,M1 , and FY 0,M0 as well as FY 1,m and FY 0,m for compliers. One may also obtain quantile

treatment effects through the inversion of the distribution functions6 or calculate other inequality

measures such as the Gini coeffi cient, Theil index, etc. These distributional estimates permit

assessing e.g. whether direct and indirect effects have offsetting effects on inequality or whether

both move in the same direction as well as the relative importance of direct and indirect effects

for inequality. Similarly, in applications where the lower tail of Y is of particular interest, e.g. low

birth weights in public health, poverty rates or poor school performance, one might be interested

in (separating direct and indirect) quantile treatment effects.7

3 Identifying direct and indirect effects

In this section we discuss the identification of (natural) direct and indirect effects under endogen-

eity using instrumental variables. We permit that the instruments are only valid conditional on

observed covariates X, which may themselves be endogenous. Our first assumption requires the

instruments to be independent of the unobservables U, V,W conditional on X. Such assumptions

are rather standard in the literature on the LATE requiring an instrument for the treatment only,

see e.g. Imbens and Angrist (1994) or Angrist, Imbens, and Rubin (1996) for unconditional IV

independence and Abadie (2003) or Frölich (2007) for IV independence given X. Here, condi-

tional independence needs to hold for both instruments Z1 and Z2. For ease of exposition, As-

6One could also adopt the approaches of e.g. Frandsen, Frölich, and Melly (2012) and Frölich and Melly (2013)
to obtain direct estimators of the quantile treatment effects.

7Note that in contrast to mean effects, direct and indirect quantile treatment effects do not add up to the total
quantile treatment effect.
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sumption 1 is slightly stronger than needed for the various lemmas and theorems to follow. We

express the independence condition with respect to type T and not with respect to the unob-

servable W , as we later only require independence within the types and not for each value of

W .

Assumption 1: IV independence

(Z1, Z2)⊥⊥(U, V )|T,X,

Z1⊥⊥(U, V, T )|Z2, X,

where the symbol ⊥⊥ denotes statistical independence.

It is worth noting that Assumption 1 would be implied e.g. by the following stronger assump-

tion:

(Z1, Z2)⊥⊥(U, V,W )|X. (7)

The main difference is that Assumption 1 permits Z2 and W to be dependent, whereas (7) does

not. As W determines the type, i.e. whether someone is a complier, always taker, or never taker,

permitting dependence between Z2 and W could be relevant in applications where Z2 is not fully

randomly assigned but possibly dependent on treatment choice. Assumption 1 also allows for an

association between Z1 and W , as long as the dependence vanishes when conditioning on Z2.

The stronger assumption (7) is not required for the results of our paper. If it were nevertheless

imposed it would imply that the probability of being a complier did not depend on Z2. This

condition is testable, because Pr(T = co|Z2, X), the proportion of compliers given Z2 and X, is

identified further below. It would further imply Z2⊥⊥D|X,Z1. Hence, in applications where both

assumptions appear equally plausible, this may be used to construct partial tests for identification.

Note that we permit X to be endogenous, i.e. associated with any of the unobservables,

because Assumption 1 only needs to hold conditional on X. Our assumption implies that the
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first instrument is conditionally independent of the potential treatment states D(1), D(0) and

does not have a direct association with the mediator or the outcome through V or U . Z1 could

for instance represent the assignment indicator in a randomized experiment assessing a training

program or any other policy intervention. If randomization is successful, the potential treatment

states are independent of Z1. Furthermore, if it is credible that random assignment itself does not

directly affect the mediator, the outcome, or associated unobserved factors (other than through

the treatment), then independence of Z1 and V,U is satisfied. Generally and in particular in

observational studies, Assumption 1 may be more plausible once we control for covariates X.

In addition, for some of our results we require the two instruments Z1 and Z2 to be independent

of each other, again possibly only after conditioning on X as postulated in Assumption 2.

Assumption 2: Conditional independence of Z1 and Z2

Z1⊥⊥Z2|X.

We note that Assumption 1 and Assumption 2 jointly imply8

Z1⊥⊥(Z2, U, V, T )|X. (8)

Note that while Z1 has to be independent ofW , dependence between Z2 andW is still permitted.

Assumption 2 is needed for some, but not all identification results and is often satisfied by

construction or through a transformation of the instrument. In randomized trials, it holds by

construction if both instruments are independently randomized. If only Z1 is under the control

of (i.e. randomized by) the experimenter, it is also satisfied if Z2 is assigned at the same time

as or shortly prior to Z1, because in experiments, any pre-randomization variable is independent

of the randomization indicator Z1. In observational studies, one needs to be more circumspect.
8This follows because A⊥⊥B|C and A⊥⊥C together imply A⊥⊥(B,C).To see this note that fABC = fB|AC ·fA|C ·fC

and entering the independence assumptions this equals fABC = fB|C · fA · fC = fA · fB,C . Hence, we thus have
shown that fABC = fA · fB,C or equivalently: A⊥⊥(B,C).
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Note first that Z1 and Z2 need to be independent only conditional on X, which is testable. We

can, for instance, always write the linear projection Z2 = αZ1 + βX + ε, where the projection

error ε is orthogonal to Z1 and X by construction, and test whether α = 0 and ε is independent

of Z1. Even if Z1 and Z2 are not (conditionally) independent, we may attain independence via a

transformation of Z2. Suppose Z2 is continuously distributed with a strictly increasing cumulative

distribution function (cdf). Define

Z̃2i = Φ−1
(
FZ2|Z1,X (Z2i, Z1i, Xi)

)
, (9)

where Φ is the cdf of the standard normal distribution and Φ−1 its quantile function.9 Note

that Z̃2|Z1, X is standard normal with mean 0 and variance 1 and thus independent of Z1 (and

also of X). We can thus use Z̃2 instead of Z2 as the second instrument throughout and so

that Assumption 2 is satisfied. (Assumption 1 also holds true for (Z1, Z̃2) if it is satisfied for

the original instruments (Z1, Z2).) Hence, Assumption 2 is more a normalization rather than a

substantial restriction, although in practice FZ2|Z1,X has to be estimated for constructing Z̃2i via

(9), which may complicate the estimation process.

In addition to the independence assumptions, identification requires particular monotonicity

assumptions. Assumption 3 imposes monotonicity of the treatment in its instrument, which rules

out the existence of defiers, as it is standard in the LATE framework:

Assumption 3: Weak monotonicity of treatment choice

i) Monotonicity

D(1) ≥ D(0) with probability 1 (10)

ii) Existence of compliers

E(D|Z1 = 1) > E(D|Z1 = 0). (11)

9As an alternative to the normal, one could also use the uniform distribution or any other continuous distribution
function.
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Assumption 3 imposes weak positive monotonicity of D in Z1 in the entire population, see

Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996). Part (i) rules out the existence

of defiers and is equivalent to assuming

Pr ( 1 ( χ(1, X,W ) ≥ 0 ) ≥ 1 ( χ(0, X,W ) ≥ 0 ) ) = 1.

Part (ii) requires that at least some units in the total population are compliers and is directly

testable in the data. In contrast, part (i) is mostly untestable (although see Huber and Mellace

(2014) and Kitagawa (2008) for recent methods jointly testing monotonicity and IV independ-

ence). While Assumption 3 permits the existence of always takers, never takers, and compliers,

causal parameters are only identified for the compliers under our assumptions.10

Assumptions 1 and 3 permit us to identify the fraction of compliers. To ease notational

burden, we will make use of the following expressions for the conditional instrument probabilities

(or propensity scores) throughout:

Π = π(X) = Pr(Z1 = 1|X) (12)

Π̄ = π̄(Z2, X) = Pr(Z1 = 1|Z2, X).

Under Assumptions 1 and 3, which implies Z1⊥⊥T |Z2, X, the probability mass of compliers is

identified as

Pr (T = co) = E

[
D

Π̄

Z1 − Π̄

1− Π̄

]
. (13)

If in addition Z1⊥⊥T |X, which would for instance be implied by assumption (7), the fraction of
10Alternatively, one could also invoke weakly negative monotonicity (allowing for defiers, but ruling out com-

pliers). As both cases are symmetric, we only consider weakly positive monotonicity in the remainder of the
paper.
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compliers is also obtained as

Pr (T = co) = E

[
D

Π

Z1 −Π

1−Π

]
.

3.1 Natural effects with continuous mediator

We first consider the case of a continuous mediator M . The identification of natural effects

requires separating hypothetical changes in treatment D from those in M . We therefore make

use of a control function approach that allows shifting D exogenously, i.e. independent from

movements in the density of the mediator.11 The next assumption restricts the mediator to be

monotonic in the unobserved term V which is assumed to be a continuous scalar with a strictly

increasing cumulative distribution function (cdf).

Assumption 4: Monotonicity of mediator (control function restriction)

(i) V is a continuously distributed random variable with a cdf FV |X=x,T=co(v) that is strictly

increasing in the support of V , for almost all values of x,

(ii) ζ(d, z2, x, v) is strictly monotonic in v for almost all d, z2, x. (We normalize ζ to be increasing

in v.)

Assumption 4 is crucial for our control function approach. It restricts V to be a scalar

random variable, which appears to be quite strong. However, V may also reflect an index function

determined by several unobserved variables, which somewhat eases the severity of this restriction.

Then, Assumptions 4 (i) and (ii) need to hold with respect to the index (rather than each of

its determinants). Invoking strict monotonicity of the mediator in V allows pinning down the

distribution function of V given X among compliers by means of the conditional distribution of

11See Ahn and Powell (1993), Newey, Powell, and Vella (1999), Blundell and Powell (2003), Das, Newey, and Vella
(2003) and Imbens and Newey (2009) for prominent applications of control functions in semi- and nonparametric
models.
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M given D,Z2, X among compliers. To this end, we define the control function

Ci = C (Mi, Di, Z2i, Xi) , (14)

with

C (m, d, z2, x) =
E [(d+D − 1) · (Z1 − π̄ (z2, x)) |M ≤ m,Z2 = z2, X = x]

E [D · (Z1 − π̄ (z2, x)) |Z2 = z2, X = x]
· FM |Z2,X (m, z2, x) .

(15)

Control function C identifies Vi as shown in the following lemma. (Note that in settings where

we also impose Assumption 2, i.e. that Z1⊥⊥Z2|X, we have that π̄(Z2, X) = π(X) throughout.)

Lemma 1: Under Assumptions 1, 3, and 4 it follows that

a)

Ci = FM |D,Z2,X,T=co (Mi, Di, Z2i, Xi) = FV |X=Xi,T=co (Vi) , (16)

b)

Vi = F−1
V |X=Xi,T=co (Ci) , (17)

c)

M⊥⊥U |C,X, T = co. (18)

Part (a) of Lemma 1 shows that the control function corresponds to the distribution function

of V conditional on X. Part (b) shows that Ci is a one-to-one mapping of Vi. I.e., conditional

on X, V is a one-to-one function of C, and V is thus identified. That means conditioning on

C is equivalent to conditioning on V , as long as we control for X throughout, which we always

do. Finally, part (c) shows that once we control for C (in addition to X) we can separate the

mediator from the unobservable U in the outcome equation, within the complier subpopulation.

(In fact, the latter also holds in the always taker and never taker subpopulations, but since we

cannot identify all mean potential outcomes for these latter groups, we will only focus on the
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compliers alone.)

Before giving the formal results in Theorem 1, we discuss the intuition of the identification

approach, which also illustrates the common support assumption needed. The key idea underlying

identification is to (hypothetically) vary Z1 in order to change treatment D, while at the same

time keeping M unchanged through a variation of Z2 that undoes the effect of Z1 on M . To this

end, we need to condition on unobservable V , which is replaced by its control function C. Assume

we are interested in the mean potential outcome E
[
Y 1,M0 |T = co

]
, which can be expressed as

E
[
Y 1,M0 |T = co

]
=

∫
ϕ(1,M0, X, U) · dFM0,X,U,C|T=co

=

∫
ϕ(1,M0, X, U) · dFM0,U |X,C,T=co · dFX,C|T=co

=

∫
ϕ(1,M0, X, U)dFU |X,C,T=co · dFM0|X,C,T=co · dFX,C|T=co,

where the last equation follows asM0 is independent of U conditional on X and C by Assumption

1 and Lemma 1. For being able to identify the distribution ofM0, M0⊥⊥Z1|X,C, T = co needs to

hold, which is implied by Z2⊥⊥Z1|X,V, T . It follows that FM0|X,C,T=co = FM |Z1=0,X,C,T=co and

thus

=

∫
ϕ(1,M,X,U)dFU |X,C,T=co · dFM |Z1=0,X,C,T=co · dFX,C|T=co.

