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1 Introduction

Endogenous selection has been recognized as one of the key methodological issues arising in

the analysis of microeconomic data since the seminal articles of Gronau (1974) and Heckman

(1974). The most common strategy to deal with selection is to rely on instruments that

determine selection but not the potential outcome (see, among many others, Heckman, 1974,

1979, 1990, Ahn & Powell, 1993, Das et al. , 2003, and Vella, 1998 for a survey). However, in

practice, valid instruments are generally difficult to find. Identification at infinity has been

proposed in the literature as an alternative solution to the endogenous selection problem, in

situations where one is primarily interested in estimating the effects of some covariates on a

potential outcome. In particular, Chamberlain (1986) showed that if some individuals face an

arbitrarily large probability of selection and the outcome equation is linear, then one can use

these individuals to identify the effects of the covariates on the outcome of interest. Lewbel

(2007) generalized this result by proving that identification can be achieved in the context of

moment equality models, provided that a special regressor has a support which includes that

of the error term from the selection equation (see Lewbel, 2014, for an overview of the special

regressor method). Again, in many applications, such a regressor is hard to come by. In a

recent article, D’Haultfoeuille & Maurel (2013a) have shown that identification in the absence

of an instrument is in fact possible without such a covariate. The starting intuition is that,

if selection is truly endogenous, then one can expect the effect of the outcome on selection to

dominate those of the covariates for sufficiently large values of the outcome. Following this

idea, they proved identification under the key condition that selection becomes independent

of the covariates at the limit, i.e., when the outcome tends to the upper bound of its support.

This paper builds on this insight and develops a novel inference method for a class of semi-

parametric location-scale models subject to endogenous selection. Unlike prior estimation

methods for sample selection models, we propose a distribution-free estimator that does not

require an instrument for selection or a large support regressor. While D’Haultfoeuille & Mau-

rel (2013a) prove identification for a nonparametric location-scale outcome equation, we rely

instead on a semiparametric specification in order to obtain faster convergence rates. This is

crucial for the practical usefulness of our method. Importantly, the model is left unrestricted

otherwise. In particular, we do not restrict the selection process, apart from the indepen-

dence at the limit condition mentioned above. In this paper, we interpret this condition in

the context of standard selection models, and show that it translates into a restriction on

the copula between the error terms of the outcome and selection equation. This restriction is

mild provided that selection is endogenous, and holds in particular for all Gaussian copulas
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with positive dependence. In this context, we show that linear quantile regressions, for large

values of the quantile indices, allow us to recover some linear combinations of the covariates

effects on the location and scale of the outcome. Those parameters can then be estimated in a

second step by a simple minimum distance estimator, which combines the previous estimators

for a range of quantile indices. This insight is important for at least two reasons. First, our

estimator is simple to implement. In particular, unlike most of the existing semiparametric

estimators for sample selection models, our estimator is not based on a nonparametric first

step. Second, the asymptotic properties of extremal quantile regressions, that is quantile

regressions applied to the tails, have been thoroughly studied in the case without selection

in an important paper by Chernozhukov (2005).1 This provides a very natural starting point

to develop asymptotic inference in our setting. The estimators of the location and scale pa-

rameters can then be used to construct bounds on the quantile effects. We characterize the

sharp bounds and further derive simpler outer bounds on which one can conduct inference

using the methodology developed by Chernozhukov et al. (2013). It is worth noting that,

while we use quantile regressions as a tool to circumvent the selection issue, we assume a

linear location-scale specification for the potential outcome. This is dfferent in spirit from the

methods proposed in the literature to estimate quantile regression models in the presence of

sample selection (see notably Buchinsky, 1998, and Arellano & Bonhomme, 2011).

The main difficulty in establishing the asymptotic properties of our estimator is that because

of selection, extremal conditional quantiles are not exactly linear here, but only equivalent

to a linear form as the quantile index τn tends to zero. Hence, we face a bias-variance

trade-off that is typical in non- or semiparametric analysis. Choosing a moderately small

quantile index decreases the variance of the estimator, but this comes at the price of a higher

bias. Conversely, choosing a very small quantile index mitigates the bias, but increases the

variance. In the paper, we provide sufficient conditions under which both bias and variance

vanish asymptotically, resulting in asymptotically normal and unbiased estimators. As in

the case without selection examined by Chernozhukov (2005), the convergence rates are not

standard, and depend on the tail behavior of the error term from the outcome equation.

This is broadly similar to the convergence rates discussed in Andrews & Schafgans (1998),

Schafgans & Zinde-Walsh (2002) and Khan & Tamer (2010), the main difference being that

1Formally, denoting by n the sample size and τn the quantile index, extremal quantile regressions correspond
to τn-quantile regressions where τn tends to zero as the sample size n grows to infinity. In this paper, we focus on
the intermediate order case, which corresponds to situations where τn×n tends to infinity. See Chernozhukov
& Du (2008) for a review of extremal quantile regressions. See also related work by Altonji et al. (2008),
who derive the asymptotic properties of a nonparametric extremal quantile regression estimator. While their
framework is very general, it cannot be readily extended to the case where the outcome is subject to sample
selection.
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the tail behavior of the outcome is going to play a key role here, rather than that of the

covariates. Importantly, though, our asymptotic results suggest a rate-adaptive approach for

inference, as in Khan & Tamer (2010) and Chernozhukov & Fernandez-Val (2011).

Asymptotic normality and unbiasedness of our estimators requires an appropriate choice of

the quantile index, similarly to nonparametric kernel regressions that require an appropriate

bandwidth choice. But contrary to the latter case, admissible rates of convergence towards

zero for the quantile index depend in a complicated way on the data-generating process.

An analogous issue arises in the estimation at infinity of the intercept of sample selection

models (see Andrews & Schafgans, 1998 and Schafgans & Zinde-Walsh, 2002), as well as in

the estimation of extreme value indices (see Drees & Kaufmann, 1998 and Danielsson et al. ,

2001). This is a difficult problem. In the paper, we propose a heuristic data-driven procedure

that selects the quantile index minimizing a criterion function capturing the trade-off between

bias and variance. In particular, we use subsampling combined with a minimum distance

estimator to proxy the bias term, which, in this setting, cannot be simply estimated. Monte

Carlo simulation results show that the sampling distributions of our estimators are fairly well

approximated by the asymptotic normal distributions, suggesting that our procedure performs

well in practice.

Finally, we apply our method to the estimation of the black-white wage gap among males

from the 1979 and 1997 cohorts of the National Longitudinal Survey of Youth (NLSY79 and

NLSY97). Following Neal & Johnson (1996), we focus on the residual portion of the wage

gap that remains after controlling for premarket factors. To the extent that black males

are more likely to dropout from the labor market than white males, as was first pointed

out in the influential work of Butler & Heckman (1977), correcting for selection is crucial

for consistently estimating the black-white differential in terms of potential wages. Besides,

evidence that the black-white employment gap has substantially widened over time (see, e.g.,

Juhn, 2003 and Neal & Rick, 2014) stresses the importance of dealing with selection in order

to draw valid conclusions regarding the across-cohort evolution of the black-white wage gap.

In this context, finding a valid instrument that affects selection but not potential wages is

particularly challenging, making it desirable to use an estimation method that does not require

such an instrument. For the NLSY79 cohort, we find a smaller residual wage gap (10.1%)

than the one obtained using the imputation method of Neal & Johnson (1996) and Johnson

et al. (2000), which is consistent with our approach being based on a weaker identifying

restriction.2 Overall, our estimates strengthen the key takeaway of Neal & Johnson (1996) by

2Other noteworthy papers analyzing the black-white wage gap while using imputation methods to correct
for selection into the workforce include Brown (1984), Smith & Welch (1989), Juhn (2003), Neal (2004), Neal
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providing evidence of an even more important role played by the black-white AFQT gap.

Turning to the evolution across the 1979 and 1997 cohorts, we find that there has been a

slow convergence in the raw male black-white wage gap between 1990 and 2007 (-4.6 pp), and

an even slower convergence in the residual portion of the wage gap that remains after con-

trolling for premarket factors such as AFQT and family background (-1.2 pp). Interestingly,

this provides evidence that premarket skills are a key component of the level as well as the

evolution of the black-white wage gap. Besides, the fact that the wage gap which remains

after accounting for differences in premarket factors is essentially stable after almost 20 years

suggests that this residual portion of the wage gap is an important factor behind the slow

convergence of the wages of blacks and whites.

The remainder of the paper is organized as follows. Section 2 presents the set-up and discusses

the identification results. Section 3 defines the estimators and establishes the main asymptotic

normality results. Section 4 discusses some Monte Carlo simulation results. Section 5 applies

our method to the estimation of the black-white wage gap among males. Finally, Section

6 concludes. Additional details on the estimation procedure and the data, along with the

proofs, are collected in the appendix.

2 The set-up and identification

2.1 Model and main result

Before presenting the model, let us introduce some notations and definitions. For any random

variable U , we denote by FU and SU its cumulative distribution function (cdf.) and survival

function, while QU denotes its quantile function, QU (u) = inf{u : FU (u) ≥ τ}. For more

general increasing functions G, we let G←(u) = inf{v : G(v) ≥ u}, with the convention that

inf ∅ = +∞, denote its generalized inverse. Finally, we use in the following some notions

from extreme value theory. A function F is regularly varying at x ∈ {0,+∞} with index

α ∈ [−∞,+∞], and we write F ∈ RVα(x), if for any t > 0, limu→x F (tu)/F (u) = tα,

with the understanding that t∞ = ∞ if t > 1 and = 0 if 1 > t > 0 (and similarly for

α = −∞). F is slowly varying at x if F ∈ RV0(x). We also say that a given cdf. F belongs to

the domain of attraction of generalized extreme value distributions if there exists sequences

(an)n∈N and (bn)n∈N and a cdf. G such that for any independent draws (U1, ..., Un) from F ,

b−1
n (max(U1, ..., Un) − an) converges in distribution to G. In such a case, G belongs to the

family of generalized extreme value distributions.

(2006) and Neal & Rick (2014).
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Let Y ∗ denote the outcome of interest and X ∈ Rd denote a vector of covariates, excluding

the constant. We suppose that Y ∗ and X are related through the location-scale model

Y ∗ = X ′β + (1 +X ′δ)ε, (2.1)

where we suppose, without loss of generality, that 1+X ′δ > 0. Because we do not standardize

ε, we can always suppose that there is no intercept and fix the constant in the multiplier of

ε to one. Our focus throughout the paper is on the parameters β, δ, along with the quantile

effects of Xj on Y ∗. These quantile effects correspond to the effect on Y ∗ of an exogenous,

infinitesimal, change of Xj , or a change from Xj = 0 to Xj = 1 if Xj is binary, for individuals

at a given conditional quantile of Y ∗. We do not seek to recover the distribution of ε, and

in particular the intercept E(ε), though this distribution will play an important role in our

analysis.

We face a sample selection issue here as we only observe (D,Y = DY ∗, X), where D denotes

the selection dummy. Importantly, we do not assume to have access to an instrument affecting

D but not Y ∗, nor do we require one of the covariates to have a large support. Instead,

identification is achieved under the following conditions.

Assumption 1. (Exogeneity) X ⊥⊥ ε.

Assumption 2. (Covariates) X has a compact support Supp(X). Let X = [1, X ′]′, QX =

E(XX
′
) is full rank.

Assumption 3. (Tail and regularity of the residual) (i) sup(Supp(ε)) =∞, (ii) Sexp(ε) is not

slowly varying at infinity, (iii) Sε is in the domain of attraction of generalized extreme value

distributions and (iv) the distribution of (X, ε) conditional on D = 1 is dominated by a product

measure. We denote by fε|D=1,X and fY |D=1,X the corresponding conditional densities.

Assumption 4. (Independence at infinity) There exists h > 0 such that for all x ∈ Supp(X),

lim
y→∞

P (D = 1|X = x, Y ∗ = y) = h.

Assumption 1 is restrictive but commonly made in the context of selection models.3 It is also

weaker than the exogeneity assumption imposed, for instance, by Chamberlain (1986) or Ahn

3Notable exceptions include Das et al. (2003) and Lewbel (2007), who allow for endogenous regressors.
However, the estimators proposed in these papers require an instrument for selection or a special regressor,
respectively.
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& Powell (1993), since we allow for heteroskedasticity here. The compact support condition

in Assumption 2 is not required for identification but will be needed when using extremal

quantile regression techniques. We maintain this assumption here for simplicity. Assumption

3-(ii) is satisfied if, for instance, E(exp(bε)) <∞ for some b > 0. Note that this tail condition

is fairly mild. For example, in the context of a wage equation where Y ∗ corresponds to the

logarithm of the wage w, it is satisfied as long as E(wb) <∞ for a given b > 0. It follows that

this condition holds even if wages exhibit very fat tails, for instance Pareto-like. Conditions

(i) and (iii) are not necessary for identification but will be used subsequently. Condition

(iii) is mild and satisfied by most of the standard continuous cdf., including the normal one.

Condition (iv), which is very mild, is not needed for the identification of β and δ. It is

only required to define the bounds on the quantile effects. Finally, Assumption 4 is our key

identifying condition. We require selection to become independent of the covariates at infinity,

that is conditional on having arbitrarily large outcomes. The underlying intuition is that, if

selection is indeed endogenous, then one can expect the effect of the outcome on selection to

dominate those of the covariates for sufficiently large values of the outcome. We come back

to this condition in the following section, by discussing in detail several examples where this

condition holds.

The first part of Theorem 2.1 below follows from Theorem 2.1 in D’Haultfoeuille & Maurel

(2013a). They proved, in a nonparametric framework where X ′β and X ′δ are replaced by

two unrestricted functions ψ(X) and σ(X), that these functions are identified. Assumption

2 then ensures that β and δ are identified. The second part of Theorem 2.1 provides the

sharp bounds on the quantile effects, which were not considered in D’Haultfoeuille & Maurel

(2013a).

Theorem 2.1. Under Assumptions 1-4, β and δ are identified. Moreover, the quantile effect

∆jτ = ∂QY ∗|X/∂Xj(τ |X)4 satisfies ∆jτ ∈ [∆jτ ,∆jτ ], with

∆jτ = βj + δjF
←
ε [τ − 1{δj > 0}(1− F ε(+∞))] ,

∆jτ = βj + δjF
←
ε [τ − 1{δj < 0}(1− F ε(+∞))] ,

and where

F ε(v) =

∫ v

−∞
sup

x∈Supp(X)

[
P (D = 1|X = x)(1 + x′δ)fY |D=1,X(x′β + (1 + x′δ)u|x)

]
du.

4When Xj is binary, ∆jτ should rather be defined by ∆jτ = QY ∗|X−j ,Xj=1 − QY ∗|X−j ,Xj=0, where X−j
denotes all components of X except Xj . Under Assumption 1, both definitions coincide and are equal to
βj + δjQε(τ).
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Finally, suppose that there exists K > 0 such that for all (x, x′) ∈ Supp(X)2 and all y large

enough,

|P (D = 1|X = x, Y ∗ = y)− P (D = 1|X = x′, Y ∗ = y)| ≤ K‖x− x′‖, (2.2)

where ‖x‖ denotes the euclidian norm of x. Then the bounds ∆jτ and ∆jτ are sharp.

The underlying intuition of the identification result for (β, δ) is that under Assumption 4,

the right tail of Y and Y ∗ are equivalent up to a multiplicative constant. It follows that we

can use the conditional survival function of Y given X to uniquely recover the location and

scale parameter, provided the tail of the residual is not too fat (Assumption 3-(ii)). Point

identification of β and δ does not necessarily entail point identification of the quantile effects

∆jτ , because of potential heteroskedasticity. Specifically, ∆jτ is point identified under partial

homoskedasticity (δj = 0), but only partially identified otherwise. This is due to the fact that

∆jτ = βj + δjQε(τ). Because of the missing data issue, the quantile Qε(τ) cannot be point

identified in general.

An important limitation of the sharp bounds is that, to the best of our knowledge, no existing

method can be readily used to conduct inference on them. Kitagawa (2010) provides some

useful results, but in a simpler framework where X is discrete and without the need to estimate

β and δ in a first step. On the other hand, we derive in Appendix C.2 the following outer

bounds on ∆jτ :

∆o
jτ = βj + δj

[
1{δj > 0}Qo

ε
(τ) + 1{δj < 0}Qoε(τ)

]
∆
o
jτ = βj + δj

[
1{δj > 0}Qoε(τ) + 1{δj < 0}Qo

ε
(τ)
] , (2.3)

with

Qo
ε
(τ) = sup

x∈Supp(X)

QY |D=1,X=x

(
τ−P (D=0|X=x)
P (D=1|X=x)

)
− x′β

1 + x′δ
,

Q
o
ε(τ) = inf

x∈Supp(X)

QY |D=1,X=x

(
τ

P (D=1|X=x)

)
− x′β

1 + x′δ
.

The outer bounds take a more convenient form for inference than the sharp bounds. Besides,

they actually coincide with these sharp bounds when the family of functions e 7→ P (D =

1|X = x)(1 + x′δ)fY |D=1,X(x′β + (1 + x′δ)e|x) indexed by x do not intersect.
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2.2 The independence at infinity condition

Point identification of β and δ relies mostly on the independence at infinity assumption. To

get a better sense of this condition, we discuss it below in the context of two common selection

models. The first one is a threshold crossing model described in Assumption 5.

