Wesentliche Ergebnisse aus dem ARW-Untersuchungsprogramm 2012

Heinz-Jürgen Brauch, Michael Fleig

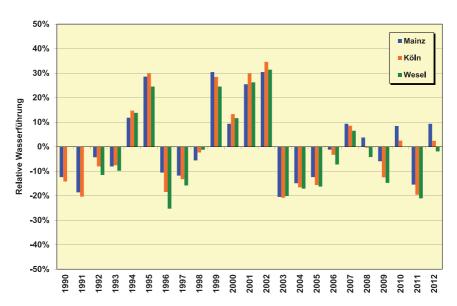
DVGW-Technologiezentrum Wasser (TZW) Karlsruher Strasse 84, 76139 Karlsruhe

Carsten K. Schmidt, Matthias Schmitt

Arbeitsgemeinschaft Rhein-Wasserwerke e.V. (ARW) Parkgürtel 24, 50823 Köln

1.1 Allgemeines

Das Untersuchungsprogramm der ARW hat die Aufgabe, auf technisch-wissenschaftlicher Grundlage Daten zu erheben und auszuwerten, die für die Beurteilung der Beschaffenheit von Rhein und Main aus Sicht der Trinkwassergewinnung erforderlich sind. Hierzu zählt insbesondere die mittel- und längerfristige Beobachtung der Veränderungen der Wasserbeschaffenheit in physikalisch-chemischer und mikrobiologisch-hygienischer Hinsicht, um mögliche Gefährdungen und Risiken für die Wasserversorgung an Mittel- und Niederrhein frühzeitig erkennen und abwehren zu können. Das Messprogramm der ARW ist dabei ein wesentlicher Teil der über die IAWR abgestimmten qualitativen Untersuchungen im Rheineinzugsgebiet. Zudem besteht ein enger Informations- und Erfahrungsaustausch mit nationalen (Flussgebietsgemeinschaft Rheins) und internationalen (Internationale Kommission zum Schutz des Rheins IKSR) Institutionen und Behörden, um die vorhandenen Kapazitäten so effizient wie möglich einzusetzen.


Für ein modernes und zielführendes Gewässermonitoring ist aus Sicht der Trinkwassergewinnung und -versorgung die Bestimmung einer Vielzahl von physikalisch-chemischen und mikrobiologisch-hygienischen Parametern unverzichtbar, die von den ARW-Mitgliedsunternehmen und dem Technologiezentrum Wasser (TZW) analysiert werden. Dabei wird das ARW-Messprogramm regelmäßig an aktuelle Entwicklungen hinsichtlich der Auswahl von neuen Parametern und organischen Spurenstoffen und an neuere Erkenntnisse aus Forschung und Technik angepasst, um den Mitgliedern und Wasserversorgungsunternehmen aktuelle Ergebnisse und Befunde bereitstellen zu können.

Allen Mitgliedswerken und ihren Mitarbeitern sowie den Kolleginnen und Kollegen, die bei Probenahme, Bestimmung, Dokumentation und Auswertung der Daten beteiligt waren, wird für ihre aktive Unterstützung herzlich gedankt.

1.2 Wasserführung von Rhein und Main 2012

Im Kalenderjahr 2012 wurden im Vergleich zu den langjährigen Mittelwerten der Abflüsse keine größeren Abweichungen an Mittel- und Niederrhein beobachtet, wie aus Bild 1.1 hervorgeht.

Das Vorjahr 2011 war dagegen noch durch deutlich unterdurchschnittliche Abflüsse geprägt, wie beim Vergleich der Jahre 2010-2012 in Tabelle 1.1 zu erkennen ist.

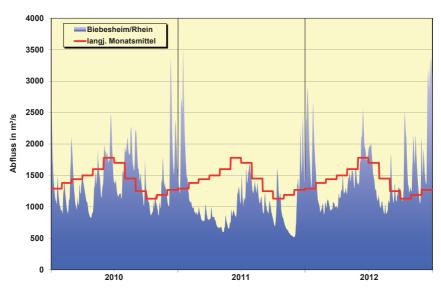


Bild 1.1: Prozentuale Abweichungen der mittleren Abflüsse am Rhein (1990-2012) vom langjährigen Mittelwert

Tabelle 1.1: Jahresmittel der Abflüsse des Rheins (2010-2012) im Vergleich zu den langjährigen Mittelwerten (Angaben in m³/s)

Wasserfüh-	Langjähriger	Mittelwert	Mittelwert	Mittelwert
rung in m³/s	Mittelwert	2010	2011	2012
Basel	1030	1070	820	1190
	(1931-2007)	(+4 %)	(-20 %)	(+15 %)
Karlsruhe	1250	1250	960	1390
	(1931-2007)	(+0 %)	(-23 %)	(+11 %)
Mainz	1610	1750	1360	1760
	(1931-2007)	(+9 %)	(-16 %)	(+9 %)
Koblenz	1754	1800	1420	1820
	(1992-2009)	(+3 %)	(-19 %)	(+4 %)
Köln	2110	2160	1700	2160
	(1931-2006)	(+2 %)	(-19 %)	(+2 %)
Düsseldorf	2150	2130	1740	2200
	(1931-2006)	(-1 %)	(-19 %)	(+2 %)
Wesel	2329	2330	1840	2280
	(1992-2009)	(+0 %)	(-21 %)	(-2 %)

Die Abflussganglinien für die Messstellen Biebesheim/Rhein (Bild 1.2) und Köln (Bild 1.3) zeigen für den Mittel- und Niederrhein die Entwicklung der letzten drei Jahre an. Extreme Hoch- oder Niedrigwasserperioden sind in diesem Betrachtungszeitraum nicht festzustellen. Zusätzlich ist in Bild 1.4 der Abflussverlauf des Mains an der Mündung bei Bischofsheim dargestellt, dessen Wasserführung etwa 10 % der Wasserführung des Niederrheins bei Köln ausmacht.

Bild 1.2: Abflussganglinien an der Messstelle Biebesheim/Rhein (2010-2012)

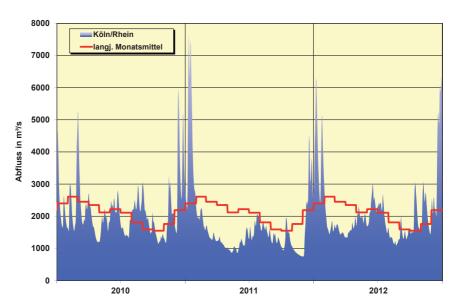
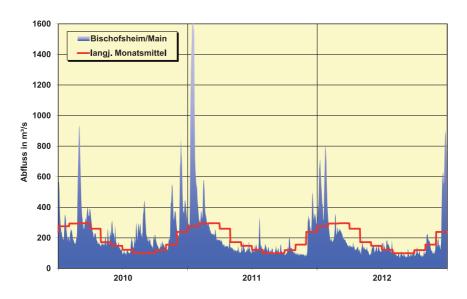
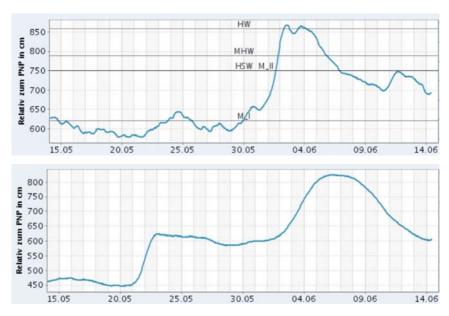
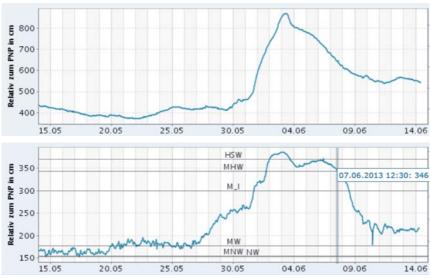



Bild 1.3: Abflussganglinien an der Messstelle Köln/Rhein (2010-2012)


Bild 1.4: Abflussganglinien an der Messstation Bischofsheim/Main (2010-2012)

Hochwasser 2013


Im Frühjahr 2013 (Mai/Juni) trat eine ausgeprägte Hochwasserperiode in den Einzugsgebieten von Rhein, Donau und Elbe mit zum Teil katastrophalen Überschwemmungen an Donau und Elbe auf. Ursache für dieses Hochwasserereignis war eine langanhaltende Schlechtwetterperiode in Mitteleuropa, die die Fließgewässer und auch die Grundwasserstände rasch ansteigen ließ. Als maximaler Niederschlag wurden bis zu 64 L/m² innerhalb von vier Tagen ermittelt, was statistisch gesehen nur alle 100 Jahre geschieht. Nach Angaben des Deutschen Wetterdienstes (DWD) ist aus der Anzahl extremer Hochwasserereignisse in den letzten Jahren kein eindeutiger klimabedingter Trend abzuleiten, obwohl sich mittelfristig eine Zunahme von Tiefdruckgebieten in Europa bestätigt hat.

Wie Bild 1.5 zu entnehmen ist, sind die Abflusskurven an den Pegeln Maxau (Karlsruhe) und Wesel nicht direkt vergleichbar. Am Pegel Wesel wurde eine zweigipflige Abflusskurve (23.-25. Mai und 5.-9. Juni) festgestellt, während an den anderen Pegeln entlang des Rheins oberhalb der Moselmündung und an den Nebenflüssen Neckar und Main die höchsten Abflüsse an den ersten Tagen des Juni beobachtet wurden (Bild 1.6). Ursache für die erste Hochwasserwelle am Niederrhein war ein erhöhter Zufluss der Mosel zwischen dem 21. und 25. Mai (Bild 1.7). Die darauf folgenden Niederschläge Ende Mai/Anfang Juni führten dann u. a. durch die rechtsrheinischen Zuflüsse (Neckar, Main, Lahn etc.) zu einer signifikanten Erhöhung der Wasserstände am Niederrhein (Bild 1.5). Wie zudem in Bild 1.7 gut zu erkennen ist, unterscheidet sich der stark trübstoffbelastete Rhein deutlich von der Mosel (oben), die infolge der umfassenden Stauregelung und der dadurch erfolgten Sedimentation von Schwebstoffen kaum Trübstoffe mit sich führt

Katastrophale Auswirkungen dieses Hochwasserereignisses wurden vor allem in den östlichen Regionen der Bundesrepublik Deutschland an Elbe und Donau festgestellt (Bild 1.8 und Bild 1.9). In Passau musste dabei sogar die Trinkwasserversorgung in der Innenstadt vorübergehend eingestellt werden. Dieses Ereignis sollte Anlass dafür sein, dass auch die Rheinwasserwerke ihre Konzepte und Strategien bezüglich des Hochwasserschutzes prüfen und ggf. neu bewerten.