As dFM |Z1,X,C,T=co is identifiable (see the appendix), we may multiply and divide by

dFM |Z1=1,X,C,T=co to obtain

=

∫
ϕ(1,M,X,U)dFU |X,C,T=co · dFM |Z1=0,X,C,T=co

dFM |Z1=1,X,C,T=co

dFM |Z1=1,X,C,T=co
· dFX,C|T=co

=

∫ {
ϕ(1,M,X,U)dFU |X,C,T=co

}
· ω(M,X,C) · dFM |Z1=1,X,C,T=co · dFX,C|T=co, (19)

where ω(M,X,C) =
dFM|Z1=0,X,C,T=co
dFM|Z1=1,X,C,T=co

. Using U⊥⊥(M,Z1)|X,C, T = co by Assumption 1 and
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Lemma 1 we obtain

=

∫ {
ϕ(1,M,X,U)dFU |M,X,C,Z1=1,T=co

}
· ω(M,X,C) · dFM |X,C,Z1=1,T=co · dFX,C|T=co

= E

[
Y DZ1 ·

ω(M,X,C)

Pr
(
Z1 = 1

∣∣X) |T = co

]
. (20)

The last expression indicates that the counterfactual outcome can be identified based on

observable variables in the complier subpopulation. However, since the compliers are unknown,

we require an expression for the entire population that is equal to zero in the always and never

taker subpopulations. As formally shown in the appendix, the following expression

E

[(
Y DZ1

Pr (Z1 = 1|X)
− Y D(1− Z1)

Pr (Z1 = 0|X)

)
· ω(M,X,C)

]
(21)

turns out to be zero within the always and never taker subpopulations and therefore equals (20)

multiplied with the share of compliers Pr (T = co), with the latter being identified by Assumption

1. Hence, by estimating (21) and dividing by Pr (T = co), we obtain (20), which thus gives

E
[
Y 1,M0 |T = co

]
.

Note that from equation (19), one can see the support condition that needs to be satisfied

for identification. Namely, it must hold that dFM |Z1=1,X,C,T=co > 0 at every m where

dFM |Z1=0,X,C,T=co > 0 or in other words, that

Supp (M |Z1 = 0, X,C, T = co) ⊆ Supp (M |Z1 = 1, X,C, T = co) .

On the other hand, for the identification of E
[
Y 0,M1 |T = co

]
we would need (by symmetric

derivations) that

Supp (M |Z1 = 0, X,C, T = co) ⊇ Supp (M |Z1 = 1, X,C, T = co) .

In order to summarize all identification results succinctly into Theorem 1, we impose both support
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conditions jointly, i.e. that

Supp (M |Z1 = 0, X,C, T = co) = Supp (M |Z1 = 1, X,C, T = co) .

This condition can generally only be satisfied if Z2 is a continuously distributed variable. In

Section 3.5 we discuss the case when both Z1 and Z2 are discrete instrumental variables based

on somewhat different identifying assumptions.

An alternative way of expressing this support condition is that no values ofM given C and X

perfectly predict the value of the first instrument. That is, conditional on C,X, the mediator state

must not be a deterministic function of the first instrument, otherwise identification is infeasible

due to the lack of comparable units in terms of the mediator across values of the first instrument.

We summarize this support condition as

0 < Pr (Z1 = 1|M,C,X, T = co) < 1 a.s.

Because of the unique mapping between C and V as established in Lemma 1, we may write this

restriction equivalently in the following way:

Assumption 5: Common support of M

0 < Pr (Z1 = 1|M,V,X, T = co) < 1 a.s. (22)

Assumption 5 is equivalent to requiring the weights ω(M,X,C) to be neither zero nor infinity.

The weights are formally defined below and need to be estimated in applied work. If some of

these weights are close to zero or extremely large, this could indicate that the above support

condition is not satisfied. In such situations, one may redefine the objects of interest on subsets

of the support spaces ofM,X,C for which common support holds. An implication of Assumption
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5 is 0 < Pr(Z1 = 1|X = x) < 1 for all x in the support of X, as invoked for example in Frölich

(2007). Therefore, no values of the covariates may perfectly predict the first instrument, because

otherwise observations that are comparable in X would not always exist across Z1 = 1 and

Z1 = 0.

Under Assumptions 1 to 5, the potential outcomes and thus also θ(d) and δ(d) are identified

based on exogenous variation in D and M generated by Z1 and Z2 conditional on X.

Theorem 1: Under Assumptions 1 to 5 the potential outcomes are identified as

E
[
Y 1,M0 |T = co

]
= E

[
Y DΩ

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

E
[
Y 1,M1 |T = co

]
= E

[
Y D

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

E
[
Y 0,M1 |T = co

]
= E

[
Y (D − 1)

Ω

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

E
[
Y 0,M0 |T = co

]
= E

[
Y (D − 1)

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

where

Ω = ω(M,C,X) ≡ 1− E [Z1|M,C,X]− π(X)

E [DZ1|M,C,X]− E [D|M,C,X] · π(X)

=
E [(D − 1) (Z1 − π(X)) |M,C,X]

E [D (Z1 − π(X)) |M,C,X]

=
E [π(X)− Z1|M,C,X,D = 0]

E [Z1 − π(X)|M,C,X,D = 1]

Pr (D = 0|M,C,X)

Pr (D = 1|M,C,X)

and Π = π(X) with π(x) = Pr (Z1 = 1|X = x) = E [Z1|X = x]. C is identified by Lemma 1 and

Pr (T = co) is identified by (13). The proof is provided in the appendix.

Two remarks are worth noting concerning this identification result. First, the identification

of direct and indirect effects hinges on identical assumptions. This also follows from the fact

that the direct (indirect) effect on the compliers corresponds to the difference between the total

and the indirect (direct) effect defined upon opposite treatment states. Second, note that perfect
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treatment compliance with the random assignment Z1 can be regarded as a special case of the

framework underlying Theorem 1. If all individuals comply with their treatment assignment,

then Z1 = D and Pr(T = co) = 1. In this case, the formulae of Theorem 1 simplify by replacing

Z1 with D everywhere, and they represent the average direct and indirect effects on the total

population (as everyone is a complier if Pr(T = co) = 1).

3.2 Controlled direct effects with continuous mediator

3.2.1 Control function approach

This section discusses the identification of the controlled direct effect γco(m) for the mediator

fixed at m (rather than at its potential value under a particular treatment). In contrast to the

natural direct effect, the identification of controlled direct effect does not require knowledge of

the distribution of Md, which allows weakening the independence assumptions. In particular,

Assumption 2 is no longer needed so that dependence between Z2 and Z1 is permitted, even

conditional on X. As before, we focus on the identification of the mean potential outcomes

(rather than the effect), from which γco(m) is obtained as their difference. The be concise, we

discuss the identification of E
[
Y 1,m|T = co

]
alone, while E

[
Y 0,m|T = co

]
can be obtained by

symmetric arguments.

We present two different approaches for identification. Theorem 2 follows a control function

approach and exploits monotonicity of the mediator in V . Alternatively, Theorem 3 does not

require monotonicity in V , but instead imposes monotonicity in the instrumental variable Z2.

Both approaches permit Z1 and Z2 to be dependent. However, as shown in Theorem 2, the

identification expressions are simpler if Z1 and Z2 happen to be independent (conditional on X).

We thus provide the more general result (without independence) in Theorem 2a, while Theorem

2b provides the simpler expressions when additionally invoking Assumption 2. Before presenting

the formal results, we provide some intuition for identification.

Our mean potential outcome of interest, E
[
Y 1,m|T = co

]
, can also be expressed as
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E [ϕ(1,m,X,U)|T = co]. Pursuing a control function approach, we can express this parameter

as

E
[
Y 1,m|T = co

]
=

∫
ϕ(1,m,X,U) · dFX,U,C|T=co

=

∫
ϕ(1,m,X,U) · dFU |X,C,T=co · dFX,C|T=co

=

∫
ϕ(1,m,X,U) · dFU |M=m,Z1=1,X,C,T=co · dFX,C|T=co

because U⊥⊥(Z1, Z2)|X,V, T = co

=

∫
E [Y |M = m,Z1 = 1, X,C, T = co] · dFX,C|T=co. (23)

Finally, estimable expressions for E [Y |M,Z1, X,C, T = co] and dFX,C|T=co based on observable

variables can be obtained as outlined in the appendix.

For the previous derivations, we require the support condition

Supp (X,C|T = co) ⊆ Supp (X,C|M = m,Z1 = 1, T = co)

or equivalently, that the conditional mediator density fM |X,C,Z1=1,T=co(m,x, c) > 0 at every

value x, c where fX,C|T=co(x, c) is positive. Given the one-to-one relationship between C

and V by Lemma 1, we can also express this as requiring fM |X,V,Z1=1,T=co(m,x, v) > 0 at

every value x, v where fX,V |T=co(x, v) is positive. In other words, fM |X,V,Z1=1,T=co(m,X, V )

must be positive almost everywhere. This is summarized in the following support condition:

fM |X,C,Z1=1,T=co(m) > 0 a.s.. Equivalently in terms of V , the following has to hold:

Assumption 6: Common support

fM |X,V,Z1=1,T=co(m) > 0 a.s. (24)
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In terms of model (2) postulatingM = ζ(D,Z2, X, V ), this assumption requires that for every

x, v in the support of X,V in the subpopulation of compliers, there exists (at least) one value

z2, which has positive density, such that ζ(1, z2, x, v) = m. As Assumption 6 can equivalently be

written as fM |X,C,Z1=1,T=co(m) > 0 a.s., it is testable. Under this support condition, the mean

potential outcomes are identified.

Theorem 2a: Under Assumptions 1, 3, 4, and 6

E
[
Y 1,m|T = co

]
=

1

Pr (T = co)

∫
E

[
Y D

Z1 − Π̄

1− Π̄
Ω|X,M = m

]
· dFX (25)

with weights

Ω = ω(C,X) = fM |X(m)
E
[
D
Π̄
Z1−Π̄
1−Π̄
|C,X

]
∂
∂mE

[
1 (M ≤ m) ·DZ1−Π̄

1−Π̄
|C,X

] , (26)

where Π = π(X) = Pr(Z1 = 1|X) and Π̄ = π̄(Z2, X) = Pr(Z1 = 1|Z2, X).

Theorem 2b: Under Assumptions 1, 2, 3, 4 and 6

E
[
Y 1,m|T = co

]
=

1

Pr (T = co)

∫
E

[
Y D

Z1 −Π

1−Π
|C,X,M = m

]
· Ω · dFC,X (27)

with weights

Ω = ω(C,X) =
1

Π

E [D (Z1 −Π) |C,X]

E [D (Z1 −Π) |M = m,C,X]
. (28)

Theorem 2 provides the identification results with and without Assumption 2. While Theorem

2a, which does not assume independence of Z1 and Z2, is more general, Theorem 2b provides a

simpler expression. In particular, we obtain an explicit expression for the complier density when

imposing Assumption 2, namely

fM |Z1=1,X,C,T=co =
E [D (Z1 −Π) |M,X,C]

E [D (Z1 −Π) |X,C]
· fM |X,C . (29)
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This is not possible for Theorem 2a, where one would need to condition on Z2 and C, which would

entail a degenerate distribution function. The weights in (28) may therefore also be expressed as

Ω =
1

Π

fM |X,C(m)

fM |Z1=1,X,C,T=co(m)
,

which provides the proper re-weighting approach to transform (27) into (23). Density expression

(29) also links up with Assumption 6 in that fM |X,C(m) needs to be positive for almost all values

of X and C (unless E[D (Z1 −Π) |M,X,C] = 0).

3.2.2 Identification via instrument monotonicity

Instead of the control function approach, we consider an alternative identification strategy as-

suming monotonicity of the mediator in Z2. We therefore drop Assumption 4 and impose As-

sumption 7 instead.

Assumption 7: Monotonicity of the mediator in the instrument

ζ(d, z2, x, v) is strictly in z2 for almost all d, x, v. We normalize ζ to be monotonically increasing.

Whether Assumption 4 or Assumption 7 is more plausible depends on the particular applic-

ation. If the mediator is, for instance, household income and Z2 represents unexpected windfall

income (e.g. lottery wins, inheritances), assuming monotonicity with respect to Z2 would ap-

pear very natural, whereas monotonicity with respect to V might be more debatable. Further-

more, Assumption 7 has the advantage of implying testable implications, whereas Assumption

4 is not testable. Finally, Assumption 7 permits the unobservable heterogeneity V to be multi-

dimensional, whereas Assumption 4 requires it to be one-dimensional, see e.g. Kasy (2014) for a

discussion.