Assumption 5. (i) D = 1{φ(X) − η ≥ 0} with (ε, η) ⊥⊥ X, (ii) infx∈Supp(X) Fη(φ(x)) =

v > 0, (iii) Fε and Fη are continuous and strictly increasing and the copula C of (−ε, η) is

differentiable with respect to its first argument.

The first condition defines the selection model as a standard threshold crossing model. Impor-

tantly however, we do not add any instrument in this selection equation. The second condition

ensures that x 7→ P (D = 1|X = x) is bounded below by a positive number. Note that this

condition will typically hold if none of the covariates has a large support, which is precisely the

type of situation we are interested in. In this context, Proposition 2.1 provides a restriction on

C ensuring that Assumption 4 is satisfied. Hereafter, let fC(τ) = supu≤τ,v∈[v,1] |∂1C(u, v)−1|,
where ∂1C denotes the partial derivative of C with respect to its first argument.

Proposition 2.1. Suppose that Assumptions 2, 3 and 5 hold, and

lim
τ→0

fC(τ) = 0. (2.4)

Then Assumption 4 is satisfied, and therefore β and δ are identified.

The key idea is that selection becomes independent of the covariates for large values of the out-

come if selection is endogenous enough, in the sense that (−ε, η) satisfies (2.4). To understand

this condition better, it is useful to consider two extreme cases. In the perfect dependence

case such that η = −ε, then ∂1C(u, v) = 1 for all u < v, so that (2.4) actually holds exactly

for small values of τ . On the other hand, when η and −ε are independent, ∂1C(u, v) = v, and

fC(τ) = 1 − v, which is positive except in the degenerate case where D = 1 almost surely.

In between these two extreme cases, Table 1 provides examples of copulas that satisfy this

constraint. Importantly, it holds for all Gaussian copulas with positive dependence.5 It also

holds for Archimedean copulas under a restriction on the behavior of the generator Ψ around

0. This restriction holds for instance for the Clayton copula, for which Ψ(u) = (u−θ − 1)/θ,

provided that θ > 0. The Gumbel family is another popular Archimedean family of copulas

that does not satisfy the restriction on Ψ, since Ψ is slowly varying at 0. However, Condition

(2.4) still holds for some parameters of this family.

5Note that what is important here is the strength, but not the sign, of the dependence between η and −ε.
The case of negative dependence could be addressed by replacing D by 1−D (see D’Haultfoeuille & Maurel,
2013a for a discussion on this point).
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Restriction
Copula family ensuring (2.4)

Gaussian C(u, v; ρ) ρ > 0

Archimedean C(u, v; Ψ) = Ψ−1(Ψ(u) + Ψ(v)) limu→0 Ψ(u) = +∞

Ψ is C1 and RVα(0) with α ∈ (0,+∞]

Gumbel Ψ(u; θ) = (− log(u))θ θ > 1

Table 1: Examples of copulas satisfying (2.4).

Proposition 2.1 suggests that our identification strategy is natural in the context of Roy’s

model of self-selection. Following-up on this idea, we consider a generalized Roy model (see

Heckman & Vytlacil, 2007, Eisenhauer et al. , 2013) with two or more sectors. Let Y ∗s denote

the potential outcome corresponding to sector s ∈ {1, ..., S}, we suppose that

Y ∗s = X ′βs + (1 +X ′δs)εs. (2.5)

The utility Us associated with sector s is supposed to satisfy

Us = Y ∗s +Gs(X) + ηs. (2.6)

The pure Roy model would correspond to Gs(X) = ηs = 0. Here we also allow for the

deterministic and random factors Gs(X) and ηs to affect Us. Individuals choose the sector

that maximizes their utility,

D = arg max
s∈{1,...,S}

Us. (2.7)

We further assume a factor structure for the unobservables εs and ηs.

Assumption 6. (i) εs = λ′s,1π + νs,1 and ηs = λ′s,2π + νs,2, where π is a vector of common

factors, (ii) π has a compact support, (iii) (X,π, ν1,1, ..., νS,2) are mutually independent, (iv)

νs = supx∈Supp(X) maxi 6=s((1 + x′δi)νi,1 + νi,2 − νs,2) satisfies the condition of Assumption 3,

and (v) Gs(X) has compact support.

The assumption of a linear factor model on the error terms is quite common in the context

of generalized Roy models, see e.g. Carneiro et al. (2003) or Cunha & Heckman (2007).

Proposition 2.2 below shows that, under these conditions, our identification strategy can be

used to identify (βs, δs) without any exclusion restriction or large support regressor.6

6D’Haultfoeuille & Maurel (2013a, 2013b) derived related results, but for a different class of Roy models
with only two sectors and in the absence of heteroskedasticity in the outcome equation.
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Proposition 2.2. Suppose that Equations (2.5)-(2.7) and Assumptions 2 and 6 hold. Then

for all s ∈ {1, ..., S}, Ds = 1{D = s} satisfies Assumption 4, and (βs, δs) are identified.

3 Estimation

3.1 Definition of the estimators

We start by defining our estimators before establishing their asymptotic properties in the

next subsection. Suppose we have a sample (Di, Yi, Xi)i=1...n of n i.i.d. random variables

distributed as (D,Y,X). The starting point for identification is that under Assumptions 1

and 4, we have, as y → −∞,

F−Y |X(y|x) ∼ h F−ε((y + x′β)/(1 + x′δ)) (3.1)

Now, the key insight for estimating (β, δ) is that if one also imposes Assumption 3, then it

is possible to invert both sides and maintain the equivalence. It follows that the quantile

regression of −Y on X is asymptotically linear. This result is going to play an important role

in our estimation procedure.

Lemma 3.1. Under Assumptions 1-4, as τ → 0,

Q−Y |X(τ |x) ∼ γ(τ) + x′β(τ) (3.2)

where γ(τ) = Q−ε(τ/h) and β(τ) = −β + γ(τ)δ.

Lemma 3.1 provides the intuition that it might be possible to use quantile regressions in the

tails to consistently estimate (γ(τ), β(τ)), for small values of the quantile index τ . The main

difficulty in formalizing this intuition though, comes from the fact that (3.2) is an equivalence

and not an equality, which gives rise to a bias term that needs to be controlled. We define

(γ̂(τ), β̂(τ)) = arg min
γ,β

n∑
i=1

ρτ (−Yi − γ −X ′iβ),

where ρτ (u) = (τ − 1{u < 0})u is the check function used in quantile regressions. Then one

can simply use the following relationships to estimate the parameters of interest β and δ:

δ =
β(lτ)− β(τ)

γ(lτ)− γ(τ)
,

β = −β(τ) + γ(τ)δ,
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where the first equality holds provided that γ(lτ) − γ(τ) 6= 0.7 We basically follow this

route in the paper, except that for an efficiency matter we estimate δ using J reduced form

estimators (β(l1τ), ..., β(lJτ)) rather than just two, where (l1, . . . , lJ) is a vector of positive

spacing parameters such that lj 6= 1 for all j ∈ {1, . . . , J}. Let us consider

gn(δ) =


β̂(l1τ)− β̂(τ)− (γ̂(l1τ)− γ̂(τ))δ

...

β̂(lJτ)− β̂(τ)− (γ̂(lJτ)− γ̂(τ))δ


and let Wn be a Jd×Jd positive definite symmetric matrix. We estimate δ using a minimum

distance procedure:

δ̂ = arg min
δ
gn(δ)′Wngn(δ). (3.3)

Finally, we estimate β by averaging across the quantile indices:

β̂ =
1

J + 1

J∑
j=0

−β̂(ljτ) + γ̂(ljτ)δ̂,

with l0 = 1. We do not simultaneously estimate β and δ since the corresponding estimators of

β and δ would have different rates of convergence, thus implying that the standard asymptotic

theory of minimum distance estimators would not apply in this context. In particular, this

framework would lead to a singular optimal weighting matrix. Intuitively, only the terms with

the slowest rate of convergence would be weighted positively, since the other terms would not

matter asymptotically. We would then lose consistency of the estimators.

Our estimators depend on a choice of τ , (l1, .., lJ) and Wn. We derive in the following section

the optimal weighting matrix, which can be consistently estimated. Regarding the quantile

indices, while the choice of the constants (l1, .., lJ) does not appear to matter much in practice,

an appropriate choice of τ is crucial to balance bias and variance in such a way that guaran-

tees our estimators to be asymptotically normal with zero mean. We propose a data-driven

procedure for that purpose in Section 3.3.

We now turn to the estimation of the quantile effects. ∆jτ is point identified when δj = 0 and

partially identified otherwise. Moreover, as shown in Section 3.2, it is possible to estimate βj

more precisely in the case where δj = 0. We consider these two cases separately, noting that

the restriction δj = 0 can be tested using the asymptotic distribution of δ̂j provided in the

following section.

7Assumptions 3-(i) and 8 below ensure that the latter condition is satisfied for any l 6= 1 and τ small enough.
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Suppose first that the model is partially homoskedastic, in the sense that {δjk}
dβ
k=1 are equal to

zero for some d ≥ dβ ≥ 1 and {j1, ..., jdβ} ⊂ {1, ..., d}. Then the quantile effects of {Xjk}
dβ
k=1

correspond to the average effects of the corresponding covariates, which are identified and

equal to {βjk}
dβ
k=1. Let Ψ be a dβ × d matrix that picks out the corresponding subvector of β,

i.e. β1 = Ψβ and let us consider

g1n(β1) =
(

Ψβ̂(τ)− β1,Ψβ̂(l1τ)− β1, ...,Ψβ̂(lJτ)− β1
)′
.

We then propose to estimate β1 by

β̂1 = arg min
β
g1n(β1)′W1ng1n(β1),

for some positive definite matrix W1n. We also estimate the subvector δ1 of nonzero compo-

nents of δ. Letting Ψ̃ denote the matrix such that δ1 = Ψ̃δ and

g2n(δ1) =
(

Ψ̃
[
β̂(l1τ)− β̂(τ)

]
− [γ̂(l1τ)− γ̂(τ)] δ1, ..., Ψ̃

[
β̂(lJτ)− β̂(τ)

]
− [γ̂(lJτ)− γ̂(τ)] δ1

)′
,

we estimate δ1 by

δ̂1 = arg min
δ
g2n(δ1)′W2ng2n(δ1),

for some positive definite matrix W2n.

Finally, if we reject partial homoskedasticity so that the quantile effects are only partially

identified, one possibility would be to estimate the sharp bounds given in Theorem 2.1. As

mentioned previously, however, to the best of our knowledge one cannot conduct inference on

these bounds using available methods. Instead, we propose to use the simpler outer bounds

given by (2.3). These bounds can be consistently estimated using plug-in estimators, replacing

(β, δ) by their estimators (β̂, δ̂) and (P (D = 1|X = x), QY |D=1,X=x) by any given consistent

nonparametric estimator, e.g., kernel or local polynomial estimators.

3.2 Asymptotic properties

We now turn to the asymptotic properties of (β̂, δ̂). We rely for that purpose on the asymptotic

properties of extremal quantile regressions, established by Chernozhukov (2005). As already

discussed, an important difference is that (3.2) is an equivalence rather than an equality. This

implies that a bias term comes into play, which needs to be controlled for.

In addition to the previous Assumptions 1-4, our asymptotic analysis relies on the three
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conditions discussed below. In the following, we let

f(γ) = E

[
sup
u≤γ
|h− P (D = 1|X,−ε = u)| × ‖X‖

]
.

Assumption 7. (i.i.d. sampling) (Di, Yi, Xi)i=1...n are independent, with the same distribu-

tion as (D,Y,X).

Assumption 8. (Monotone densities) There exists A < 0 such that almost surely, F−ε and

F−ε|D=1,X are differentiable with increasing derivatives on (−∞, A).

Assumption 9. (Rate of convergence of the quantile index) τn satisfies, as n → ∞, (i)

τn → 0, (ii) τnn→∞ and (iii)
√
τnnf(γ(τn))→ 0, where γ(τn) = Q−ε(τn/h).

Assumption 8 rules out erratic behavior of the densities in the tail. It is very mild and satisfied

by all standard distributions. Assumption 9 is an important condition that restricts the rate

of convergence of the tail index τn. Conditions (i) and (ii) basically ensure that the number

of observations that are useful for inference, which is proportional to τnn, tends to infinity,

but at a slower rate than the sample size. Thus, following the standard terminology in order

statistics theory, our estimators are based on quantile regressions where τn is an intermediate

order sequence, which we will refer to as intermediate order quantile regressions. The reason

why we use intermediate order instead of extreme order sequences, where τnn tends to a non-

zero constant, is that in the latter case, δ̂, and thus β̂, are not consistent. Intuitively, this is

due to the fact that only a finite number of observations are useful in the extreme order case.

Intermediate order quantile theory also has the nice feature that it guarantees asymptotic

normality rather than convergence towards a non-standard, data-dependent, distribution (see

Chernozhukov, 2005 and Chernozhukov & Fernandez-Val, 2011, in the absence of sample

selection). Finally, Condition (iii) is specific to our context. This is an undersmoothing

condition, which ensures that the bias arising because (3.2) is an equivalence rather than an

equality vanishes quickly enough.

Importantly, under Assumption 4, there always exists a τn satisfying Assumption 9. Specif-

ically, for any α ∈ (0, 1) define G(γ) = F−ε(γ)f(γ)2(1−α), where f(.) was introduced at the

beginning of the section. By construction, f is increasing. Because F−ε is strictly increasing

on (−∞, A) by Assumption 8, G is also strictly increasing on (−∞, A). Then define, for n

large enough,

τ∗n = hF−ε ◦G−1(1/n). (3.4)
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Under Assumption 4, limγ→−∞ f(γ) = 0.8 Thus, limγ→−∞G(γ) = 0. This implies that

limn→∞G
−1(1/n) = −∞, ensuring that τ∗n satisfies Condition (i). Moreover, it follows from

the equality F−ε(γ) = G(γ)

f2(1−α)(γ)
that

τ∗n =
h/n

f2(1−α) ◦G−1(1/n)
,

which implies that Condition (ii) holds as well. Finally, by using this expression again and

noting that γ(τ∗n) = G−1(1/n), we get

√
nτ∗nf(γ(τ∗n)) =

√
h× f ◦G−1(1/n)

f (1−α) ◦G−1(1/n)
=
√
hfα ◦G−1(1/n),

so that Condition (iii) is also satisfied. An obvious issue is that such a τ∗n depends on F−ε

and f , both of which are unknown to the researcher. We shall come back to the issue of the

practical choice of τn in Section 3.3.

The main result of this section is stated in Theorem 3.1 below, which shows that the estimators

of β and δ are consistent and asymptotically normal, and characterizes their asymptotic

variances. We first need to introduce several matrices. First, let L be the matrix of typical

term Li,j =
li−1∧lj−1√
li−1lj−1

for (i, j) ∈ {1, ..., J+1}2. Second, let ∆ = [−δ, Id], where Id denotes the

identity matrix of size d. Define Γ = [−ιJ , diag(1/
√
l1, ..., 1/

√
lJ)] ⊗ Id+1, where ιJ denotes

the column vector of ones of size J and, for any vector v, diag(v) denotes the diagonal matrix

with diagonal v. Finally, let G = (log(l1), ..., log(lJ))′ ⊗ Id, QH = E
[
XiXi

′
/(1 +X ′iδ)

]
and

Ω0 = Q−1
H QXQ

−1
H .

Theorem 3.1. Under Assumptions 1-4 and 7-9, and if Wn
p−→W symmetric positive definite

and nonstochastic,

√
τnn(δ̂ − δ) d−→ N (0,Ωδ)√
τnn

γ̂(τn)
(β̂ − β)

d−→ N (0,Ωδ)

where Ωδ = (G′WG)−1G′W (IJ⊗∆)Γ(L⊗Ω0)Γ′(IJ⊗∆′)WG(G′WG)−1. The optimal weight-

ing matrix is W ∗δ = ((IJ ⊗ ∆)Γ(L ⊗ Ω0)Γ′(IJ ⊗ ∆′))−1 and the corresponding asymptotic

variance is Ω∗δ = (G′W ∗δG)−1. Finally, there exists τ ′n satisfying Assumption 9 such that

- β̂ is consistent if, for some a > 1, f(u) = o(|u|−a) as u→ −∞.

- The rates of convergence of δ̂ and β̂ are polynomial if for some a > 0, f(u) = o(F−ε(u)a)

8To see this, note that for any x, supu≤γ |h − P (D = 1|X = x,−ε = u)| tends to zero by Assumption 4.
Because this term is bounded by 2, f tends to zero by the dominated convergence theorem.
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as u→ −∞.9

A consistent estimator of the asymptotic variance Ωδ can be obtained by replacing W by Wn,

∆ by ∆̂ = [−δ̂, Id] and Ω0 by Ω̂0 = Q̂−1
H Q̂XQ̂

−1
H , with

Q̂X =
1

n

n∑
i=1

XiXi
′
, Q̂H =

1

n

n∑
i=1

XiXi
′
/(1 +X ′i δ̂).

Similarly, one can consistently estimate W ∗δ , and thus obtain a two-step estimator that is

optimal in the class of estimators considered here.