Bild 1.5: Wasserstände an den Pegeln Karlsruhe-Maxau (km 359,3 R) und Wesel (km 814,0 R) im Mai/Juni 2013

Bild 1.6: Wasserstände an den Pegeln Neckartailfingen (Neckar) und Frankfurt (Main) im Mai/Juni 2013

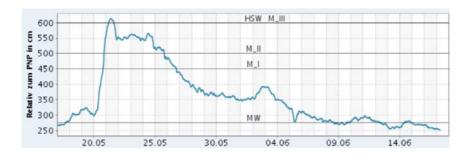


Bild 1.7: Wasserstände am Pegel Cochem (Mosel) im Mai/Juni 2013

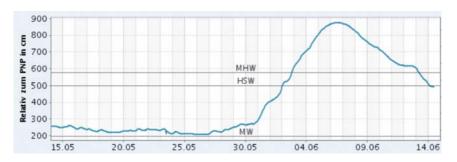
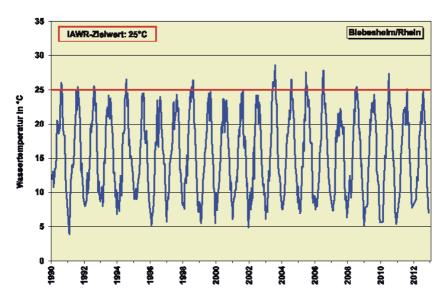


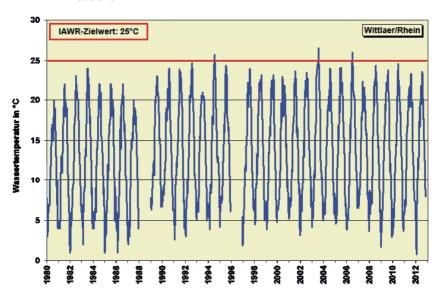
Bild 1.8: Wasserstände am Pegel Dresden (Elbe) im Mai/Juni 2013



Bild 1.9: Wasserstandsverlauf am Pegel Passau (Donau) im Mai/Juni 2013


1.3 Allgemeine und anorganische Messgrößen

Die als Basisparameter bezeichneten Messgrößen Temperatur, Sauerstoffgehalt, elektrische Leitfähigkeit, pH-Wert, Neutralsalzanionen (Chlorid, Sulfat und Nitrat) sowie Ammonium sind im Teil A des ARW-Untersuchungsprogramms enthalten und werden durch die Mitgliedwerke bestimmt. Da langjährige Datenreihen vorliegen, können auch kurz- und mittelfristige Veränderungen der Wasserbeschaffenheit erkannt und bewertet werden.


In den letzten 15 - 20 Jahren haben sich die **Temperaturen** des Rheinwassers an den ARW-Messstellen kaum verändert, wie in Bild 1.10 (Messstelle Biebesheim) und Bild 1.11 (Messstelle Wittlaer) ersichtlich ist. Die beiden Messstellen Biebesheim (km 463,6 rechts) und Wittlaer (km 757,3 rechts) sind ca. 300 km voneinander entfernt und decken somit weitgehend das Untersuchungsgebiet der ARW ab, was vor allem die Rohwasserentnahme nach Uferfiltration betrifft.

Beim Vergleich der beiden Messstellen wird der IAWR-Zielwert von 25 °C bei Biebesheim häufiger überschritten. Auch die Temperaturmittel pro Kalenderjahr liegen in der Regel etwas höher, was z. T. durch zusätzliche Wärmeeinträge aus Kraftwerken erklärt werden kann. Direkte Auswirkungen einer Klimaerwärmung auf die Wassertemperaturen im Rhein sind derzeit nicht in signifikanter Weise festzustellen.

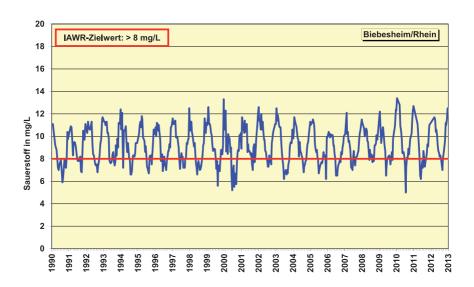

Die **Sauerstoffgehalte** im Rhein haben bereits seit einigen Jahren ein gutes Niveau erreicht, wie die Bildern 1.12 und 1.13 zeigen. Typisch sind die jahreszeitlichen Ganglinien mit höheren Sauerstoffgehalten in den Wintermonaten aufgrund der besseren Löslichkeit von Sauerstoff in Wasser bei tieferen Temperaturen und den geringeren Zehrungsraten. Der IAWR-Zielwert von > 8 mg/L wurde in den letzten Jahren in der Regel jeweils nur im Sommer bei Wassertemperaturen > 20 °C unterschritten.

Bild 1.10: Wassertemperaturen (1990-2012) im Rhein an der Messstelle Biebesheim

Bild 1.11: Wassertemperaturen (1980-2012) im Rhein an der Messstelle Wittlaer

Bild 1.12: Sauerstoffgehalte (1990-2012) im Rhein an der Messstelle Biebesheim

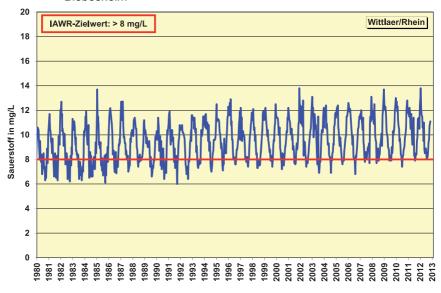
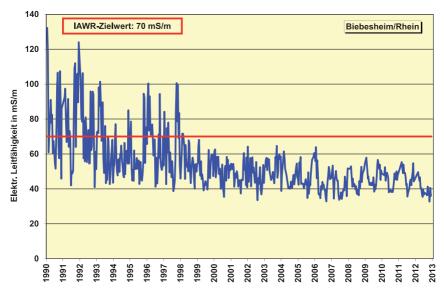
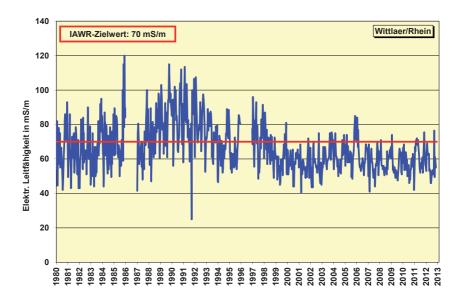



Bild 1.13: Sauerstoffgehalte (1980-2012) im Rhein an der Messstelle Wittlaer


Ein weiterer wichtiger, aber einfach zu messender Basisparameter ist die **elektrische Leitfähigkeit**, die generell bei der Untersuchung von Wasserproben bestimmt wird. Parallel zum Rückgang der Salzkonzentrationen (insbesondere Natriumchlorid) haben sich auch die Zahlenwerte der elektrischen Leitfähigkeit in den letzten 20 Jahren vermindert (Bild 1.14 und Bild 1.15). Insbesondere an der Messstelle Biebesheim ist dieser Rückgang aufgrund der geographischen Nähe zu der früheren Kalisalzproduktion im Elsass zu beobachten.

Aus Tabelle 1.2 ist ersichtlich, dass trotz der generellen Abnahme der Zahlenwerte der elektrischen Leitfähigkeit der IAWR-Zielwert von 70 mS/m ab der Messstelle Köln rheinabwärts bis Wesel und am Main zuweilen auch überschritten wird.

Nach wie vor ist **Chlorid** ein wichtiger Qualitätsparameter für die ARW. Erfreulicherweise sind die Chlorid-Konzentrationen in den letzten Jahren zum Teil deutlich zurückgegangen, was vor allem auf das Ende des Kalibergbaus im Elsass (Frankreich) zurückzuführen ist. Wie bereits bei der Leitfähigkeit beschrieben, ist auch die Abnahme der Chlorid-Gehalte an der Messstelle Biebesheim deutlicher ausgeprägt als an der Messstelle Wittlaer (Bild 1.16 und Bild 1.17).

Bild 1.14: Ganglinie der elektrischen Leitfähigkeit (1990-2012) an der Messstelle Biebesheim

Bild 1.15: Ganglinie der elektrischen Leitfähigkeit (1980-2012) an der Messstelle Wittlaer

Tabelle 1.2: Mittel- und Maximalwerte der elektrischen Leitfähigkeit (2010-2012) - Angaben in mS/m

Messstelle	2010		2011		2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Biebesheim	45	52	46	55	40	50
Mainz	41	51	39	49	39	47
Wiesbaden	45	58	49	57	53	58
Koblenz	44	55	45	55	44	56
Köln	59	72	78	112	57	73
Benrath	55	70	66	81	58	76
Düsseldorf-Flehe	57	75	61	76	54	77
Wittlaer	57	69	62	76	56	76
Wesel	58	73	68	101	65	83
Frankfurt/Main	65	79	70	81	67	74
Mainz-Kastel/Mainfahne	57	72	55	77	54	63
	IAWR	-Zielwert:	70 mS/m			

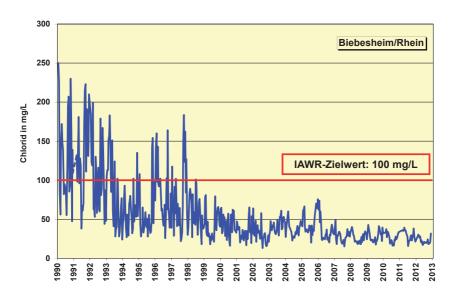


Bild 1.16: Chlorid-Konzentrationen (1990-2012) an der Messstelle Biebesheim

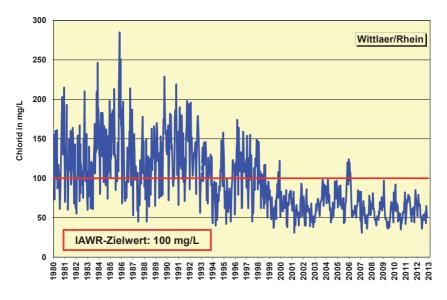


Bild 1.17: Chlorid-Konzentrationen (1980-2012) an der Messstelle Wittlaer

Ergänzend sind in Tabelle 1.3 die Mittel- und Maximalwerte der Chlorid-Konzentrationen an den ARW-Messstellen für die Jahre 2010-2012 dargestellt.

Tabelle 1.3: Mittel- und Maximalwerte der Chlorid-Konzentrationen (2010-2012) - Angaben in mg/L

Messstelle	2010		20	2011		12
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Biebesheim	27	27	30	39	22	32
Mainz	33	33	36	49	28	46
Wiesbaden	31	31	35	46	26	49
Koblenz	34	34	38	52	29	53
Köln	61	61	62	85	57	89
Benrath	68	68	73	97	63	88
Düsseldorf-Flehe	52	52	62	94	52	95
Wittlaer	60	60	64	85	55	79
Wesel	80	80	103	108	83	126
Frankfurt/Main	44	44	48	60	48	59
Mainz-Kastel/Mainfahne	51	51	55	72	28	46
	IAWR-	Zielwert:	100 mg/	L		

Wie den Zahlenwerten der Tabelle 1.3 zu entnehmen ist, aber auch in Bild 1.18 ersichtlich ist, wird lediglich an der Messstelle Wesel der IAWR-Zielwert von 100 mg/L überschritten, was auf die erhöhten Salzkonzentrationen der abwasserbelasteten Emscher zurückzuführen ist.

Die langjährige Entwicklung der Chlorid-Frachten vom Oberrhein bis zum Niederrhein ist in Bild 1.19 dargestellt. Deutlich wird, dass der Rückgang der Chlorid-Frachten lediglich auf das Ende der Bergbauaktivitäten im Elsass zurückgeführt werden kann, was sich vor allem an der erheblichen Abnahme der Chlorid-Frachten an der Messstelle Karlsruhe widerspiegelt.

Die IAWR-Zielwerte von 25 mg/L für **Nitrat** und 100 mg/L für **Sulfat** wurden im Berichtsjahr 2012 an allen Messstellen entlang des Rheins eingehalten. Die langjährige Entwicklung der Nitrat-Konzentrationen an den Messstellen Biebesheim

und Wittlaer ist in den Bildern 1.20 und 1.21 zu erkennen. Mittel- und Maximalwerte sind in Tabelle 1.4 enthalten.