With ζ strictly monotonic in z2, the mediator equation M = ζ(D,Z2, X, V ) may be inverted
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to obtain

Z2 = ζ−1(D,M,X, V ),

where ζ−1 is now the inverse function with respect to the second argument. Note that this is a

different inverse function than in the previous section, where it referred to the fourth argument.

To minimize the number of symbols, we, however, use the same notation here.

To see how Assumption 7 (along with several previous assumptions) entails identification,

define the random variable Q as

Q ≡ ζ−1(1,m,X, V ), (30)

which is a stochastic function of the two random variables X and V . Hence, the distribution of Q

is governed by the distributions of X and V . It follows that conditional on X, the only stochastic

component in Q is V . We use this fact in the following expression for the mean potential outcome:

E
[
Y 1,m|T = co

]
=

∫
ϕ(1,m,X,U) · dFX,U,Q|T=co

=

∫ ∫
ϕ(1,m,X,U) · dFU |Q,X,T=co · dFQ|X,T=co · dFX|T=co. (31)

Let us now examine the terms in the second line of (31). Starting with dFU |Q,X,T=co, as

conditional on X the only stochastic element in Q is V and since (U, V )⊥⊥(Z1, Z2)|X,T = co, we

have

dFU |Q,X,T=co = dFU |Q,Z1,Z2,X,T=co.
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Now consider

FU |Q,Z1,Z2,X,T=co(u, q, 1, q, x)

= Pr (U ≤ u|Q = q, Z1 = 1, Z2 = q,X = x, T = co)

= Pr
(
U ≤ u|ζ−1(1,m,X, V ) = q, Z1 = 1, Z2 = q,X = x, T = co

)
= Pr (U ≤ u|m = ζ(1, q,X, V ), Z1 = 1, Z2 = q,X = x, T = co)

= Pr (U ≤ u|m = ζ(D,Z2, X, V ), Z1 = 1, Z2 = q,X = x, T = co)

= Pr (U ≤ u|m = M,Z1 = 1, Z2 = q,X = x, T = co)

= FU |M=m,Z1=1,Z2=q,X=x,T=co(u).

Secondly, concerning dFQ|X,T=co, note that conditional on X, the only stochastic component in

Q is V . Because V is independent of Z1, Z2 conditional on X, so is Q. It follows that

dFQ|X,T=co = dFQ|Z1,Z2,X,T=co.

Now consider

FQ|X,T=co(q, x) = FQ|Z1,Z2,X,T=co(q, 1, q, x)

= Pr (Q ≤ q|Z1 = 1, Z2 = q,X = x, T = co)

= Pr
(
ζ−1(1,m,X, V ) ≤ q|Z1 = 1, Z2 = q,X = x, T = co

)
= Pr (m ≤ ζ(1, q,X, V )|Z1 = 1, Z2 = q,X = x, T = co)

= Pr (m ≤ ζ(D,Z2, X, V )|Z1 = 1, Z2 = q,X = x, T = co)

= Pr (m ≤M |Z1 = 1, Z2 = q,X = x, T = co)

= 1− FM |Z1=1,Z2,X,T=co (m, q, x) .
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Therefore, the density function is obtained by differentiation as

fQ|X,T=co(q, x) = −
∂FM |Z1=1,Z2,X,T=co (m, q, x)

∂q
. (32)

Identification of the density functions requires that

Supp (Z2|X,T = co) ⊇ Supp (Q|X,T = co) .

That is, whenever Q has positive density, also Z2 must have positive density such that Q is

observable in that area of the support. In other words, suffi cient variation in Z2 is required to

move M to take the value m for any individual. Put differently, for every x, v in the support of

X,V , there exists a value z2 in the support of Z2 such that ζ−1(1,m, x, v) = z2, which corresponds

to Assumption 6.

Plugging the previous results into (31) yields

E
[
Y 1,m|T = co

]
=

∫ ∫
ϕ(1,m, x, u)dFU |M=m,Z1=1,Z2=q,X=x,T=co(u)

(
−
∂FM |Z1=1,Z2,X,T=co (m, q, x)

∂q

)
·fX|T=codqdx

=

∫ (∫
ϕ(D,M,X,U)dFU |M=m,Z1=1,Z2=z2,X=x,T=co

)(
−
∂FM |Z1=1,Z2,X,T=co (m, z2, x)

∂z2

)
fX|T=codz2dx

=

∫
E [Y |M = m,Z1 = 1, Z2 = z2, X = x, T = co]

(
−
∂FM |Z1=1,Z2,X,T=co (m, z2, x)

∂z2

)
fX|T=co(x)dz2dx.

(33)

For making (33) operational, we need to identify FM |Z1,Z2,X,T=co, which is derived in the appendix.

With these preliminaries, the following identification result is obtained:
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Theorem 3: Under Assumptions 1, 3, 6 and 7

E
[
Y 1,m|T = co

]
=

1

Pr (T = co)

∫
E

[
Y D

Z1 − Π̄

1− Π̄
|Z2, X,M = m

]
· Ω · dFZ2,X (34)

with weights

Ω = ω(Z2, X) = − ∂

∂z2

(
E
[
D
(
Z1 − Π̄

)
|M ≤ m,Z2, X

]
E
[
D
(
Z1 − Π̄

)
|Z2, X

] FM |Z2,X (m)

)

× 1

fZ2|X

E
[
D
Π̄
Z1−Π̄
1−Π̄
|X
]

E
[
DZ1−Π̄

1−Π̄
|M = m,Z2, X

] .
Note that the expectation in the numerator conditions onM ≤ m whereas the expectation in the

denominator conditions on M = m.

3.3 Natural effects with discrete mediator

The previous identification approaches are only applicable under a continuous mediator M . If

M is discrete, it is not possible to point identify V , so that the methods relying on Assumption

4 cannot be used. Neither is Assumption 7 applicable. In the previous sections, identification

was achieved by controlling for fMd|V,X,T=co (via variation in Z2), in particular by weighting

with
fM0|V,X,T=co
fM1|V,X,T=co

. With M being discrete, observations need to by weighted by
Pr(M0|V,X,T=co)
Pr(M1|V,X,T=co)

.

However, as V is no longer identified under a discreteM , we cannot estimate Pr
(
Md|V,X, T = co

)
because V is unobserved. As an alternative, one may might find a weighting scheme that produces

Pr(M0|V,X,T=co)
Pr(M1|V,X,T=co)

on average, via integration with respect to Z2. The price to pay are somewhat

stronger identifying assumptions. In the following we focus on the case where M is binary, which

implies the following model:

Y = ϕ(D,M,X,U), (35)

M = 1 (ζ(D,Z2, X, V ) ≥ 0 ) ,

D = 1 ( χ(Z1, X,W ) ≥ 0 ) .
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In addition to Assumptions 1 to 3, identification requires strengthening the monotonicity

condition:

Assumption 8: Monotonicity of mediator in the instrument and the unobservable

(i) V is a continuously distributed random variable with a cdf FV |X=x,T=co(v) that is strictly

increasing in the support of V , for almost all values of x,

(ii) ζ(d, z2, x, v) is strictly monotonic in z2 and in v. We normalize ζ(d, z2, x, v) to be monotonically

increasing in z2 and in v.

We thus assume monotonicity in two arguments (which is implicit also in parametric models

such as probit and logit specifications). This implies that the values of z2 can be ordered such

that a model of type (35) exists. While monotonicity in v (which is not directly testable) is a fun-

damental assumption, monotonicity in z2 (which implies testable restrictions on observed vari-

ables) is only needed for quantifying some conditional probabilities under the non-identifiability

of V . The particular ordering of the values z2 themselves is not important. I.e. it would suffi ce

if a transformation of z2 existed such that the transformed values of z2 satisfied (35) with As-

sumption 8. For instance, conditional expectations of M should be increasing in z2. If this was

not the case, Z2 could be transformed accordingly such that the condition was satisfied.

To develop the intuition for identification based on monotonicity ofM in z2 and v (due to the

lack of identification of V ), consider for a moment a simplified version of model (35), in which X

is dropped (or kept implicit) for notational convenience. The mediator is then given by

M = 1 (ζ(D,Z2, V ) ≥ 0 ) .

Define ζ−1 to be the inverse function with respect to z2. Since ζ is monotonically increasing in z2,

so is ζ−1. Applying the inverse function on both sides, the mediator equation can be rewritten as

M = 1
(
Z2 ≥ ζ−1(D, 0, V )

)
.
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Furthermore, define ξd(v) ≡ ξ(d, v) ≡ ζ−1(d, 0, v). Note that while ζ−1 is strictly monotonically

increasing in its second argument z2, it is strictly monotonically decreasing in its third argument

v, see Lemma 3 in the appendix. Therefore, also ξ(d, v) is strictly monotonically decreasing in v.

We may write

M = 1 (ξ(D,V ) ≤ Z2 ) , (36)

or alternatively,

M = 1 (ξD(V ) ≤ Z2 ) ,

where we use the notation ξd(v) ≡ ξ(d, v), with d indexing the function. The latter is convenient

because D only takes values 0 and 1.

In a next step, we examine

Pr (M = 0|D = d, Z2 = z2, T = co)

= Pr (ξ(D,V ) > Z2 |D = d, Z2 = z2, T = co)

= Pr (ξ(d, V ) > z2 |Z1 = d, Z2 = z2, T = co)

= Pr (ξd(V ) > z2 |Z1 = d, Z2 = z2, T = co)

= Pr (ξd(V ) > z2 |T = co) ,

where we made use of the facts that Z1 = D for compliers and that V⊥⊥(Z1, Z2)|X,T = co by

Assumption 1. Since ξd(v) is strictly monotonically decreasing in v, its inverse function ξ−1
d exists

and is also strictly monotonically decreasing in v such that the inverse function can be applied

on both sides (where the inequality sign changes because ξ−1
d is a decreasing function) to obtain

= Pr
(
V ≤ ξ−1

d (z2) |T = co
)

= FV |T=co

(
ξ−1
d (z2)

)
.
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Now, we make conditioning on X explicit again and define the function µd,x(z2) as

µd,x(z2) = Pr (M = 0|D = d, Z2 = z2, X = x, T = co) . (37)

Repeating the previous derivations yields

M = 1
(
ξD,X(V ) ≤ Z2

)
with

µd,x(z2) = FV |X=x,T=co

(
ξ−1
d,x (z2)

)
. (38)

Further, µd,x(z2) is identified by Assumptions 1 and 2 as

µ1,x(z2) =
E [(1−M)D (Z1 − E [Z1|X = x]) |Z2 = z2, X = x]

E [D (Z1 − E [Z1|X = x]) |Z2 = z2, X = x]
,

µ0,x(z2) =
E [(1−M) (1−D) (Z1 − E [Z1|X = x]) |Z2 = z2, X = x]

E [(1−D) (Z1 − E [Z1|X = x]) |Z2 = z2, X = x]
,

which can be shown by similar arguments as before.

Since FV |X,T=co is strictly increasing by Assumption 8 and ξd,x is monotonic as discussed

above, the relationship in (38) can be inverted. Let µ−1
d,x denote the inverse function of µd,x(z2),

i.e. with respect to z2. (38) implies that µd,x(z2) and ξ−1
d,x (z2) are both strictly monotonically

decreasing. Using the shortcut notation FV |x,co ≡ FV |X=x,T=co and denoting its inverse function

by F−1
V |x,co, we note the following relationships:

µd,x(z2) = FV |x,co

(
ξ−1
d,x (z2)

)
,

ξ−1
d,x (z2) = F−1

V |x,co
(
µd,x(z2)

)
,

ξd,x (v) = µ−1
d,x

(
FV |x,co (v)

)
.
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Therefore, the model can be rewritten as

Y = ϕ(D,M,X,U),

M = 1
(
µ−1
D,X

(
FV |X,co (V )

)
≤ Z2

)
,

D = 1 ( χ(Z1, X,W ) ≥ 0 ) ,

where the function µ−1
D,X is identified and µ−1

d,x(v) is strictly monotonically decreasing in v.

Theorem 4: Under Assumptions 1, 2, 3, 5 and 8

E
[
Y 1,M0 |T = co

]
= E

[
Y DΩ

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

E
[
Y 1,M1 |T = co

]
= E

[
Y D

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

E
[
Y 0,M1 |T = co

]
= E

[
Y (D − 1)Ω̄

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

E
[
Y 0,M0 |T = co

]
= E

[
Y (D − 1)

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
,

with the weights being functions of Z2 and X,

Ω =
fZ2|X,T=co

(
µ−1

0,X

(
µ1,X(Z2)

))
fZ2|X,T=co (Z2)

·
µ′1,X(Z2)

µ′0,X(µ−1
0,X(µ1,X(Z2)))

(39)

and

Ω̄ =
fZ2|X,T=co

(
µ−1

1,X

(
µ0,X(Z2)

))
fZ2|X,T=co (Z2)

·
µ′0,X(Z2)

µ′1,X(µ−1
1,X(µ0,X(Z2)))

, (40)

where µ′d,x(z2) ≡ dµd,x(z2)

dz2
is the derivative with respect to z2.