Theorem 3.1 shows that δ̂ converges more quickly than β̂ towards the true value, since

|γ(τn)| → ∞ as τn → 0. Actually, even though one can always construct asymptotically

valid confidence intervals on β, β̂ may not be consistent. Consistency is secured, however, if

f decreases to zero quickly enough. To understand what this condition means, it is useful to

discuss it in the context of the sample selection model defined by Assumption 5. In such a

case, letting x = [1, x′]′, we have

f(γ(τ)) ≤ sup
x∈Supp(X)

||x|| sup
x∈Supp(X),u≤γ(τ)

|P (D = 1|X = x,−ε = u)− 1|

= sup
x∈Supp(X)

||x|| sup
x∈Supp(X),u≤γ(τ)

|P (η ≤ φ(x)| − ε = u)− 1|

= sup
x∈Supp(X)

||x|| sup
x∈Supp(X),u≤γ(τ)

|P (Fη(η) ≤ Fη(φ(x))|F−ε(−ε) = F−ε(u))− 1|

≤ sup
x∈Supp(X)

||x|| fC(τ),

where the second inequality follows from fC(τ) = supu≤τ,v∈[v,1] |∂1C(u, v) − 1|. Hence, con-

sistency of β̂ is achieved if fC(τ) = o(|γ(τ)|−a) for some a > 1. Similarly, if, for some b > 0,

fC(τ) = o(τ b), (3.5)

then a polynomial rate of convergence, faster than n(b−ζ)/(2b+1) for any b > ζ > 0, is possible.

Table 2 below provides examples of copulas of (η,−ε) satisfying the latter condition (see Ap-

pendix C.7 for its verification in each case), and therefore copulas for which β̂ is consistent.10

It is worth noting that for the last two copulas considered in the table, we actually establish

that fC(τ) tends to zero exponentially fast in τ . In such situations, (3.5) holds for all b, and

9Assumption 3 implies that for all a > 0, F−ε(u) = o(|u|−a). Thus, the condition f(u) = o(F−ε(u)a) is

stronger than the one ensuring consistency of β̂, as expected.
10See, e.g., Nelsen (2006) for a detailed review of copulas and their properties.
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it is possible to achieve a rate of convergence for δ̂ and β̂ that is faster than n1/2−ζ for any

ζ > 0. In other words, an adequate choice of τn can make the rate of convergence arbitrarily

close to the standard parametric root-n rate.

Restriction
Copula family ensuring (3.5)

Gaussian C(u, v; ρ) ρ > 0

Clayton C(u, v; θ) = max ([u−θ + v−θ − 1]−1/θ, 0) θ > 0

Rotated Gumbel-Barnett C(u, v; θ) = u− u(1− v) exp(−θ log(u) log(1− v)) θ ∈ (0, 1]

C(u, v; θ) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ]1/θ)−1 θ > 1

C(u, v; θ) = (1 + [(u−1/θ − 1)θ + (v−1/θ − 1)θ]1/θ)−θ θ ≥ 1

C(u, v; θ) = θ/ log(exp(θ/u) + exp(θ/v)− exp(θ)) θ > 0

C(u, v; θ) = [log(exp(u−θ) + exp(v−θ)− e)]−1/θ θ > 0

Table 2: Examples of copulas leading to a polynomial rate of convergence.

In order to conduct inference on the quantile effects, we need to distinguish between the

partially homoskedastic case and the heteroskedastic case. This involves (pre)testing the

restriction δj = 0. Valid inference requires that the critical value of the corresponding t-test

depend on the sample size n, so that the level of the test tends to zero while the power tends

to one. A possibility is to choose the critical values cn so that cn →∞, but slowly enough so

that cn/
√
n→ 0. In practice, we use in our application cn =

√
log(n), which is advocated in

different contexts by Andrews (1999) and Andrews & Soares (2010).

We first consider the partially homoskedastic case. As before, we letGδ = (log(l1), ..., log(lJ))′⊗
Id−dβ , Gβ = −ιJ+1 ⊗ Idβ , Γ2 = (0, Id) and Γ3 = diag(1, 1/

√
l1, · · · , 1/

√
lJ). Finally, we let

λ̂n = γ̂(τn) log(m)/(γ̂(mτn)− γ̂(τn)), where m 6= 1 denotes an arbitrary positive constant.

Theorem 3.2. Under Assumptions 1-4 and 7-9, {δik}
dβ
k=1 are zeros and if W1n

p−→ W1 and

W2n
p−→W2, where W1 and W2 are symmetric positive definite and nonstochastic, then

√
τnn(δ̂1 − δ1)

d−→ N (0,Ωδ1)

λ̂n

√
τnn

γ̂(τn)
(β̂1 − β1)

d−→ N
(
0,Ωβ1

)
,
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where

Ωδ1 =
[
G′δW2Gδ

]−1
G′δW2(IJ ⊗ Ψ̃∆)Γ(L⊗ Ω0)Γ′(IJ ⊗∆′Ψ̃′)W2Gδ

[
G′δW2Gδ

]−1
,

Ωβ1 = (G′βW1Gβ)−1G′βW1(Γ3 ⊗ΨΓ2)(L⊗ Ω0)(Γ′3 ⊗ Γ′2Ψ′)W1Gβ(G′βW1Gβ)−1.

The optimal weighting matrices for δ̂1 and β̂1 are then W ∗δ1 =
[
(IJ ⊗ Ψ̃∆)Γ(L⊗ Ω0)Γ′(IJ ⊗∆′Ψ̃′)

]−1

and W ∗β1 = [(Γ3 ⊗ΨΓ2)(L⊗ Ω0)(Γ′3 ⊗ Γ′2Ψ′)]−1, and the corresponding asymptotic variances

are given by (G′δW
∗
δ1Gδ)

−1 and (G′βW
∗
β1Gβ)−1. Finally, |λ̂n|

p−→ ∞, so that the rate of

convergence of β̂1 is faster than the one of the unconstrained estimator β̂.

Finally, in the case where we reject δj = 0, we propose to construct a confidence interval

on the quantile effect ∆jτ based on the outer bounds given by (2.3). Importantly, because

the quantities Qo
ε
(τ) and Q

o
ε(τ) are defined as supremum and infimum of functions that have

to be estimated, we can apply the methodology developed by Chernozhukov et al. (2013)

to conduct inference on intersection methods. More details on the construction of these

confidence intervals in our context are provided in Appendix A.1.

3.3 Choice of the quantile index

The estimators of β and δ are asymptotically normal with zero mean provided that they are

based on a sequence of quantile indices τn satisfying the bias-variance trade-off of Assumption

9. Though there always exists a sequence τn satisfying Assumption 9 under Assumption 4,

admissible rates of convergence towards 0 for τn are unknown, since they depend on f(γ(τn)),

which is itself unknown. A related issue arises in the estimation at infinity of the intercept

of sample selection models (see Andrews & Schafgans, 1998 and Schafgans & Zinde-Walsh,

2002) or in the estimation of extreme value index (see Drees & Kaufmann, 1998 and Danielsson

et al. , 2001). We propose in the following a heuristic data-driven method, which consists of

selecting τn as the minimizer of a criterion function that represents the trade-off between bias

and variance. The innovative idea here is to combine a subsampling method with a minimum

distance estimator to produce a proxy of the bias.

Specifically, let us consider the J test statistic

TJ(τ) =
log(m)2τn

(γ̂(mτ)− γ̂(τ))2 gn(δ̂(τ))′Ŵ ∗δ gn(δ̂(τ)),

for some arbitrary fixed m > 1. Here δ̂(τ) is the estimator obtained using the quantile index

τ and Ŵ ∗δ is an estimator of W ∗δ using δ̂(τ). We prove in Appendix A.2 that if τn satisfies
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Assumption 9, TJ(τn) converges to a chi-square distribution with (J − 1)d degrees of freedom

as n grows to infinity. We also show that otherwise, the asymptotic distribution of the J

test statistic includes an additional term. Heuristically, this suggests in particular that if the

median of the J test statistic is close enough to the median of a chi-square distribution with

(J − 1)d degrees of freedom, denoted by M(J−1)d, then the bias term should be small. Our

data-driven procedure builds on this idea.

In practice, we propose to estimate the difference between the two medians using subsampling.

For each subsample and each quantile index τ within a grid defined below, we compute TJ(τ).

Then, letting Ms(τ) denote the median of these test statistics over the different subsamples

and for a given τ , we compute

d̂iffn(τ) =

∣∣Ms(τ)−M(J−1)d

∣∣
√
bnτ

,

where bn denotes the subsample size.

Similarly, the asymptotic variance is estimated by the variance of the subsampling point

estimates of δ multiplied by the normalizing factor bn/n. We call this estimator V̂arn(τ). At

the end, we select the quantile index as follows:

τ̂n = arg min
τ

V̂arn(τ) + d̂iffn(τ).

We thus base our procedure on the trade-off between the variance and our proxy of the bias. It

follows that we achieve undersmoothing in comparison with a more standard trade-off between

variance and squared bias. Note that, similarly to the case of nonparametric regressions, this

is needed to control the asymptotic bias that would otherwise affect the limiting distribution

of our estimator.

We implement this method by searching over a grid of τ on an interval. In practice, we set

the upper bound of this interval to 0.3 and the lower bound to 80/bn. This lower bound is

motivated by the fact that if the effective subsampling size τbn becomes too small, then the

intermediate order asymptotic theory is likely to be a poor approximation (see Chernozhukov

& Fernandez-Val, 2011 for a related discussion). Finally, we select the quantile indices for

estimating β and δ in the partially homoskedastic case in the same manner.
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4 Simulations

In this section, we investigate the finite-sample performances of our estimation procedure by

simulating the following model for four different sample sizes (n = 250, n = 500, n = 1, 000

and n = 2, 000):

Y ∗ = β1X1 + β2X2 + β3X3 + (1 + δ1X1 + δ2X2 + δ3X3)ε

D = 1
{

0.6 + Y ∗ + 0.3X1 + 0.2X2 +X2
3 + η ≥ 0

}
.

X1 and X2 are two mutually exclusive binary variables, such that X1 = 1{U ≤ 0.3} and

X2 = 1{U ≥ 0.8}, with U uniformly distributed over [0, 1]. X3 is drawn from a truncated

normal distribution with support [−1.8, 1.8], mean 0 and standard deviation 1. (ε, η) are

jointly normally distributed, with mean zero and covariance matrix

(
1 0.2

0.2 1

)
. Finally, the

true values of the parameters are given by: β1 = 0.2, β2 = 0.4, β3 = 0.5, δ1 = 0, δ2 = 0.1 and

δ3 = −0.3.

We report in Table 3 below, for each sample size, the bias and standard deviation for nine

different estimators. Namely, we first estimate (δ1, δ2, δ3) and (β1, β2, β3) without imposing

δ1 = 0. Then we impose δ1 = 0 and reestimate β1 along with (δ2, δ3) under this partial

homoskedasticity constraint. As shown in Section 3.2 (Theorem 3.2), β1 is estimated at a

faster convergence rate in the latter case. In both cases, we use the two-step, asymptotically

optimal estimators of β and δ. We also document the severity of the selection bias in this

context by reporting the bias and standard deviation of a naive OLS estimator of β1 only

using the observations such that D = 1. Throughout this section we pay special attention to

the performances of our constrained estimator of β1 since, in our application, the black-white

wage gap will be estimated similarly.

The vector of spacing parameters lj used in minimum distance estimation is set equal to (0.65,

0.85, 1.15, 1.45). Intuitively, these parameters have to differ sufficiently to provide enough

variation. At the same time, they should not be too large, otherwise the corresponding

quantile indices τnlj might escape from the extremal quantiles region. However, in practice,

our estimates do not appear to be meaningfully sensitive to the choice of l. The choice of the

quantile index τn is more critical. We choose this parameter using the data-driven method

discussed in Section 3.3, with subsample sizes (150, 300, 500, 600) corresponding to the four

total sample sizes (250, 500, 1, 000 and 2, 000) and 500 subsamples in each case. We report

in Table 3 below the average quantile indices computed across all simulations.
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Heteroskedastic Homoskedastic (δ1 = 0) OLS
δ1 δ2 δ3 β1 β2 β3 δ2 δ3 β1 β1

True Value 0 0.1 -0.3 0.2 0.4 0.5 0.1 -0.3 0.2 0.2

n=250
Bias 0.070 0.104 0.086 -0.018 -0.053 -0.054 0.066 0.065 0.021 -0.075

Std dev 0.305 0.395 0.148 0.252 0.318 0.099 0.430 0.154 0.187 0.152
Average τn 0.256 0.256 0.236 0.207

n=500
Bias 0.073 0.074 0.064 -0.041 -0.051 -0.040 0.012 0.053 0.012 -0.076

Std dev 0.260 0.358 0.128 0.208 0.283 0.098 0.334 0.124 0.137 0.102
Average τn 0.220 0.220 0.209 0.201

n=1,000
Bias 0.023 0.025 0.031 -0.018 -0.013 -0.019 0.004 0.032 -0.010 -0.078

Std dev 0.192 0.230 0.082 0.176 0.211 0.069 0.241 0.083 0.089 0.072
Average τn 0.203 0.203 0.201 0.208

n=2,000
Bias 0.020 0.045 0.020 -0.009 -0.035 -0.015 0.008 0.011 0.000 -0.077

Std dev 0.134 0.192 0.064 0.126 0.171 0.055 0.175 0.051 0.062 0.054
Average τn 0.191 0.191 0.185 0.203

Note: Results were obtained using 300 simulations for each sample size.

Table 3: Monte Carlo simulations

Importantly, for each sample size, the bias-standard deviation ratio for each estimator is

much smaller than 1, consistent with our data-driven choice of τn leading to undersmoothing.

Besides, the standard deviations of our estimators as well as the average τn generally decrease

with the sample size, as expected given the consistency of our estimators and the bias-variance

tradeoff underlying the choice of τn.11 In practice, our estimators exhibit a fairly small bias

for sample sizes larger than n = 500. Note also that the constrained version of the estimator

of β1, which makes use of the partial homoskedasticity constraint δ1 = 0, is much more precise

and yields a smaller bias (except for n = 250) than the unconstrained estimator. The OLS

estimator of β1, on the other hand, displays a large bias, which remains stable across all

sample sizes.

We report in Figure 1 below the QQ-plots of β1, after imposing homoskedasticity (δ1 = 0),

for all four sample sizes. The plots are generally close to the diagonal line, which shows

that the estimator of β1 is approximately normally distributed, even for small sample sizes.

Importantly, this provides evidence that it is in practice reasonable, even in small samples, to

conduct inference based on the asymptotic distributions of our estimators.

11An exception to the overall decrease in τn with the sample size is the slight increase of τn between n = 500
and n = 1, 000 for the constrained estimator of β1. τn is essentially stable across all sample sizes for this
estimator.
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distribution, against the quantiles of the empirical distribution of the
studentized estimates of β1.

Figure 1: QQ-plots (constrained estimator of β1)

Figure 2 below shows the evolution of the Mean Squared Error (MSE) of the constrained

estimator of β1, with respect to the quantile index τn. The vertical line corresponds to

the average τn (across simulations) chosen based on our data-driven method. The plots

corresponding to n = 1, 000 and n = 2, 000 exhibit a U-shaped relationship between the MSE

and the quantile index. This pattern reflects a bias-variance tradeoff with respect to the

choice of τn. When the quantile index is small, the bias is small but the variance is large, and

vice versa. On the other hand, the relationship between MSE and τn is mostly decreasing for

n = 250 and n = 500. This is consistent with the variance term dominating the bias term for

τn < 0.3 and such small sample sizes. For all sample sizes, the average quantile index selected

with our method is generally smaller than the one yielding the smallest MSE, consistent with

our data-driven method tending to undersmooth. However, for sample sizes larger than 500,

it is worth noting that the MSE evaluated at the average selected quantile index is close to

the minimum (even equal for n = 2, 000).
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Note: The solid vertical line is the average quantile index produced by our
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of the quantile index τn.

Figure 2: Relationship between MSE (Y-axis) and τn (X-axis), constrained estimator of β1
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Figure 3: Relationship between coverage (Y-axis) and τn (X-axis), constrained estimator of
β1

Finally, we examine in Figure 3 the relationship between the coverage of the 95% and 97.5%

confidence intervals constructed with our constrained estimator of β1 and the quantile index

τn. The confidence intervals are constructed using the asymptotic variance of our estimator

together with normal critical values.12 The coverage gets reasonably close to the nominal rates

for n = 500, and remarkably close for larger sample sizes, for values of τn in the neighborhood

of the average quantile index obtained with our data-driven method. The sharp decline in

coverage for large values of the quantile index for n = 1, 000 and n = 2, 000 reflects the

existence of a nonvanishing bias. For smaller sample sizes, in particular for n = 500, the

coverage decreases for small values of the quantile index. This may be due to the fact that

the quantile index falls in the extreme, rather than intermediate order region, in which case

the finite sample distribution of our estimator cannot be approximated well by a standard

12We also computed confidence intervals based on percentile bootstrap or subsampling. Overall, the method
based on normal critical values performed best in terms of coverage.
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normal distribution.As sample size increases, however, the extreme order region moves even

closer to the origin, and for all the values of τn we consider the sampling distribution remains

close enough to a normal distribution. Importantly, for all sample sizes except n = 250,

the quantile index obtained from our data-driven procedure appears to be relatively close to

optimal, in the sense of minimizing the discrepancy between the actual and nominal coverages.