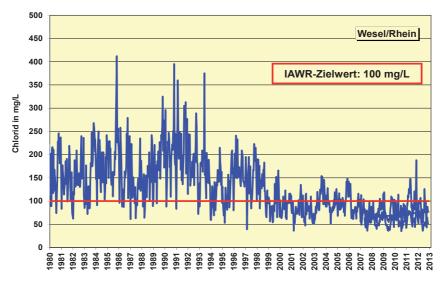


Bild 1.18: Chlorid-Konzentrationen (1980-2012) an der Messstelle Wesel

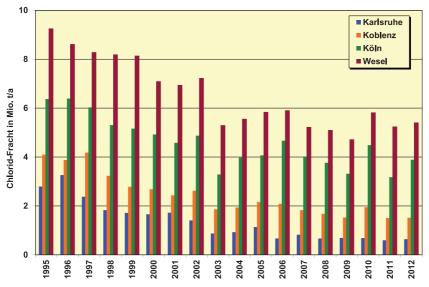
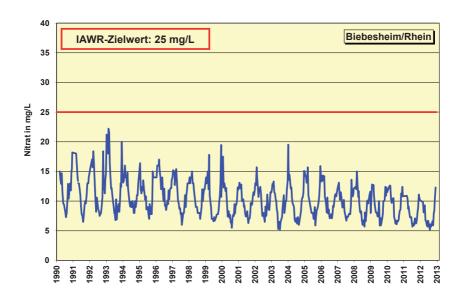
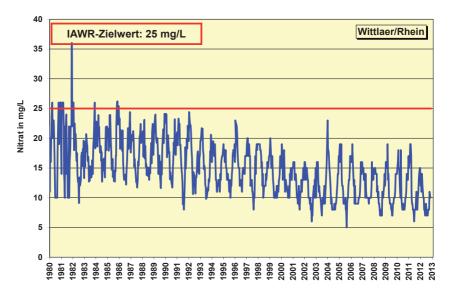




Bild 1.19: Chlorid-Frachten im Rhein (1995-2012)

Bild 1.20: Nitrat-Konzentrationen (1990-2012) im Rhein an der Messstelle Biebesheim

Bild 1.21: Nitrat-Konzentrationen (1980-2012) im Rhein an der Messstelle Wittlaer

In den letzten Jahren ist ein leichter Rückgang der Nitrat-Gehalte im Rhein feststellbar. Zudem sind in Bild 1.20 und 1.21 die typischen, von der Temperatur abhängigen jahreszeitlichen Verläufe der Nitrat-Konzentrationen zu erkennen. wobei in den Wintermonaten aufgrund geringerer Nitrat-Abbauleistungen generell höhere Zahlenwerte gemessen werden.

Tabelle 1.4: Mittel- und Maximalwerte der Nitrat-Konzentrationen (2010-2012) - Angaben in mg/L

Messstelle	20	10	20	11	2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Biebesheim	9,2	12,6	7,9	11,1	7,5	12,3
Mainz	8,7	13,9	8,1	11,9	7,3	10,3
Wiesbaden	9,0	15,5	8,6	13,3	7,4	11,6
Koblenz	10,8	17,0	10,1	14,8	9,0	13,1
Köln	11,9	20,0	10,8	15,9	10,4	16,0
Benrath	12,1	19,8	10,4	17,8	10,6	17,8
Düsseldorf-Flehe	10,4	19,1	10,3	17,1	9,4	15,3
Wittlaer	11,8	18,0	11,4	19,0	9,9	15,0
Wesel	11,4	16,1	9,8	14,8	9,5	14,6
Frankfurt/Main	21,0	25,6	18,4	24,8	16,2	23,3
Mainz-Kastel/Mainfahne	18,2	25,7	16,9	26,3	-	-
	IAWR-	Zielwert:	25 mg/L			

Aufgrund des erheblichen Rückgangs der Ammonium-Konzentrationen in den 80er und 90er Jahren des letzten Jahrhunderts sind die heute auftretenden Ammonium-Gehalte für die Wasserversorgung ohne größere Bedeutung (Bild 1.22). Mittel- und Maximalwerte aus den Jahren 2010-2012 sind in Tabelle 1.5 zusammengestellt.

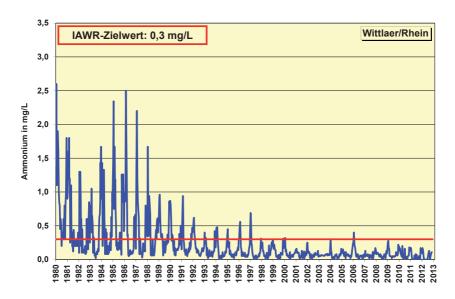
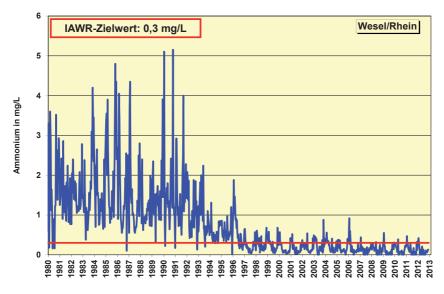

Lediglich am Niederrhein bei Wesel wurde der IAWR-Zielwert von 0,3 mg/L in den letzten Jahren zuweilen noch überschritten, da sich an dieser Messstelle der Einfluss der abwasserbelasteten Emscher bemerkbar macht.

Tabelle 1.5: Mittel- und Maximalwerte der Ammonium-Konzentrationen (2010-2012) - Angaben in mg/L


Messstelle	2010		20	11	2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Biebesheim	<0,05	0,13	<0,05	0,14	<0,05	0,08
Mainz	0,05	0,23	<0,05	0,18	0,08	0,30
Wiesbaden	<0,05	0,11	<0,05	0,12	<0,05	0,14
Koblenz	0,05	0,20	0,06	0,16	0,05	0,27
Köln	0,06	0,19	0,05	0,19	0,05	0,17
Benrath	0,06	0,20	0,06	0,13	0,05	0,18
Düsseldorf-Flehe	0,06	0,20	0,05	0,17	0,6	0,19
Wittlaer	0,08	0,22	0,06	0,18	0,06	0,17
Wesel	0,13	0,39	0,14	0,47	0,12	0,42
Frankfurt/Main	0,09	0,27	0,07	0,27	0,09	0,22
Mainz-Kastel/Mainfahne	0,10	0,28	0,10	0,26	0,08	0,35
	IAWR	-Zielwert:	0,3 mg/L			

Ergänzend ist in den Bildern 1.22 und 1.23 die langjährige Entwicklung der Ammonium-Konzentrationen am Niederrhein an den Messstellen Wittlaer und Wesel dargestellt.

Im Jahr 2009 wurde **Fluorid** in das ARW-Untersuchungsprogramm aufgenommen. Wie jedoch den Zahlenwerten in Tabelle 1.6 zu entnehmen ist, liegen die Fluorid-Konzentrationen (Mittel- und Maximalwerte) deutlich unter dem Zielwert von 1 mg/L und sind somit für die Wasserbeschaffenheit des Rheins von untergeordneter Bedeutung. Bislang sind auch keine größeren Einleitungen von Fluorid im Rheineinzugsgebiet bekannt.

Bild 1.22: Ammonium-Konzentrationen (1980-2012) im Rhein an der Messstelle Wittlaer

Bild 1.23: Ammonium-Konzentrationen (1980-2012) im Rhein an der Messstelle Wesel

Tabelle 1.6: Mittel- und Maximalwerte der Fluorid-Konzentrationen (2010-2012) - Angaben in mg/L

Messstelle	2010		2011		2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Biebesheim	0,09	0,13	0,11	0,13	0,07	0,11
Mainz	-	-	<0,2	<0,2	<0,2	<0,2
Wiesbaden	0,08	0,14	0,10	0,14	0,07	0,11
Benrath	0,12	0,21	0,13	0,20	0,11	0,29
Düsseldorf-Flehe	0,12	0,17	0,14	0,17	0,11	0,15
Frankfurt/Main	0,13	0,17	0,14	0,17	0,13	0,15
	IAWI	R-Zielwert	: 1 mg/L			

Weitere Messdaten von Anionen und Kationen sowie Schwermetallen und Spurenelementen aus dem Berichtsjahr 2012 sind in den Tabellenanhängen enthalten.

1.4 Summarische organische Messgrößen

Summarische organische Messgrößen zählen für die ARW zu den wichtigen Wasserqualitätsparametern, da sie die organische Belastung und Zusammensetzung des Rheinwassers charakterisieren. In den letzten 10 bis 20 Jahren sind die Konzentrationen auf ein für die Wasserversorgung akzeptables Niveau zurückgegangen. Auch wurden die im Donau-, Maas- und Rhein-Memorandum festgelegten spezifischen Zielwerte zumeist unterschritten.

Wie aus den Tabellen 1.7 und 1.8 hervorgeht, liegen vor allem am Niederrhein noch die Maximalwerte von **TOC** und **DOC** über den entsprechenden IAWR-Zielwerten.

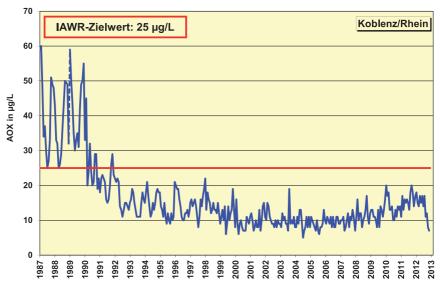
Tabelle 1.7: Mittel- und Maximalwerte der TOC-Konzentrationen (2010-2012) - Angaben in mg/L

Messstelle	2010		2011		2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Ludwigshafen	2,5	3,1	2,4	3,2	2,2	2,9
Mainz	2,4	3,0	2,2	3,2	2,2	3,4
Koblenz	3,1	4,2	3,0	4,2	2,6	4,1
Köln	3,7	5,0	3,5	5,0	3,7	5,5
Düsseldorf-Flehe	2,8	3,5	2,5	3,6	2,3	3,2
Wittlaer	2,9	3,8	2,9	4,1	2,6	3,4
Frankfurt/Main	4,3	5,4	4,3	6,5	4,2	6,1
	IAWI	R-Zielwert	4 mg/L			

Tabelle 1.8: Mittel- und Maximalwerte der DOC-Konzentrationen (2010-2012) - Angaben in mg/L

Messstelle	2010		2011		2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Ludwigshafen	2,3	2,9	2,2	2,8	2,1	2,7
Mainz	2,2	2,6	2,1	2,9	2,0	2,7
Koblenz	2,5	2,9	2,5	3,3	2,3	3,4
Köln	3,4	4,6	3,3	4,6	3,5	5,1
Düsseldorf-Flehe	2,6	3,1	2,4	3,3	2,2	3,1
Wittlaer	2,5	3,0	2,5	3,7	2,3	2,9
Frankfurt/Main	3,8	5,0	3,7	5,1	3,7	4,5

IAWR-Zielwert: 3 mg/L


Allerdings werden nach den langjährigen Erfahrungen der Wasserwerke die TOC-bzw. DOC-Konzentrationen durch die Uferfiltration bzw. Untergrundpassage in der Regel zu mehr als 50 % reduziert, so dass im Uferfiltrat geringe TOC- bzw. DOC-Gehalte von etwa 1 mg/L festgestellt wurden.

Wie beim Vergleich der Zahlenwerte in den Tabellen 1.7 und 1.8 zu erkennen ist, liegen die TOC-Konzentrationen in der Regel um etwa 20 % höher, da die partikulär vorliegenden organischen Stoffe mit erfasst werden. Der DOC wird be-

kanntermaßen nach Membranfiltration (0,45 μm) bestimmt und gibt somit allein die Konzentration der gelösten organischen Wasserinhaltsstoffe wieder.