The weights Ω and Ω̄ are obtained by first estimating the functions µd,x(z2) and the density

of Z2. The conditional density of Z2 in the complier subpopulation is identified as

fZ2|X,T=co(z2) = fZ2|X(z2) · E [D (Z1 −Π) |X,Z2 = z2]

E [D (Z1 −Π) |X]
.
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Of course, if also Z2 were known to be independent of the type, the previous expression would

simplify to fZ2|X,T=co(z2) = fZ2|X(z2).

The intuition for the identification results in Theorem 4 goes as follows. Consider the first

line,

E

[
Y DΩ

Z1 −Π

Π (1−Π)

]
1

Pr (T = co)
.

In the appendix it is shown that the expectation is zero within the subpopulation of always takers

such that

= E

[
Y Ω

Π
|T = co, Z1 = 1

]
Pr (Z1 = 1|T = co) .

Inserting the model and using Bayes’theorem yields

=

∫
ϕ(1,M,X,U)Ω(Z2, X)dFU,M,V,Z2|X,T=co,Z1=1 · dFX|T=co

=

∫
ϕ(1,M,X,U)Ω(Z2, X)dFU,V,Z2|X,T=co,Z1=1 · dFX|T=co,

where we used the fact thatM is uniquely determined by Z1, Z2, X, V among compliers in the last

equation. For M binary, we may split the integral into regions where M is 1 and 0, respectively:

=

∫
1 (M = 1) · ϕ(1,M,X,U)Ω(Z2, X)dFU,V,Z2|X,T=co,Z1=1dFX|T=co

+

∫
1 (M = 0) · ϕ(1,M,X,U)Ω(Z2, X)dFU,V,Z2|X,T=co,Z1=1dFX|T=co

=

∫
1
(
µ−1

1,X

(
FV |X,co (V )

)
≤ Z2

)
· ϕ(1, 1, X, U)Ω(Z2, X)dFU,V,Z2|X,T=co,Z1=1dFX|T=co

+

∫
1
(
µ−1

1,X

(
FV |X,co (V )

)
> Z2

)
· ϕ(1, 0, X, U)Ω(Z2, X)dFU,V,Z2|X,T=co,Z1=1dFX|T=co.

By Assumptions 1 and 2, we can write dFU,V,Z2|X,T=co,Z1=1 = dFU,V |X,T=co · dFZ2|X,T=co such
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that

=

∫
1
(
µ−1

1,X

(
FV |X,co (V )

)
≤ Z2

)
· ϕ(1, 1, X, U)Ω(Z2, X)dFU,V,X|T=co · dFZ2|X,T=co

+

∫
1
(
µ−1

1,X

(
FV |X,co (V )

)
> Z2

)
· ϕ(1, 0, X, U)Ω(Z2, X)dFU,V,X|T=co · dFZ2|X,T=co

=

∫
ϕ(1, 1, X, U)dFU |V,X,T=co ·


∫

Ω(Z2, X) · 1
(
µ−1

1,X

(
FV |X,co (V )

)
≤ Z2

)
dFZ2|X,T=co︸ ︷︷ ︸

=Pr(M=1|V,X,T=co,Z1=0)

 · dFV,X|T=co

+

∫
ϕ(1, 0, X, U)dFU |V,X,T=co ·


∫

Ω(Z2, X) · 1
(
µ−1

1,X

(
FV |X,co (V )

)
> Z2

)
dFZ2|X,T=co︸ ︷︷ ︸

=Pr(M=0|V,X,T=co,Z1=0)

 · dFV,X|T=co.

The appendix shows that the terms in curly brackets integrate to Pr (M |V,X, T = co, Z1 = 0).

Further using M0⊥⊥Z1|V,X, T = co (by Assumptions 1 and 2) gives

=

∫
ϕ(1, 1, X, U)dFU |V,X,T=co · Pr

(
M0 = 1|V,X, T = co

)
· dFV,X|T=co

+

∫
ϕ(1, 0, X, U)dFU |V,X,T=co · Pr

(
M0 = 0|V,X, T = co

)
· dFV,X|T=co

=

∫
ϕ(1,M0, X, U) · dFU |V,X,T=co · dFM0|V,X,T=co · dFV,X|T=co.

Using M0⊥⊥U |V,X, T = co (by Assumption 1) gives

=

∫
ϕ(1,M0, X, U) · dFM0,U |V,X,T=co · dFV,X|T=co = E

[
Y 1,M0 |T = co

]
.

We conclude this section by considering the example of a single-index model as an interesting

special case that fits our framework:

M = 1 (ζ(αD + βZ2 + γX + V ) ≥ 0 ) ,
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where ζ represents an unknown monotonic function and α, β, γ denote unknown coeffi cients. For

this particular model, one obtains after some calculations that the weights simplify to

Ω =
fZ2|X,T=co

(
Z2 + α

β

)
fZ2|X,T=co (Z2)

and Ω̄ =
fZ2|X,T=co

(
Z2 − α

β

)
fZ2|X,T=co (Z2)

.

Hence, the weights have a particularly simple form under the single-index model.

3.4 Controlled direct effects with discrete mediator

The identification of the controlled direct effect appears diffi cult, as the control function approach

fails (due to the non-identifiability of V ) and an identification strategy similar to the previous

subsection 3.3 is not applicable. In the latter case, we only needed to re-weight the density

function of Z2 to switch from M0 to M1 and vice versa. For the controlled direct effect, however,

all weights would need to be assigned to those portions of the density function of Z2 such that

it integrates to one irrespective of the value of V . This implies only using those values of Z2 for

which M attains a particular value m with probability one. Monotonicity in V is not useful here,

therefore we only invoke monotonicity in Z2.

Consider the model

Y = ϕ(D,M,X,U), (41)

M = 1 (ζ(D,Z2, X, V ) ≥ 0 ) ,

D = 1 ( χ(Z1, X,W ) ≥ 0 ) ,

and impose Assumption 7, assuming that ζ is monotonically increasing in z2. Our object of

interest is E
[
Y 1,m|T = co

]
for m ∈ {0, 1}). Identification requires some support condition similar

to Assumption 6, with the density function being replaced by a probability because M is now
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assumed to be discrete. For the identification of E
[
Y 1,0|T = co

]
, it has to hold that

Pr (M = 0|X,V, Z1 = 1, T = co) > 0 a.s. (42)

For identification of both E
[
Y 1,0|T = co

]
and E

[
Y 0,0|T = co

]
the following assumption must be

satisfied:

Assumption 6’

Pr (M = 0|X,V, Z1, T = co) > 0 a.s.

In contrast, the identification of E
[
Y 1,1|T = co

]
and E

[
Y 0,1|T = co

]
would hinge on:

Assumption 6”

Pr (M = 0|X,V, Z1, T = co) < 1 a.s.

Note that we split the support condition into two parts (i.e. Assumption 6’and 6”), because

it may occur in empirical applications that only one of them is satisfied so that only one of the

controlled direct effects is identified.

To see how identification is achieved, consider expression (42), which is equivalent to requiring

Pr (ζ(1, Z2, X, V ) < 0 |X,V, Z1 = 1, T = co) > 0 a.s.

or

Pr
(
Z2 < ζ−1(1, 0, X, V ) |X,V, Z1 = 1, T = co

)
> 0 a.s.,

where ζ−1 is the inverse function with respect to z2. Hence, for almost every v and x there exists

a value z
¯v,x
≡ ζ−1(1, 0, x, v), such that M takes the value 0 for every Z2 <z¯v,x

. By Assumption

6’, these values of Z2 have positive probability mass. Now, for a given x, consider the minimum
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of these values z
¯v,x

in the support of V :

z
¯x
≡ min

v∈Supp(V |X=x)
z
¯v,x
≡ min

v∈Supp(V |X=x)
ζ−1(1, 0, x, v). (43)

Consider a value z̃ which satisfies z̃ <z
¯x
, for a given x. The previous considerations imply

Pr (M = 0|X = x, Z2 = z̃, Z1 = 1, T = co) = 1, (44)

whily by Assumption 6’, such values z̃ <z
¯x
exist with positive density. Hence, by only using

those observations i with Z2i <z¯Xi
, where z

¯Xi
is defined by (43) for x taking the value of the

observed Xi, there is no endogeneity problem. On the other hand, for observations with Z2i ≥z¯Xi ,

observing Mi = 0 implies a dependence between Vi and Z2i which would lead to an improper

weighting of Ui. This idea is exploited in the following theorem:

Theorem 5: Under Assumptions 1, 3, 6’, 7

E
[
Y 1,0|T = co

]
=

Pr (Z2 < z¯X
)

Pr (T = co)
E

[
Y D

Z1 − Π̄

1− Π̄
· Ω10|Z2 < z¯X

]
,

E
[
Y 0,0|T = co

]
=

Pr (Z2 < z¯X
)

Pr (T = co)
E

[
Y (D − 1)

Z1 − Π̄

Π̄
· Ω00|Z2 < z¯X

]
,

with weights

Ω10 = ω10(X) =
E
[
D
Π̄
Z1−Π̄
1−Π̄
|X
]

E
[
1 (Z2 < z¯X

)DZ1−Π̄
1−Π̄
|X
] ,

Ω00 = ω00(X) =
E
[
D
Π̄
Z1−Π̄
1−Π̄
|X
]

E
[
1 (Z2 < z¯X

) (D − 1) Z1−Π̄
Π̄
|X
] ,

where z
¯X

is given by (43) for the random variable X.
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Under Assumptions 1, 3, 6”, 7

E
[
Y 1,1|T = co

]
=

Pr (Z2 > z̄X)

Pr (T = co)
E

[
Y D

Z1 − Π̄

1− Π̄
· Ω11|Z2 > z̄X

]
,

E
[
Y 0,1|T = co

]
=

Pr (Z2 > z̄X)

Pr (T = co)
E

[
Y (D − 1)

Z1 − Π̄

Π̄
· Ω01|Z2 > z̄X

]
,

with weights

Ω11 = ω11(X) =
E
[
D
Π̄
Z1−Π̄
1−Π̄
|X
]

E
[
1 (Z2 > z̄X)DZ1−Π̄

1−Π̄
|X
] ,

Ω01 = ω01(X) =
E
[
D
Π̄
Z1−Π̄
1−Π̄
|X
]

E
[
1 (Z2 > z̄X) (D − 1) Z1−Π̄

Π̄
|X
] ,

where z̄X is given by

z̄x ≡ max
v∈Supp(V |X=x)

ζ−1(1, 0, x, v)

for the random variable X.

Concerning the first result of Theorem 5, only the outcome information of observations satis-

fying Z2i <z¯Xi
is used. In practice, z

¯x
is unknown and needs to be estimated. According to (44),

the largest value satisfying that the probability of observing M = 0 is one (or very close to one)

for all values of Z2 below this threshold should be chosen for z¯x
. Note that the left hand side of

(44), which is a conditional probability among compliers, is identified as

Pr (M = 0|X,Z2, Z1 = 1, T = co) =
E
[
(1−M)DZ1−Π̄

1−Π̄
|X,Z2

]
Pr (T = co, Z1 = 1|X,Z2)

=
E
[
(1−M)DZ1−Π̄

1−Π̄
|X,Z2

]
Π̄E

[
D
Π̄
Z1−Π̄
1−Π̄
|X,Z2

]
=

E
[
(1−M)D

(
Z1 − Π̄

)
|X,Z2

]
E
[
D
(
Z1 − Π̄

)
|X,Z2

] ,

because Z1⊥⊥T |X,Z2 and V⊥⊥Z1|X,Z2, T = at and Pr (T = co|X,Z2) = E
[
D
Π̄
Z1−Π̄
1−Π̄
|X,Z2

]
. With
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this relationship, Pr (M = 0|X,Z2, Z1 = 1, T = co) is estimable and one may find those values of

z2 where this probability is one (or close to one) in order to estimate z¯x
.

3.5 Natural effects with discrete instruments

In this section, we discuss identification when both Z1 and Z2 are discrete, and M is continuous.

Note that the results obtained are also applicable when Z2 is continuous, but rest on stronger

assumptions than in the previous sections.