For the smallest sample size (n = 250) though, our procedure yields a value of the quantile

index that appears to be suboptimal, both in terms of coverage and MSE (see Figure 2 above).

This is presumably due to the fact that, in this context, the variance term strongly dominates

the bias term. In any case, the results reported in Table 3 are quite encouraging since they

show that, even with such a small sample, the bias and variance of our constrained estimator

of β1 remain reasonable.

5 Application to the black-white wage gap

We apply our method to the estimation of the black-white wage gap among young males

for two groups of cohorts, using data from the National Longitudinal Survey of Youth 1979

(NLSY79) and National Longitudinal Survey of Youth 1997 (NLSY97). Individuals surveyed

in the NLSY79 were 14 to 22 years old in 1979, while individuals from the NLSY97 were

12 to 16 years old in 1997. In the following, we are interested in estimating the black-white

wage gap for these two groups of individuals as of 1990-1991 and 2007-2008, respectively. As

noted in early articles by Butler & Heckman (1977) and Brown (1984), and documented more

recently by Juhn (2003), among males, blacks are significantly more likely to dropout from

the labor market. To the extent that those dropouts tend to have lower potential wages, it

follows that failure to control for endogenous labor market participation is likely to result

in underestimating the black-white wage differential. It is worth noting that finding a valid

instrument for selection is particularly difficult in the context of male labor force participation.

As a result, most of the attempts to deal with selection have consisted of imputing wages for

non-workers (see, among others, Brown, 1984, Smith & Welch, 1989, Neal & Johnson, 1996,

Juhn, 2003, Neal, 2004, Neal, 2006 and Neal & Rick, 2014).

Importantly, since across-cohort changes in selection into the workforce is also different for

blacks and for whites, adequately dealing with selection is needed to obtain credible estimates

of the across-cohort evolution of the black-white wage gap. Altonji & Blank (1999) stress the

importance of correcting for changes in race differential selection into work, and review some

of the empirical literature addressing this issue.13

13As the authors put it, “Comparisons of average or median wages of persons with jobs do not provide an
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5.1 Evidence from the NLSY79

We first use our method to estimate the black-white wage gap among young males from the

NLSY79, revisiting the influential work of Neal & Johnson (1996) on this question. We use

the same sample as Neal & Johnson (1996) in our analysis, and consider as they did that an

individual is a nonparticipant if he did not work in 1990 nor in 1991. The total sample size

is n = 1, 674, with an overall labor force participation rate over the period of interest (1990-

1991) equal to 95%. We refer the reader to Neal & Johnson (1996) for a detailed discussion

on the data.

We start by replicating the results of Neal & Johnson (1996) in Table 4 below by running four

regressions on the log of hourly wages on a set of observable characteristics, namely black,

Hispanic dummies and age (specifications (1) and (3)), together with AFQT and AFQT

squared (specifications (2) and (4)). The first two columns contain the results of simple OLS

regressions, replicating Columns (1) and (3) in Table 1 of Neal & Johnson (1996) (p.875),

while in the last two columns we replicate their Table 4 (p.883) by imputing a zero log-

wage for nonparticipants and running a median log-wage regression. As discussed in Neal

& Johnson (1996) and more extensively in Johnson et al. (2000), this imputation method

yields consistent estimates under the assumption that, conditional on the set of observable

characteristics included in the regression, the potential wage for any individual who did not

work neither in 1990 nor in 1991 lies below the median. It is important to note that the

identifying condition of independence at infinity used in our paper (Assumption 4) relaxes

this assumption by replacing the median with some extremal quantile of the conditional wage

distribution.14 As is put forward by Neal & Johnson (1996), Columns (1) and (2) show that

the estimated black-white wage gap drops sharply, from 24.4% to 7.1%, after adding controls

for ability, namely AFQT and AFQT squared. It is also worth noting that the estimated

black-white wage differential changes substantially, increasing (in absolute value) by as much

as 6.4 points, after addressing the selection issue with the imputation method proposed in

Neal & Johnson (1996) (see Columns (2) and (4)).

accurate picture of changes in the offer distributions faced by black and by white workers” (pp. 3240). See
also Juhn (2003), who provides evidence that the evolution over the period 1969-1998 of the black-white wage
gap is severely biased if one does not take into account the decline in work participation rates of black men
relative to white men. In recent work, Neal & Rick (2014) show that the growth in prison populations in the
last decades is an important factor behind the evolution of differential workforce participation of blacks and
whites.

14Our identifying condition is also weaker in the sense that h does not need to be equal to 1.
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(1) (2) (3) (4)

Black -0.244 -0.071 -0.356 -0.135
(0.026) (0.027) (0.028) (0.034)

Hispanic -0.114 0.005 -0.181 -0.013
(0.030) (0.030) (0.033) (0.038)

Age 0.048 0.040 0.068 0.055
(0.014) (0.013) (0.016) (0.017)

AFQT
—–

0.173
—–

0.206
(0.012) (0.015)

AFQT2

—–
-0.013

—–
0.010

(0.011) (0.014)

Note: Standard errors are reported in parentheses.

Table 4: OLS and median log-wage regression results (NLSY79)

We now investigate how the above results are changed when we use our estimation method

and implement the two-step asymptotically optimal estimators of δ and β. Table 5 presents

the estimation results for the heteroskedasticity parameters δ and the parameters β. Since we

fail to reject homoskedasticity for all the covariates with the exception of age, we report both

the corresponding unconstrained (“Heteroskedastic”) and constrained (“Homoskedastic”) es-

timates of β. In the discussion below we focus on our preferred constrained estimates, which

have a structural interpretation in terms of average effects.

Heteroskedastic Homoskedastic
δ β β

Black 0.019 -0.215 -0.101
(0.029) (0.326) (0.010)

Hispanic 0.005 0.014 0.020
(0.030) (0.337) (0.012)

Age -0.029 0.215
—–

(0.003) (0.032)

AFQT -0.005 0.238 0.215
(0.012) (0.134) (0.005)

AFQT2 -0.007 0.030 0.000
(0.011) (0.121) (0.004)

Note: Standard errors are reported in parentheses.
We perform the homoskedasticity tests using the crit-
ical values cn =

√
log(n), where n is the sample size

(n = 1, 674 here). The vector of spacing parame-
ters lj used in minimum distance estimation is equal to
(0.65, 0.85, 1.15, 1.45). The quantile index τn is chosen
based on the data-driven procedure discussed in Section
3.3, using 500 subsamples of size 550.

Table 5: Extremal quantile regression results (NLSY79)
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The estimation results from our extremal quantile method show that the size of the black-white

wage gap (10.1%) is smaller than the estimated gap obtained under the imputation method

proposed by Neal & Johnson (1996) (13.5%), but larger than the gap estimated using simple

OLS (7.1%). The fact that our preferred estimate of the black-white wage gap is smaller than

the one obtained with the imputation method is consistent with our estimator being based on

a weaker identifying assumption. While Neal & Johnson (1996) assume that, conditional on

observed characteristics, those individuals who do not participate to the labor market have a

potential wage below the median, a sufficient condition to apply our method is to rule out the

possibility that non-participants have arbitrarily large potential wages. Intuitively it follows

that our approach results in a milder form of selection correction, which is consistent with

our findings.

Finally, it is worth stressing that our results are in line with the key takeaway of Neal &

Johnson (1996), namely that premarket factors, as measured here by AFQT, account for most

of the black-white wage differential. In fact, our results point to an even more important role

played by AFQT, since the estimated wage gap drops from close to the median regression

estimate (around 35%) to 10.1% after adding AFQT.15

5.2 Across-cohort evolution

We now examine the evolution across the NLSY79 and NLSY97 cohorts of the black-white

wage gap. To do so, we apply our method to estimate the wage gap using hourly wages

measured in 1990-1991 for the NLSY79 sample and in 2007-2008 for the NLSY97 sample.

We follow Altonji et al. (2012) by using a modified version of the AFQT variable, which

corrects for the across-cohort changes in the ASVAB test format as well as in the age ranges

at which the test was taken. This age correction procedure is based on an equipercentile

mapping. To the extent that the rank within the AFQT distribution may vary with the age

of the respondent at the time of the test, we further restrict the samples to the respondents

who took the test when they were 16 or 17. Besides this age restriction, we constructed the

NLSY97 sample so as to match as closely as possible the sample selection rules used by Neal &

Johnson (1996) for the NLSY79. Consistent with prior evidence, we find that the labor force

participation rate of black men has fallen over time relative to white men (see Appendix B for

more details on the data). The baseline estimation results are reported in Table 6 below. The

resulting sample sizes are equal to 1, 077 and 1, 123 for the NLSY79 and NLSY97 cohorts,

respectively.

15Estimation results from our method without controlling for AFQT are not reported here to save space.
They are available from the authors upon request.
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NLSY79 NLSY97
Extremal Quantile Median Extremal Quantile Median

Black -0.122 -0.145 -0.140 -0.167
(0.001) (0.039) (0.050) (0.058)

Hispanic 0.029 -0.017 -0.054 -0.089
(0.002) (0.056) (0.050) (0.050)

AFQT 0.185 0.180 0.153 0.111
(0.001) (0.019) (0.022) (0.026)

AFQT2 0.007 0.008 0.002 -0.023
(0.001) (0.017) (0.022) (0.020)

Notes: Estimations also include linear control for age. Standard errors are reported in
parentheses. In the column “Extremal Quantile”, we report the results corresponding
to our preferred constrained specification, since we fail to reject homoskedasticity for
all of the covariates with the exception of age. We perform the homoskedasticity tests
using the critical values cn =

√
log(n), where n is the sample size. The vector of spacing

parameters lj used in minimum distance estimation is equal to (0.65, 0.85, 1.15, 1.45).
The quantile index τn is chosen based on the data-driven procedure discussed in Section
3.3, using 500 subsamples of size 500.

Table 6: Extremal quantile and median regression results (NLSY79-NLSY97)

The estimation results obtained with our method (“Extremal Quantile” columns) provide

evidence of a wider black-white wage gap for the 1997 cohort relative to the 1979 cohort, with

an increase in the estimated gap from 12.2% to 14%. It is also interesting to note that, while

the estimated levels do differ across both methods, the results from the median regression

of Neal & Johnson (1996) (“Median” columns) imply an across-cohort increase of a similar

magnitude (from 14.5% to 16.7%).

It is important to step back and try and understand what these results really mean. Specif-

ically, do they suggest that labor market discrimination against blacks has actually gotten

worse over the last two decades? Or does the estimated increase in the black-white wage gap

reflect the fact that the AFQT score only captures a fraction of all the premarket factors that

matter on the labor market, which may have changed over time? In particular, the results

reported in Table 6 provide clear evidence of a decline across cohorts in the wage returns to

AFQT, consistent with the latter story. Recent work by Castex & Dechter (2014) also provides

evidence from the NLSY79 and NLSY97 that the wage returns to AFQT have decreased over

time (see also Beaudry et al. , 2013, who argue that there has been a decline in the demand for

cognitive skills in the U.S. since 2000). While providing a definite answer to those questions

is particularly challenging, we attempt to shed light on this issue by controlling for additional

premarket factors, namely parental education and household structure (as measured by the

presence of both biological parents at age 14). Bringing those characteristics into the analysis
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is important since differences in family environment have been found to account for most of

the black-white gap in noncognitive skills (see, e.g., Carneiro et al. , 2005).

Table 7 below reports the estimated black-white wage gap for the 1979 and 1997 cohorts,

using our extremal quantile method and the median regression of Neal & Johnson, for three

different specifications. The first specification (“No premarket factors”) only controls for age

and the Hispanic dummy, the second specification (“AFQT only”) also controls for AFQT

and AFQT squared, while the third specification (“Preferred”) further controls for parental

education and household structure.

NLSY79 NLSY97
Extremal Quantile Median Extremal Quantile Median

Black (No premarket factor) -0.342 -0.349 -0.296 -0.311
(0.014) (0.032) (0.003) (0.051)

Black (AFQT only) -0.122 -0.145 -0.140 -0.167
(0.001) (0.039) (0.050) (0.058)

Black (Preferred) -0.099 -0.123 -0.087 -0.135
(0.017) (0.042) (0.043) (0.064)

Notes: Standard errors are reported in parentheses. The “preferred” specification includes AFQT, parental
education and household structure. For that case, the sample is then restricted to the individuals with non-
missing parental education and household structure, resulting in sample sizes equal to 1, 016 for the NLSY79
and 1, 071 for the NLSY97. In the column “Extremal Quantile”, we report the results corresponding to our
preferred constrained specification, since we fail to reject homoskedasticity for the black dummy. We perform
the homoskedasticity tests using the critical values cn =

√
log(n), where n is the sample size. The vector of

spacing parameters lj used in minimum distance estimation is equal to (0.65, 0.85, 1.15, 1.45). The quantile
index τn is chosen based on the data-driven procedure discussed in Section 3.3, using 500 subsamples of size
500.

Table 7: Black-white wage gap with age restriction and additional premarket factors

Without controlling for premarket factors, our estimation results show that the black-white

wage gap has decreased by 4.6 points across the 1979 and 1997 cohorts. This result provides

evidence of a very slow black-white wage convergence between 1990 and 2007. While most of

the available evidence in the literature relates to the evolution of the black-white wage gap

before 2000, it is interesting to note that our results are of the same order of magnitude as the

estimates obtained by Neal & Rick (2014) using different datasets (namely the Census Long

Form for the year 1990 and the American Community Survey for the year 2007). In their

paper, Neal & Rick address the issue of differential selection into the workforce by examining

the sensitivity of the median black-white wage gap to various imputation rules, which vary

based on the fraction of (missing) wages supposed to fall below the median of the potential

wage distribution. This type of sensitivity analysis cannot be used after adding controls for

premarket factors, since in that case knowing the fraction of wages falling below or above the

median is not sufficient to estimate the median wage gap.
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While we find that the black-white wage gap increases over time after controlling for AFQT,

Table 7 shows that the direction of the change is overturned when including other premar-

ket factors in addition to the AFQT. Using our estimation method, the black-white wage

gap is found to be fairly stable across cohorts, declining by only 1.2 points (from 9.9% to

8.7%) between 1990 and 2007. This result suggests that the across-cohort increase in the

wage gap conditional on AFQT is actually attributable to the premarket factors other than

AFQT, thus reflecting a time-varying omitted variable bias based on these family environment

characteristics. Interestingly, one can understand this result as extending the key finding of

Neal & Johnson (1996) to the across-cohort change in the wage gap. Premarket factors are a

dominant component of the black-white wage gap, not only in level but also in evolution.

In sum, our estimation results provide evidence of (i) a slow convergence in the raw male

black-white wage gap between 1990 and 2007 (Specification without premarket factors), and

(ii) an even slower convergence in the residual portion of the black-white wage gap, which

remains after controlling for premarket factors (Preferred specification). While we do find

that differences in premarket factors are a key component of the black-white wage gap and,

as such, should be a major focus from a policy standpoint, the fact that its residual portion

remains virtually stable after almost 20 years is also concerning.

We conclude this section by examining whether one could alternatively estimate the across-

cohort evolution of the black-white wage gap by applying the inverse density weighting scheme

of Lewbel (2007), treating AFQT as a special regressor. Note that, in this context, AFQT

appears to be the only potential candidate as a special regressor, thus ruling out the possible

use of the special regressor method in the absence of controls for premarket skills. The

large support condition would require the employment probability to be arbitrarily small for

some values of the AFQT. Although there is some variation, we found that the conditional

employment probability, estimated via nonparametric regression, remains very far from 0,

specifically above 0.63 for both NLSY cohorts. This clearly indicates that this method could

not be used in this context.

6 Concluding remarks

In this paper, we develop a new semiparametric inference method for location-scale models

in the presence of sample selection. A key feature of our method is that it can be used in

situations where one does not have access to an instrument for selection, nor to a large support

regressor. Instead, the main identifying condition is based on selection being independent of

the covariates for large values of the outcome. We show that this condition is typically mild
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provided that selection is endogenous. Building on this identification strategy, we propose

a simple estimation procedure, which combines quantile regressions in the tails, or extremal

quantile regressions, with minimum distance. We establish the consistency and asymptotic

normality of our estimators by extending the analysis of Chernozhukov (2005) to a setting with

sample selection. The choice of an appropriate quantile index is important in this context, and

we derive a data-driven procedure for this purpose. Importantly for the practical usefulness

of our method, we show that our estimation procedure performs well even with fairly small

samples.