Wie die Bilder 1.24 und 1.25 zeigen, sind die **AOX**-Konzentrationen bis etwa zur Jahrtausendwende zum Teil deutlich zurückgegangen. Seitdem ist wieder ein leichter Anstieg der AOX-Gehalte im Rhein festzustellen, deren Ursache derzeit noch nicht erklärbar ist. Vermutet wird unter anderem ein zunehmender Einsatz und Verwendung von Chlor bzw. Hypochlorit zur Desinfektion (Biozid) und in der Hygiene, was zur Bildung von chlororganischen Verbindungen (AOX) führt, die sich dann auch in den Oberflächengewässern wiederfinden. Auch großflächige und regelmäßige Desinfektionsmaßnahmen in Kühlwassersystemen bei großen Kraftwerken entlang des Rheins mit Chlor bzw. Hypochlorit-Lösungen könnten die Ursache für die wieder ansteigende AOX-Belastung sein. Da am Niederrhein (siehe Bild 1.25) auch der IAWR-Zielwert von 25 μg/L punktuell wieder überschritten wird, wird sich die ARW zeitnah um diese Problematik kümmern.

Im Gegensatz dazu sind die **AOS**-Konzentrationen in den letzten Jahren zum Teil deutlich zurückgegangen. Der IAWR-Zielwert von 80 μ g/L wird inzwischen fast durchweg eingehalten, wie aus der Tabelle 1.9 hervorgeht.

Bild 1.24: AOX-Konzentrationen (1987- 2012) im Rhein an der Messstelle Koblenz

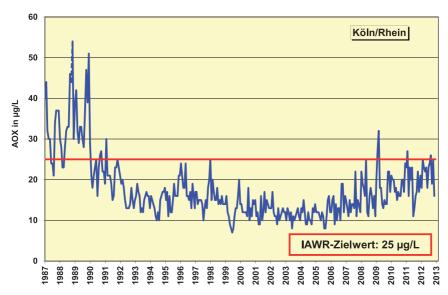


Bild 1.25: AOX-Konzentrationen (1987-2012) im Rhein an der Messstelle Köln

Tabelle 1.9: Mittel- und Maximalwerte der AOS-Konzentrationen (2010-2012) - Angaben in μg/L

Messstelle	2010		2011		2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Ludwigshafen	20	69	22	38	26	38
Mainz	24	66	33	60	27	52
Koblenz	27	43	36	57	32	48
Köln	28	72	38	80	42	66
Düsseldorf-Flehe	27	69	31	53	34	65
Wittlaer	26	52	34	60	38	51
Frankfurt/Main	39	82	50	85	59	87
	IAWF	R-Zielwert:	80 μg/L			

Gründe für die abnehmenden AOS-Konzentrationen im Rhein dürften vor allem geringere Emissionen aus der chemischen und Zellstoff/Papier verarbeitenden Industrie sein. Auch eine bessere biologische Abbaubarkeit von organischen Sul-

fonaten, die in vielfältigen Anwendungsbereichen eingesetzt werden, könnte für den Rückgang der AOS-Konzentrationen in Rhein und Main verantwortlich sein.

1.5 Anthropogene naturfremde Stoffe

In den letzten Jahren ist die Anzahl der im ARW-Untersuchungsprogramm bestimmten organischen Spurenstoffe ständig gestiegen, da nicht nur bei den ARW-Mitgliedswerken, sondern auch bei Verbrauchern und der Öffentlichkeit zunehmender Informationsbedarf über Vorkommen, Verhalten und Verbleib von anthropogenen naturfremden Stoffen besteht. Bereits seit Mitte der 80er Jahre werden die **synthetischen organischen Komplexbildner** NTA, EDTA und DTPA in Rheinwasserproben analysiert, wobei insbesondere **EDTA** aufgrund der erhöhten Konzentrationen in den Gewässern und seiner trinkwasserrelevanten Eigenschaften (fehlende mikrobielle Abbaubarkeit und schlechte Adsorbierbarkeit an Aktivkohle) eine wichtige Indikatorsubstanz darstellt. In Tabelle 1.10 sind die Mittel- und Maximalwerte der Konzentrationen von EDTA in Rhein und Main für die Jahre 2010-2012 zusammengestellt.

Tabelle 1.10: Mittel- und Maximalwerte der Konzentrationen von EDTA in Rhein und Main (2010-2012) - Angaben in μg/L

Messstelle	2010		20	2011		12
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Au-Lustenau/Diepold-sau	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Basel	0,9	1,8	1,4	3,0	0,8	1,4
Karlsruhe	2,8	4,4	4,0	6,3	2,3	3,7
Ludwigshafen	2,9	4,5	4,2	5,6	2,5	3,6
Mainz	3,5	5,8	5,2	7,7	3,4	5,3
Koblenz	3,8	6,7	5,5	8,4	3,3	5,2
Köln	4,0	6,3	5,7	7,9	4,1	5,2
Düsseldorf-Flehe	3,7	6,0	5,4	7,7	3,8	7,2
Wittlaer	3,8	6,0	5,3	7,2	3,7	5,0
Frankfurt/Main	4,1	6,7	6,2	9,8	6,0	10
Bischofsheim/Main	5,3	10	8,3	17	7,2	10

IAWR-Zielwert: 5 µg/L

Wie in den Vorjahren überschritten die EDTA-Maximalwerte an Mittel- und Niederrhein den IAWR-Zielwert von 5 μg/L. Wie in Bild 1.26 zu erkennen ist, sind die EDTA-Konzentrationen im Rheinwasser seit etwa 20 Jahren rückläufig.

Der Rückgang der EDTA-Belastung des Rheins ist noch deutlicher anhand der Frachten erkennbar (Bild 1.27).

An den verschiedenen Messstellen entlang des Rheins wurde innerhalb der letzten 20 Jahre eine Abnahme der Frachten um deutlich mehr als 50 % erreicht. Auch die in den Wasserwerksbrunnen nach Uferfiltration gemessenen aktuellen EDTA-Konzentrationen liegen dementsprechend heute erheblich niedriger als noch vor etwa 15 bis 20 Jahren. Auch im Main und anderen Nebenflüssen des Rheins haben sich die EDTA-Konzentrationen und Frachten in den letzten Jahren um mehr als 50 % reduziert. Ursache für diese erfreuliche Entwicklung ist unter anderem die freiwillige Vereinbarung von Industrie, Behörden und Wasserwirtschaft aus dem Jahr 1991 (Ziel: 50%ige Reduzierung der Frachten innerhalb von 5 Jahren) und der zunehmende Ersatz von schwer abbaubaren synthetischen Komplexbildnern durch biologisch leichter abbaubare Stoffe.

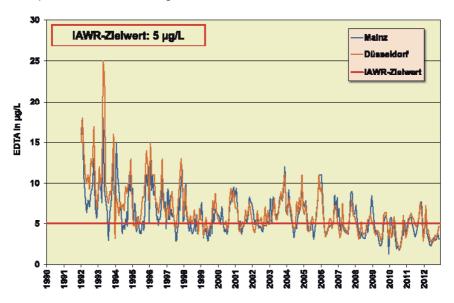


Bild 1.26: EDTA-Konzentrationen im Rhein (1991-2012)

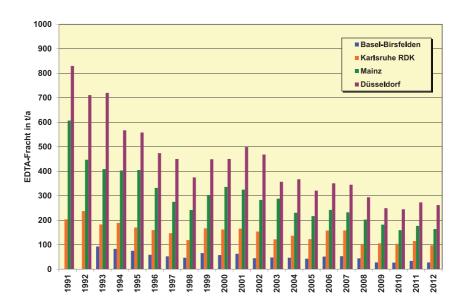


Bild 1.27: EDTA-Frachten im Rhein (1991-2012)

Auch für **DTPA**, welches fast ausschließlich in der Zellstoff- und Papier verarbeitenden Industrie eingesetzt wird, sind die Frachten in Rhein und Main in den letzten Jahren deutlich zurückgegangen. Aufgrund erhöhter Anforderungen der Behörden (Einleitungsgenehmigungen) haben sich die Emissionen von DTPA erheblich vermindert, was sich positiv auf die Konzentrationen und Frachten in Rhein und Main auswirkt.

Die im Vergleich zum Rhein deutlich höheren DTPA-Konzentrationen im Main bei Frankfurt und Bischofsheim resultieren aus einer am Oberlauf des Mains gelegenen Zellstofffabrik, dem einzig bekannten größeren Einleiter in dieser Region. Wie jedoch den aktuellen Messwerten zu entnehmen ist, sind die Emissionen in den letzten Jahren deutlich zurückgegangen, so dass die DTPA-Frachten 2012 weniger als 50 % der entsprechenden Zahlenwerte aus dem Jahr 2008 betragen (Bild 1.29).

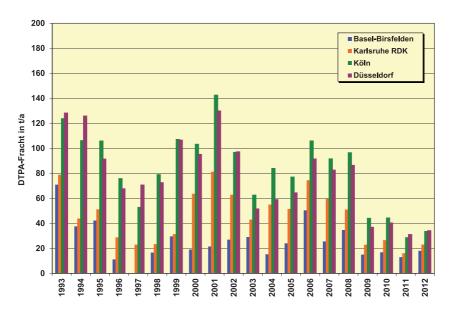
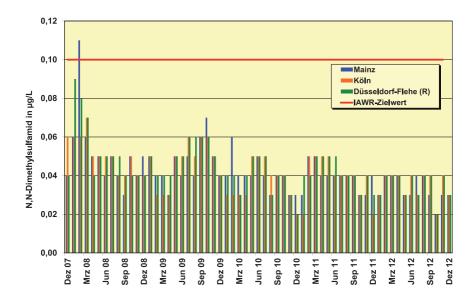
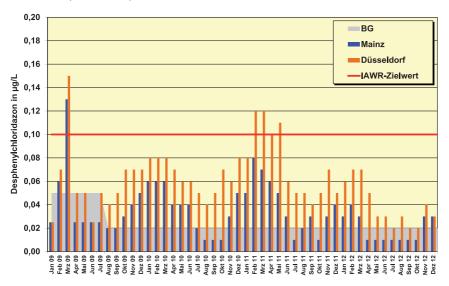


Bild 1.28: DTPA-Frachten im Rhein (1993-2012)

Bild 1.29: DTPA-Frachten im Main (1993-2012)


Die Konzentrationen von **Pflanzenschutzmitteln (PSM)** sind in den letzten Jahren an Mittel- und Niederrhein ebenfalls zurückgegangen. Lediglich in den Anwendungszeiten (Mai/Juni und Spätherbst) können noch einzelne Befunde von Isoproturon, Chlortoluron und Terbutylazin knapp oberhalb der üblichen Bestimmungsgrenze von 0,05 μ g/L festgestellt werden. Der IAWR-Zielwert von 0,1 μ g/L wurde im Berichtsjahr 2012 nicht überschritten.

Dagegen werden die beiden PSM-Metaboliten **N,N-Dimethylsulfamid (DMS)** und **Desphenylchloridazon (DPC)** regelmäßig in Rhein- und Mainwasserproben gefunden. Zu beachten ist, dass bei den PSM-Metaboliten die Bestimmungsgrenze mit 0,01 µg/L deutlich tiefer liegt. Die Darstellung in Bild 1.30 macht deutlich, dass die DMS-Konzentrationen rückläufig sind. Dies wird darauf zurückgeführt, dass die Ausgangssubstanz (das Fungizid Tolylfluanid) europaweit nicht mehr zugelassen ist.


Keine eindeutige Tendenz ist in Bild 1.31 bezüglich der DPC-Konzentrationen zu erkennen. Der Wirkstoff Chloridazon wird nach wie vor als Herbizid im Zuckerrübenanbau eingesetzt. Der Hersteller hat sich nur verpflichtet, auf die Anwendung in Wasserschutzgebieten zu verzichten. Da beide PSM-Metaboliten als persistent und mobil eingestuft werden, wurden durch sie nicht nur die Oberflächengewässer, sondern vor allem die auch Grundwasserressourcen beeinträchtigt.