In many applications, discrete instruments for the mediator may be easier to find than con-

tinuous ones. However, if Z2 is discrete, the previous identification approaches are infeasible. The

key channel for identification in Section 3.1 was to (hypothetically) vary Z1 in order to change

treatment status D, while at the same time keeping M unchanged through a variation of Z2 that

undoes the effect of Z1 on M . This generally requires a continuous Z2 in order to keep M fixed

when Z1 switches, conditional on V and X. Otherwise if for instance Z1 and Z2 are both binary,

the distribution of M conditional on V,X and Z1 has only two mass-points, which are generally

different for Z1 = 0 and Z1 = 1. To more clearly see the problem, reconsider the identification

approach of Section 3.1:

E
[
Y 1,M0 |T = co

]
=

∫
ϕ(1,M0, X, U) · dFM0,X,U,V |T=co

=

∫
ϕ(1,M0, X, U) · dFM0|X,U,V,T=co · dFX,U,V |T=co

=

∫
ϕ(1,M0, X, U) · dFM0|X,V,T=co · dFX,U,V |T=co,

because M0⊥⊥U |X,V, T = co by the control function assumption. We multiplied and divided by

dFM1|X,V,T=co to obtain

=

∫
ϕ(1,M0, X, U) · dFX,U,V |T=co · dFM0|X,V,T=co ·

dFM1|X,V,T=co

dFM1|X,V,T=co

=

∫
ϕ(1,M,X,U) · dFX,U,V |T=co · dFM |Z1=0,X,V,T=co ·

dFM |Z1=1,X,V,T=co

dFM |Z1=1,X,V,T=co
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as long as dFM |Z1=1,X,V,T=co > 0 at every m for which dFM |Z1=0,X,V,T=co > 0

=

∫
ϕ(1,M,X,U) ·

dFM |Z1=0,X,V,T=co

dFM |Z1=1,X,V,T=co︸ ︷︷ ︸
Ω−Weights

· dFM |Z1=1,X,V,T=codFX,U,V |T=co.

Identification thus required that

Supp (M |Z1 = 0, X, V, T = co) ⊆ Supp (M |Z1 = 1, X, V, T = co) , (45)

which corresponds to Assumption 5.

In general, this support condition is not satisfied if Z2 is discrete. The problem could be

solved, however, if the satisfaction of IV validity would not hinge on conditioning on X, as the

distribution ofM conditional on V and Z1 is usually continuous as long as at least one element in

X is continuous. Variation in X may then be used to shift M to all points needed in the Z1 = 1

and Z1 = 0 populations. This, however, requires X to be exogenous, as discussed below. To be

concise, it would suffi ce if only one element of X satisfied exogeneity. Under these conditions, the

support assumption can be weakened to only satisfying dFM |Z1=1,V,T=co > 0 at every m where

dFM |Z1=0,V,T=co > 0, i.e. without conditioning on X. Therefore, (45) is replaced by the weaker

restriction

Supp (M |Z1 = 0, V, T = co) ⊆ Supp (M |Z1 = 1, V, T = co) . (46)

We can summarize this support condition in the following way, which admits identification of

both Y 1,M0
and Y 0,M1

:

Assumption 9: Common support of M

0 < Pr (Z1 = 1|M,C, T = co) < 1 a.s.

43



A further requirement for the identification of the mean potential outcomes is that X is

structurally separated from M . To this end, we assume that the outcome equation is additively

separable in X, while the other equations are as unrestricted as in the previous discussion:

Y = ϕ(D,M,U) + ψ(D,X), (47)

M = ζ(D,Z2, X, V ),

D = 1 ( χ(Z1, X,W ) ≥ 0 ) .

Both Z1 and Z2 are discrete, so that X has to contain (at least) one continuous variable.

Finally, our conditional independence assumptions need to be strengthened to embrace exo-

geneity of X. That is, in addition to Assumptions 1 and 2, the following needs to hold:

Assumption 10: Exogeneity assumptions

X⊥⊥Z1,

X⊥⊥(U, V )|T = co.

Assumptions 1,2, and 10 jointly imply that

Z1⊥⊥(Z2, X, U, V, T ),

(Z1, Z2, X)⊥⊥(U, V )|T = co.

While the first part of Assumption 10 is straightforward and easily testable, the second condition

is more delicate as it requires independence of X in the subpopulation of compliers. Since the

type is itself a function of X andW , conditioning on being a complier can introduce a dependency

even if X were independent of U, V in the full population. The second part of Assumption 10

therefore appears more plausible if X does not affect D so that the type only depends on W .

Hence, one could extend the previous model so that only some covariates are exogenous and
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structurally separated, while others are possibly endogenous as in previous sections. To this end,

consider partitioning X = (X1, X2), where the exogenous variables X1 must contain (at least)

one continuous variable, while the possibly endogenous variables X2 are not restricted. We may

then admit the model

Y = ϕ(D,M,X2, U) + ψ(D,X1, X2), (48)

M = ζ(D,Z2, X1, X2, V ),

D = 1 ( χ(Z1, X1, X2,W ) ≥ 0 ) ,

and replace Assumption 10 by

Assumption 10’: Exogeneity assumption (modified)

X1⊥⊥Z1|X2,

X1⊥⊥(U, V )|X2, T = co.

The second part of Assumption 10’would be more plausible if treatment choice was only affected

by X2, but not by X1. (Also Assumption 9 would need to be extended to include X2 in the

conditioning set.) This extended model (48) nests the setups of Section 3.1 when X1 is the empty

set, as well as (47) when X2 is the empty set. For ease of exposition, we focus on model (47)

instead of (48) in this section, though.

We note that Lemma 1 also holds true with both instruments being discrete. By Lemma 1

we have Ci = FV |X=Xi,T=co (Vi) meaning that conditional on X, the control function C is a one-

to-one mapping of V . By Assumption 10, FV |X,T=co = FV |T=co, which implies Ci = FV |T=co (Vi),

so that C uniquely identifies V even without conditioning on X.

We subsequently discuss the identification of Y 1,M0
and note that the derivations for Y 0,M1
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follow by symmetry.12 By (47), the mean potential outcome of interest corresponds to

E[Y 1,M0 |T = co] = E
[
ϕ(1,M0, U) + ψ(1, X)|T = co

]
.

Since the two functions ϕ and ψ may both contain an intercept, we need to (arbitrarily) fix one

of these intercepts (as otherwise the two functions are not identified). We normalize the intercept

of ψ such that for some value x0 in the support of X

ψ(1, x0) = 0.

Identification proceeds in three steps, requiring Assumptions 1, 2, 3, 4, 9, and 10. First, we

identify the function ψ(D,X). Second, we subtract the function ψ(D,X) from Y , and then

identify E[ϕ(1,M0, U)|T = co]. Third, we identify E[ψ(1, X)|T = co], and then combine the

previous results for the identification of E[Y 1,M0 |T = co].

Consider the following expression for some values m, c, x in the support of M,C,X:

E
[
Y DZ1−Π

1−Π |M = m,C = c,X = x
]

Pr (T = co, Z1 = 1|M = m,C = c,X = x)
. (49)

As shown in the appendix, this term is zero for the always takers, such that we obtain

= E [Y |T = co, Z1 = 1,M = m,C = c,X = x]

= E [ϕ(1,m,U) + ψ(1, x)|T = co, Z1 = 1,M = m,C = c,X = x]

= E [ϕ(1,m,U)|T = co, Z1 = 1,M = m,C = c,X = x] + ψ(1, x).

Because U⊥⊥M |C,Z1, X, T = co due to U⊥⊥Z2|V,Z1, X, T = co and U⊥⊥Z1|C,X, T = co, and

12 In applications, we could simply re-code Di as 1−Di and Zi as 1− Zi, and then apply the formulae below to
the re-coded data.
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finally U⊥⊥X|C, T = co by Assumption 10, it follows that

= E [ϕ(1,m,U)|T = co, C = c] + ψ(1, x)

= χ(m, c) + ψ(1, x),

where χ(m, c) ≡ E [ϕ(1,m,U)|T = co, C = c] is an unknown function of m and c only.

We further note that the denominator of (49) can be simplified by using an auxiliary result

of the proof of Theorem 1:

dFM,C|Z1=1,X,T=co = E

[
D

Π

Z1 −Π

1−Π
|M,C,X

]
dFM,C|X

Pr (T = co|X)
.

Using Bayes’ theorem and plugging in the previous expression, the denominator of (49) can

therefore be written as

Pr (T = co, Z1 = 1|M,C,X) =
dFM,C|X,T=co,Z1=1 · Pr (T = co, Z1 = 1|X)

dFM,C|X

= E

[
D

Π

Z1 −Π

1−Π
|M,C,X

]
Pr (T = co, Z1 = 1|X)

Pr (T = co|X)

= E

[
D
Z1 −Π

1−Π
|M,C,X

]
,

where the last result follows from Z1⊥⊥T |X. Combining all these results we obtain for some values

m, c, x in the support of M,C,X,

E [Y D (Z1 −Π) |M = m,C = c,X = x]

E [D (Z1 −Π) |M = m,C = c,X = x]
= χ(m, c) + ψ(1, x). (50)

Consider now two triplets (m, c, x1) and (m, c, x0) in the support of M,C,X. We obtain

E [Y D (Z1 −Π) |M = m,C = c,X = x1]

E [D (Z1 −Π) |M = m,C = c,X = x1]
− E [Y D (Z1 −Π) |M = m,C = c,X = x0]

E [D (Z1 −Π) |M = m,C = c,X = x0]
= ψ(1, x1).

(51)

because ψ(1, x0) has been normalized to be zero. Similarly, consider two triplets (m′, c′, x2) and
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(m′, c′, x1) in the support of M,C,X:

E [Y D (Z1 −Π) |M = m′, C = c′, X = x2]

E [D (Z1 −Π) |M = m′, C = c′, X = x2]
−E [Y D (Z1 −Π) |M = m′, C = c′, X = x1]

E [D (Z1 −Π) |M = m′, C = c′, X = x1]
= ψ(1, x2)−ψ(1, x1),

and as ψ(1, x1) is identified by (51), so is ψ(1, x2). We can thus identify ψ(1, x1), ψ(1, x2), and so

forth. However, identification of the entire function ψ(1, x) for all x in the support of X requires

further conditions as we need to find triplets with identical m and c, but x2 6= x1. Since M is a

function of Z2, X, V among compliers, it is only through variation of z2 that identical values of

m and c for different x may be obtained.

If ψ is a parametric function of, say, a k-dimensional parameter vector β, it generally

suffi ces to identify ψ(1, x) ≡ ψ1(x;β) for k different values of x. In practice, one may for

instance consider the following regression approach. Let Ŷi be a (non-parametric) estimate of

E[Y D (Z1 −Π) |Mi, Ci, Xi]/E[D (Z1 −Π) |Mi, Ci, Xi]. We estimate the model

Ŷi = χ(Mi, Ci) + ψ1(Xi;β) + εi, (52)

with εi being the regression error, χ an unknown two-dimensional nonparametric function, and

ψ1(x;β) a parametric function, using partially linear semiparametric regression.

On the other hand, if ψ is a non-parametric function, identification conditions are more

diffi cult to characterize and require more than smoothness assumptions. If we do not want to

impose any structure on ψ (apart from continuity), it would be required that for any x1 in the

support of X, there exists (at least) one value of m and c, respectively, in the supports of M

and C which allows applying (51). This would be unproblematic if m did not appear on the

right-hand-side of (50), because C and X are independent by Assumption 10. However, in the

T = co, Z1 = 1 subpopulation, M is a deterministic function of Z2, X and C only, such that M ,

C, and X are closely related and the relationship is non-deterministic only because of Z2.

Consider the most cumbersome case where both Z1 and Z2 are binary. M takes only two

different values conditional on X and C and being in the T = co, Z1 = 1 subpopulation. It is
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diffi cult to find general identification conditions. One special case applies if the function M =

ζ(D,Z2, X, V ) happens to be invertible in x, i.e. in its third argument. Since there is a one-to-one

mapping between V and C (as established in Lemma 1), we can also find a function ζ̄ such that

M can be expressed in terms of C instead of V , that is M = ζ̄(D,Z2, X,C). Let ζ̄−1
(3) denote the

inverse function with respect to the third argument of ζ̄, such that X = ζ̄
−1
(3)(D,Z2,M,C).

Consider some value c in the support of C. For x0 and c given, two different values of m can

be observed, depending on whether Z2 takes the value 0 or 1. (Note that we are always in the

T = co, Z1 = 1 subpopulation.) Suppose z2 = 1. Then, there exists a different value x1 which in

combination with z2 = 0 would deliver the same value of m, i.e. ζ̄(1, z2 = 0, x1, c) = ζ̄(1, z2 =

1, x0, c). This value x1 is given by x1 = ζ̄
−1
(3)(d = 1, z2 = 0, ζ̄(d = 1, z2 = 1, x0, c), c). Similarly, for

the same x0 and c, one could observe Z2 = 0. This would give us a value, say, m̄. Now, there

exists a different value x2 which in combination with z2 = 1 would deliver the same value m̄.

