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Underpinnings of Behavior and Equilibrium Selection* 

 
In this paper, we describe a series of laboratory experiments that implement specific 
examples of a more general network structure and we examine equilibrium selection. 
Specifically, actions are either strategic substitutes or strategic complements, and 
participants have either complete or incomplete information about the structure of a random 
network. Since economic environments typically have a considerable degree of 
complementarity or substitutability, this framework applies to a wide variety of settings. The 
degree of equilibrium play is striking, in particular with incomplete information. Behavior 
closely resembles the theoretical equilibrium whenever this is unique; when there are multiple 
equilibria, general features of networks, such as connectivity, clustering, and the degree of 
the players, help to predict informed behavior in the lab. People appear to be strongly 
attracted to maximizing aggregate payoffs (social efficiency), but there are forces that 
moderate this attraction: 1) people seem content with (in the aggregate) capturing only the 
lion’s share of the efficient profits in exchange for reduced exposure to loss, and 2) 
uncertainty about the network structure makes it considerably more difficult to coordinate on 
a demanding, but efficient, equilibrium that is typically implemented with complete 
information. 
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1. Introduction 

Social networks are a prominent feature of the economic landscape. A network is a non-

market institution, but has important market-like characteristics. In a sense it can be considered 

to be an intermediate case between bilateral bargaining and matching in a large centralized 

market. Network structure affects choices in a wide variety of environments and network 

analysis has been applied to many important environments.1 Examples include systems 

compatibility (Katz and Shapiro 1994), airline route design (Hendricks, Piccione and Tan 1995), 

matching markets (Gale and Shapley 1962, Kelso and Crawford 1982, Roth 1984, Crawford and 

Rochford 1986, Roth and Sotomayor 1989), bargaining (Kranton and Minehart 2001), and 

friendship (Currarini, Jackson and Pin, 2009). Network analysis is also useful for job search and 

labor-market issues, since workers frequently find jobs through personal contacts and employers 

value the additional enforcement channel available through these personal intermediaries 

(Montgomery 1991, Calvó-Armengol 2004, Calvó-Armengol and Jackson 2004, 2007).  

A growing empirical literature has documented the effects of social networks on 

behavior; the information gleaned from these has motivated theoretical work. Since social 

networks are so prevalent in economic settings, modeling these networks is essential in order to 

understand how network structure affects behavior. However, it is very difficult (if not 

impossible) to cleanly test theoretical predictions using field data, since there are many 

confounding features in the environment.2 In this respect, controlled laboratory experiments are 

often viewed as the ideal tool for qualitatively testing theory (e.g., Falk and Heckman, 2009). 

In this paper, we describe a series of laboratory experiments that implement specific 

examples of a more general network structure. Our starting point is the model in Galeotti, Goyal, 

Jackson, Vega-Redondo, and Yariv (2010), which considers environments in which the agents’ 

actions are either strategic complements or substitutes. Economic environments typically have a 

considerable degree of complementarity or substitutability, so that this notion applies to a wide 

variety of economic settings and includes many game-theoretic applications in the network 

literature. Strategic complements arise when the marginal benefit that an individual obtains from 

                                                            
1 Jackson (2010, p. 512) states that network structure “influences patterns of decisions regarding education, career, 
hobbies, criminal activity, and even participation in micro-finance.” For an exhaustive review of social and 
economic networks, with particular attention to theoretical models, see Jackson (2008). 
2 Typical problems with field data are the use of idiosyncratic data sets, multiple simultaneous influences, and the 
issue of measurement error. 
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choosing an action is greater when more of her neighbors do the same. An example of strategic 

complements is human capital investment, whereby one’s own investment is marginally more 

beneficial if others also make this investment. Strategic substitutes arise when the marginal 

benefit that an individual obtains from choosing an action is greater when fewer of her neighbors 

do the same. An example is choosing routes to avoid congested roads, since one certainly 

receives a greater (marginal) benefit from choosing a route that has been chosen less by others. 

Our study is also one of the first to experimentally consider an environment in which the 

agents are uncertain about the precise network structure.3 This enhances the applicability and the 

external validity of our experiment, as there are many economic situations in which individuals 

have a good sense of the number of other people with whom they are interacting in some form of 

network, but know neither the identity of these others nor how these others are connected to still 

others. As examples for such situations, Galeotti et alii (2010) mention choosing which 

languages to study before embarking on a career in diplomacy, researchers choosing software 

based on compatibility, and choosing whether to receive a vaccination. 

A critical problem for network theory is that even simple games have multiple equilibria, 

so that a great variety of outcomes are consistent with theoretical analysis. This naturally limits 

the predictive power of the theory and the scope of policy recommendations, since multiple 

equilibria make it difficult-to-impossible to offer definitive advice regarding how such labor 

markets, search markets, etc. should be organized. To make meaningful policy 

recommendations, it is crucial to determine which equilibrium is likely to occur. Consequently, a 

central goal in network analysis is to refine the set of equilibria to be able to make better 

predictions about the likely outcomes. As Galeotti et alii (2010) state, in some cases with 

networks games “much of the equilibrium multiplicity that arises under complete information is 

no longer sustainable under incomplete information.”4 Another method for examining 

equilibrium selection is through experimental testing. This is our approach, as experimental work 

can provide empirical information regarding which of the multiple equilibria tends to actually 

prevail behaviorally and may even lead to clear insights ex post. 