Finally, we apply our method to the estimation of the black-white wage gap among males

from the NLSY79 and NLSY97 cohorts. Correcting for selection into the workforce is key in

this context since black males are more likely to dropout from the labor market than white

males, and this difference has increased over time. Our estimation results show that premarket

factors play a major role in explaining the magnitude of the black-white wage gap, as well as

its evolution over time.
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A Additional details on inference

A.1 Confidence intervals on quantile effects when δj 6= 0

The endpoints of the confidence intervals on ∆jτ can be estimated by applying the method-

ology of Chernozhukov et al. (2013) to the outer bounds (2.3). We illustrate the procedure

by focusing on the upper bound of the confidence interval, when δj > 0. The lower bound of

the interval and the case δj < 0 can be treated similarly. Let

θj(x) = βj + δj
QY |D=1,X=x( τ

P (D=1|X=x))− x′β
1 + x′δ

,

so that ∆
o
jτ = infx∈Supp(X) θj(x). One can estimate θj(.) by

θ̂j(x) = β̂j + δ̂j
Q̂Y |D=1,X=x( τ

P̂ (D=1|X=x)
)− x′β̂

1 + x′δ̂
,

where Q̂Y |D=1,X=x and P̂ (D = 1|X = x) are nonparametric (for instance kernel) estimators of

QY |D=1,X=x and P (D = 1|X = x), respectively. By Theorem 3.1, the rates of convergence of δ̂

and β̂ are (τnn)−1/2 and γ(τn)(τnn)−1/2, respectively. The rates of convergence of Q̂Y |D=1,X=x

and P̂ (D = 1|X = x) depend on the number of continuous components of X, on the degree

of smoothness of x 7→ QY |D=1,X=x and x 7→ P (D = 1|X = x) as well as on the choice of

the tuning parameters. In any case, it is always possible to choose τn so that the rate of

convergence of β̂ will be slower than the rates of convergence of δ̂, Q̂Y |D=1,X=x and P̂ (D =

1|X = x).16 In this case,

θj(x)− θ̂j(x) = fj(x)(β̂ − β) + oP

(
γ(τn)
√
τnn

)
,

where fj(x) = −e′j +
δ̂jx
′

1+x′δ̂
and ej is a vector of Rd whose jth coordinator equals 1 and others

equal 0. One can then apply the inference procedure discussed in Section 4.1 of Chernozhukov

et al. (2013) to construct the upper bound of the confidence interval. Note that although

the rate of convergence is not
√
n here, their Theorem 4.1 still applies, after replacing

√
n by

16This is the case for any τn satisfying Assumption 9 if all the components of X are discrete. If one component
of X is continuous, the rate of convergence for QY |D=1,X=x and P (D = 1|X = x) will typically be n−2/5. Then

one has to impose, in addition to Assumption 9, that τn = o(n−1/5). Under these conditions, one can show
that such a τn always exist by a simple monotonicity argument.
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√
τnn/γ(τn).17 Specifically, let us define

sn(x) =
γ(τn)
√
τnn

∥∥∥fj(x)Ω̂
1/2
δ

∥∥∥
2
, Z?n(x) =

fj(x)Ω̂
1/2
δ∥∥∥fj(x)Ω̂

1/2
δ

∥∥∥
2

Nd.

where ‖.‖2 denotes the Euclidean norm, Ω̂δ is the consistent estimator of the asymptotic vari-

ance matrix Ωδ described after Theorem 3.1 and Nd is a d-dimensional standard normal vector

generated independently from the data. Then one can compute, typically by simulations,

K1n = Qsupx∈Supp(X) Z
?
n(x)|data(1− 0.1/ log(n)).

Now, constructing X̂n as

X̂n =

{
x ∈ Supp(X) : θ̂j(x) ≤ 2K1nsn(x) + inf

x̃∈Supp(X)
θ̂j(x̃) +K1nsn(x̃)

}
.

one can compute

K2n(τ) = Qsup
x∈X̂n Z

?
n(x)|data(τ).

Finally, the upper bound θ̂j,1−α of a confidence interval on ∆jτ of nominal coverage 1− α is

defined by

θ̂j,1−α = inf
x∈Supp(X)

θ̂j(x) +K2n(1− α)sn(x).

A.2 Details on the data-driven τn

We provide in this section a rationale for the construction of the data-driven τn detailed in

Section 3.3. We study for that purpose the asymptotic behavior of δ̂ for sequences τ ′n that do

not satisfy Assumption 9 (iii), but only
√
τ ′nnf(γ(τ ′n)) = O(1). We show that in this case,

δ̂ has an asymptotic bias. Then we relate this bias with the asymptotic behavior of the J

test statistic TJ(τ ′n), and show how this can be used to select a quantile index for which the

asymptotic bias is small.

First, let us define

µ(τ) ≡
E
[
(τ − 1{−Y ≤ γ(τ) +X ′β(τ))X

]
τ

=
E
[
(τ − 1{−Dε ≤ Qε̃(τ/h)(1 +X ′δ))X

]
τ

.

17For that purpose, we need to assume their Condition V, which is a mild regularity condition (see Cher-
nozhukov et al. , 2013, p.691, for a discussion). Then, using the proof of Theorem 3.1, we can check that under
Assumptions 1-4 and 7-9, their Conditions P-(ii)-(v) hold (replacing

√
n by

√
τnn/γ(τn)). Although Condition

P-(i) does not hold, we can still prove their Lemma 4 using the fact that the nonparametric part of θ(.) does

not play any role in the asymptotic distribution of θ̂(.).
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As shown in the proof of Theorem 3.1, µ(τ) is the core component of the bias induced by the

fact that (3.2) is an equivalence instead of an equality. f(γ(τn)) in Assumption 9 can then be

viewed as an envelope of µ(τ). Under Assumption 9-(iii),
√
τnnµ(τn)→ 0, meaning that the

asymptotic bias vanishes. In what follows, we derive the asymptotic bias of our estimator δ̂

as a function of µ(τ) and propose a subsampling method to approximate this bias.

From (C.10) and the linear representation of Ẑn(1) below (C.13) in the proof of Theorem 3.1,

we have, for any sequence τn that satisfies Assumption 9,

√
τnn(δ̂ − δ) = log(m)(G′W ∗δG)−1G′W ∗δ αn(τn)gn(δ) + oP (1),

where αn(τ) =
√
τnn/(γ(mτ)− γ(τ)). We also show in the proof of Theorem 3.1 that

αn(τn)gn(δ) = (I ⊗∆)ΓẐn(τn),

where Ẑn(τn) is asymptotically normal with mean 0 when the asymptotic bias of δ̂ is zero. In

order to analyze situations where a sequence τ ′n only satisfies
√
τ ′nnf(γ(τ ′n)) = O(1), consider

Z̃n(τ) ≡ log(m)Ẑn(τ) +Q−1
H

√
τnb(τ),

with b(τ) = (µ(τ),
√
l1µ(l1τ), · · · ,

√
lJµ(lJτ))′. Then one can show that

√
τ ′nn(δ̂ − δ) =(G′W ∗δG)−1G′W ∗δ (IJ ⊗∆)ΓZ̃n(τ ′n)

− (G′W ∗δG)−1G′W ∗δ (IJ ⊗∆)Γ(IJ+1 ⊗Q−1
H )
√
τ ′nnb(τ

′
n) + oP (1).

Z̃n(τ ′n) is asymptotically normal with mean 0 by definition of b(τ). Hence, the second term is

the asymptotic bias of δ̂. We seek to approximate the norm of this bias. In order to do so, we

consider the minimum distance statistic, which is commonly used to conduct a specification

test in the context of minimum distance estimation. By plugging in the minimum distance

estimator δ̂, we obtain

log(m)αn(τ ′n)W
∗1/2
δ gn(δ̂) =(IJd −W

∗1/2
δ G(G′W ∗δG)−1G′W

∗1/2
δ )

[
(I ⊗∆)ΓZ̃n(τ ′n)−

√
τ ′nnB(τ ′n)

]
+ oP (1),

where B(τ) = (I ⊗ ∆)Γ(IJ+1 ⊗ Q−1
H )b(τ). B(τ) is the bias associated with the choice of

quantile index τ . It follows that the J-statistic defined in Section 3.3 can be written as
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TJ(τ ′n) =Z̃n(τ ′n)′Γ′(I ⊗∆′)(IJd −W
∗1/2
δ G(G′W ∗δG)−1G′W

∗1/2
δ )(I ⊗∆)ΓZ̃n(τ ′n)

+ 2Z̃n(τ ′n)′Γ′(I ⊗∆′)(IJd −W
∗1/2
δ G(G′W ∗δG)−1G′W

∗1/2
δ )

√
τ ′nnB(τ ′n)

+ τ ′nnB(τ ′n)′(IJd −W
∗1/2
δ G(G′W ∗δG)−1G′W

∗1/2
δ )B(τ ′n) + oP (1).

This equation shows that the J-statistic on the left-hand side converges to a chi square dis-

tribution with (J − 1)d degrees of freedom, plus a bias term. If
√
τ ′nnB(τ ′n) → 0, then the

median of the J-statistic is asymptotically the median M(J−1)d of a χ2((J−1)d). On the other

hand, if the asymptotic bias
√
τ ′nnB(τ ′n) does not vanish, the difference between the median

of the J-statistic and M(J−1)d will generally be asymptotically different from zero. Following

this idea, we estimate the difference between the two medians and use it as a proxy for the

asymptotic bias of δ̂. As indicated in the text, we rely for that purpose on subsampling.

B Data appendix

We construct our NLSY97 dataset based on the interviews that were conducted during the

years 2007 and 2008, using data on males from the cross-sectional sample and the oversample

of blacks and Hispanics of the NLSY97. Our sample consists of the respondents who reported

wages for at least one of these two years, along with the respondents who reported not working

in either year (nonparticipants). Respondents with a missing AFQT score are excluded from

the analysis. For the individuals working in both years, the wage variable is defined as the

average of the hourly wages corresponding to the main job at the time of the interview.

For those working during one year only, we define the wage variable as the hourly wage

corresponding to the main job at the time of the interview in that year. Finally, we trim the

data by dropping the wage observations below 1 dollar and above 118.95 dollars (corresponding

to 75 dollars in 1991). We report in Table 8 below some descriptives corresponding to our

NLSY79 and NLSY97 samples restricted to the respondents who took the ASVAB test when

they were 16 or 17. Table 9 reports the labor force participation rates for the NLSY79 and

NLSY97 samples, separately for blacks and whites.
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NLSY79 NLSY97
Blacks Hispanics Whites Blacks Hispanics Whites

AFQT -0.716 -0.314 0.387 -0.726 -0.279 0.373
Std.dev. (0.812) (0.935) (0.966) (1.037) (0.942) (0.923)

Highest grade completed 11.638 11.419 12.859 11.239 11.502 12.849
Std.dev. (3.927) (3.953) (3.691) (4.811) (4.529) (4.726)

Mother high school graduate 0.447 0.243 0.715 0.707 0.536 0.829
Father high school graduate 0.368 0.284 0.665 0.518 0.396 0.758

Mother college graduate 0.040 0.027 0.093 0.107 0.094 0.217
Father college graduate 0.046 0.050 0.188 0.086 0.068 0.245
Both parents at age 14 0.486 0.599 0.760 0.264 0.540 0.597

Note: Samples restricted to males. Blacks account for 31% (25%) of the NLSY79 (NLSY97) sample, while
Hispanics account for 20% (21%) of the NLSY79 (NLSY97) samples.

Table 8: Descriptive statistics for the subsample with restricted age

Blacks Whites

NLSY79 full sample 91.02% 97.52%

NLSY79 with age restriction 90.58% 98.10%

NLSY97 with age restriction 81.43% 93.09%

Table 9: Labor force participation rates (males)

C Proofs of the results

In the following, we let, for any random variable U and with a slight abuse of notations,

S←U = 1−F←U . We also let Ũ = −U and define ε̆ = Ỹ +X ′β. Finally, we take the convention

that intervals [a, b] refer to [b, a] when b < a, and similarly for open or semi-open intervals.

C.1 Proof of Theorem 2.1

By Theorem 2.1 in D’Haultfoeuille & Maurel (2013a), x 7→ x′β and x 7→ x′δ are identified.18

Identification of β and δ then follows from Assumption 2. Turning to ∆jτ , remark first that

by independence between X and ε,

∆jτ = βj + δjQε(τ). (C.1)

18In D’Haultfoeuille & Maurel (2013a) we use E(exp(λε)) < +∞ for some λ > 0 instead of the weaker
condition that Sexp(ε) slowly varying. An inspection of the proof reveals however that the proof only relies on
this latter condition.
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It suffices therefore to obtain bounds on Qε(τ). We suppose hereafter that δj > 0. The

reasoning is similar for δj < 0, while ∆j is identified from (C.1) if δj = 0. First, we have

fε|X(u|x) = P (D = 1|X = x)fε|D=1,X(u|x) + P (D = 0|X = x)fε|D=0,X(u|x).

Thus, for all x in the support of X,

fε|X(u|x) ≥ P (D = 1|X = x)fε|D=1,X(u|x).

By independence between X and ε,

fε(u) = sup
x∈Supp(X)

fε|X(u|x) ≥ sup
x∈Supp(X)

P (D = 1|X = x)fε|D=1,X(u|x). (C.2)

Integrating (C.2) between −∞ and v implies that Fε(v) ≥ F ε(v). Hence, Qε(τ) ≤ F←ε (τ).

This yields the upper bound on ∆jτ . Now, integrating (C.2) between v and +∞ implies that

1− Fε(v) ≥
∫ +∞

v

[
sup

x∈Supp(X)
P (D = 1|X = x)fε|D=1,X(u|x)

]
du.

Hence, Fε(v) ≤ 1− F ε(+∞) + F ε(v). As a result,

Qε(τ) ≥ [1− F ε(+∞) + F ε]
← (τ) = F←ε (τ − (1− F ε(+∞))).

The lower bound on ∆jτ follows.

Now, let us show that these bounds are sharp under (2.2). For that purpose, we exhibit

conditional cdfs F̃ε|D=0,X(.|.), different in general from the true ones, which rationalize the

bounds and satisfy the restrictions imposed by Assumptions 1, 3, 4 and (2.2). Note that the

other conditions (Assumptions 2 and 3-(iv)) only depend on the observed data and therefore

need not be verified. Note also that we can restrict to the case where P (D = 0|X = x) > 0

for almost all x. For in the case where P (D = 0|X = x) = 0, Inequality (C.2) is actually an

equality, and the two bounds coincide. The bounds then correspond to the true model, and

are therefore sharp.

Now, consider the upper bound. Let u0 be such that F ε(u0) > τ and suppose that

F̃ε|D=0,X(u|x) =
F ε(u)− P (ε ≤ u,D = 1|X = x)

P (D = 0|X = x)
1{u < u0}+ Fε|D=0,X(u|x)1{u ≥ u0}.

Let us first show that for all x, F̃ε|D=0,X(.|x) is indeed a cdf. It suffices to show that its limit at
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−∞ is zero, that it is increasing and right-continuous on (−∞, u0) and limu↑u0 F̃ε|D=0,X(u|x) ≤
Fε|D=0,X(u0|x). The first point holds because limu→−∞ F ε(u) = limu→−∞ P (ε ≤ u,D =

1|X = x) = 0. The second point follows by remarking that

F ε(v)− P (ε ≤ v,D = 1|X = x) =

∫ v

−∞

{
sup

x′∈Supp(X)

[
fε|D=1,X(u|x′)P (D = 1|X = x′)

]
− fε|D=1,X(u|x)P (D = 1|X = x)

}
du.

The integral form implies that F̃ε|D=0,X(.|x) is right-continuous. Because the term in braces

is positive, F̃ε|D=0,X(.|x) is also increasing. Finally, the third point follows because for any u,

F ε(u)− P (ε ≤ u,D = 1|X = x)

P (D = 0|X = x)
≤ Fε(u)− P (ε ≤ u,D = 1|X = x)

P (D = 0|X = x)
= Fε|D=0,X(u|x).

Now, let us prove that the conditional cdfs F̃ε|D=0,X(.|.) rationalize the bounds and satisfy

the restrictions of the model. First,

F̃ε|X(u|x) = F̃ε|D=0,X(u|x)P (D = 0|X = x) + P (ε ≤ u,D = 1|X = x)

= F ε(u)1{u < u0}+ Fε(u)1{u ≥ u0}. (C.3)

The right-hand side does not depend on x. Therefore, F̃ε|D=0,X satisfies Assumption 1. (C.3)

also implies that for any τ ′ ≤ τ ,

F̃←ε (τ ′) = F←ε (τ ′).

Therefore, the conditional cdfs F̃ε|D=0,X(.|.) rationalize ∆j(τ). Now, because f̃ε(u) is equal

to the true fε(u) for u large enough, the conditional cdfs F̃ε|D=0,X(.|.) satisfy Assumption 3.

Similarly, by Bayes’ theorem, we have, for y large enough,

P̃ (D = 1|X = x, Y ∗ = y) =
fY |D=1,X=x(y|x)P (D = 1|X = x)

f̃Y ∗|X(y|x)

=
(1 + x′δ)fY |D=1,X=x(y|x)P (D = 1|X = x)

f̃ε[(y − x′β)/(1 + x′δ)]

=
(1 + x′δ)fY |D=1,X=x(y|x)P (D = 1|X = x)

fε[(y − x′β)/(1 + x′δ)]

= P (D = 1|X = x, Y ∗ = y),

and therefore, Assumption 4 is satisfied. This equality also ensures that (2.2) is satisfied.

Hence, the upper bound is sharp.
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Now, let us turn to the lower bound. Let u1 be such that F ε(u1) < τ and consider

F̃ε|D=0,X(u|x) = Fε|D=0,X(u|x)1{u < u1}+
1− F ε(+∞) + F ε(u)− P (ε ≤ u,D = 1|X = x)

P (D = 0|X = x)
1{u ≥ u1}.