This value x2 is given by x2 = ζ̄
−1
(3)(d = 1, z2 = 1, ζ̄(d = 1, z2 = 0, x0, c), c). These two values x1

and x2 are observable with positive density if 0 < Pr(Z2 = 1|C,X) < 1 so that both values of Z2

actually occur for given c and x.13 Hence, for each value of c there exist two values x1 and x2 at

which ψ(1, x) is identified.14 Identification of ψ(1, x̄) at a general x̄ requires the existence of a c

in the support of C, such that either of the two mappings delivers x̄. This is formally stated in

the following lemma.

Lemma 2: For Z1 and Z2 being binary random variables, the function ψ(1, x) is

identified at x if there is a value c in the support of C such that either

x = ζ̄
−1
(3)(1, 1, ζ̄(1, 0, x0, c), c)

or

x = ζ̄
−1
(3)(1, 0, ζ̄(1, 1, x0, c), c),

13Obviously, they are only identified in the support of X among compliers, but we anyhow do not require the
function ψ(1, x) to be identified outside this support.
14This result applies to a Z2 having only two mass-points. If Z2 was discrete with k mass-points, we could

identify k · (k − 1) values for each c.
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under Assumptions 1, 2, 3, 4, 10 and the following assumptions:

i) ζ(D,Z2, X, V ) is invertible in its third argument,

ii) 0 < Pr(Z2 = 1|C,X) < 1.

In the following, we suppose that function ψ(1, x) is identified, without specifying exactly

how (e.g. via being a parametric function, Lemma 2, or some alternative support and structural

assumptions). Based on ψ(1, x), E[ϕ(1,M0, U)|T = co] can be identified, too. Define the weights

Ω = ω(M,C) =
dFM,C|Z1=0,T=co

dFM,C|Z1=1,T=co

and consider the following expression

E

[
(Y − ψ(1, X)) · Ω ·DZ1 −Π

1−Π

]
, (53)

which, by inserting the outcome equation, is equivalent to

= E

[
ϕ(D,M,U) · Ω ·DZ1 −Π

1−Π

]
.

As we show in the appendix this is corresponds to

= E
[
ϕ(1,M0, U)|T = co

]
· Pr (T = co, Z1 = 1) .

By Assumptions 1, 2 and 10, it also holds Z1⊥⊥T , implying Pr (T = co, Z1 = 1) = Pr (T = co) Pr (Z1 = 1)

such that we obtain

E
[
ϕ(1,M0, U)|T = co

]
=
E
[
(Y − ψ(1, X)) · Ω ·DZ1−Π

1−Π

]
Pr (T = co) Pr (Z1 = 1)

.

Finally, we need to identify

E[ψ(1, X)|T = co].

50



One can show that by using Z1⊥⊥T |X one gets

1

Pr (T = co)
E

[
ψ(1, X) · D

Π

Z1 −Π

1−Π

]
=

∫
ψ(1, X)dFX|T=co = E[ψ(1, X)|T = co].

The proof is straightforward via iterated expectations with respect to the type and X.

We combine all these results in the following theorem, which also makes use of Pr (Z1 = 1|X) =

Pr (Z1 = 1) by Assumption 10.

Theorem 6: Under Assumptions 1, 2, 3, 4, 9 and 10 and assuming ψ(1, X) to be

identifiable in the support of X, we obtain:

E
[
Y 1,M0 |T = co

]
=
E [{Y · Ω + (1− Ω) · ψ(1, X)} ·D · (Z1 − Pr (Z1 = 1))]

Pr (T = co) Pr (Z1 = 1) Pr (Z1 = 0)

with

Ω = ω(M,C) =
E [(D − 1) {Z1 − Pr (Z1 = 1)} |M,C]

E [D {Z1 − Pr (Z1 = 1)} |M,C]

= 1− E [Z1|M,C]− E [Z1]

E [DZ1|M,C]− E [D|M,C] · E [Z1]
.

4 Simulation study

This section presents a brief simulation study that provides some intuition for the identification

results underlying Theorem 1 and the issues related to model misspecification. The data gener-
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ating process (DGP) consists of the following models for the outcome, mediator, and treatment:

Y = D +M + βDM + 0.5X + U,

M = 2Z2 + 0.5D + 0.5X + V,

D = 1 ( 2Z1 + 0.5X +W > 1 ) ,

Z1 = 1 ( 0.5X + P > 0 ) ,

Z2 = 0.5X +Q,

(U, V,W ) ∼ N(µ, σ), where µ = 0 and σ =


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 ,

and X, P and W are standard normal, independently of each other and of U, V,W .

M and D are endogenous due to the non-zero correlation of the error terms U , V , and

W . The first instrument Z1 is binary and has a strong impact on D, shifting the treatment

probability by roughly 68 percentage-points. This is comparable to compliance rates in many

field experiments, see for instance Abadie, Angrist, and Imbens (2002) and our application to the

Job Corps experiment further below. Z2 is continuously distributed and affects the endogenous

mediator M . β gauges the interaction effect of D and M on Y , i.e., whether direct and indirect

effects are heterogenous across treatment states. In the simulations, β = 0 (no interaction) and

β = 1 are considered, for sample sizes n = 2500 and 5000.

We investigate the performance of three different approaches for the estimation of natural

direct and indirect effects. The first one is semiparametric and based on the sample analogs

of Theorem 1. The conditional probabilities, namely π(x), E[Z1|M,C,X] and E[D|M,C,X]

and E[DZ1|M,C,X] are estimated by probit regression. Before we can proceed so, we need

estimates of the control function Ci, which we obtain via Lemma 1. Therefore, we need estimates

of E[D(Z1 − π(x))|Z2, X] and of E[(d + D − 1) · (Z1 − π(x))|M ≤ m,Z2 = z2, X = x], which

we estimate by OLS. For the latter conditional expectation, linear regression on (1, Z2, X) is
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performed with the subset of observations satisfying M ≤ m in the data, with m = Mi (that is,

the value of M for the ith observation in the data) if the conditional expectation is predicted for

observation i. This obviously implies underidentification and sparse data problems for the lowest

value(s) of Mi. We therefore set m such that the number of observations in the linear regression

is never below 10, implying m > Mi for the 9 observations with the lowest values of M . Even

though this approach biases estimates at the lower bound of the empirical support of M (i.e. for

9 observations), their relative importance in the estimation of direct and indirect effects vanishes

as the sample size increases. Finally for Lemma 1 we need FM |Z2,X(m, z2, x), which we estimate

by nonparametric kernel estimation of conditional distribution functions using the np package of

Hayfield and Racine (2008). The kernel bandwidths are selected based on the Silverman (1986)

rule of thumb.

We consider both untrimmed and trimmed versions of the estimators of direct and indirect

effects. Trimming prevents that influential observations receive arbitrarily large weights in IPW,

which may cause an explosion in the variance of the estimator. Similarly to Huber, Lechner,

and Wunsch (2013) and Frölich and Huber (2014), observations that would obtain a relative

weight larger than 5% in the estimation of each of the mean potential outcomes of Theorem 1

are therefore discarded.

Secondly, we examine multi-step parametric IV estimation as applied in Powdthavee,

Lekfuangfu, and Wooden (2013), see their equations (3) to (5). In a first step, we run a probit

regression of D on (1, Z1, X) to predict the treatment, denoted by D̃. Then, we linearly regress

M on (1, Z2, D̃,X) to predict M, denoted by M̃ . As these predictions are based on variations in

the instruments unrelated to (U, V,W ) given X, they are exogenous (if we impose the additional

assumption that W is independent of Z2, i.e. assumption (7)). Therefore, the estimated direct

effect corresponds to the coeffi cient on D̃ in an OLS regression of Y on (1, D̃, M̃ ,X). Finally, we

linearly regress M on (1, D̃,X) and estimate the indirect effect as the product of the coeffi cient

on D̃ in this last regression and the coeffi cient on M̃ in the regression of Y . Note that in

contrast to non- or semiparametric estimation, this parametric IV estimator does not allow for
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interaction effects between M and D.

Finally, the last estimator considered consists of a naive OLS approach that does neither

control for endogeneity due to the unobservables or X, nor allow for interaction effects, see Baron

and Kenny (1986). The direct effect is estimated by the coeffi cient on D in an OLS regression

of Y on (1, D,M), the indirect effect by the coeffi cient on M in the last regression times the

coeffi cient on D in an OLS regression of M on (1, D).

Table 1 presents the bias, standard deviation (sd), and root mean squared error (RMSE) of

the various estimators of the direct and indirect effects θ(d) and δ(d), defined in (4) and (5),

based on 1000 simulations. Considering the upper two panels with β = 0 (no treatment-mediator

interactions), naive OLS is severely biased despite the substantial share of compliers. In contrast,

the correctly specified parametric IV estimators are close to being unbiased and (due to their

tighter specification) more effi cient than the semiparametric IV methods. However, also the

latter perform satisfactorily in terms of bias and RMSE in the larger sample. Trimming reduces

the standard deviation and the RMSE in the small sample, and has no effect in the larger sample

where extreme weights apparently do not occur any more.

The situation changes, though, once we permit for treatment effect heterogeneity: For β = 1,

biases are large for OLS and also for parametric IV (even for n = 5000), but small for the

semiparametric methods. Nevertheless, for n = 2500 the latter (even with trimming) do not

always outperform parametric IV in terms of RMSE because of their lower precision. With the

larger sample size, however, the gains in terms of bias reduction outweigh the losses in effi ciency

so that the RMSE of semiparametric IV is always smaller than that of parametric IV. Hence,

the semiparametric IV estimators dominate all others in terms of RMSE. We therefore conclude

that semiparametric estimation can be preferable to parametric methods in samples with several

thousand observations, as in many recently conducted field experiments and the applications

presented in the next section.
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Table 1: Bias, standard deviation, and RMSE of various estimators

θ(1) θ(0) δ(1) δ(0)
estimator bias sd RMSE bias sd RMSE bias sd RMSE bias sd RMSE
n=2500, β = 0
semipara IV -0.050 0.416 0.419 0.023 0.169 0.171 -0.028 0.193 0.195 0.045 0.438 0.440
semip IV trim -0.033 0.280 0.282 0.026 0.145 0.148 -0.031 0.172 0.175 0.028 0.313 0.314
parametric IV -0.000 0.069 0.069 -0.000 0.069 0.069 -0.004 0.148 0.148 -0.004 0.148 0.148
OLS 0.540 0.044 0.542 0.540 0.044 0.542 2.001 0.118 2.004 2.001 0.118 2.004
n=5000, β = 0
semipara IV -0.019 0.196 0.197 0.036 0.089 0.095 -0.038 0.114 0.120 0.017 0.227 0.227
semi IV trim -0.019 0.196 0.197 0.036 0.089 0.095 -0.038 0.114 0.120 0.016 0.226 0.227
parametric IV -0.002 0.047 0.047 -0.002 0.047 0.047 -0.000 0.107 0.107 -0.000 0.107 0.107
OLS 0.539 0.030 0.540 0.539 0.030 0.540 2.006 0.082 2.007 2.006 0.082 2.007
n=2500, β = 1
semipara IV -0.052 0.441 0.444 0.030 0.284 0.286 -0.037 0.373 0.375 0.045 0.438 0.440
semi IV trim -0.035 0.318 0.320 0.037 0.226 0.229 -0.045 0.325 0.328 0.028 0.313 0.314
parametric IV -0.250 0.116 0.276 0.250 0.116 0.276 -0.255 0.222 0.338 0.245 0.222 0.330
OLS 0.290 0.077 0.300 0.790 0.077 0.794 2.601 0.173 2.607 3.101 0.173 3.106
n=5000, β = 1
semipara IV -0.019 0.218 0.219 0.061 0.143 0.155 -0.062 0.222 0.231 0.017 0.227 0.227
semi IV trim -0.018 0.218 0.219 0.061 0.143 0.155 -0.062 0.222 0.231 0.016 0.226 0.227
parametric IV -0.253 0.081 0.265 0.247 0.081 0.260 -0.250 0.161 0.298 0.250 0.161 0.297
OLS 0.288 0.055 0.293 0.788 0.055 0.790 2.609 0.122 2.612 3.109 0.122 3.111

Note: Results are based on 1000 simulations. The true effects under β = 0 are θ(1) = θ(0) = 1, δ(1) = δ(0) = 0.5.