In our first set of experiments, we consider a specific environment that includes three 

                                                            
3 A previous paper that introduces uncertainty about the network structure is Berninghaus et alii (2002), which we 
describe in more detail in Section 2.      
4 They argue (p. 219) that the key insight is that “when players have limited information about the network they are 
unable to condition their behavior on its fine details and this leads to a significant simplification and sharpening of 
equilibrium predictions”.      
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different five-person networks. In the case of complete information, each person knows the 

network structure (which of the three networks is in play) and the node to which she has been 

assigned. In contrast, with incomplete information each person only knows her degree – i.e., the 

number of connections to others – and the probability (a treatment variable) that each of the three 

possible networks has been randomly drawn. The results provide striking support for the 

theoretical predictions. Participants are largely active (which could be interpreted as purchasing a 

particular good) or inactive (not purchasing) in the network according to (one of) the theoretical 

prediction(s).  In all scenarios, the modal behavior by every individual is consistent with the 

observed equilibrium outcome, and the overall rate of such equilibrium play is quite high.  

In the simpler case of complete information, we find strong evidence that groups play a 

particular equilibrium, even though there are at least three potential equilibria in all cases with 

strategic substitutes and two potential equilibria in one case with strategic complements.  There 

are two kinds of equilibria: efficient ones that yield the highest aggregate payoff for the network, 

and more secure ones (Van Huyck, Battalio and Bail, 1990) in which (many or all) players 

choose the maximin action. In the experiment, behavior that is highly consistent with the same 

particular equilibrium is observed in each and every independent group. With strategic 

substitutes, the equilibrium played is not the efficient one, but in a certain sense is ‘more secure’, 

as deviations from this equilibrium are less harmful than deviations from the efficient one(s). In 

other words, there is a trade-off between efficiency and the cost of a mistake, since the efficient 

equilibrium results in a higher cost for agents’ errors. With strategic complements, the efficient 

equilibrium is selected. Remarkably, the selected equilibrium is played qualitatively for every 

node and also quantitatively (within 10 percentage points of the extreme point-prediction) for 

most nodes, for both strategic substitutes and strategic complements. 

With incomplete information, one knows only one’s degree and the probability of each 

network being selected, so we do not distinguish amongst positions with the same degree. For 

this scenario, Galeotti et alii (2010) show that, under a wide class of games where agents’ 

choices are either strategic complements or strategic substitutes to those of their neighbors,5 there 

is an equilibrium in which players use monotone (threshold) strategies: In the game of strategic 

                                                            
5 Galeotti et alli (2010) study symmetric Bayes-Nash equilibria. They mainly focus on games that satisfy what they 
call Property A: Adding a link to a neighbor who is inactive is payoff equivalent to not having an additional 
neighbor. Note that this restriction excludes from their (and our) scope some economic setups (like the study of peer 
effects where the average actions of a reference group are considered). 
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substitutes (complements) players are active if their degree is below (above) a certain threshold 

and inactive otherwise. They also consider the effects of connectivity, which is the extent to 

which the nodes of the network are connected.6 When the connectivity of the network increases, 

in the case of strategic substitutes (complements) the maximum (minimum) degree's value for 

which an agent is active increases (decreases). Our data support the qualitative predictions of the 

model in both cases. We observe that participants do use threshold strategies, and the frequency 

of active players increases with connectivity. In scenarios where incomplete information induces 

a unique equilibrium, we see that participants make the choice that is consistent with this 

equilibrium an overwhelming majority of the time. Our experiment demonstrates that the theory 

in Galeotti et alii (2010) does remarkably well in predicting behavior in our initial networks in 

the incomplete-information scenario. 

However, our initial networks were not ideal for the purpose of studying equilibrium 

selection, and questions remained concerning the underpinnings. Hence, in order to study the 

issue of equilibrium selection in more detail, we conducted new treatments with another set of 

five-person networks (our second set of experiments) and with a set of 20-person networks (our 

third set of experiments). In the second set of experiments, we focus on strategic complements 

both with complete and incomplete information. In the third, we consider strategic complements 

and incomplete information.7 In the new sets of experiments, we can test if the connectivity and 

clustering of the network affect equilibrium selection. Clustering refers to the increased 

propensity of people to be linked with one another if they have another neighbor in common.8  

In all the scenarios considered in the new treatments we have an efficient equilibrium and 

an inefficient but secure equilibrium. An increase of the connectivity raises the payoffs of the 

efficient equilibrium, while the payoffs of the other equilibrium remain unaltered. Thus we 

conjecture that connectivity fosters efficiency.9 A similar effect is expected for degree, since a 

player with a higher degree can (potentially) achieve a higher payoff by selecting the efficient 

                                                            
6 Formally, a (random) network is more connected than another one when the neighbors’ degree distribution of a 
network first-order stochastically dominates that of the other. For all of our networks, a higher (expected) average 
degree is linked with higher connectivity.  
7 We only consider complements in this environment because this offers a multiplicity of equilibria in all scenarios. 
We only consider incomplete information in the large-network case because, with complete information, the number 
of equilibria would be very large, and each player’s strategy would have a huge number (20) of components. 
8 One simple measure of the degree of clustering of a network is the ratio between the number of closed triples and 
the number of potential closed triples. By a cluster or clique we refer to a fully-connected triple of nodes.  
9 Intuitively, the higher the payoff of an equilibrium, the more likely it is to be played, ceteris paribus. For 
experimental evidence see Brandts and Cooper (2006). 
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action; therefore, we surmise that players with higher degree are more likely to be active. Finally, 

we also suspected that the degree of clustering in the network would have an important influence 

on behavior and equilibrium selection, since an increased level of clustering reduces the 

independence of the equilibrium strategies of the neighbors.10 Previous experimental evidence 

suggests that, in the context of coordination games played on networks, higher clustering results 

in the efficient equilibrium being played more frequently (see Berninghaus, Ehrhart and Keser, 

1998, 2002, and Cassar, 2007, which are discussed in Section 3). Thus, we conjectured that 

clustering also fosters efficiency and is therefore important for equilibrium selection. The data 

gathered from the second and third sets of experiments support all these three behavioral 

hypotheses in small and (relatively) larger network environments, respectively. 