Aufgrund niedriger Abflüsse und somit einer geringeren Verdünnung sind die DMS- und DPC-Konzentrationen im Main höher als im Niederrhein. Signifikante Einträge von Desphenylchloridazon sind vor allem am Oberlauf des Mains durch den dortigen Zuckerrübenanbau zu vermuten.

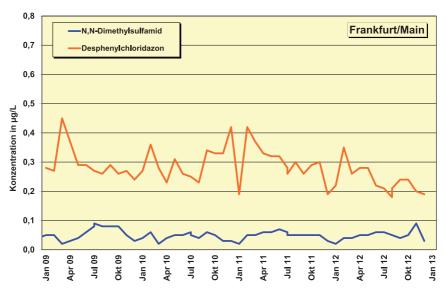

Im Kalenderjahr 2012 wurden wiederum umfangreiche Untersuchungen auf Arzneimittelrückstände durchgeführt. Die höchsten Einzelstoffkonzentrationen weisen wie in den Vorjahren die Wirkstoffe Carbamazepin, Diclofenac, Sulfamethoxazol und Metoprolol auf, wie den Tabellen 1.11 und 1.12 zu entnehmen ist.

Bild 1.30: N,N-Dimethylsulfamid (DMS) - Konzentrationen im Rhein (2008-2012)

Bild 1.31: Desphenylchloridazon (DPC) - Konzentrationen im Rhein (2009-2012)

Bild 1.32: N,N-Dimethylsulfamid (DMS) und Desphenylchloridazon (DPC) - Konzentrationen im Main bei Frankfurt (2009-2012).

Tabelle 1.11: Mittel- und Maximalwerte der Konzentrationen von pharmazeutischen Wirkstoffen im Rhein (2012) - Angaben in μ g/L

Parameter	Ma	Mainz		Köln		eldorf
	Mw.	Max.	Mw.	Max.	Mw.	Max.
Bezafibrat	<0,01	0,02	0,01	0,03	0,01	0,03
Carbamazepin	0,03	0,05	0,05	0,08	0,05	0,07
Diclofenac	0,03	0,05	0,04	0,09	0,05	0,10
Ibuprofen	0,01	0,02	0,01	0,02	0,01	0,03
Indometacin	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Pentoxifyllin	<0,01	<0,01	<0,01	0,02	<0,01	<0,01
Atenolol	0,01	0,01	0,01	0,01	0,01	0,01
Metoprolol	0,03	0,04	0,05	0,07	0,06	0,10
Sotalol	<0,01	0,03	<0,01	0,03	0,02	0,03
Sulfamethoxazol	0,02	0,03	0,03	0,05	0,04	0,05
	IAWR-	-Zielwert	: 0,1 µg/L			

Tabelle 1.12: Mittel- und Maximalwerte der Konzentrationen von pharmazeutischen Wirkstoffen im Main bei Frankfurt (2010-2012) – Angaben in μg/L

Parameter	2010		20	2011		2012	
	Mw.	Max.	Mw.	Max.	Mw.	Max.	
Bezafibrat	0,02	0,05	0,02	0,05	0,03	0,07	
Carbamazepin	0,07	0,13	0,11	0,18	0,10	0,17	
Diclofenac	0,08	0,12	0,06	0,13	0,07	0,16	
Ibuprofen	0,01	0,05	0,01	0,04	0,02	0,07	
Indometacin	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
Pentoxifyllin	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
Atenolol	0,01	0,02	<0,01	<0,01	<0,01	<0,01	
Metoprolol	0,09	0,16	0,09	0,17	0,11	0,20	
Sotalol	0,02	0,04	0,02	0,04	0,02	0,03	
Sulfamethoxazol	0,06	0,09	0,07	0,10	0,06	0,09	
	IAWR	-Zielwert	: 0,1 µg/L	_			

Während im Mittel- und Niederrhein (Tabelle 1.11) der IAWR-Zielwert von 0,1 µg/L erstmals seit Jahren nicht überschritten wird, werden in den Nebengewässern wie z.B. im Main aufgrund der geringeren Abflüsse erhöhte Konzentrationen von Arzneimittelrückständen gefunden (Tabelle 1.12). Überschreitungen des IAWR-Zielwertes treten im Main erwartungsgemäß bei den bereits genannten Verbindungen Carbamazepin, Diclofenac und Metoprolol auf.

Wie in den Bildern 1.33 und 1.34 zu erkennen ist, sind seit dem Jahr 2009 die Metoprolol-Konzentrationen in Rhein und Main deutlich angestiegen. Dieser Konzentrationsanstieg geht weitgehend parallel mit der Zunahme der Verordnungsmengen von Metoprolol, einem häufig eingesetzten Betablocker. Es ist häufiger zu beobachten, dass die Gewässerkonzentrationen von neueren Arzneimittelwirkstoffen – parallel zu den Verordnungsmengen – erheblich ansteigen, während einige schon seit Jahrzehnten auf dem Markt befindliche Wirkstoffe wie Carbamazepin oder Diclofenac rückläufige Trends aufweisen können.

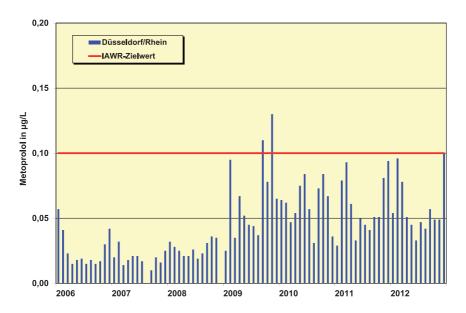


Bild 1.33: Metoprolol-Konzentrationen im Rhein bei Düsseldorf (2006-2012)

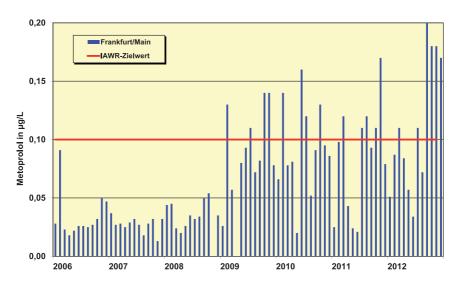


Bild 1.34: Metoprolol-Konzentrationen im Main bei Frankfurt (2006-2012)

Signifikante Veränderungen bei den Konzentrationen und Frachten der iodierten Röntgenkontrastmittel (RKM) sind nicht zu beobachten, obwohl in den letzten Jahren vergleichsweise größere Schwankungen der Einzelstoffkonzentrationen aufgetreten sind. In Mitteleuropa werden derzeit etwa 10 verschiedene RKM zu diagnostischen Zwecken in der Medizin eingesetzt. Da RKM sehr persistent und extrem gut wasserlöslich sein müssen, damit sie schnellstmöglich wieder aus dem Körper bzw. den zu untersuchenden Organen ausgeschieden werden, sind sie aufgrund dieser Eigenschaften bei der konventionellen Abwasserbehandlung praktisch nicht entfernbar. Die Folge davon ist, dass die RKM-Konzentrationen in Rhein und Main häufig erheblich über dem IAWR-Zielwert von 0,1 µg/L liegen, wobei auch Maximalwerte > 1 µg/L im Main bei Frankfurt festzustellen sind. In den Tabellen 1.13 und 1.14 sind die Mittel- und Maximalwerte der RKM-Konzentrationen für das Kalenderjahr 2012 bzw. für den Zeitraum 2010-2012 an der Messstelle Frankfurt/Main zusammengestellt.

Während am Rhein die höchsten Konzentrationen für die Verbindungen **lomep- rol** und **lopamidol** festgestellt wurden (Tabelle 1.13), weist **Amidotrizoesäure** an der Messstelle Frankfurt/Main die höchsten Einzelstoffgehalte auf (Bild 1.35).

Tabelle 1.13: Mittel- und Maximalwerte der Konzentrationen von iodierten Röntgenkontrastmitteln (RKM) im Mittel- und Niederrhein (2012) – Angaben in μg/L

Parameter	Mainz		Köln		Düsseldorf				
	Mw.	Max.	Mw.	Max.	Mw.	Max.			
Amidotrizoesäure	0,09	0,19	0,19	0,32	0,21	0,33			
lodipamid	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
Iohexol	0,04	0,08	0,07	0,16	0,10	0,19			
Iomeprol	0,27	0,52	0,37	0,63	0,42	0,71			
Iopamidol	0,26	0,69	0,22	0,41	0,22	0,41			
Iopromid	0,11	0,15	0,12	0,19	0,12	0,22			
Iotalaminsäure	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
loxaglinsäure	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
loxitalaminsäure	0,04	0,08	0,04	0,02	0,04	0,07			
IAWR-Zielwert: 0,1 μg/L									

Tabelle 1.14: Mittel- und Maximalwerte der Konzentrationen von iodierten Röntgenkontrastmitteln (RKM) im Main bei Frankfurt (2010-2012) – Angaben in μg/L

Parameter	2010		2011		2011				
	Mw.	Max.	Mw.	Max.	Mw.	Max.			
Amidotrizoesäure	0,25	0,47	0,52	0,92	0,56	1,00			
Iodipamid	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
Iohexol	0,13	0,23	0,14	0,26	0,13	0,18			
Iomeprol	0,28	0,56	0,35	0,62	0,43	0,73			
Iopamidol	0,21	0,32	0,33	0,50	0,29	0,59			
Iopromid	0,25	0,46	0,28	0,49	0,34	0,55			
lotalaminsäure	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
loxaglinsäure	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
loxitalaminsäure	0,03	0,04	0,03	0,08	0,05	0,07			
IAWR-Zielwert: 0,1 μg/L									

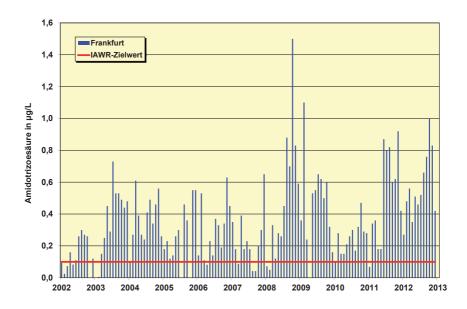


Bild 1.35: Amidotrizoesäure-Konzentrationen im Main bei Frankfurt (2002-2012)

Die höchsten Frachten im Rheineinzugsgebiet werden für die beiden Verbindungen lopamidol (Bild 1.36) und lomeprol (Bild 1.37) ermittelt.

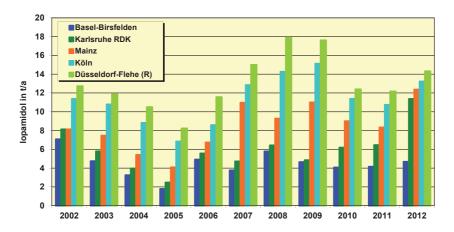


Bild 1.36: lopamidol-Frachten im Rhein (2002-2012)

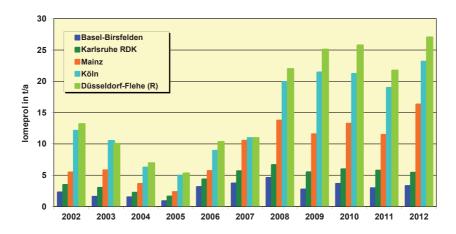


Bild 1.37: Iomeprol-Frachten im Rhein (2002-2012)

Während für Iopamidol trotz gewisser Schwankungen der Einzelwerte keine größeren Veränderungen festgestellt werden können, sind die Frachten von Iomeprol im Rhein im Vergleich zum Jahr 2002 erheblich angestiegen. Nach einer groben Abschätzung können am Niederrhein für alle RKM Frachten in der Summe von etwa 80 - 100 t pro Jahr ermittelt werden, die schlussendlich in die Nordsee eingetragen werden. Dies entspricht ca. 25 - 30% der in der Bundesrepublik Deutschland verbrauchten RKM-Mengen von 350 t pro Jahr, welche wiederum etwa 10 % der weltweiten Einsatz- und Verbrauchsmengen ausmachen. Die Befunde spiegeln damit die überproportionale Anwendung von iodierten Röntgenkontrastmitteln (RKM) in der diagnostischen Medizin in Mitteleuropa wieder.