Under β = 1, the true effects are θ(1) = 1.5, θ(0) = 1, δ(1) = 1, δ(0) = 0.5.

5 Applications

This section presents two empirical applications to illustrate Theorem 1 (continuous Z2) and

Theorem 6 (discrete Z2).

5.1 Effects of education with continuous mediator income

Our first application is based on data from the British Household Panel Survey (BHPS), which

includes information at the household and individual levels for a representative sample of the

population of the United Kingdom. We aim at assessing the direct effect and the indirect effect

(via income) of education on health. The outcome variable is measured as the (mental and

physical) capability to participate in social life, more precisely as the ability to interact in the

normal or usual way in society, which we will refer to as ‘social functioning’. That is, we investigate
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whether any effect of education on social functioning is driven by a change in income or by

(‘direct’) causal mechanisms other than income.

We investigate the effects of a binary schooling indicator (D), which is one if an individual has

obtained more than lower secondary education according to the International Standard Classific-

ation of Education (ISCED) of the UNESCO and zero otherwise. D is instrumented by a change

in the UK compulsory school leaving age in 1971 (Z1). In that year, the minimum age at which

one could leave school was increased from 15 to 16 years, which affected all cohorts born in 1956

or later. The law change Z1 should induce some individuals (compliers) to increase schooling, but

is arguably not directly associated with social functioning (Y ), which is measured on a scale from

0 (worst) to 9 (best). Changes in schooling laws have also been used as instruments for instance

in Oreopoulos (2006), Spasojevic (2010), and Brunello, Fabbri, and Fort (2013). To disentangle

the effect of education into a direct and an indirect component driven by income changes, we

consider annual individual income (in GBP) as mediator (M). The latter is instrumented by

windfall income (Z2), the sum of four arguably exogenous income sources: accident claims, re-

dundancy payments, lottery wins, and other lump sum payments. Similar exogenous variations

in income were also exploited in Lindahl (2005) and Gardner and Oswald (2007), among others.

We assume the IV assumptions underlying Theorem 1 to hold conditional on the covariate gender

(X) and present several tests further below.

The BHPS started in 1991 with 10,300 individuals drawn from 250 areas in Great Britain

and interviews the sample participants annually. The panel was again enlarged several times.

In 1999 (wave 9) for instance, additional samples of 1500 households in each of Scotland and

Wales were added. Our empirical illustration is based on four waves, namely 5, 6, 8, and 9, which

were conducted in 1995, 1996, 1998, and 1999, respectively. As we exploit the panel structure of

the data, we do not make use of the individuals added in wave 9 (or later). Wave 5 is used for

measuring X, wave 6 for educational attainment D, wave 8 for M (annual income 1998) and Z2

(windfall profit 1998), and wave 9 for Y , the social functioning index in 1999. The stock sample

in wave 5 consists of 9,249 observations. 1,834 of the latter are not observed in at least one of the
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other 3 waves, so that the balanced panel includes 7,415 individuals. Furthermore, we restrict the

sample to observations born between (and including) 1946 and 1965, i.e. in a 10 years window

around 1956, the year of the first cohort affected by the 1971 schooling reform. This criterion

is satisfied by 3,009 individuals. Finally, all observations with missing values in X, D, M , Y ,

Z1 or Z2 are dropped, entailing a final evaluation sample of n = 2, 886 observations. Table 2

provides descriptive statistics (means and standard deviations) of X, Y , Z1 and Z2, separately

by the treatment state and the values of the mediator.

Table 2: Descriptive statistics

D = 1 D = 0 M > 12, 000 M ≤ 12, 000
mean std.dev mean std.dev mean std.dev mean std.dev

Gender (X) (binary) 0.541 0.498 0.575 0.495 0.346 0.476 0.765 0.424
Social functioning (Y ) 8.149 1.741 7.825 2.095 8.280 1.596 7.859 2.029
School leaving age 16 years (Z1) (binary) 0.559 0.497 0.475 0.500 0.546 0.498 0.534 0.499
Windfall income in 1000 GBP (Z2) 0.476 3.756 0.469 5.291 0.674 4.616 0.262 3.572
# of observations 2,242 644 1,488 1,398

Table 3 presents the total, direct, and indirect treatment effects using various semiparametric

and parametric methods along with bootstrap standard errors (based on 1999 bootstrap draws)

and p-values (based on the t-statistic). The total LATE on the compliers is estimated by IPW

using the instrument propensity score as outlined in Frölich (2007) and Tan (2006). The semi-

parametric estimators of the direct and indirect effects θ̂(1), θ̂(0), δ̂(1), δ̂(0) based on the sample

analogs of Theorem 1 are identical to those used in Section 4. As in the simulations, we also

considered trimmed versions of the estimators. Since the point estimates were unaffected and

the bootstrap p-values very similar, we do not report those results in the table. The final two

columns provide the results for the parametric IV estimators θ̂para and δ̂para, as described in Sec-

tion 4. The results suggest that the total effect of education on social functioning is positive. The

LATE is roughly 3 points and significant at the 10% level. When looking at the point estimates of

the direct and indirect effects, this effect appears to be mainly driven by the direct channel, while

the impact of the indirect income mechanism is generally much closer to zero. Despite their non-

negligible magnitude, the semiparametric direct effects are, however, very imprecise and far from
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being statistically significant at any conventional level. On the other hand, their sizes by and

large match with the parametric direct effect, which is significant at the 10% level. We therefore

conclude that education appears to affect social functioning mostly through mechanisms other

than income.

Table 3: BHSP application, cohorts 1945-65 (n = 2886)

semiparametric estimation parametric
LATE θ̂(1) θ̂(0) δ̂(1) δ̂(0) θ̂para δ̂para

estimate 3.094 3.747 4.118 -1.025 -0.653 3.072 0.071
s.e. 1.728 16.762 35.483 35.284 16.762 1.786 0.452

p-value 0.073 0.823 0.908 0.977 0.969 0.085 0.876

Note: Standard errors (s.e.) are based on 1999 bootstrap replications.

As a robustness check, we estimate the effects in a second sample in which we increase the

time window around 1956 (the birth year of the first cohort affected by the schooling reform) for

cohorts considered in the analysis to 15 years. This implies that all individuals born between (and

including) 1940 and 1970 are part of the evaluation sample (n = 4107). The idea is to investigate

the sensitivity of the estimates with respect to the cohorts included, as a too large time window

could lead to confounding of the schooling law instrument by cohort or age effects. That is, cohort

and age, which are deterministically related to the instrument, could also directly affect social

functioning. Albeit our check is not a formal test for IV validity, implausibly large differences in

the effects under different time windows would nevertheless cast doubts on the usefulness of the

instrument. Table 4 shows that the LATE and the parametric direct effect are quite similar to

the previous results and with the larger sample size now highly significant (at the 0.1% level).15

The semiparametric direct and indirect effects, on the other hand, are again very imprecise.

We subsequently discuss several methods for the (partial) testability of the IV assumptions

in the evaluation sample used in Table 3. Firstly, the independence of Z1 and Z2 given X

implied by Assumptions 1 and 2 can be easily tested. Linearly regressing windfall income on

the schooling reform instrument separately among females and males yields p-values of 0.344 and

15 In contrast, using a time window of just 5 years entails an explosion of the variances of all estimators. The
results are not reported but available upon request.
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Table 4: BHSP application, cohorts 1940-70 (n = 4107)

semiparametric estimation parametric
LATE θ̂(1) θ̂(0) δ̂(1) δ̂(0) θ̂para δ̂para

estimate 2.750 2.960 0.689 2.061 -0.210 2.784 -0.005
s.e. 0.668 2.857 11.853 11.803 2.776 0.701 0.206

p-value 0.000 0.300 0.954 0.861 0.940 0.000 0.980

Note: Standard errors (s.e.) are based on 1999 bootstrap replications.

0.351, respectively, so that independence cannot be rejected at conventional levels of significance.

Secondly, we use the methods suggested in Kitagawa (2008) and Huber and Mellace (2014)

to jointly test whether (i) Z1 is independent of U given X, which is a further implication of

Assumptions 1 and 2, and (ii) D is monotonic in Z1 as required in Assumption 3.

Using the approach of Huber and Mellace (2014) and keeping conditioning on X implicit, we

test the following constraints which need to be satisfied under independence and monotonicity:

E(Y |D = 1, Z1 = 1, Y ≤ yq) ≤ E(Y |D = 1, Z1 = 0) ≤ E(Y |D = 1, Z1 = 1, Y ≥ y1−q)

E(Y |D = 0, Z1 = 0, Y ≤ yr) ≤ E(Y |D = 0, Z1 = 1) ≤ E(Y |D = 0, Z1 = 0, Y ≥ y1−r)(54)

where (under our identifying assumptions) q = Pr(D=1|Z1=0)
Pr(D=1|Z1=1) is the share of always treated in

the population with D = 1, Z1 = 1, and r = Pr(D=0|Z1=1)
Pr(D=0|Z1=0) is the share of never treated in the

population with D = 0, Z1 = 0. As discussed in Huber and Mellace (2014) in more detail, the

intuition of the test is that E(Y |D = 1, Z1 = 0) and E(Y |D = 0, Z1 = 1) point identify the

mean potential outcomes (as a function of D) of the always and never treated under D = 1, 0,

respectively. At the same time, the mean potential outcomes of the latter groups can be bounded

in the (mixed) populations withD = 1, Z1 = 1 andD = 0, Z1 = 0, respectively, which also contain

compliers. One can therefore test whether the points lie within the bounds as postulated in (54).

We do so by applying the minimum p-value-based test of Chen and Szroeter (2012) for multiple

inequality constraints. The distribution of the test statistic is estimated by bootstrapping (1999

bootstrap draws) and relies on pre-estimating which inequality constraints are (close to being)
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violated to increase testing power in finite samples.16

Alternatively, Kitagawa (2008) suggests testing the following constraints on the joint probab-

ilities of Y and M given Z1 (again, conditioning on X is implicit):

Pr (Y ∈ A,D = 1|Z1 = 1) ≥ Pr (Y ∈ A,D = 1|Z1 = 0)

Pr (Y ∈ A,D = 0|Z1 = 0) ≥ Pr (Y ∈ A,D = 0|Z1 = 1) (55)

where A denotes a subset of the support of Y . The intuition for the first constraint is that

under D = 1, the joint probability of having a particular outcome (Y ∈ A) and belonging to the

always treated or compliers (Z1 = 1) must not be larger than the corresponding joint probability

of always treated alone (Z1 = 0). An equivalent argument holds for the never treated in the

second constraint. Note that this must hold for any A, so that depending on the definition of

the subsets, multiple constraints can be tested. Kitagawa (2008) proposes a test that makes

use of a two sample Kolmogorov-Smirnov-type statistic on the supremum of Pr(Y ∈ A,D =

1|Z1 = 0)− Pr(Y ∈ A,D = 1|Z1 = 1) and Pr(Y ∈ A,D = 0|Z1 = 1)− Pr(Y ∈ A,D = 0|Z1 = 0),

respectively, across all subsets A. The distribution of the test statistic is estimated by a bootstrap

method (or more concisely, by permutation) similar to Abadie (2002). We implement the test

using 1999 bootstrap draws with 5, 10, and 20 subsets A, respectively, based on equi-quantile

grids over the distribution of Y .

Table 5: P-values of IV validity tests for Z1

social functioning (Y ) annual income (M)
HM14 K08(5) K08(10) K08(20) HM14 K08(5) K08(10) K08(20)

female sample 0.338 0.561 0.554 0.550 0.988 0.812 0.969 0.849
male sample 0.989 0.900 0.966 0.834 0.977 0.861 0.876 0.790

Note: Testing is based on 1999 bootstrap replications.

The left panel of Table 5 reports the p-values of the tests, when testing the schooling law

instrument in the male and female samples. HM14 refers to the mean-based tests of Huber and

16See for instance Andrews and Soares (2010) and Chen and Szroeter (2012) for a more detailed discussion of
moment selection based on pre-estimating which constraints are (almost) violated.
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Mellace (2014) and K08(s) refers to the Kitagawa (2008) probability-based tests with s subsets,

for s = 5, 10, and 20. We do not find evidence against the IV validity of Z1 at conventional

levels of significance. As a word of caution, however, note that even asymptotically these tests

cannot find all possible violations of the instrument assumptions, because the outcomes of the

always/never treated in the mixed populations with compliers are only partially identified. We

apply the same methods to test a further implication of Assumptions 1 and 2 (again jointly with

monotonicity of D in Z1), namely that Z1 is independent of V given X. This can be done by

replacing outcome Y by the mediator M in any of the expressions in (54) and (55). Again, IV

validity is not rejected, see the right panel of Table 5.