We also consider a puzzle from the first set of experiments concerning the effects of 

uncertainty on the selection of the efficient equilibrium with strategic complements. To test 

whether the introduction of uncertainty per se can drive the selection of the inefficient 

equilibrium, we ran an additional treatment with a minimal degree of uncertainty. The results 

suggest that there is indeed an important effect of uncertainty per se on behavior in network 

games, as it appears to play a role in driving play to the most secure equilibrium.    

People largely behave in accordance with some simple principles and generally make 

very sensible choices in complex environments. First, behavior closely resembles the theoretical 

equilibrium when this is unique. Second, when there are multiple equilibria, there are general 

features of networks, such as connectivity, clustering, and the degree of the players, that predict 

informed behavior in the lab. Third, our evidence reveals some specific patterns.  With complete 

information and substitutes, people select an equilibrium that delivers nearly as much overall 

profit as the optimal one; with complete information and complements they select the efficient 

one. As discussed later, this difference can be explained by looking at the relation between 

efficiency and private incentives. The inactive equilibrium is rarely played when there is another 

equilibrium with activity; this is consistent with experimental work in which payoff dominance 

is a key consideration for equilibrium selection (Charness, 2000; Brandts and Cooper, 2006).  

                                                            
10 In equilibrium the strategies of individuals are best responses to the strategies of the neighbors. Therefore, the 
equilibrium strategies of two players (linked or not) display more correlation as the number of their common 
neighbors increases (perfect correlation with the same set of neighbors). Thus, if two players A and B are neighbors 
in a (larger) network, and we increase the clustering by adding a new link between A and a neighbor of B (say C), 
then the correlation between the equilibrium strategies of A and B is higher (since C is now a common neighbor). 
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And yet there are some moderating forces on the attraction to efficiency: 1) people seem 

content with only the lion’s share of the efficient profits in exchange for greater security, and 2) 

uncertainty about the network structure makes it considerably more difficult to coordinate on a 

demanding, but efficient, equilibrium that is typically implemented with complete information. 

We believe that our findings, while certainly not a full characterization, nevertheless offer 

considerable predictive power for behavior and equilibrium selection in games on networks. 

The remainder of the paper is organized as follows. We discuss the relevant literature in 

section 2, and describe the experimental design and implementation in section 3. Our 

experimental results are given in section 4, and we offer a discussion of our results and their 

implications in section 5. We conclude in section 6, and propositions and proofs regarding our 

networks are given in the Appendix. 

2. Literature review 

In this section we review related work. We refer the interested reader to Jackson (2008) 

for a comprehensive overview of theoretical work and applications of social and economic 

networks.  

Regarding theoretical work, a handful of papers show that the outcomes of games in 

general depend on the specific network structures, when there are either strategic substitutes or 

complements and either complete or incomplete information.11 Galeotti et alii (2010) was the 

starting point for our experimental design and our initial task was to adapt this theory to a 

distilled selection of networks that represented their framework.  

Overall, there is relatively little research in experimental economics on network games, 

particularly given the wealth of theoretical contributions in this area.12 Here we restrict our 

discussion of the literature in experimental economics to designs with exogenous networks 

(where the participants have no control of the network structure), as in our own environment.13,14  

                                                            
11 For the complete-information case, see for example Ballester, Calvó-Armengol and Zenou (2006), Bramoullé and 
Kranton (2007), Goyal and Moraga-Gonzalez (2001), and Calvó-Armengol and Jackson (2004). For the incomplete-
information case, see Jackson and Yariv (2005), Sundararajan (2006), and Galeotti and Vega-Redondo (2011). 
12 Researchers in sociology have long been interested in studying networks in experiments (see the seminal studies 
by Stolte and Emerson, 1977, or Cook and Emerson, 1978; see also surveys of Willer, 1999, or Burt, 2000). Note, 
however, that sociologists have been in particular interested in studying the exercise of power in networks, 
something with which the literature in experimental economics has not yet been concerned. 
13 Thus, we do not consider the issue of how networks were formed, but simply presume that the links are already in 
place due to some relationships that have (or had) value, and that the cost of endogenous change is prohibitive. In a 
sense, the study of agents’ behavior under exogenous networks is a simplification of economic situations in which 
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Some research has examined the consequences of network structure on equilibrium 

selection in coordination games, which is relevant for our settings with a multiplicity of 

equilibria (game of strategic complements). Keser, Ehrhart and Berninghaus (1998) use a 3-

person coordination game; in one treatment, each participant is connected to two neighbors on an 

8-player circle, while in the other treatment, people play within closed 3-person groups. The 3-

person group quickly coordinates on the payoff-dominant equilibrium while the circular group 

eventually coordinates on the risk-dominant equilibrium.  