Seit dem Jahr 2007 werden entlang des Rheins an den Hauptmessstellen **per**und **polyfluorierte Verbindungen (PFC)** bestimmt. Die Entwicklung der Konzentrationen der wichtigen Einzelverbindungen PFOA (Perfluoroctanoat), PFOS (Perfluoroctansulfonat), PFBA (Perfluorbutanoat) und PFBS (Perfluorbutansulfonat) an den ARW-Messstellen Mainz, Köln, Düsseldorf ist in den Bildern 1.38 bis 1.41 dargestellt.

Die im Mittel- und Niederrhein gemessenen Konzentrationen von **PFOA** und **PFOS** liegen im unteren ng/L-Bereich und zeigen keine größeren Auffälligkeiten, d. h. die aktuellen Konzentrationen im Rhein bei Mainz, Köln und Düsseldorf sind sehr ähnlich und als "anthropogene" Hintergrundbelastung anzusehen. Der IAWR-Zielwert von 0,1 µg/L wird signifikant unterschritten. Für die beiden Verbindungen **PFBA** (Bild 1.40) und **PFBS** (Bild 1.41) wurden dagegen in den letzten Jahren an der Messstelle Düsseldorf erhöhte Gehalte festgestellt, die auf Einleitungen aus der chemischen Industrie zurückzuführen sind. Erfreulicherweise sind nach Gesprächen der ARW und Behörden mit dem Einleiter die PFBA und PFBS-Konzentrationen durch die eingeleiteten Maßnahmen deutlich zurückgegangen, sodass der IAWR-Zielwert inzwischen wieder eingehalten wird.

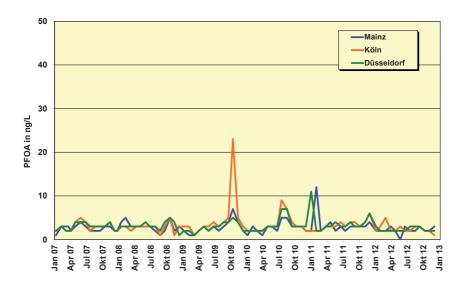


Bild 1.38: PFOA-Konzentrationen im Rhein (2007-2012)

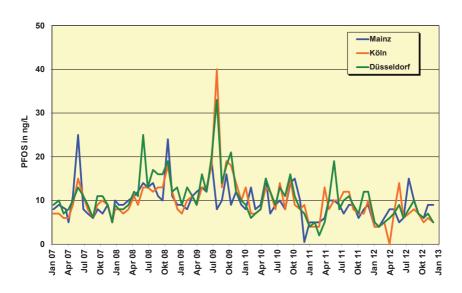


Bild 1.39: PFOS-Konzentrationen im Rhein (2007-2012)

50

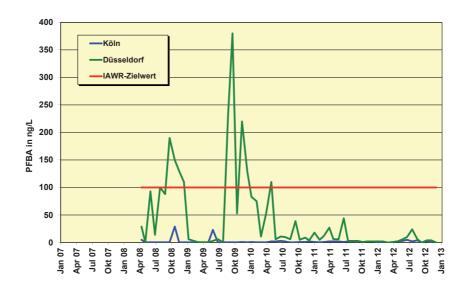


Bild 1.40: PFBA-Konzentrationen im Rhein (2007-2012)

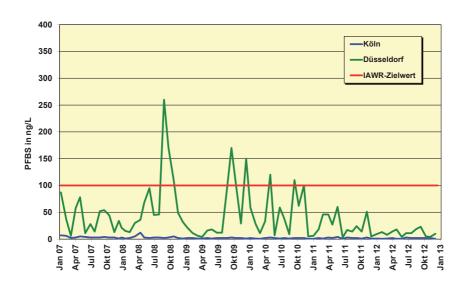
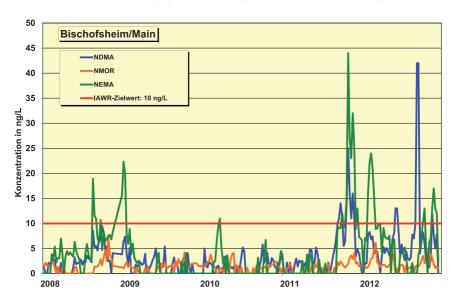
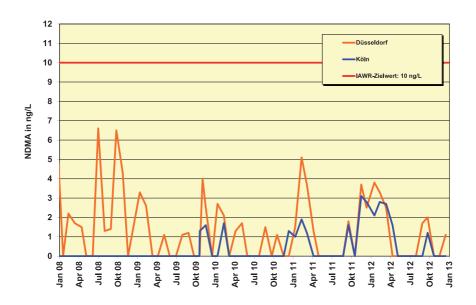




Bild 1.41: PFBS-Konzentrationen im Rhein (2007-2012)

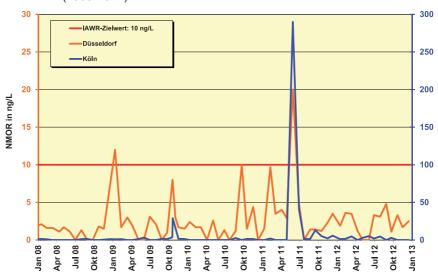
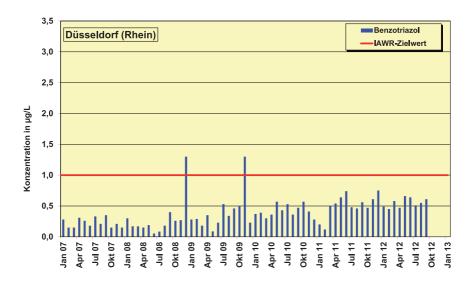

Besonderes Interesse fanden in den letzten Jahren verschiedene **Nitrosamin-Verbindungen**, die aufgrund ihrer gentoxischen Eigenschaften mit einem Zielwert von 0,01 µg/L belegt sind. N-Nitrosamine haben keine technische Bedeutung, werden aber bei verschiedenen Syntheseprozessen gebildet und finden sich dann als Rückstände z. B. in Gummiartikeln und Kunststoffen sowie auch in Lebensmitteln und Abwässern wieder. Der Schwerpunkt der Nitrosamin-Untersuchungen erfolgte an der Messstelle Bischofsheim im Main, die einige Kilometer vor der Mündung des Mains in den Rhein lokalisiert ist. Wie in Bild 1.42 ersichtlich, wurden in 2011 und 2012 kurzzeitig stark erhöhte Konzentrationen von **NDMA** (N-Nitrosodimethylamin) und **NEMA** (N-Nitrosoethymethylamin) gemessen, die den Zielwert von 10 ng/L überschritten. Die Verbindung **NMOR** (N-Nitrosomorpholin) wies dagegen in der Regel Konzentrationen < 5 ng/L auf.

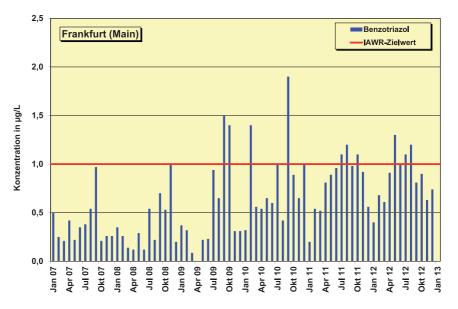
Bild 1.42: Konzentrationen von NDMA, NEMA und NMOR im Main bei Bischofsheim (2008-2012)

Bild 1.43: NDMA-Konzentrationen im Rhein bei Köln und Düsseldorf (2008-2012)

Bild 1.44: NMOR-Konzentrationen im Rhein bei Köln und Düsseldorf (2008-2012)


Die Konzentrationen von NDMA und NMOR am Niederrhein liegen üblicherweise auch deutlich unter 10 ng/L. NEMA konnte dort nicht detektiert werden. Wie bereits im ARW-Jahresbericht 2011 beschrieben, wurde im Juni 2011 in einer Stichprobe einmalig eine Höchstkonzentration von NMOR im Rhein bei Köln mit 290 ng/L festgestellt, deren Ursache im Nachhinein nicht aufgeklärt werden konnte. Im Berichtsjahr 2012 gab es bezüglich NDMA und NMOR am Niederrhein keine Auffälligkeiten (Bild 1.44). Die Verbindung NMOR ist aufgrund ihrer hohen Persistenz und Mobilität kritischer einzustufen als NDMA oder NEMA, die bei der Uferfiltration vergleichsweise gut mikrobiell abgebaut werden. Allerdings kann NDMA bei der technischen Wasseraufbereitung mit Ozon aus dem PSM-Metaboliten DMS entstehen, sodass auch die Überwachung des abgegebenen Trinkwassers auf Nitrosamine erforderlich ist.

Ebenfalls im Fokus der Wasserwerke am Rhein stehen die **Benzotriazole**, die aufgrund hoher Produktionsmengen und vielfältiger Anwendungen in erhöhten Konzentrationen regelmäßig in Fließgewässern gefunden werden. In Tabelle 1.15 sind die Mittel- und Maximalwerte von 1-H-Benzotriazol für den Zeitraum 2010-2012 aufgelistet. Zusätzlich sind in den Bildern 1.45 - 1.46 die Konzentrationsverläufe für 1-H-Benzotriazol sowie die beiden Isomeren 4- und 5-Methylbenzotriazol an den Messstellen Düsseldorf und Frankfurt/Main dargestellt. Die chromatographische Trennung und separate Quantifizierung von 4- und 5-Methylbenzotriazol wurde erst seit im 2010 etabliert; in den Jahren zuvor wurden beide Isomere gemeinsam bestimmt.


Tabelle 1.15: Mittel- und Maximalwerte von 1-H-Benzotrizol in Rhein und Main (2010-2012) – Angaben in μg/L

2010		20	11	2012	
Mw.	Max.	Mw.	Max.	Mw.	Max.
0,20	0,28	0,18	0,25	0,17	0,25
0,23	0,49	0,23	0,32	0,21	0,30
0,31	0,49	0,40	0,61	0,33	0,46
0,40	0,60	0,47	0,62	0,53	1,0
0,42	0,57	0,50	0,75	0,51	0,66
0,83	1,9	0,82	1,2	0,88	1,3
	Mw. 0,20 0,23 0,31 0,40 0,42	Mw. Max. 0,20 0,28 0,23 0,49 0,31 0,49 0,40 0,60 0,42 0,57	Mw. Max. Mw. 0,20 0,28 0,18 0,23 0,49 0,23 0,31 0,49 0,40 0,40 0,60 0,47 0,42 0,57 0,50	Mw. Max. Mw. Max. 0,20 0,28 0,18 0,25 0,23 0,49 0,23 0,32 0,31 0,49 0,40 0,61 0,40 0,60 0,47 0,62 0,42 0,57 0,50 0,75	Mw. Max. Mw. Max. Mw. 0,20 0,28 0,18 0,25 0,17 0,23 0,49 0,23 0,32 0,21 0,31 0,49 0,40 0,61 0,33 0,40 0,60 0,47 0,62 0,53 0,42 0,57 0,50 0,75 0,51

IAWR-Zielwert: 1,0 μg/L

Bild 1.45: 1-H-Benzotriazol- und Methylbenzotriazol-Konzentrationen im Rhein bei Düsseldorf (2007-2012)

Bild 1.46: 1-H-Benzotriazol- und Methylbenzotriazol-Konzentrationen im Main bei Frankfurt (2007-2012)

Für **1-H-Benzotriazol** wurde der Zielwert von 1 μ g/L für toxikologisch wenig kritische Stoffe im Main häufiger überschritten. Insgesamt sind die Konzentrationen der drei Verbindungen im Vergleich zu anderen organischen Spurenstoffen erhöht und liegen in Rhein- und Mainwasserproben durchweg über 0,1 μ g/L.