Finally, note that by Assumptions 1 and 2, Z2 is independent of U given (Z1,W,X) and

thus, given (D,X) (because D is a deterministic function of Z1,W,X). Under the additional

assumption that income M is monotonic in windfall income Z2 (which appears innocuous), we

can therefor use the Huber and Mellace (2014) and Kitagawa (2008) methods to partially test

IV validity of windfall income. As the currently available tests only apply to binary instruments

and endogenous variables, we, however, need to dichotomize Z2 and M . Let Z̃2 and M̃ denote

indicators for windfall income larger than zero and income larger than 7,000 GBP, respectively.17

We test IV validity of windfall income by replacing D by M̃ and Z1 by Z̃2 in (54) and (55) and

apply the methods in subsamples defined upon X and D. The p-values are again larger than

any conventional significance level, see Table 6. We conclude that the various tests do not raise

concerns about the validity of the IV assumptions on statistical grounds.

Table 6: P-values of IV validity tests for Z̃2

D = 1 (more than lower secondary education) D = 0 (lower secondary education or less)
HM14 K08(5) K08(10) K08(20) HM14 K08(5) K08(10) K08(20)

female sample 0.858 0.750 0.774 0.777 0.813 0.621 0.642 0.613
male sample 0.776 0.232 0.223 0.212 0.971 0.622 0.609 0.641

Note: Testing is based on 1999 bootstrap replications.

17We investigated several other cut-off values for the dichotomizations, which did not affect the IV tests in any
important way.
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5.2 Effects of Job Corps with discrete instrument

In many applications, only discrete instruments are available. To illustrate the use of Theorem

6 in Section 3.5, we in our second application consider a welfare policy experiment conducted in

the mid-1990s to assess the publicly funded U.S. Job Corps program, which targets young indi-

viduals (aged 16-24 years) who legally reside in the U.S. and come from a low-income household.

Participants are provided with approximately 1200 hours of vocational training and education,

housing, board, and health services over an average duration of 8 months. Schochet, Burghardt,

and Glazerman (2001) and Schochet, Burghardt, and McConnell (2008) discuss in detail the ex-

perimental design18 and the main effects, which suggest that Job Corps increases educational at-

tainment, employment, and earnings, and reduces criminal activity (at least for some years after

the program). Several studies have investigated the causal mechanisms through which the pro-

gram operates based on different identifying assumptions. Flores and Flores-Lagunes (2009) aim

at assessing the direct effect on earnings after controlling for the mediator work experience. As-

suming the latter to be conditionally exogenous given pre-treatment covariates only, they find

a positive direct effect. In contrast, Huber (2013) considers mediator exogeneity conditional on

both pre- and post-treatment covariates and estimates the program’s direct and indirect (via em-

ployment) health effects. Finally, Flores and Flores-Lagunes (2010) invoke considerably weaker

assumptions than exogeneity and derive upper and lower bounds for the direct and indirect ef-

fects on employment and earnings which are mediated by the achievement of a GED, high school

degree, or vocational degree as well as the direct effects. Their approach allows for mediator en-

dogeneity at the price of sacrificing point identification.

We complement these studies by assessing the causal mechanisms of the Job Corps program

based on our IV approach. We aim at disentangling the program’s earnings effect among female

compliers into the indirect effect due to switching from no or part time employment into full time

employment and the direct remainder effect. That is, our research question is whether the earnings

18 In particular, Schochet, Burghardt, and Glazerman (2001) report that the randomization of the program
was successful: Of 94 observed pre-treatment covariates, only 5 where statistically significantly different across
treatment groups at the 5 % level, which is what one would expect by chance.
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effect is indirectly generated by an increased labor force attachment or whether other channels

like an increase in human capital play a role, too.19 The treatment variable D is enrolment

in Jobs Corps in the first year after randomization, which is instrumented by the randomized

treatment assignment indicator (Z1). The mediator M is the number of hours worked per week

in the third year after randomization, while the outcome Y is weekly earnings in that year. The

challenging part is to find a plausible instrument for M . As it is common in the empirical labor

literature, we use the number of children in the household who are younger than 6 and younger

than 15 two years after random assignment as (discrete) instruments for M . For this reason, we

only consider the female sample, whose labor market state is more likely to respond to children

in the household. Furthermore, we aim at controlling for potential confounders of the arguably

disputable instrument Z2 by conditioning on a range of pre-assignment characteristics X that

are associated with the number of children and also likely affect M and Y : Education, race, age,

labor market state and school attendance prior to randomization, and dependence on AFDC or

foodstamps (as proxy for socio-economic background). Table 7 reports the OLS coeffi cients of

the number of children under 6 on these variables.

Table 7: OLS regression of the number of children under 6 on X

estimate s.e. t-value p-value
high school degree at randomization -0.230 0.034 -6.825 0.000

at least some college at randomization -0.199 0.075 -2.649 0.008
black 0.179 0.031 5.859 0.000

Hispanic 0.132 0.038 3.439 0.001
age 0.357 0.099 3.598 0.000
age2 -0.009 0.003 -3.440 0.001

was in school in year before randomization -0.101 0.030 -3.396 0.001
had a job in year before randomization -0.119 0.027 -4.376 0.000

AFDC before randomization 0.226 0.033 6.957 0.000
food stamps before randomization 0.137 0.032 4.254 0.000

constant -2.897 0.959 -3.021 0.003
R2 0.074

Our evaluation sample consists of all female Job Corps applicants without missing values

in Z1, Z2, D,M, Y,X, which gives 4,603 observations. Table 8 provides descriptive statistics

19 In contrast, the controlled direct effect does not appear interesting in this example, because labor supply can
typically not be enforced ‘from outside’, but is chosen by the individuals. It therefore seems irrelevant to assess
the direct effect of the program if every one was forced to work full time or part time.
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(means and standard deviations) of X, Y , Z1, and Z2, separately by the treatment state and

the values of the mediator, respectively. The means of several pre-treatment characteristics

differ importantly across D and M . Education, age, and going to school in the year before

randomization have statistically significant correlations (at the 5% level) with both the treatment

and the mediator, whereas ethnicity, having a job in year before randomization, and the receipt

of food stamps/AFDC are significantly correlated with the mediator only.

Table 8: Descriptive statistics

D = 1 D = 0 M = 1 M = 0
mean std.dev mean std.dev mean std.dev mean std.dev

high school degree at rand. (binary) 0.226 0.418 0.253 0.435 0.324 0.468 0.214 0.410
at least some college at rand. (binary) 0.032 0.176 0.034 0.182 0.056 0.230 0.026 0.158

black (binary) 0.541 0.498 0.535 0.499 0.489 0.500 0.553 0.497
Hispanic (binary) 0.195 0.396 0.180 0.384 0.189 0.391 0.186 0.389

age 18.489 2.180 18.666 2.168 19.070 2.221 18.427 2.136
in school in year before rand. (binary) 0.661 0.473 0.626 0.484 0.607 0.489 0.653 0.476
had a job in year before rand. (binary) 0.615 0.487 0.631 0.483 0.754 0.431 0.581 0.493

AFDC before randomization 0.413 0.492 0.431 0.495 0.373 0.484 0.439 0.496
food stamps before randomization 0.538 0.499 0.559 0.497 0.497 0.500 0.567 0.496

weekly earnings 3rd year after rand. (Y ) 143.3 134.4 134.9 143.2 312.4 134.7 81.6 81.6
assignment to Job Corps (Z1) (binary) 0.992 0.088 0.361 0.481 0.668 0.471 0.638 0.481

# of kids < 6 in 3rd year after rand. (Z2) 0.765 0.898 0.772 0.900 0.617 0.819 0.819 0.918
# kids < 15 in 3rd year after rand. (Z2) 1.140 1.248 1.163 1.267 0.907 1.117 1.233 1.292

# of observations 2,074 2,529 1,139 3,464

The total, direct, and indirect effects are given in Table 9 along with bootstrap standard

errors and p-values. Concerning semiparametric estimation based on Theorem 6, the first step

estimates (e.g. propensity scores and conditional densities) are computed in the same way as

for the estimators based on Theorem 1 whenever applicable (see Section 4 for details). Making

use of (50), we first need an estimate of E[Y D(Z1−Π)|M,C,X]
E[D(Z1−Π)|M,C,X] . The numerator and denominator

are obtained from separate linear regressions of Y D(Z1 − Π) and D(Z1 − Π), respectively, on

(1,M, Ĉ,X), where Ĉ is an estimate of C. Then, the estimated E[Y D(Z1−Π)|M,C,X]
E[D(Z1−Π)|M,C,X] is itself

linearly regressed on (1,M, Ĉ,X) to predict ψ1(X;β) in equation (52) by X ′β̂, where β̂ are the

coeffi cient estimates on X (excluding the constant). The parametric IV estimators are the same

as in the simulations and first application.
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The results in Table 9 point to a total earnings effect of the program among compliers of

roughly 13 USD, which is significant at the 5% level. The total effect seems to be driven mainly

by the indirect effect. The indirect effect is of a similar magnitude as the total effect, whereas

the direct effect is closer to zero. As before, the semiparametric estimates are substantially more

noisy than the parametric ones, but point to a similar overall picture. The parametric indirect

effect δ̂para is significant at the 10% level and the semiparametric indirect effect δ̂(1) is significant

at the 5% level. The direct effects are much smaller in magnitude and never significantly different

from zero. Although we cannot draw very strong conclusions, it seems that Job Corps mainly

affects labor force attachment through increasing the number of hours worked (indirect channel),

whereas the hourly wages themselves do not appear to be much affected.

Table 9: Job Corps application (n=4,603)

semiparametric estimation parametric
LATE θ̂(1) θ̂(0) δ̂(1) δ̂(0) θ̂para δ̂para

estimate 12.797 -6.855 -1.322 14.119 19.651 -0.824 13.188
s.e. 6.446 16.718 3.787 6.214 17.602 3.540 6.780

p-value 0.047 0.682 0.727 0.023 0.264 0.816 0.052

Note: Standard errors (s.e.) are based on 1999 bootstrap replications. P-values are based on the quantiles

We again briefly discuss testing of the IV assumptions. Firstly, the independence of Z1 and

Z2 is not rejected at conventional levels when linearly regressing the number of children under 6

or 15 on Z1 and X. Furthermore, we apply the Kitagawa (2008) and Huber and Mellace (2014)

methods to Z2. To this end, the instrument is dichotomized: Z̃2 is one if no children under 6

or 15, respectively, are present in the household and zero otherwise. We jointly test whether

(i) Z2 and U are independent and (ii) fulltime employment M monotonically increases in Z̃2.

Here, the tests are performed conditional on D only, rather than X, as the currently available

test procedures are not suitable for conditioning on many covariates. Even without controlling

for X, all p-values exceed conventional significance levels, see Table 10. This is in line with

Huber and Mellace (2013), who test the validity of the number of children instruments for female

labor supply in several empirical data sets and found no statistical evidence for its violation either.

Finally, we also apply the tests to the randomization indicator Z1, an a priori rather undisputable
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instrument. As expected, the tests yield very large p-values and the results are therefore omitted.

We conclude that also in this application, the various checks on Z2 and Z1 do not refute the IV

assumptions.

Table 10: P-values of IV validity tests of the number of children instrument

D = 1 (Job Corps participation) D = 0 (non-participation)
HM14 K08(5) K08(10) K08(20) HM14 K08(5) K08(10) K08(20)

Z̃2 = 1 (No of children under 6 = 0) 0.933 0.844 0.936 0.782 0.394 0.807 0.633 0.853
Z̃2 = 1 (No of children under 15 = 0) 0.977 0.863 0.897 0.704 0.981 1.000 0.995 0.979

Note: Testing is based on 1999 bootstrap replications.

6 Conclusion

Contrary to much of the literature on causal mechanisms relying on conditional exogeneity as-

sumptions, this paper has demonstrated the nonparametric identification of (local) average direct

and indirect effects based on (distinct) instruments for the endogenous treatment and the en-

dogenous mediator. Tackling both treatment and mediator endogeneity based on conditionally

valid instruments (given observed covariates), we identified natural direct and indirect as well as

controlled direct effects on the subpopulation of compliers, whose treatment reacts on the cor-

responding instrument. In the special case of full compliance, the direct and indirect effects on

the total population are obtained. To consider a range of relevant cases, we discussed various

approaches that differed in terms of assumptions about the distributions of the mediator and its

instrument, monotonicity (of the mediator in its arguments), and support conditions. For further

intuition and illustration, a brief simulation study and two applications were also provided.
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