Berninghaus, Ehrhart and Keser (2002) extend the design of Keser et alii (1998) to a 

more general framework, in order to gain more insight on the impact of neighborhood sizes and 

structures on equilibrium selection. Specifically, they add a network of 16 players arranged in a 

lattice with four neighbors each and a network of 16 players arranged in a circle, each linked to 

the four closest players. A comparison between the 16-player networks shows more coordination 

on the efficient equilibrium with the circle. The main differences between their design and ours 

are: (i) they focus on homogeneous and symmetric networks, whereas we consider 

heterogeneous networks, (ii) in their design adding a link to a neighbor who chooses inactivity is 

not payoff equivalent to not having an additional neighbor,15 and (iii) they consider a setup 

where subjects only know their degree (number of neighbors), but are uninformed about any 

other feature of the network, including the (random) generating process of the network. Our 

design allows participants to possibly perform more sophisticated calculations: They can 

potentially form (Bayesian) beliefs (as in Galeotti et alii, 2010) and calculate the equilibria. 

Cassar (2007) compares convergence to equilibrium in three different network structures: 

a local-interaction network (similar to that in Berninghaus et alii, 2002), a random network, and 

a “small-world” network (each link in the local-interaction network has a probability of being re-

wired to a ‘short cut’ of a chord across the circle).  Participants converge to the efficient 

equilibrium of the coordination game in the small-world network, but less so in the others. 

                                                                                                                                                                                                
networks adjust very slowly, whereas interaction among the agents located in the network can be very frequent (e.g., 
in housing neighborhoods, networks of co-workers, insurance networks in developing countries, etc.). 
14 There are other experiments on networks in other environments, including buyer-seller networks (Charness, 
Corominas-Bosch, and Fréchette 2007), the prisoner’s dilemma (Riedl and Ule 2002; Kirchkamp and Nagel 2007), 
and endogenous networks (Falk and Kosfeld 2003; Deck and Johnson 2004; Callander and Plott 2005; Berninghaus, 
Ehrhart, and Ott 2006; Berninghaus, Ehrhart, Ott, and Vogt 2007). 
15 This property is key to most of the results in Galeotti et alii (2010). 
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Cassar’s (2007) results suggest that high network clustering and short network path length 

increase the probability with which agents coordinate on the payoff-dominant equilibrium.16  

Within the scope of experimental games of strategic substitutes played in networks, the 

most closely related paper to our study is Rosenkranz and Weitzel (2012). They consider the 

public-goods game on networks studied theoretically by Bramoulle and Kranton (2007), which is 

similar to our environments with strategic substitutes and complete information. The main 

differences are that in their game people can choose partial activity and that their benefit function 

is strictly increasing in the neighbors’ actions. They study 4-player networks with repeated 

matching. The network and one’s position within the network are fixed. Individuals find it 

difficult to coordinate on equilibria, but there is more coordination on equilibria in which each 

player is either fully active or inactive, and equilibrium play is more prevalent in networks with 

high (low) average degree and low (high) centrality. When convergence occurs, this involves a 

fully inactive player connected to at least two fully active players,17 which is related to our 

finding that an inefficient but more secure equilibrium is mostly played with complete 

information and substitutes in all three networks. They also find a negative correlation between 

individual contributions and degree, reflecting the idea that players with lower degree are the 

more ‘active’ ones in the network. 

Other experimental studies that consider public-good games played in networks are Fatas, 

Meléndez-Jiménez and Solaz (2010) and Choi, Gale, Kariv and Palfrey (2011).18 Fatas et alii 

(2010) consider network effects primarily in relation to the voluntary-contribution mechanism.  

Four-person groups play repeatedly a standard VCM in four different network structures: the 

line, the circle, the star, and the complete network. In their (fixed-matching) setup, the network 

only determines the information about past behavior that each player receives (i.e., information 

about others’ past contributions is transmitted if and only if there is a direct link between the 

parties). Therefore, an agent’s payoffs depend on the choices made by all the population, rather 

                                                            
16 Charness and Jackson (2007) frame a Stag Hunt as the choice of adding a link between two players in a pre-
existing network, where this link can be added by either mutual or unilateral consent. Whether the payoff-dominant 
or the risk-dominant equilibrium prevails depends on the degree of consent required. Boun My, Willinger, and 
Ziegelmeyer (2006) and Corbae and Duffy (2008) also study experiments on coordination games in networks. 
17 This type of equilibrium is the only stable one in Bramoulle and Kranton (2007) with a Nash tâtonnement process.  
18 See also Carpenter (2007), which mainly considers the issue of group size in the VCM, but also has treatments in 
which people are only allowed to punish their closest neighbors. Relative to not punishing at all, both the possibility 
of monitoring either half or all of the group yields significantly more contributions, and the possibility of punishing 
only a single player elicits significantly fewer contributions. In a more recent paper, Carpenter et alii (2012) study 
the effects of punishment in VCM played in networks. 
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than on the choices made in his local network, as in this paper. They find that contributions are 

affected by the network structure, with 30-40 percent higher contributions with the complete 

network and the star than with the line and the circle. There is at least one person with a degree 

of three in each of the networks with higher contributions; such a person learns the contribution 

of every other player and every other player observes their choice, with this being common 

information. The degree of an individual does not appear to affect contributions, however.  

Choi et alii (2011) study directed networks of three players in the lab. In each of three 

stages, each player must decide whether to irreversibly contribute his endowment to a public 

good. At each stage, players can only observe the past decisions of neighbors in the network. The 

public good is provided if and only if at least two players have contributed by the end of the third 

stage. Each player earns his unit of endowment (if not contributed) plus two units (if the public 

good has been provided). There are inefficient equilibria (no one contributes) and efficient 

equilibria (two agents contribute). Participants who do not observe others but are observed by 

others tend to contribute early, while those who observe others tend to delay their contributions. 

In their paper, the network only matters through the information received in the three stages. 