Seit dem Jahr 2010 werden auch die **künstlichen Süßstoffe** Acesulfam, Cyclamat, Saccharin und Sucralose regelmäßig in Oberflächen- bzw. Fließgewässerproben gefunden. Die höchsten Gehalte in Rhein- und Mainwasserproben weist dabei erwartungsgemäß **Acesulfam** auf, wobei der IAWR-Zielwert von 1 µg/L häufiger nicht eingehalten wird. Einen Überblick über die Mittel- und Maximalwerte im Zeitraum 2010-2012 gibt Tabelle 1.16.

Tabelle 1.16: Mittel- und Maximalwerte von Acesulfam in Rhein und Main (2000-2012) - Angaben in µg/L

Messstelle	2010		20)11	2012			
	Mw.	Max.	Mw.	Max.	Mw.	Max.		
Basel	0,7	0,9	0,8	1,1	0,6	0,9		
Karlsruhe	0,8	1,1	0,9	1,2	0,7	0,9		
Mainz	1,1	1,5	1,3	1,8	1,0	1,3		
Köln	1,5	2,2	1,9	2,5	1,4	2,1		
Düsseldorf-Flehe	1,7	2,9	2,0	3,0	1,5	1,8		
Frankfurt / Main	2,0	4,2	2,5	4,1	2,6	3,8		
IAWP-Zialwart: 1.0 ug/l								

Selbst die Mittelwerte der Jahre 2010-2012 liegen im Mittel- und Niederrhein über 1 μ g/L. Acesulfam ist biologisch nicht abbaubar, sehr gut wasserlöslich und mobil und wird daher weder bei der Abwasserbehandlung noch bei der Uferfiltration und Untergrundpassage wirksam zurückgehalten. Da künstliche Süßstoffe lebensmittelrechtlich zugelassen und toxikologisch unkritisch sind, kann insbesondere Acesulfam gut als chemischer Tracer zur Verfolgung von Leckagen, Kanalundichtigkeiten und Einflüssen von Oberflächengewässern auf Grundwasser herangezogen werden.

In den Bilden 1.47-1.50 sind die Konzentrationen der vier wichtigsten künstlichen Süßstoffe **Acesulfam**, **Cyclamat**, **Saccharin** und **Sucralose** für die Messstellen Mainz, Köln und Düsseldorf sowie Frankfurt/Main dargestellt. Wie bereits er-

wähnt, weist Acesulfam bei weitem die höchsten Gewässerkonzentrationen auf. Die Gehalte von Cyclamat, Saccharin und Sucralose liegen häufig im Bereich zwischen 0,1 und 0,2 μ g/L. Vergleicht man allerdings die Verbrauchsmengen von Cyclamat und Saccharin, die erheblich höher sind als die von Sucralose, so können die ähnlichen Gewässerkonzentrationen nur dadurch erklärt werden, dass Cyclamat und Saccharin weitgehend (> 90 %) durch mikrobiellen Abbau in der Kläranalage entfernt werden, während die Entfernungsraten von Sucralose und auch von Acesulfam erheblich niedriger liegen.

In den letzten Jahren wurden im ARW-Bereich auch analytische Untersuchungen auf die Kraftstoffadditive MTBE und ETBE sowie auf nichthalogenierte Lösungsmittel wie Diglyme und Triglyme durchgeführt. Erfreulicherweise sind aufgrund von Initiativen der IAWR und ARW im Falle von MTBE und ETBE sowie Gesprächen mit Behörden und Einleitern bei Diglyme die Einzelstoffkonzentrationen insgesamt deutlich zurückgegangen. Die genannten Stoffe werden auch bei der zeitnahen Überwachung des Rheins in Nordrhein-Westfalen an den Messstationen Bad Godesberg/Bad Honnef, Düsseldorf und Bimmen/Lobith bestimmt. In letzten beiden Jahren wurden nur wenige Fälle mit erhöhten Konzentrationen festgestellt, sodass im Sinne des Gewässerschutzes die Zusammenarbeit zwischen Behörden, Wasserwerken und Einleitern als erfolgreich zu werten ist.

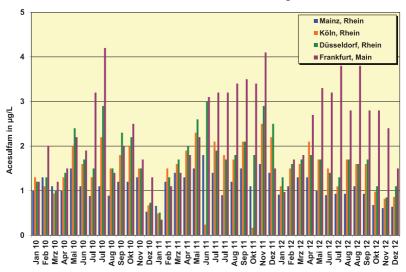


Bild 1.47: Acesulfam-Konzentrationen in Rhein und Main (2010-2012)

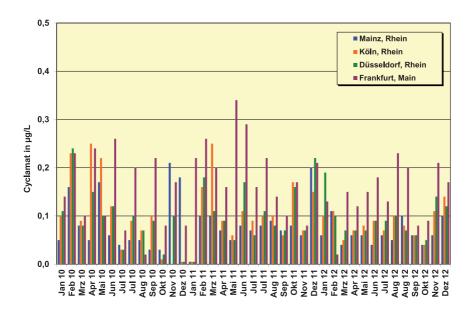


Bild 1.48: Cyclamat-Konzentrationen in Rhein und Main (2010-2012)

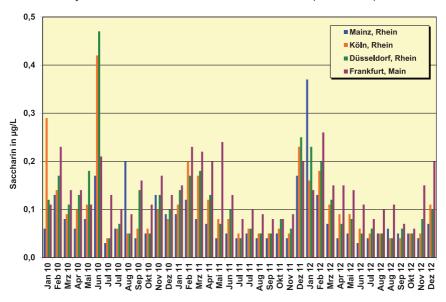


Bild 1.49: Saccharin-Konzentrationen in Rhein und Main (2010-2012)

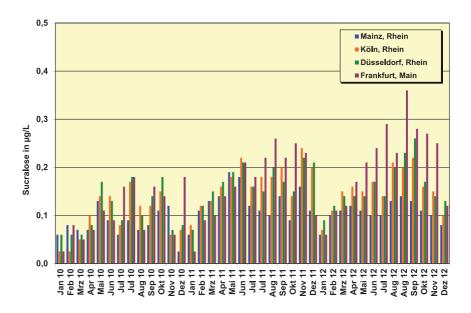


Bild 1.50: Sucralose-Konzentrationen in Rhein und Main (2000-2012)

1.6 Vergleich mit den IAWR-Zielwerten

In den Tabellen 1.17-1.19 sind die Maximalwerte der wichtigsten Wasserqualitätsparameter für die Jahre 2010-2012 zusammenfassend dargestellt. Stellvertretend für die ARW-Messstellen wurden die sog. Hauptmessstellen Mainz, Köln und Düsseldorf ausgewählt. Positiv ist zu vermerken, dass nur für wenige Parameter die im Donau-, Maas- und Rhein-Memorandum festgelegten Qualitätsanforderungen nicht eingehalten werden. Dies betrifft wie auch in den letzten Jahren den Sauerstoffgehalt (> 8 mg/L), die elektrische Leitfähigkeit sowie die TOC und DOC-Konzentrationen. Ferner gilt dies auch für die Einzelverbindung EDTA, die ebenfalls den Zielwert von 5 μ g/L seit Jahren überschreitet.

Grundsätzlich zeigt die mittelfristige Entwicklung der Konzentrationen (Mittel- und Maximalwerte) einen leicht rückläufigen Trend, der positiv zu bewerten ist und die erfolgreiche Arbeit der ARW dokumentiert. Rückläufige Konzentrationen und Frachten belegen auch die erfolgreichen gemeinsamen Anstrengungen von Industrie, Behörden und Wasserwerken am Rhein in den letzten 20-30 Jahren,

sodass die Sanierung des Rheins und die erhebliche Verbesserung der Gewässerbeschaffenheit als Modellfall weltweit gilt.

Tabelle 1.17: Vergleich der IAWR-Zielwerte 2008 mit den Maximalwerten an der Messstelle Mainz – Zeitraum 2010-2012

Qualitätsanforderung (Maximalwert)			2010	2011	2012			
ALLGEMEINE KENNGRÖSSEN								
Temperatur	°C	25	26	24	22			
Sauerstoffgehalt (Minimum)	mg/L	>8	7,0	7,8	8,2			
Elektrische Leitfähigkeit	mS/m	70	-	49	47			
pH-Wert	-	7 - 9	8,6	8,3	8,3			
ANORGANISCHE STOFFE (GELÖST))							
Chlorid	mg/L	100	53	49	46			
Sulfat	mg/L	100	49	59	46			
Nitrat	mg/L	25	13	12	10			
Ammonium	mg/L	0,3	0,23	0,18	0,30			
Bor	mg/L	0,2	<0,05	<0,05	<0,05			
Fluorid	mg/L	-	0,15	0,13	<0,2			
ORGANISCHE STOFFE								
Gelöster organischer Kohlenstoff (DOC)	mg/L	3	2,6	2,9	2,7			
TOC	mg/L	4	3,0	3,2	3,4			
Spektraler Absorptionskoeffizient (SAK 254 nm)	1/m	10	7,1	8,4	8,6			
Adsorbierbare organische Halogenverbindungen (AOX)	μg/L	25	15	20	16			
Adsorbierbare organische Schwefelverbindungen (AOS)	μg/L	80	66	60	52			
ANTHROPOGENE NATURFREMDE STOFFE								
NTA	μg/L	5	1,5	1,9	1,1			
EDTA	μg/L	5	5,8	7,7	5,3			
DTPA	μg/L	5	1,8	<1,0	<1,0			

Tabelle 1.18: Vergleich der IAWR-Zielwerte 2008 mit den Maximalwerten an der Messstelle Köln – Zeitraum 2010-2012

Qualitätsanforderung (Maximalwert)			2010	2011	2012		
ALLGEMEINE KENNGRÖSSEN							
Temperatur	°C	25	25	23	23		
Sauerstoffgehalt (Minimum)	mg/L	>8	8,3	8,2	8,2		
Elektrische Leitfähigkeit	mS/m	70	72	75	73		
pH-Wert	-	7 - 9	8,2	8,6	8,6		
ANORGANISCHE STOFFE (GELÖST)						
Chlorid	mg/L	100	95	85	89		
Sulfat	mg/L	100	67	84	69		
Nitrat	mg/L	25	20	16	16		
Ammonium	mg/L	0,3	0,19	0,19	0,17		
Bor	mg/L	0,2	0,04	0,07	0,09		
Fluorid	mg/L	-	0,14	0,19	0,14		
ORGANISCHE STOFFE							
Gelöster organischer Kohlenstoff (DOC)	mg/L	3	3,7	4,6	5,1		
тос	mg/L	4	4,2	5,0	5,5		
Spektraler Absorptionskoeffizient (SAK 254 nm)	1/m	10	7,9	9,2	9,1		
Adsorbierbare organische Halogenverbindungen (AOX)	μg/L	25	32	21	26		
Adsorbierbare organische Schwefelverbindungen (AOS)	μg/L	80	72	80	66		
ANTHROPOGENE NATURFREMDE STOFFE							
NTA	μg/L	5	1,9	1,4	0,9		
EDTA	μg/L	5	6,3	7,9	5,2		
DTPA	μg/L	5	1,6	1,2	<1,0		