As previously, F̃ε|D=0,X(.|x) is indeed a cdf and

F̃ε|X(u|x) = Fε(u)1{u < u1}+ [1− F ε(+∞) + F ε(u)]1{u ≥ u1},

so that Assumption 1 holds and F̃ε|D=0,X(.|.) rationalizes the lower bound. We now check

Assumption 3. For u large enough,

f̃ε(u) = sup
x∈Supp(X)

P (D = 1|X = x)fε|D=1,X(u|x)

= sup
x∈Supp(X)

P (D = 1|X = x, ε = u)fε|X(u|x)

= fε(u)

[
sup

x∈Supp(X)
P (D = 1|X = x, Y ∗ = x′β + (1 + x′δ)u)

]
. (C.4)

We now prove that f̃ε(u) ∼ hfε(u) as u→∞. Fix η > 0. Because Supp(X) is compact, there

exists (x1, ..., xk) ∈ Supp(X)k such that for all x ∈ Supp(X), minj=1...k ‖x − xj‖ < η. There

exists also y0 such that for all y ≥ y0,

max
j=1...k

|P (D = 1|X = xj , Y
∗ = y)− h| < η. (C.5)

By compacity of Supp(X) once more, there exists u0 such that for all u ≥ u0,

inf
x∈Supp(X)

x′β + (1 + x′δ)u ≥ y0. (C.6)

Then, for all x ∈ Supp(X), and all u ≥ u0,

|P (D = 1|X = x, Y ∗ = x′β + (1 + x′δ)u)− h|

≤ |P (D = 1|X = x, Y ∗ = x′β + (1 + x′δ)u)− P (D = 1|X = xj , Y
∗ = x′β + (1 + x′δ)u)|

+ |P (D = 1|X = xj , Y
∗ = x′β + (1 + x′δ)u)− h|

≤ K‖x− xj‖+ η,

where the second inequality follows by (2.2), (C.5) and (C.6). Choosing j such that ‖x−xj‖ <
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η finally yields

sup
x∈Supp(X)

|P (D = 1|X = x, Y ∗ = x′β + (1 + x′δ)u)− h| < (K + 1)η.

As a result,

lim
u→∞

sup
x∈Supp(X)

P (D = 1|X = x, Y ∗ = x′β + (1 + x′δ)u) = h.

Hence, by (C.4), as u→∞,

f̃ε(u) ∼ hfε(u). (C.7)

This implies that Assumption 3-(i) holds. Now, suppose that S̃exp(ε) is slowly varying. Then

for all l > 0, S̃exp(ε)(lu)/S̃exp(ε)(u)→ 1. Now, (C.7) also implies that for any l > 0,

Sexp(ε)(lu)

Sexp(ε)(u)
∼
S̃exp(ε)(lu)

S̃exp(ε)(u)
.

This implies that Sexp(ε) is also slowly varying, a contradiction. Thus, Assumption 3-(ii) is

satisfied. By (C.7) once more, there exists η > 0 arbitrarily small such that for all u large

enough,

(h− η)Sε(u) ≤ S̃ε(u) ≤ (h+ η)Sε(u).

Now, fix τ small enough and let u = S̃←ε (τ). S̃ε(u) ≥ τ implies Sε(u) ≥ τ/(h + η), which

yields in turn u ≤ S←ε (τ/(h+ η)). Hence, we obtain

S̃←ε (τ) ≤ S←ε (τ/(h+ η)) = −Qε̃(τ/(h+ η)).

Now, let u′ > u, so that S̃ε(u
′) ≤ τ . Then u′ ≥ S←ε (τ/(h− η)). Letting u′ tend to u yields

S̃←ε (τ) ≥ S←ε (τ/(h− η)) = −Qε̃(τ/(h− η)).

As a result, for any fixed m > 1 and letting e = exp(1),

S̃←ε (mτ)− S̃←ε (τ)

S̃←ε (eτ)− S̃←ε (τ)
≤ Qε̃(mτ/(h− η))−Qε̃(τ/(h+ η))

Qε̃(eτ/(h+ η))−Qε̃(τ/(h− η))
.

By Lemma D.2 in Appendix D, the right-hand side converges to log(m(h+η)/(h−η))/ log(e(h−
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η)/(h+ η)). Reasoning similarly on the lower bound, we obtain,

log(m(h− η)/(h+ η))/ log(e(h+ η)/(h− η)) ≤ lim inf
τ→0

S̃←ε (mτ)− S̃←ε (τ)

S̃←ε (eτ)− S̃←ε (τ)

≤ lim sup
τ→0

S̃←ε (mτ)− S̃←ε (τ)

S̃←ε (eτ)− S̃←ε (τ)
≤ log(m(h+ η)/(h− η))/ log(e(h− η)/(h+ η)).

Because η was arbitrary, we can make it tend to zero, thus obtaining

lim
τ→0

S̃←ε (mτ)− S̃←ε (τ)

S̃←ε (eτ)− S̃←ε (τ)
= log(m).

This proves (see Resnick, 1987, Proposition 0.10) that S̃ε belongs to the domain of attraction

of the Gumbel distribution. Hence, Assumption 3-(iii) holds.

Turning to Assumption 4, we reason as for the upper bound:

P̃ (D = 1|X = x, Y ∗ = y) =
(1 + x′δ)fY |D=1,X=x(y|x)P (D = 1|X = x)

f̃ε[(y − x′β)/(1 + x′δ)]

∼
(1 + x′δ)fY |D=1,X=x(y|x)P (D = 1|X = x)

hfε[(y − x′β)/(1 + x′δ)]

∼ P (D = 1|X = x, Y ∗ = y)

h
.

Therefore, the conditional cdfs F̃ε|D=0,X satisfy Assumption 4, with a limit equal to 1 instead

of h. The result follows.

Finally, let us check (2.2). We have by what precedes, for y large enough

P̃ (D = 1|X = x, Y ∗ = y) =
P (D = 1|X = x, Y ∗ = y)

supx′∈Supp(X) P (D = 1|X = x′, Y ∗ = y)
.

Moreover, we have proved that the denominator tends to h as y →∞. Therefore, because the

true distribution satisfies (2.2), we have, for all (x, x′) ∈ Supp(X)2 and all y large enough,

|P̃ (D = 1|X = x′, Y ∗ = y)− P̃ (D = 1|X = x, Y ∗ = y)| ≤ K

h− η
‖x− x′‖,

for some 0 < η < h. This ensures that F̃ε|D=0,X satisfies (2.2), and thus that the lower bound

is sharp.
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C.2 Derivation of the outer bounds (2.3)

We only consider the case where δj > 0, the case δj < 0 being similar. Note first that

P (D = 1|X) > 0 almost surely, because P (D = 1|X = x) = E [P (D = 1|X = x, Y ∗)|X = x],

and P (D = 1|X = x, Y ∗ = y) is bounded from below by h/2 > 0 for y large enough. Now,

consider the lower bound. We have for all (u, x), by independence between ε and X,

P (ε ≤ u) = P (ε ≤ u|X = x)

≤ P (ε ≤ u,D = 1|X = x) + P (D = 0|X = x)

≤ P (Y ≤ x′β + (1 + x′δ)u|D = 1, X = x)P (D = 1|X = x) + P (D = 0|X = x).

Taking u = Qε(τ), using Fε(Qε(τ)) ≥ τ and the definition of the quantiles of Y |D = 1, X = x,

we obtain, for all x in the support of X,

x′β + (1 + x′δ)Qε(τ) ≥ QY |D=1,X=x

(
τ − P (D = 0|X = x)

P (D = 1|X = x)

)
.

As a result,

Qε(τ) ≥ sup
x∈Supp(X)

QY |D=1,X=x

(
τ−P (D=0|X=x)
P (D=1|X=x)

)
− x′β

1 + x′δ
.

The outer lower bound of ∆jτ follows from ∆jτ = βj + δjQε(τ).

Now let us turn to the outer upper bound. Reasoning as before, we have, for all x in the

support of X and u < Qε(τ),

τ ≥ P (ε ≤ u) ≥ P (Y ≤ x′β + (1 + x′δ)u,D = 1|X = x)P (D = 1|X = x).

The definition of the quantiles of Y |D = 1, X = x then yields

x′β + (1 + x′δ)u ≤ QY |D=1,X=x

(
τ

P (D = 1|X = x)

)
.

Letting u tend to Qε(τ) and taking the infimum over x then yields

Qε(τ) ≤ inf
x∈Supp(X)

QY |D=1,X=x

(
τ

P (D=1|X=x)

)
− x′β

1 + x′δ
.

The upper bound follows.
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C.3 Proof of Proposition 2.1

We verify Assumption 4 with h = 1. By Assumption 5 and because fC(γ) → 0, we have, as

y →∞,

|P (D = 1|X = x, Y ∗ = y)− 1| =
∣∣∣∣P (Fη(η) ≤ Fη(φ(x))|Fε̃(ε̃) = Fε̃

(
x′β − y
1 + x′δ

))
− 1

∣∣∣∣
=

∣∣∣∣∂1C

[
Fε̃

(
x′β − y
1 + x′δ

)
, Fη(φ(x))

]
− 1

∣∣∣∣
≤ sup
v∈[v,1]

∣∣∣∣∂1C

[
Fε̃

(
x′β − y
1 + x′δ

)
, v

]
− 1

∣∣∣∣
−→ 0.

C.4 Proof of Proposition 2.2

Let Ds = 1{D = s} and Y =
∑J

s=1DsY
∗
s . By considering the dataset (Ds, DsY,X), we

are back to the binary model. Then Theorem 2.1 is directly applicable if one can verify

Assumption 4. For a given x in the support of X, we have

1− P (Ds = 1|X = x, Y ∗s = y)

=P (y +Gs(x) + λ′s,2π + νs,2 ≤ maxi 6=s
(
x′βi + (1 + x′δi)(λ

′
i,1π + νi,1) +Gi(x) + λ′i,2π + νi,2)

)
≤P (νs ≥ y +G(x)),

where

νs = sup
x∈Supp(X)

max
i 6=s

((1 + x′δi)νi,1 + νi,2 − νs,2),

G(x) = inf
p∈Supp(π)

(Gs(x) + λ′s,2p−max
i 6=s

(
x′βi + (1 + x′δi)λ

′
i,1p+Gi(x) + λ′i,2p)

)
.

By Assumption 6, G(x) > −∞. Therefore, as y → ∞, P (νs ≥ y + G(x)) → 0. Thus,

Assumption 4 holds (with h = 1).

C.5 Proof of Lemma 3.1

Let Ux(y) ≡ 1/P (Y > y|X = x), Vx(y) ≡ 1/hSε((y − xβ)/(1 + x′δ)). Then from Equation

(3.1), Ux(y) ∼ Vx(y). We want to show the equivalence U←x (τ) ∼ V←x (τ). For that purpose,

we suppose that there exists ε0 > 0 and a sequence (ym)m∈N tending to infinity such that

V←x (ym)/U←x (ym) ≥ 1 + ε0, (C.8)
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and shows that this leads to a contradiction. The reasoning is similar for the other inequality

(V←x (ym)/U←x (ym) ≤ 1− ε0).

First, by Lemma D.1 in Appendix D, Sε is in the domain of attraction of Type I extreme

value distribution. This implies that V ≡ 1/Sε is Γ-varying (see Resnick (1987) Propo-

sition 0.10), i.e. limz→∞
V (z+tf(z))

V (z) = et for some auxiliary function f . Define fx(y) =

f [(y − x′β)/(1 + x′δ)]× (1 + x′δ). Then

Vx(z + tfx(z))

Vx(z)
=
V
[
z−x′β
1+x′δ + tf

(
z−x′β
1+x′δ

)]
V
[
z−x′β
1+x′δ

] → et

as z → ∞. Thus Vx(z) is Γ-varying with auxiliary function fx. Furthermore, Ux(z) ∼ Vx(z)

and z + tfx(z)→∞, which implies

Ux(z + tfx(z))

Ux(z)
=
Ux(z + tfx(z))

Vx(z + tfx(z))

Vx(z)

Ux(z)

Vx(z + tfx(z))

Vx(z)
→ et.

Hence, Ux is also Γ-varying with the same auxiliary function. fx also satisfies (see Resnick,

1987, Ex. 0.4.3.10)

lim
z→∞

fx(z)

z
→ 0. (C.9)

Combining (C.8) and (C.9), we obtain that for m large enough,

V←x (ym)

U←x (ym)
≥ 1 + ε0

fx(U←x (ym))

U←x (ym)
.

Now, because y ∼ Vx(V←x (y)) and y ∼ Ux(U←x (y)) (see Resnick, 1987, page 28), for any

ε1 > 0, there exists m large enough such that

ym(1 + ε1) ≥ Vx(V←x (ym))

≥ Vx(U←x (ym) + ε0fx(U←x (ym)))

≥ (1− ε1)Ux(U←x (ym) + ε0fx(U←x (ym)))

= (1− ε1)2eε0Ux(U←x (ym))

≥ (1− ε1)3eε0ym.

Therefore, 1 ≥ (1−ε1)3

1+ε1
eε0 . Letting ε1 tend to zero leads to a contradiction.
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C.6 Proof of Theorem 3.1

First let us introduce additional notations. For any τ , let θ(τ) = (γ(τ), β(τ)′)′. Let us also

define Ẑn(l) = αn(l)(θ̂(τn)− θ(τn)), with

αn(l) =

√
lτnn

γ(mlτn)− γ(lτn)
=

√
lτnn

Qε̃(mlτ/h)−Qε̃(lτ/h)

for some arbitrary fixed m > 1 and αn ≡ αn(1). Let also

Ẑn(l1, · · · , lJ) =
(
Ẑ ′n(1), Ẑ ′n(l1), ..., Ẑ ′n(lJ)

)′
.

Finally, let us define

Gn ≡ −
∂gn(δ)

∂δ
=


γ̂(l1τn)− γ̂(τn)

...

γ̂(lJτn)− γ̂(τn)

⊗ Id,
G̃n = Gn/(γ(mτn)− γ(τn)) and

B̂n =


β̂(l1τn)− β̂(τn)

...

β̂(lJτn)− β̂(τn)

 .

The main part of the proof is devoted to the asymptotic normality of δ̂. The asymptotic

normality of β̂ and the second part of the theorem follows quite easily.

The behavior of δ̂ is related to G̃n and Ẑn(l1, · · · , lJ). To see this, note that the first order

condition of (3.3) writes

G′nWnGnδ̂ = G′nWnB̂n.

Remarking that δ = [G′nWnGn]−1G′nWnGnδ and B̂n −Gnδ = gn(δ), we obtain

√
τnn(δ̂ − δ) =

[
G̃′nWnG̃n

]−1
G̃′nWn [αngn(δ)] .

Moreover, some algebra shows that

αngn(δ) = (IJ ⊗∆)ΓẐn(l1, · · · , lJ).
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We thus obtain

√
τnn(δ̂ − δ) =

[
G̃′nWnG̃n

]−1
G̃′nWn (IJ ⊗∆) ΓẐn(l1, · · · , lJ). (C.10)

The first step of the proof shows that Ẑn(l1, · · · , lJ) is asymptotically normal. The proof of

this part is related to the proof of Theorem 5.1 in Chernozhukov (2005), but we have to take

into account that (3.2) is an equivalence, not an equality as in his framework. The second step

establishes that G̃n
p−→ G/ log(m). Both steps, combined with (C.10), prove the asymptotic

normality of δ̂. We then show in the third step the main asymptotic result on β̂. Finally,

Step 4 establishes the consistency of β̂ and the fact that the rate of convergence of δ̂ and β̂

can be polynomial under some additional conditions on f(.).

1. Ẑn(l1, · · · , lJ)
d−→ N (0, log(m)−2L⊗ Ω0).

We prove the result for Ẑn(1) only, the multivariate generalization being straightforward

but notationally cumbersome. Similarly to Chernozhukov (2005), Equation (9.43), Ẑn(1)

minimizes

Ψn(z, τn) = Wn(τn)′z + Λn(z, τn),

with, for any τ ,

Wn(τ) =
−1√
τn

n∑
i=1

(τ − 1{(Ỹi − γ(τ)−X ′iβ(τ) ≤ 0)})Xi (C.11)

and for any z = (z1, z
′
2)′ ∈ R× Rd,

Λn(z, τ) =
αn√
τn

n∑
i=1

∫ (z1+X′iz2)/αn

0
1{Ỹi − γ(τ)−X ′iβ(τ) ≤ s} − 1{Ỹi − γ(τ)−X ′iβ(τ) ≤ 0}ds.

(C.12)

Λn(z, τn) is convex in z because the integrands are increasing in s. Moreover, by Lemma D.4

in Appendix D, Λn(z, τn)→ 1
2 log(m)z′QHz. We shall now prove that

Wn(τn)
d−→ N (0,QX). (C.13)

By applying the convexity lemma and the same arguments as in the end of the proof of

Theorem 1 in Pollard (1991), Condition (C.13) implies Ẑn(1) + log(m)−1Q−1
H Wn(τn) = oP (1)

and thus Ẑn(1)
d−→ N

(
0, log(m)−2Ω0

)
.
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To establish (C.13), let Mn,i(τ) = −1√
τn

(τ − 1{Ỹi − γ(τ)−X ′iβ(τ) ≤ 0})Xi −
√
τ/nµ(τ), with

µ(τ) ≡
E
[(
τ − 1{Ỹ ≤ γ(τ) +X ′β(τ)}

)
X
]

τ
.