Furthermore, payoffs depend on own and global behavior, rather than depending only on own 

and neighbors’ behavior.  Moreover, our networks are larger and have a variety of structures.  

Kearns et alii (2006, 2009) conduct experiments where players have a collective goal, 

studying how the capacity to achieve this goal depends on the network structure of 

communication. Kearns et alii (2006) consider a game of substitutes in which all players receive 

exactly the same payoff, which depends only on whether the collective goal is achieved or not; it 

is more difficult to achieve success with networks generated by preferential attachment than with 

either ‘small-world’ networks or networks based on cyclical structures.19 Kearns et alii (2009) 

examine a game of complements, where the entire group aims to coordinate (vote) on a choice, 

and where there is heterogeneity in preferences. Their findings suggest that some network 

structures better promote coordination, and that the presence of individuals, with extreme views 

or the awareness of opposing incentives, reliably improve collective performance.20 In contrast to 

these studies, the key aspect of our design is that earnings and optimal strategies are directly 

                                                            
19 Preferential attachment is a stochastic process of network generation, in which the more connected a node is, the 
more likely that it will have more new links as the network is formed incrementally. 
20 See also the recent study by Choi and Lee (2014), which investigates how the interaction between the network 
structure of pre-play communication and the length of such communication affects outcome and behavior in a 
similar coordination context. 



 10

related to network features such as the degree; also, in our case players only care about their own 

choices and those of their neighbors. Additionally, we present a framework where one choice is 

secure and the other one is efficient but ‘risky’. Hence, we have multiplicity of equilibria of very 

different natures, which renders the equilibrium-selection problem a crucial issue.  

In sum, our experiments can be seen as venturing into some new realms. We contrast 

strategic complements and strategic substitutes, considering both complete and incomplete 

information concerning aspects of the network structure.  

3. Experimental design 

In the experiments in this paper we focus on the two specific games that Galeotti et alii 

(2010) use to introduce and motivate their results, which we now briefly summarize. Consider a 

player who can choose between being active (e.g., buying a product) or inactive (e.g., not buying 

the product). The player is located in a position within a network and her payoff depends both on 

her choice and on the choices of her neighbors. 

 With strategic substitutes, a player earns 100 if either she or at least one of her neighbors 

is active, and earns 0 otherwise. Being active costs 50, while inactivity is costless. 

 With strategic complements, if a player is inactive, she earns 50 and, if she is active she 

earns 33.33 times the number of neighbors who are active.21  

In each of our two games, there is a choice that provides the subject a fixed payoff of 50, 

independently of the degree and of the neighbors’ decision. This choice is active in the game of 

strategic substitutes, whereas it is inactive in the game of strategic complements.  Note that this 

choice is indeed the maximin action (pure strategy), since it provides a player the largest payoff 

in the worst possible outcome. In this sense, this choice is secure (see Von Neumann and 

Morgenstern, 1944, 1972). Following Van Huyck, Battalio, and Beil (1990), we denote an 

equilibrium in which all players choose the secure (maximin) action as a secure equilibrium. 

When there is no such equilibrium, we refer to the equilibrium with the highest number of 

players choosing the secure action as the most secure equilibrium. On the other hand, we say that 

an equilibrium is efficient if it provides the maximum feasible aggregate payoff.  

As we shall see below, when there are multiple equilibria, the efficient and the (most) 

secure ones differ. In these cases, although the secure equilibrium is inefficient, it typically has 

                                                            
21 In our experimental design, to avoid losses in the case of strategic complements we have added 50 to all the 
payoffs as compared to the original game used by Galeotti et alii (2010). 
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very good properties in terms of risk-dominance and (stochastic) stability. In our multi-player 

games, we cannot invoke the Harsanyi and Selten (1988) concept of risk-dominance, but we can 

rely on the concept of ordinal generalized-risk dominance, proposed by Peski (2010). Indeed, 

Peski (2010) shows that an ordinal generalized-risk dominant profile is stochastically stable 

under a class of evolutionary dynamics. In our treatments, when there exists an ordinal 

generalized risk-dominant equilibrium, it is always the (most) secure equilibrium (see Online 

Supplement D).22 Thus, in many of our treatments, the equilibrium-selection problem between 

the efficient and the secure equilibrium reflects the traditional trade-off between efficiency and 

risk dominance. 

All networks used in our experiments are shown in Figure 1: 

[Figure 1] 

3.1 Experiment 1 

In this study we used the three networks displayed in the top panel: The Orange, Green 

and Purple networks. With incomplete information, p is the probability that the Orange network 

is in force, with each of the other two networks being selected with probability (1-p)/2. Note that, 

since the Orange network has a higher connectivity than the other two ones (the Orange network 

is the Green network with the link BD added and is also the Purple network with the link CD 

added), we modulate the connectivity by parameter p.  We had 12 sessions with 20 participants 

in each. There were two sessions in each of the six treatments below. 

 strategic substitutes with complete information; 
 strategic complements with complete information; 
 strategic substitutes with incomplete information and p = 0.2; 
 strategic substitutes with incomplete information and p = 0.8; 
 strategic complements with incomplete information and p = 0.2; 
 strategic complements with incomplete information and p = 0.8.  