Tabelle 1.19: Vergleich der IAWR-Zielwerte 2008 mit den Maximalwerten an der Messstelle Düsseldorf – Zeitraum 2010-2012

Qualitätsanforderung (Maximalwert)			2010	2011	2012			
ALLGEMEINE KENNGRÖSSEN								
Temperatur	°C	25	28	23	24			
Sauerstoffgehalt (Minimum)	mg/L	>8	7,0	7,6	7,5			
Elektrische Leitfähigkeit	mS/m	70	75	76	77			
pH-Wert	-	7 - 9	8,3	8,7	8,6			
ANORGANISCHE STOFFE (GELÖST)								
Chlorid	mg/L	100	91	94	95			
Sulfat	mg/L	100	64	76	61			
Nitrat	mg/L	25	19	17	15			
Ammonium	mg/L	0,3	0,20	0,17	0,19			
Bor	mg/L	0,2	0,05	0,06	-			
Fluorid	mg/L	-	0,17	0,14	0,15			
ORGANISCHE STOFFE								
Gelöster organischer Kohlenstoff (DOC)	mg/L	3	3,1	3,3	3,1			
тос	mg/L	4	3,5	3,6	3,2			
Spektraler Absorptionskoeffizient (SAK 254 nm)	1/m	10	8,2	9,5	8,5			
Adsorbierbare organische Halogenverbindungen (AOX)	μg/L	25	28	25	23			
Adsorbierbare organische Schwefelverbindungen (AOS)	μg/L	80	69	53	65			
ANTHROPOGENE NATURFREMDE STOFFE								
NTA	μg/L	5	2,4	2,1	3,8			
EDTA	μg/L	5	6,0	7,7	7,2			
DTPA	μg/L	5	1,6	1,4	<1,0			

In Tabelle 1.20 sind für das Berichtsjahr 2012 die Maximalwerte von im Rheineinzugsgebiet wichtigen organischen Spurenstoffen enthalten. Die gemessenen Maximalwerte sind mit den IAWR-Zielwerten von 0,1 μ g/L für biologisch wirksame und 1 μ g/L für toxikologisch wenig auffällige Stoffe zu vergleichen.

Wie in den Vorjahren überschreiten vor allem die iodierten Röntgenkontrastmittel Amidotrizoesäure, Iohexol, Iomeprol, Iopamidol und Iopromid den Zielwert von $0,1~\mu g/L$ zum Teil beträchtlich. Positive Entwicklungen sind in den letzten zehn Jahren nicht zu erkennen, sodass aus Sicht der ARW dringend Handlungsbedarf besteht, zumal die beiden Verbindungen Amidotrizoesäure und Iopamidol auch im Trinkwasser nachgewiesen werden können. Des Weiteren liegen die Maximalwerte von Acesulfam an allen ARW-Messstellen über dem IAWR-Zielwert von $1~\mu g/L$.

Abschließend ist zu bemerken, dass die ARW und die internationale Arbeitsgemeinschaft der Wasserwerke am Rhein (IAWR) sich generell für die weitere Reduzierung der Einträge von anthropogenen organischen Stoffen einsetzen und daher Handlungsbedarf bei der Registrierung und Zulassung von Chemikalien erkennen. Die weitgehende Fokussierung auf prioritäre Stoffe, die nach den Vorgaben der EU-Wasserrahmenrichtlinie den chemischen Zustand der Gewässer charakterisieren sollen, ist aus Sicht der ARW nicht zielführend und hilfreich und kann in keiner Weise Vorsorge- und Präventivmaßnahmen im Gewässerschutz für die langfristige Sicherung der Trinkwasserresourccen ersetzen.

Tabelle 1.20: Vergleich der IAWR-Qualitätsanforderungen 2008 mit den Maximalwerten für organische Spurenstoffe 2012

Qualitätsanforderung (Maximalwert)			Mainz	Köln	Düsseldorf
PSM-WIRKSTOFFE					
Atrazin	μg/L	0,1	0,06	<0,05	<0,05
Bentazon	μg/L	0,1	-	<0,05	<0,05
Chloridazon	μg/L	0,1	<0,05	<0,05	<0,05
Chlortoluron	μg/L	0,1	<0,05	<0,05	<0,05
Diuron	μg/L	0,1	<0,05	<0,05	<0,05
Isoproturon	μg/L	0,1	<0,05	0,09	0,09
PHARMAZEUTISCHE WIRKSTOFFE					
Bezafibrat	μg/L	0,1	0,03	0,03	0,03
Carbamazepin	μg/L	0,1	0,05	0,08	0,07

Qualitätsanforderung (Maximalv	vert)		Mainz	Köln	Düsseldorf
Diclofenac	μg/L	0,1	0,05	0,10	0,10
Ibuprofen	μg/L	0,1	0,02	0,03	0,03
Pentoxifyllin	μg/L	0,1	<0,01	<0,01	<0,01
Metoprolol	μg/L	0,1	0,04	0,07	0,10
Sotalol	μg/L	0,1	0,03	0,03	0,03
Sulfamethoxazol	μg/L	0,1	0,03	0,05	0,05
IODIERTE RÖNTGENKONTRASTMIT	TEL				
Amidotrizoesäure	μg/L	0,1	0,19	0,32	0,33
Iohexol	μg/L	0,1	0,08	0,16	0,19
Iomeprol	μg/L	0,1	0,52	0,63	0,71
Iopamidol	μg/L	0,1	0,69	0,41	0,41
Iopromid	μg/L	0,1	0,15	0,19	0,22
PERFLUORIERTE VERBINDUNGEN					
Perfluorbutanoat (PFBA)	μg/L	0,1	0,005	0,005	0,024
Perfluorbutansulfonat (PFBS)	μg/L	0,1	0,026	0,003	0,023
Perfluoroctanoat (PFOA)	μg/L	0,1	0,003	0,005	0,008
Perfluoroctansulfonat (PFOS)	μg/L	0,1	0,015	0,014	0,010
BENZINZUSATZSTOFFE					
Methyl-tertiär-butylether (MTBE)	μg/L	1	<0,05	0,10	0,56
Ethyl-tertiär-butylether (ETBE)	μg/L	1	<0,05	<0,05	0,06
LÖSEMITTEL			_		
Diglyme	μg/L	1	0,45	0,31	0,31
Triglyme	μg/L	1	0,13	0,17	0,16
BENZOTRIAZOLE					
Benzotriazol	μg/L	1	0,46	1,0	0,66
4-Methylbenzotriazol	μg/L	1	0,23	0,55	0,37
5-Methylbenzotriazol	μg/L	1	0,11	0,25	0,17
KÜNSTLICHE SÜSSTOFFE					
Acesulfam	μg/L	1	1,3	2,1	1,8
Cyclamat	μg/L	1	0,11	0,14	0,19
Saccharin	μg/L	1	0,37	0,18	0,23
Sucralose	μg/L	1	0,14	0,22	0,26

1.7 Mikrobiologische Untersuchungen

Ein weiterer wichtiger Bestandteil des ARW-Messprogramms sind die mikrobiologischen Untersuchungen, die von den Mitgliedswerken selbst durchgeführt werden. Die im Abstand von etwa 28 Tagen entnommenen Stichproben werden in den jeweiligen Laboratorien auf die Parameter Koloniezahl, coliforme Bakterien, E. coli und Enterokokken untersucht. Die Untersuchungsmethoden sind zwischen den Laboratorien abgestimmt, um die Vergleichbarkeit der Ergebnisse zu gewährleisten.

Die Messdaten werden in der Regel über mehrere Jahre hinweg ausgewertet und in einem separaten Bericht zusammengefasst. Der letzte umfangreiche IAWR-Bericht über die mikrobiologischen Untersuchungen wurde für den Zeitraum 2004-2008 erstellt. In 2014 wird für den 5-Jahres-Zeitraum 2009-2013 der nächste Ergebnisbericht erwartet.

Die Auswertung der Daten erfolgte wie in Vorjahren anhand der Wassergüteklassen mit insgesamt sieben hygienisch-bakteriologischen Belastungsstufen nach Popp. Die Güteklassen 1 (sehr gut) bis 7 (sehr schlecht) beschreiben eine abnehmende Güte der Wasserbeschaffenheit, wobei für die Einstufung in die Güteklassen die Auswertung der Daten nach den 80 Perzentilwerten – im Fall der Koloniezahlen zusätzlich nach den 50-Perzentilwerten - vorgenommen wird. In den Bildern 1.51 - 1.53 sind die Ergebnisse der ARW-Untersuchungen für den Zeitraum 2005-2012 getrennt nach Parametern dargestellt.

Für den Parameter **Koloniezahl** (Bild 1.51) wurden die Güteklassen 4 bis 5 ermittelt; lediglich an der Messstelle Wesel, die bekanntlich von der Emscher beeinflusst ist, wurde die Güteklasse 6 festgestellt. Die Auswertungen der Messwerte für die **Gesamtcoliforme** (Bild 1.52) und **E. coli** (Bild 1.53) ergaben überwiegend eine Einstufung nach Güteklasse 5. Seit dem Jahr 2009 werden zusätzlich Untersuchungen auf Enterokokken durchgeführt, die ebenfalls im 5-Jahres-Rhythmus ausgewertet werden. Auf eine graphische Darstellung der Ergebnisse wurde nochmals verzichtet.

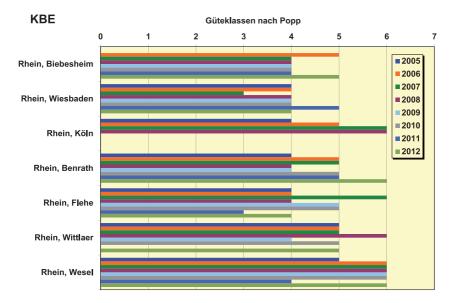
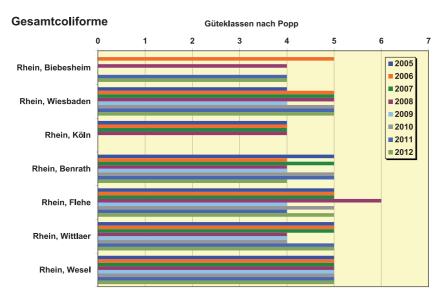



Bild 1.51: Koloniezahl - Güteklasse nach Popp (2005-2012).

Bild 1.52: Coliforme Bakterien (Gesamtcoliforme) – Güteklassen nach Popp (2005-2012).

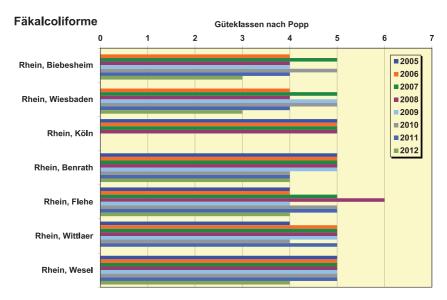


Bild 1.53: E. coli (Fäkalcoliforme) – Güteklassen nach Popp (2005-2012).

Für die Auswertung gemäß den Vorgaben der EU-Badegewässerrichtlinie (2006/2007/EG), die ab 2015 gültig ist, werden nur die Messwerte für E. coli und Enterokokken herangezogen. Festzuhalten ist, dass nach dieser Richtlinie alle Messstellen im Bereich der ARW die Qualitätsstufe mangelhaft aufweisen. Dies bedeutet, dass der Mittel- und Niederrhein keine Badewasserqualität aufweist.