Then

Wn(τ) =
n∑
i=1

Mn,i(τ) +
√
nτµ(τ). (C.14)

By Lemma 9.6 of Chernozhukov (2005), we have

n∑
i=1

Mn,i(τn)
d−→ N (0,QX). (C.15)

Besides,

‖µ(τ)‖ =
1

τ
‖E
[
(hFε̃(γ(τ))− P (D = 1, ε̃ ≤ γ(τ)|X)) X

]
‖

=
1

τ

∥∥∥∥∥E
{
X

∫ γ(τ)

−∞
[h− P (D = 1|X, ε̃ = e)] dFε̃(e)

}∥∥∥∥∥
≤ 1

τ
E

{
‖X‖ sup

e≤γ(τ)
|h− P (D = 1|X, ε̃ = e)|

}
Fε̃(γ(τ))

=
1

h
f(γ(τ)).

By Assumption 9,
√
nτnf(γ(τn)) = o(1). Combined with (C.14) and (C.15), this proves

(C.13).

2. G̃n
p−→ G/ log(m) and asymptotic normality of δ̂.

First,

γ̂(lτn)− γ̂(τn)

γ(mτn)− γ(τn)
=
γ̂(lτn)− γ(lτn)

γ(mτn)− γ(τn)
+

γ(lτn)− γ(τn)

γ(mτn)− γ(τn)
+

γ(τn)− γ̂(τn)

γ(mτn)− γ(τn)
. (C.16)

Besides, by definition of αn, θ̂(.) and Ẑn(l), Step 1 of the proof and because τnn → ∞ by

Assumption 9,

γ̂(lτn)− γ(lτn)

γ(mτn)− γ(τn)
=
e′1αn(θ̂(lτn)− θ(lτn))

√
τnn

=
e′1Ẑn(l)

τnn
= oP (1),

where e1 = (1, 0, ..., 0)′. Similarly, the third term of (C.16) also tends to zero in probability.
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Now, by Lemma D.3 in Appendix D,

γ(lτn)− γ(τn)

γ(mτn)− γ(τn)
=

Qε̃(lτn/h)−Qε̃(τn/h)

Qε̃(mτn/h)−Qε̃(τn/h)
−→ log(l)

log(m)
.

Hence,
γ̂(mτn)− γ̂(τn)

γ(mτn)− γ(τn)

p−→ log(l)

log(m)
,

which in turn establishes that G̃n
p−→ G/ log(m). Combined with Step 1 and (C.10), this

shows that
√
τnn(δ̂ − δ) d−→ N (0,Ωδ),

where Ωδ = (G′WG)−1G′W (IJ⊗∆)Γ(L⊗Ω0)Γ′(IJ⊗∆′)WG(G′WG)−1. The optimal weight-

ing matrix is then (see, e.g., Wooldridge, 2002, Problem 8.5)

W ∗δ =
[
(IJ ⊗∆)Γ(L⊗ Ω0)Γ′(IJ ⊗∆′)

]−1
,

and the corresponding asymptotic variance is Ω∗δ = (G′W ∗δG)−1.

3. Asymptotic normality of β̂.

Consider first β̂j = −β̂(ljτn) + γ̂(ljτn)δ̂ for j ∈ {0, ..., J}. We have

√
τnn

γ(τn)
(β̂j − β) =

γ(ljτn)

γ(τn)

[
√
τnn

(
γ̂(ljτn)− γ(ljτn)

γ(ljτn)

)
δ̂ +
√
τnn(δ̂ − δ)

−
√
τnn

γ(ljτn)

(
β̂(ljτn)− β(ljτn)

)]
. (C.17)

By Lemma D.1 in Appendix D, γ(.) ∈ RV0(0). Thus, the first ratio on the right-hand side

tends to one. We now show that the first and third term in the brackets are oP (1). We have

√
τnn

γ̂(ljτn)− γ(ljτn)

γ(ljτn)
=

(
γ(mτn)− γ(ljτn)

γ(ljτn)

)(
e′1αn(θ̂(ljτn)− θ(ljτn))

)
. (C.18)

The second term of the right-hand side is e′1Ẑ(lj) and is therefore bounded in probability

uniformly over j. Because γ(.) ∈ RV0(0), the first term converges to 0. Thus, the first term

in the brackets of the right-hand side of (C.17) is a oP (1). The same reasoning applies to the

third term in the brackets in (C.17).

Hence, √
τnn

γ(τn)
(β̂j − β) =

√
τnn(δ̂ − δ) + oP (1).
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Now, because β̂ =
∑J

j=0 β̂j/(J + 1), we obtain

√
τnn

γ(τn)
(β̂ − β)

d−→ N (0,Ωδ).

It also follows from the fact that the left-hand side of (C.18) converges to 0 that γ̂(ljτn)/γ(ljτn)
p−→

1, and in particular γ̂(τn)/γ(τn)
p−→ 1. This implies that γ(τn) can be replaced by γ̂(τn) in

the equation above.

4. Consistency of β̂ and polynomial rates of convergence.

First, suppose that f(u) = o(|u|−a) as u → −∞, for some a > 1. Fix α ∈ (0, 1) such

that a(1 − α) > 1 and let τn = τ∗n be defined by (3.4). As shown in the discussion before

Theorem 3.1, such a τn satisfies Assumption 9. Moreover, since γ(τn) = G−1(1/n) (with

G(γ) = Fε̃(γ)f(γ)2(1−α)),

√
τnn

γ(τn)
=

√
h

f1−α(G−1(1/n))G−1(1/n)
.

Because f1−α(u)u→ 0 as u→ −∞ and G−1(1/n)→ −∞, we get

lim
n→∞

√
τnn

γ(τn)
= −∞.

Thus, β̂ is consistent with such a choice of τn.

Now, suppose that f(u) = o(Fε̃(u)a) for some a > 0. Consider in this case τn = n−1/(2a+1).

Then τn → 0 and nτn →∞. Because f(γ(τ)) = o(τa), we also have

√
τnnf(γ(τn)) = na/(2a+1)o

(
n−a/(2a+1)

)
= o(1).

Hence, this choice of τn satisfies Assumption 9. Besides, γ(.) ∈ RV0(0). This implies that for

any α > 0, |γ(τn)| < τ−αn for n large enough. Choose 0 < α < a. Then, for n large enough,

√
τnn

|γ(τn)|
> n(a−α)/(2a+1).

This ensures that β̂ has a polynomial rate of convergence. With such a τn, the rate of

convergence of δ̂ is na/(2a+1), which is also polynomial. This concludes the proof of Theorem

3.1.
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C.7 Verification of (2.4) and (3.5) for several copulas

Case 1: Gaussian copula with ρ > 0. We just check (3.5), which is stronger than (2.4). We

have, after some algebra,

1− ∂1Cρ(u, v) = 1− 1

ϕ(Φ−1(u))

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp(−(Φ−1(u)2 − 2ρΦ−1(u)s+ s2)/[2(1− ρ2)])ds

= 1− e−(1−ρ2)Φ−1(u)2/[2(1−ρ2)]

√
2πϕ(Φ−1(u))

∫ Φ−1(v)

−∞

1√
(2π)1− ρ2

exp
(
−(s− ρΦ−1(u))2/[2(1− ρ2)]

)
ds

= Φ

(
ρΦ−1(u)− Φ−1(v)√

1− ρ2

)
.

Thus, because ρ > 0,

sup
v∈[v,1],u≤τ

1− ∂1Cρ(u, v) = Φ

(
ρΦ−1(τ)− Φ−1(v)√

1− ρ2

)
.

Now, as x→ −∞, we have Φ(x) ∼ −ϕ(x)/x. Because for any K > 0, exp(−Kx2) ≤ −1/x ≤ 1

for x small enough, we have ϕ(x/σ) ≤ Φ(x) ≤ ϕ(x) for any 0 < σ < 1. This also implies that

Φ−1(τ) ≤ σϕ−1(τ), for τ small enough and with ϕ−1 the inverse of ϕ on (−∞, 0]. Similarly,

for any m > 0, there exists σ > 1 such that for any x small enough, ϕ(x + m) ≤ ϕ(x/σ).

Combining these inequalities, we obtain, for any K < ρ/
√

1− ρ2,

fC(τ) ≤ ϕ(Kϕ−1(τ)) = K ′ϕ(Φ−1(τ))K
2 ≤
√

2π
K2−1

τK
2
.

The result follows.

Case 2: Archimedean copulas with limu→0 Ψ(u) = +∞ and Ψ ∈ RVα(0) with α ∈ (0,+∞].

Because Ψ is decreasing, we have, by Proposition 0.8 of Resnick (1987), Ψ−1 ∈ RV1/α(∞).

As a result, for all v ∈ [v, 1],

u ≥ C(u, v) ≥ Ψ−1(Ψ(u) + Ψ(v)) ∼ Ψ−1(Ψ(u)) = u as u→ 0.

In other words,

lim
u→0

sup
v∈[v,1]

|C(u, v)/u− 1| = 0.

This implies that

sup
v∈[v,1]

∣∣∣∣ Ψ′(u)

Ψ′(C(u, v))
− 1

∣∣∣∣ =

∣∣∣∣ Ψ′(u)

Ψ′(l(u)u)
− 1

∣∣∣∣ . (C.19)

for some function l(.) tending to one as u → 0. Now, by Proposition 0.7 of Resnick (1987),
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Ψ′ ∈ RVα−1(0). This implies that the left-hand side of (C.19) tends to 0. (2.4) follows by

remarking that ∂1C(u, v) = Ψ′(u)/Ψ′ ◦ C(u, v).

Case 3: Gumbel copulas with θ > 1. Some algebra yields

∂1C(u, v) =
1

1 + Ψ(v; θ)/Ψ(u; θ)

C(u, v) logC(u, v)

u log u
.

Now, by the fact that x log(x) is decreasing when x is close to 0 and C(u, v) ≤ u, we have

C(u, v) logC(u, v) ≥ u log(u), i.e. C(u,v) logC(u,v)
u log u ≤ 1. Because v 7→ C(u, v) is increasing,

C(u, v) logC(u, v) ≤ C(u, v) logC(u, v). Furthermore, 0 ≤ Ψ(v, θ) ≤ Ψ(v, θ). Therefore, we

have

sup
v∈[v,1]

|∂1C(u, v)− 1|

≤ sup
v∈[v,1]

(∣∣∣∣C(u, v) logC(u, v)

u log u
− 1

∣∣∣∣+

∣∣∣∣∂1C(u, v)− C(u, v) logC(u, v)

u log u

∣∣∣∣)
≤ sup
v∈[v,1]

(
1− C(u, v) logC(u, v)

u log u

)
+ sup
v∈[v,1]

(
Ψ(v, θ)

Ψ(v, θ) + Ψ(u, θ)

)
C(u, v) logC(u, v)

u log u

≤(1− C(u, v) logC(u, v)

u log u
) +

Ψ(v, θ)

Ψ(v, θ) + Ψ(u, θ)

Ψ(u, θ) → ∞ as u → 0, so the second term also converges 0. Therefore, to prove (2.4), it

suffices to show that C(u, v) ∼ u. We have, for θ > 1,

C(u, v) = exp

[
−
(

(− log u)θ + (− log v)θ
)1/θ

]

= exp

log u

(
1 +

(
− log v

− log u

)θ)1/θ


= exp

[
log u+

(− log v)θ

θ(− log u)θ−1
+ o

(
1

(− log u)θ−1

)]
∼ u.

Case 4: Clayton copula with θ > 0. We obtain in this case

1− ∂1C(u, v; θ) ≤ Kuθ
(

1

vθ
− 1

)

Hence, fC(τ) ≤ K ′τ θ, where K ′ = K
(

1
vθ
− 1
)

. (3.5) follows.
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Case 5: Rotated Gumbel-Barnett copula with θ ∈ (0, 1]. We have

1−∂1C(u, v; θ) = (1−v) exp(−θ log(u) log(1−v))(1−θ log(1−P )) ≤ O
(
u−θ log(1−v)

)
(C.20)

It follows that (3.5) holds.

Case 6: C(u, v; θ) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ]1/θ)−1 with θ > 1 . In this case,

1− ∂1C(u, v; θ) = 1−
(

1

u+ [(1− u)θ + uθ(v−1 − 1)θ]1/θ

)2
[

1 +

(
v−1 − 1

u−1 − 1

)θ]1/θ−1

≤ Ku.

(3.5) follows.

Case 7: C(u, v; θ) = (1 + [(u−1/θ − 1)θ + (v−1/θ − 1)θ]1/θ)−θ with θ ≥ 1. We have

∂1C(u, v; θ) = 1−
(
u1/θ + [(1− u1/θ)θ + u(v−1/θ − 1)θ]1/θ

)−θ−1

1 +

(
v−

1
θ − 1

u−
1
θ − 1

)θ1/θ−1

≤ Ku1/θ

which implies (3.5).

Case 8: C(u, v; θ) = θ/ log(exp(θ/u) + exp(θ/v)− exp(θ)) with θ > 0. We have

1− ∂1C(u, v; θ) = 1− 1/(1 + log(1 + (exp(θ/v)− exp(θ)) exp(−θ/u)))2 1

1 + (exp(θ/v)− exp(θ)) exp(−θ/u)

≤ K exp(−θ/u)

Thus Condition (3.5) is easily satisfied. In this case, any polynomial rate slower than the

parametric rate is in fact possible.

Case 9: C(u, v; θ) = [log(exp(u−θ) + exp(v−θ)− e)]−1/θ with θ > 0. Start from

1− ∂1C(u, v; θ) = 1−
[
1 + uθ log

(
1 +

exp(v−θ)− e
exp(u−θ)

)]−1/θ−1
1

1 + exp(v−θ)−e
exp(u−θ)

≤ K1u
θ log

(
1 + [exp(v−θ)− e] exp(−u−θ)

)
+K2 exp(−u−θ)

≤ K exp(−u−θ)

Therefore, Condition (3.5) is easily satisfied and once more, any polynomial rate slower than

parametric rate is possible.
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C.8 Proof of Theorem 3.2

We use the notations of the proof of Theorem 3.1 (see Section C.6) along with the notations

introduced in the text before Theorem 3.2. First consider δ1. Let

G2n = −∂g2n(δ1)

∂δ1
=


γ̂(l1τn)− γ̂(τn)

...

γ̂(lJτn)− γ̂(τn)

⊗ Idδ .
Reasoning as in the proof of Theorem 3.1, above Equation (C.10),

√
τnn(δ̂1 − δ1) =

[
G′2nW2nG2n

]−1
G′2nW2n(IJ ⊗ Ψ̃∆)ΓẐn(l1, ..., lJ).

Besides, one can show that G2n
p−→ Gδ/ log(m) as in the proof of Theorem 3.1. Combined

with the asymptotic normality of Ẑn(τ), this implies that

√
τnn(δ̂1−δ1)

d−→ N
(

0,
[
G′δW2Gδ

]−1
G′δW2(IJ ⊗ Ψ̃∆)Γ(L⊗ Ω0)Γ′(IJ ⊗∆′Ψ̃′)W2Gδ

[
G′δW2Gδ

]−1
)
.

The optimal weighting matrix is then

W ∗δ1 =
[
(IJ ⊗ Ψ̃∆)Γ(L⊗ Ω0)Γ′(IJ ⊗∆′Ψ̃′)

]−1

and the corresponding asymptotic variance is (G′δW
∗
δ1Gδ)

−1.

Next, we derive the asymptotic properties of β̂1. Reasoning as previously, we have

log(m)αn(β̂1 − β1) = (G′βW1Gβ)−1G′βW1(Γ3 ⊗ΨΓ2) log(m)Ẑn(l1, ..., lJ) + oP (1),

Remark that log(m)αn =
√
nτnλn/γ(τn), with λn = γ(τn) log(m)/[γ(mτn)−γ(τn)]. Then the

asymptotic normality of Ẑn(l1, ..., lJ) yields

λn

√
τnn

γ(τn)
(β̂1−β1)

d−→ N
(
0, (G′βW1Gβ)−1G′βW1(Γ3 ⊗ΨΓ2)(L⊗ Ω0)(Γ′3 ⊗ Γ′2Ψ′)W1Gβ(G′βW1Gβ)−1

)
.

It follows from the proof of Theorem 3.1 that λ̂n/λn
p−→ 1 and γ̂(τn)/γ(τn)

p−→ 1. Therefore,

we can replace λn by λ̂n and γ(τn) by γ̂(τn) in the previous equation. Finally, the optimal

matrix is

W ∗β1 =
[
(Γ3 ⊗ΨΓ2)(L⊗ Ω0)(Γ′3 ⊗ Γ′2Ψ′)

]−1

and the corresponding asymptotic variance is (G′βW
∗
β1Gβ)−1.
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D Technical lemmas

Lemma D.1. If Assumption 3 (ii)-(iii) hold, then Sε is rapidly varying at +∞, i.e. its

extreme value index is 0. Moreover, Qε̃ ∈ RV0(0).