In each session, the 20 participants were split randomly into two matching groups of 10 

subjects, and this was common information. In each of 40 periods (plus five unpaid trial periods, 

                                                            
22 There exists an ordinal generalized-risk dominant equilibrium in all the treatments of strategic complements of 
Experiments 1 and 2 (both with complete and incomplete information). In the case of strategic substitutes, when 
there are multiple equilibria (complete information scenario), only in one of the networks does there exist a 
generalized risk-dominant equilibrium. However, in all the networks the most secure equilibrium is stochastically 
stable under a class of evolutionary dynamics, as shown by Boncinelli and Pin (2012) – see Section 4.1 for details.     
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with the same feedback structure as below), the members of a matching group were randomly 

assigned to groups of five subjects who played the stage game of a given treatment.  

 The experimental instructions are provided in Online Supplement C.23 In treatments with 

complete information, participants were always informed at the beginning of a period about the 

chosen network (which was re-drawn each period, each network being equally likely) and the 

participant’s position in it. At the end of a period, each person received feedback about her 

neighbors’ decisions and the payoff resulting from her choice and those of her neighbors. Before 

a new period began, participants also received the respective feedback for all prior periods. In 

treatments with incomplete information, subjects were informed about their degree at the 

beginning of a period. At the end of the period, each person received information about the 

actual network that was in effect, her position in it, the number of her neighbors who chose to be 

active, and the payoff resulting from her choice and those of her neighbors. Payoffs were given 

in ECUs (Experimental Currency Units), with 20 ECU = 1 Euro.24 

Based on the equilibrium analysis reported in the Appendix, we summarize the pure-

strategy equilibrium predictions for each treatment of Experiment 1 in Table 1.25 For the 

complete-information scenario, we report the Nash equilibria, and for the incomplete-

information scenario we report the symmetric Bayes-Nash equilibria.26 

 [Table 1] 

With complete information and strategic substitutes, all three networks have equilibria in 

in which two nodes are active and equilibria in which three nodes are active. The former are 

efficient, and the latter are the most secure ones according to the definition given above. In the 

case of strategic complements, we have a unique equilibrium in the green and purple networks, 

where all individuals are inactive; and there are two equilibria in the orange network: In addition 

                                                            
23 We only provide the instructions for “complete information – substitutes” and “incomplete information – 
complements – p = 0.8”. The remaining cases are analogous.  
24 Since behavior could potentially be affected by risk preferences, we also tested for these in Part 2 of the 
experiment, using two elicitation methods (see Charness and Gneezy, 2010). We find that the marginal effect of risk 
aversion on the probability of being active is almost always insignificant. At the beginning of the experiment it was 
announced that the experiment would consist of two independent parts. Part 1 was the network game. The 
instructions for Part 2 were only distributed after the end of Part 1.  The average payoff from the risk-preference task 
was 4.36 Euro. Note that participants had no information during Part 1 about the potential gains from the subsequent 
risk task, so that the size of the payoffs from the risk task could not affect behavior in Part 1. 
25 We refer readers interested in the mixed-strategy equilibria to the working-paper version, Charness et alii (2012). 
26 In the incomplete-information scenario, we focus on symmetric Bayes-Nash equilibria, (i.e., all players with the 
same degree choose the same strategy). Galeotti et alii (2010) restrict their main analysis also to symmetric Bayes-
Nash equilibria in order to clearly elicit the pure effects of networks on behavior and welfare, without any potential 
confounds that might arise from egalitarian concerns in case of asymmetric equilibria. 
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to the (no-activity) secure equilibrium, there is an efficient equilibrium in which the clique 

formed by positions B, C and D is active.  

With incomplete information, Galeotti et alii (2010)27 show that the equilibria are defined 

by a threshold: In the case of strategic substitutes, those players with degree below (above) the 

threshold are active (inactive), and the threshold increases with connectivity. In the case of 

strategic complements, those players with degree above (below) the threshold are active 

(inactive) and the threshold decreases with connectivity. Thus, as depicted in Table 1, in the case 

of strategic substitutes, the theoretical prediction is that players with degree 1 (degree 3) are 

active (inactive) in both treatments, i.e., p = 0.2 and p = 0.8. Players with degree 2 are active 

only when p = 0.8. With strategic complements, the theoretical prediction is that no one will be 

active when p = 0.2, but that (in addition to the no-activity secure equilibrium) there is room for 

players with high degree (degrees 2 and 3) to be active in (an efficient) equilibrium when p = 0.8.   

Comparing across informational regimes (Table 1), we see that the equilibrium 

multiplicity with complete information and strategic substitutes is fully resolved with incomplete 

information, as well as with strategic complements and p = 0.2 (but not p = 0.8). Thus, we can 

study if people are behaviorally responsive to the different network positions and the levels of 

information they have when the incentives are either complements or substitutes.  

We conducted this initial set of sessions at the University of Innsbruck in March of 2011, 

using the software zTree (Fischbacher 2007). A total of 240 undergraduate students from various 

academic disciplines were recruited with the help of ORSEE (Greiner 2004). No subject was 

allowed to participate in more than one session. On average, a session lasted about 80 minutes, 

with an average payoff of 16 Euro per subject (including a 5 Euro show-up fee). 

After conducting these sessions and seeing the results, we added an extra treatment to the 

Experiment 1 setting. In an effort to understand the dramatically-different behavior with strategic 

complements according to whether the orange network is certain or only 80 percent likely, we 

also ran two sessions with our initial networks and with the likelihood of p = 0.95 that the orange 

network being in force. The set of (pure-strategy) equilibria in this additional case coincides with 

the set of equilibria for p = 0.8: There is one equilibrium in which all degrees are inactive and 

                                                            
27 Another set of results presented in Galeotti et alii (2010) are related to mean preserving spread in degree 
distributions: keeping connectivity the same but allocating links differently. In a sense, Experiment 3 provides some 
evidences related to this issue, because in two treatments we preserve the degree distribution but change the network 
structure. 
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another one in which players with degree 1 are inactive and players with degrees 2 and 3 are 

active. A total of 40 new subjects participated in these sessions. 

3.2 Experiment 2 

After observing our results for Study 1 and receiving helpful comments, we designed a 

new experiment to study the issue of equilibrium selection in the lab in more detail. We focus on 

strategic complements in the new treatments.28 The new treatments are: 

 strategic complements with complete information; 
 strategic complements with incomplete information and p = 0.2; 
 strategic complements with incomplete information and p = 0.8.  

In this experiment, we used the networks depicted in the middle panel of Figure 1: The 

Blue, Red and Brown networks. With incomplete information, the value for p is the probability 

that the Blue network was in force, with each of the other two networks being selected with 

probability (1-p)/2. We created these three new networks by adding a link to each of the three 

initial networks used in Experiment 1 (with re-labeling to avoid visually-crossed lines).29 We 

note that the Red and Brown networks have the same average connectivity but different 

clustering, with a clustering coefficient of 0.5 (0) for the Red (Brown) network. The Blue 

network has higher average connectivity, but also has a higher clustering coefficient (of 0.6).30 

Table 2 shows the theoretical predictions for the network scenarios in Experiment 2, 

which are derived in the equilibrium analysis reported in the Appendix.  

 [Table 2] 

 Note that all treatments share two equilibria, the secure one in which all subjects are 

inactive and the efficient one in which the maximum number of players who can (profitably) 

coordinate on activity do so.31 So this design allows us to study the equilibrium selection and to 

relate it to relevant network characteristics: connectivity, degree and clustering.  

                                                            
28 This is so since, in the main context (incomplete information) analyzed in Galeotti et alii (2010), there are 
multiple equilibria with strategic complements, whereas they find a unique equilibrium in the case of substitutes. In 
the complete-information scenario in the new set of treatments, we also focus on the case of strategic complements. 
29 Specifically, we add the link CE to each of the networks, and then switch the labels of nodes D and E. 
30 The (global) clustering coefficient of a network is defined as three times the number of triangles (cliques) divided 
by the number of connected triples of vertices. A triangle is a trio of vertices, each of which is connected to both of 
the others, and a connected triple is a trio in which (at least) one of the vertices is connected to both of the others. 
Each triangle contributes to three connected triples of vertices (see Newman et alii 2001), ergo the factor of three. 
31 The incomplete-information scenario presents an additional Bayes-Nash equilibrium in which only players with 
degree 3 are active when p = 0.8. However this equilibrium is weak, since players with degree 2 are indifferent 
between being active or inactive (see the Appendix). It is an evanescent equilibrium since, in any dynamic setup, if 
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A comparison between the p = 0.2 and p = 0.8 treatments lets us test the (behavioral) 

hypothesis that an increase in the connectivity increases the probability that the efficient 

equilibrium is played, since the higher the connectivity, the higher the payoffs with coordination 

on the efficient equilibrium, and so the more likely the efficient equilibrium is played. Similarly, 

we also conjecture that the degree of a subject increases the probability that she is active.  

Regarding clustering, Keser et alii (1998) show that three-player cliques achieve more 

coordination than do 8-player circles (with zero clustering), despite the same average 

connectivity,32 and Berninghaus et alii (2002) find that there is more coordination on the 

efficient equilibrium in a (homogeneous) network of 16 players arranged in a circular structure 

and linked to their closest 4 neighbors (hence, with positive clustering) than in a 16-players 

lattice with the same average connectivity (with zero clustering).  The results in Cassar (2007) 

reinforce the idea that clustering increases the probability that agents coordinate on the efficient 

equilibrium,33 and the experimental evidence supports the idea that small groups coordinate on 

the payoff-dominant equilibrium more than larger ones do (see, for instance, Van Huyck et alii, 

1990). Thus, our (behavioral) hypothesis is that environments with higher clustering should 

support more coordination on the efficient outcome.   

We conducted the sessions of Study 2 in Innsbruck in October of 2012. There were two 

sessions of each of the treatments with the new 5-person networks, and thus 40 people in each of 

these treatments, yielding a total of 120 new participants. 

3.3 Experiment 3 

We designed a new experiment using a more complex environment to confirm the results 

previously observed with respect to equilibrium selection. We use the three different 20-person 

networks shown in the bottom panel of Figure 1. We consider only strategic complements for the 

same reasons mentioned above (cf. Footnote 28). In this case, we additionally focus on the 

incomplete-information scenario because the strategy space in the case of complete information 

would be very large. Players know the network but not their position within the network. In each 

                                                                                                                                                                                                
one degree-2 player switches from inactive to active (also a best response), then all remaining players with degree 2 
would have (strict) incentives to become active. Moreover, it is inefficient, as it is Pareto dominated by the (efficient 
and strict) equilibrium in which players with degrees 2 and 3 are active. For these reasons, and because it has no 
behavioral support in our data, we generally ignore this equilibrium in our analysis.    
32 Note that in our design it suffices for a 3-player clique to coordinate for activity to be optimal. 
33 She argues: “when the clustering among neighbors is high, agents observe their neighbors responding to similar 
local conditions and play as if they were playing in a small groups instead of on a much larger network”. 



 16

period, (the same group of 20) people are randomly allocated to the nodes of the network, are 

informed of their degree, and then choose to be active or inactive. The network remained the 

same for all 40 periods. We had three treatments, one for each of the networks that, as explained 

below, differ in terms of connectivity and clustering. The experimental instructions (to the 

treatment corresponding to Network 1) are provided in Online Supplement C. 