Proof. Because sup(Supp(ε)) = ∞, Sε is not in the attraction domain of type III extreme

value distributions (see Resnick, 1987, Proposition 1.13). Suppose Sε is not rapidly varying.

Then, Sε is not either in the attraction domain of type I extreme value distribution (See

Resnick, 1987, Exercise 1.1.9). So Sε is in the attraction domain of type II extreme value

distribution, i.e. Sε ∈ RV−ξ−1(+∞) with extreme value index ξ > 0. We also have

Sexp(ε)(tx)

Sexp(ε)(x)
=
Sε(u(x) log(x))

Sε(log(x))
(D.1)

where u(x) = log(t)+log(x)
log(x) → 1 as x → +∞. Because Sε ∈ RV−ξ−1(+∞), the right-hand side

of Equation (D.1) converges to 1. This implies that Sexp(ε) is slowly varying, a contradiction.

Thus, Sε is rapidly varying at +∞.

To prove the second result, note that 1/Sε is nondecreasing, rapidly varying at +∞ and

satisfies 1/Sε(+∞) = +∞. Thus, by Proposition 0.8 of Resnick (1987), (1/Sε)
← ∈ RV0(∞).

Remark that (1/Sε)
←(1/τ) = −Qε̃(τ). Hence, Qε̃ ∈ RV0(0).

Lemma D.2. Suppose that Assumptions 3 (ii)- (iii) and 8 hold. Then Qε̃(eτ) − Qε̃(τ) ∈
RV0(0), Q′ε̃ ∈ RV−1(0) and for any positive (l,m),

lim
τ→0

Qε̃(lτ)−Qε̃(τ)

Qε̃(mτ)−Qε̃(τ)
=

log(l)

log(m)
.

Proof. We first prove the last point. By Lemma D.1, Fε is in the attraction domain of type

I distribution. Then by Proposition 0.10 in Resnick (1987), τ 7→ −Qε̃(τ) is Π-varying with

auxiliary function τ 7→ Qε̃(eτ)−Qε̃(τ), namely

lim
τ→0

Qε̃(lτ)−Qε̃(τ)

Qε̃(eτ)−Qε̃(τ)
= log(l) (D.2)

for all l > 0. Then

Qε̃(lτ)−Qε̃(τ)

Qε̃(mτ)−Qε̃(τ)
=
Qε̃(lτ)−Qε̃(τ)

Qε̃(eτ)−Qε̃(τ)

/Qε̃(mτ)−Qε̃(τ)

Qε̃(eτ)−Qε̃(τ)
→ log(l)

log(m)
.
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Turning to the first point, we have, by (D.2),

Qε̃(exτ)−Qε̃(xτ)

Qε̃(eτ)−Qε̃(τ)
=
Qε̃(exτ)−Qε̃(τ)

Qε̃(eτ)−Qε̃(τ)
− Qε̃(xτ)−Qε̃(τ)

Qε̃(eτ)−Qε̃(τ)
→ log(ex)− log(x) = 1.

Finally, let us prove the second point. By monotonicity of Q′ε̃,

Q′ε̃(bτ)τ(b− a)

Qε̃(eτ)−Qε̃(τ)
≥ Qε̃(bτ)−Qε̃(aτ)

Qε̃(eτ)−Qε̃(τ)
≥
Q′ε̃(aτ)τ(b− a)

Qε̃(eτ)−Qε̃(τ)
,

for any b > a > 0. Therefore, using (D.2),

lim sup
τ→0

Q′ε̃(aτ)τ

Qε̃(eτ)−Qε̃(τ)
≤ log(b)− log(a)

b− a
.

Letting b ↓ a, we obtain

lim sup
τ→0

Q′ε̃(aτ)τ

Qε̃(eτ)−Qε̃(τ)
≤ 1

a
,

for any a > 0. Similarly, we obtain from the other inequality

lim inf
τ→0

Q′ε̃(bτ)τ

Qε̃(eτ)−Qε̃(τ)
≥ 1

b
,

for any b > 0. By letting a = b = 1, we obtain

Q′ε̃(τ) ∼ Qε̃(eτ)−Qε̃(τ)

τ
(D.3)

This, combined with Qε̃(eτ)−Qε̃(τ) ∈ RV0(0), shows the second point.

Lemma D.3. Suppose that Assumptions 1-4 and 8 hold. Then, for all x ∈ Supp(X),

lim
τ→0

∣∣∣∣Qε̆|X(τ |x)−Qε̃(τ/h)(1 + x′δ)

Qε̃(mτ)−Qε̃(τ)

∣∣∣∣ = 0,

fε̆|X
(
Qε̆|X(τ |x)

)
∼ hfε̃(Qε̃(τ/h))/(1 + x′δ). (D.4)

Proof. For the first point, fix ∆ ∈ (0, h) and remark first that by Lemma D.2,

lim
τ→0

Qε̃(τ/(h+ ∆))−Qε̃(τ/h)

Qε̃(mτ)−Qε̃(τ)
= lim

τ→0

[
Qε̃(τ/(h+ ∆))−Qε̃(τ)

Qε̃(mτ)−Qε̃(τ)
− Qε̃(τ/h)−Qε̃(τ)

Qε̃(mτ)−Qε̃(τ)

]
→ − log(h+ ∆)

log(m)
+

log(h)

log(m)
=

log[h/(h+ ∆)]

log(m)
(D.5)

and the same holds replacing ∆ by −∆.
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Besides, by definition of the quantiles of ε̆|X = x, we have, for all τ small enough,

τ ≤ P (ε̆ ≤ Qε̆|X(τ |x)|X = x)

= P (Y ≥ x′β −Qε̆|X(τ |x)|X = x)

= P (Y ∗ ≥ x′β −Qε̆|X(τ |x), D = 1|X = x)

=

∫ ∞
x′β−Qε̆|X(τ |x)

P (D = 1|Y ∗ = y,X = x)dP Y
∗|X=x(y).

For τ small enough, P (D = 1|Y ∗ = y,X = x) ∈ [h −∆, h + ∆] for all y > x′β − Qε̆|X(τ |x).

Thus,

τ ≤ (h+ ∆)P
[
ε̃(1 + x′δ) ≥ Qε̆|X(τ |x)

]
.

Similarly, using τ ≥ (h−∆)P (ε̆ < Qε̆|X(τ |x)|X = x),

τ ≥ (h−∆)P
[
ε̃(1 + x′δ) ≥ Qε̆|X(τ |x)

]
.

Then, by definition of the quantiles of ε̃,

(1 + x′δ)Qε̃(τ/(h+ ∆)) ≤ Qε̆|X(τ |x) ≤ (1 + x′δ)Qε̃(τ/(h−∆)).

This, together with Equation (D.5)

lim sup
τ

∣∣∣∣Qε̆|X(τ |x)−Qε̃(τ/h)(1 + x′δ)

Qε̃(mτ)−Qε̃(τ)

∣∣∣∣
≤(1 + x′δ) lim sup

τ

max (Qε̃(τ/(h−∆))−Qε̃(τ/h), Qε̃(τ/h)−Qε̃(τ/(h+ ∆)))

Qε̃(mτ)−Qε̃(τ)

≤(1 + x′δ)
max (log(h/(h−∆)), log((h+ ∆)/h))

log(m)
.

By letting ∆ tend to 0, the left-hand side tends to zero. The first result follows.

Now let us turn to the second result. We first show that for any fixed x, Qε̆|X(τ |x) is

Π−varying. We have

Qε̆|X(mτ |x)−Qε̆|X(τ |x)

Qε̃(eτ)−Qε̃(τ)
=
Qε̆|X(mτ |x)− (1 + x′δ)Qε̃(mτ/h)

Qε̃(eτ)−Qε̃(τ)
−
Qε̆|X(τ |x)− (1 + x′δ)Qε̃(τ/h)

Qε̃(eτ)−Qε̃(τ)

+ (1 + x′δ)
Qε̃(mτ/h)−Qε̃(τ/h)

Qε̃(eτ)−Qε̃(τ)

By Lemma D.2, τ 7→ Qε̃(eτ) − Qε̃(τ) is slowly varying. Thus, by the first result of this

lemma, the first and second term converge to zero. Since Qε̃(τ) is Π−varying, the third term
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converges to (1 + x′δ) log(m). Therefore

Qε̆|X(mτ |x)−Qε̆|X(τ |x)

Qε̃(eτ)−Qε̃(τ)
∼ (1 + x′δ) log(m).

Then

Qε̆|X(mτ |x)−Qε̆|X(τ |x)

Qε̆|X(eτ |x)−Qε̆|X(τ |x)
=
Qε̆|X(mτ |x)−Qε̆|X(τ |x)

Qε̃(eτ)−Qε̃(τ)

Qε̃(eτ)−Qε̃(τ)

Qε̆|X(eτ |x)−Qε̆|X(τ |x)
→ log(m),

which proves that Qε̆|X(.|x) is Π−varying. Now, remark that for y small enough,

P (ε̆ ≤ y|X = x) = P (Ỹ +X ′β ≤ y|X = x)

= P (Y ∗ ≥ −y + x′β,D = 1|X = x)

= P

(
ε̃ ≤ y − x′β

1 + x′δ
|D = 1, X = x

)
P (D = 1|X = x).

This equality, combined with Assumption 8 and the fact that X is bounded, ensures that the

cdf of ε̆|X is increasing. As a result, Q′ε̆|X(.|x) is decreasing at the lower tail and we have, by

the same reasoning as in Lemma D.2,

Qε̆|X(τ |x)′ ∼ τ(Qε̆|X(mτ |x)−Qε̆|X(τ |x)). (D.6)

Combining Equations (D.3) and (D.6), we obtain

Qε̃(τ/h)′

Qε̆|X(τ |x)′
∼ (Qε̃(mτ)−Qε̃(τ))

h(Qε̆|X(mτ |x)−Qε̆|X(τ |x))
∼ 1

h(1 + x′δ)

This proves the second result of the lemma.

Lemma D.4. Suppose that Assumptions 1 - 9 hold and let Λn(z, τ) be defined as in (C.12).

Then

Λn(z, τn)
p−→ 1

2
log(m)z′QXz.

Proof. By Lemma 9.6 in Chernozhukov (2005), the variance of Λn(z, τ) converges to 0. Thus

it suffices to prove that E[Λn(z, τn)]→ 1
2 log(m)z′QHz. Let us define, for any (s, t) ∈ R2,

m(s, t) =

∣∣∣∣∣∣∣∣
1 if 0 < s ≤ t,
−1 if t ≤ s < 0,

0 otherwise.
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We have

E [Λn(z, τn)]

=
αn√
τnn

nE

[∫ (z1+X′z2)/αn

0
1{Ỹ − γ(τn)−X ′β(τn) ≤ s} − 1{Ỹ − γ(τn)−X ′β(τn) ≤ 0}ds

]

=
n
√
τnn

E

[∫ z1+X′z2

0
1{Ỹ − γ(τn)−X ′β(τn) ≤ s/αn} − 1{Ỹ − γ(τn)−X ′β(τn) ≤ 0}ds

]

=
n
√
τnn

E

[∫ z1+X′z2

0
1{ε̆− (1 +X ′δ)Qε̃(τn/h) ≤ s/αn} − 1{ε̆− (1 +X ′δ)Qε̃(τn/h) ≤ 0}ds

]

=nE

[∫ z1+X′z2

0

Fε̆|X((1 +X ′δ)Qε̃(τn/h) + s/αn)− Fε̆|X((1 +X ′δ)Qε̃(τn/h))
√
τnn

ds

]

=E

[∫ +∞

−∞
m(s, z1 +X ′z2)s

nfε̆|X [(1 +X ′δ)Qε̃(τn/h) + Vs]

αn
√
τnn

ds

]
, (D.7)

where for each s, Vs is a random variable satisfying Vs ∈ [0, s/αn]. Let

Un(s) = m(s, z1 +X ′z2)s
nfε̆|X [(1 +X ′δ)Qε̃(τn/h) + Vs]

αn
√
τnn

.

We first show that

Un(s)
p.s.−→ m(s, z1 +X ′z2)s log(m)

1 +X ′δ
. (D.8)

Since 1/αn = o(Qε̃(mτn)−Qε̃(τn)), we have Vs = o(Qε̃(mτn)−Qε̃(τn))). Moreover, by Lemma

D.3,

Qε̆|X(τn|x)−Qε̃(τn/h)(1 + x′δ) = o(Qε̃(mτn)−Qε̃(τn)).

Then, following the same argument as Chernozhukov (2005) after his Equation (9.57),

fε̆|X [(1 +X ′δ)Qε̃(τn/h) + Vs]

fε̆|X
(
Qε̆|X(τn|x)

) p−→ 1. (D.9)

Besides, by Lemma D.3,

fε̆|X
(
Qε̆|X(τn|x)

)
∼ hfε̃(Qε̃(τn/h))/(1 + x′δ). (D.10)
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Now, by definition of αn and because Q′ε̃ ∈ RV−1(0) by Lemma D.2,

nhfε̃(Qε̃(τn/h))

αn
√
τnn

=
h(Qε̃(mτn/h)−Qε̃(τn/h))fε̃(Qε̃(τn/h))

τn

=

[∫ m

1

Q′ε̃(sτn/h)

Q′ε̃(τn/h)
ds

]
→
[∫ m

1

ds

s

]
= log(m), (D.11)

where the second last convergence is because, by Proposition 0.5 of Resnick (1987),
Q′ε̃(sτn/h)

Q′
ε̃
(τn/h)

→
1
s locally uniformly. 1

s is bounded over [1,m], so dominated convergence theorem can be ap-

plied. Combining (D.9), (D.10) and (D.11) proves that (D.8) holds.

Next, we prove that for n large enough,

|Un(s)| ≤ U(s), with E

(∫ ∞
−∞

U(s)ds

)
<∞. (D.12)

Together with (D.8), this will allow us to use the dominated convergence theorem on the

right-hand side of (D.7). We bound |Un(s)| for |s| ≤ |z1 + X ′z2|, since m(s, z1 + X ′z2) = 0

otherwise.

First, because X is bounded, supx∈Supp(X) γ(τn) + x′β(τn) → −∞. Thus, for any |s| ≤
|z1 +X ′z2|, we have, for n large enough, γ(τn)+X ′β(τn) < 0 and γ(τn)+X ′β(τn)+s/αn < 0.

Hence, by definition of Ỹ and Y ∗,

{Ỹ ∈ (γ(τn)+X ′β(τn), γ(τn)+X ′β(τn)+s/αn]} ⊂ {−Y ∗ ∈ (γ(τn)+X ′β(τn), γ(τn)+X ′β(τn)+s/αn]}.

Taking conditional expectations, this implies that for any |s| ≤ |z1 +X ′z2| and n large enough,

|s|
αn
fε̆|X

[
(1 +X ′δ)Qε̃(τn/h) + Vs

]
≤
∣∣∣∣Fε̃(Qε̃(τn/h) +

s

αn(1 +X ′δ)

)
− Fε̃ (Qε̃(τn/h))

∣∣∣∣ .
By the mean value theorem,∣∣∣∣Fε̃(Qε̃(τn/h) +

s

αn(1 +X ′δ)

)
− Fε̃ (Qε̃(τn/h))

∣∣∣∣ = |s|fε̃ (Qε̃(τn/h) + V ′s )

αn(1 +X ′δ)
, (D.13)

where V ′s ∈ [0, s/(αn(1 + X ′δ))]. Because s/(1 + x′δ) is bounded for all |s| ≤ |z1 + x′z2| and

all x ∈ Supp(X), |V ′s | ≤ K/αn. Now, by Lemma D.2, we have, for any η > 0,

αn [Qε̃((1 + η)τn/h)−Qε̃(τn/h)] =
√
τnn

Qε̃((1 + η)τn/h)−Qε̃(τn/h)

Qε̃(mτn/h)−Qε̃(τn/h)

∼
√
τnn

log(1 + η)

log(m)
→∞.
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Hence, for n large enough,

Qε̃((1 + η)τn/h) ≥ Qε̃(τn/h) +
K

αn
≥ Qε̃(τn/h) + V ′s .

Plugging this inequality in (D.13) and using monotonicity of fε̃, we obtain

|s|
αn
fε̆|X

[
(1 +X ′δ)Qε̃(τn/h) + Vs

]
≤ fε̃ (Qε̃((1 + η)τn/h)) .

Because 1 +X ′δ is bounded from below, we finally get

Un(s) ≤ K|s|1{|s| ≤ |z1 +X ′z2|}
nfε̃ (Qε̃((1 + η)τn/h))

αn
√
τnn

.

We have shown in (D.11) that the sequence nfε̃ (Qε̃(τn/h)) /(αn
√
τnn) admits a finite limit.

It is therefore bounded. Hence, we finally have, for n large enough, |Un(s)| ≤ U(s) with

U(s) = K|s|1{|s| ≤ |z1 + X ′z2|}. Thus, (D.12) holds and by the dominated convergence

theorem applied to (D.7).

E [Gn(z, τn)]→ E

[
log(m)

1 +X ′δ

∫ (z1+X′z2)

0
sds

]
=

1

2
log(m)z′QHz.
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