Table 3 gives a summary of network characteristics for these networks. Note that 

networks 2 and 3 are formed by adding seven links to network 1, that both networks 1 and 2 have 

zero clustering whereas there is positive clustering in network 3, and that networks 2 and 3 have 

the same level of connectivity and the same degree distribution. Hence both networks 2 and 3 are 

more connected than network 1, but network 3 additionally has a higher degree of clustering. 

 [Table 3] 

The equilibrium predictions (in pure strategies) are shown Table 4 (see the Appendix for 

a derivation of these results). As we can see, with this design, all three networks have the same 

set of (pure-strategy) equilibria: 1) An efficient equilibrium, in which players with degree higher 

than 1 are active, and 2) a secure (inefficient) equilibrium, in which all players are inactive. 

 [Table 4] 

A comparison of networks 1 and 2 allows us to study the robustness of the connectivity 

effect on the selection of the efficient equilibrium in the large-network case, and the comparison 

of networks 2 and 3 allows us to study the effect of clustering. As in Experiment 2, our 

(behavioral) hypotheses are that connectivity and clustering enhance the selection of the efficient 

equilibrium, and that subjects with higher degrees are active with a higher frequency.  

For each of the three treatments (different 20-person networks), we conducted three 

sessions, each with 20 new participants, yielding a total of 180 new participants, at the 

University of Innsbruck in December 2012 and January 2013.  

4. Results 

4.1 Experiment 1 

Measurement  

 We analyze our data with an econometric model. We estimate the probability of being 

active as a logistic function of explanatory variables listed in the following paragraph. We have 
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arranged the data as a panel where the unit of observation is a participant who is observed for 40 

periods. The models are estimated using random effects and are shown in Online Supplement B.  

 The explanatory variables in the econometric model of the complete-information data are 

period, dummies for player position, all interactions between period and these dummies, and the 

measured level of risk aversion. One model is estimated using data from sessions with substitutes 

and another model is estimated using data from sessions with complements. The results are 

summarized by the estimated probabilities of being active computed by player position, network, 

and treatment (see Table 5 below and Online Supplement B). The explanatory variables in the 

econometric model of the incomplete-information data are period, a dummy for the connectivity 

(with p = 0.2 as benchmark), and dummies for a player’s degree, interactions across these 

variables, and the measured level of risk aversion. The results of this model are summarized by 

the marginal probabilities computed with respect to connectivity and degree (see Table 6 below). 

Complete information 

Table 5 presents the summary statistics for behavior in the three networks for both 

substitutes and complements with complete information, as well as the estimated rate of activity.  

Figure 2 shows the evolution per network and position across the 40 periods.34  

 [Table 5 and Figure 2] 

Strategic Substitutes 

The main observation is that the equilibrium where A, C and E are active, and B and D 

inactive (denoted ACE/BD henceforth) is focal in all networks. There is strong support for this.35 

Averaging the absolute difference between the theoretical prediction and the observed behavior 

over all nodes, individual play is consistent with the equilibrium ACE/BD in 87.6 percent of all 

cases, which is (one of) the most secure equilibrium. There is no support for any of the other 

equilibria,36 so the problem of equilibrium multiplicity does not seem to be present behaviorally. 

In 52.5 percent of the observations the groups fully coordinate on this equilibrium; this is 

                                                            
34 There are eight subjects in each network position in this treatment. Thus, the maximum number of observations 
behind each circle in Figure 2 is eight. 
35 The weakest support is from player C in networks where he or she has degree 2. Even so, there is a strong trend 
over time towards C being active, as this rate increases from 58.7 percent in the first 20 periods to 76.6 percent in 
the final 20 periods with the Orange network and from 52.8 percent to 80.8 percent with the Green network. 
Similarly, player C’s activity rate increases from 90.2 percent to 98.4 percent with the Purple network. 
36 While there is scope for considerations of learning across games (see Mengel, 2012, for a related argument in the 
context of two-player games) that, for instance, might favor play of the equilibria that are common across the 
different games (i.e., networks in our case), since we have two equilibria (one efficient and one more secure) that are 
common to the three networks, this would not help in predicting which equilibrium would actually be selected. 
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increasing over time, 36.9 (68.1) percent in the first (last) 20 periods. In fact, the correlation 

coefficient between the period and the average frequency of equilibrium play is 0.724 (p < 0.01). 

The econometric analysis confirms our previous impressions. In all networks with 

strategic substitutes, the estimated activity probability for positions A and E is close to 100 

percent. On the other hand, the estimated activity probability for positions B and D is never more 

than 10 percent. While position C has a lower estimated activity rate than positions A in E in 

networks Orange and Green, being active is still by far the most likely outcome for position C. 

Thus, the equilibrium ACE/BD prevails in all networks.  In Figure B.1 (in Online Supplement 

A), we see that this regularity is present in every group. 

Note that, across all possible equilibria, ACE/BD is the one that involves a maximum 

number of active players; i.e. it is not fully efficient, since three players pay the cost instead of 

two, with complete coverage in both cases (the net social benefit is 350, compared to the social 

benefit of 400 with only two active players). However, it can be argued that the selected 

equilibrium ACE/BD is more stable than the equilibria where only two players are active.  To 

see this, consider any of the three networks and the equilibrium ACE/BD.  If any player who is 

active deviates to inactivity, only the deviating player incurs a loss (of 50) and, from that 

configuration, only such a player would have incentives to switch his action (to become active 

again), leading back to the initial ACE/BD equilibrium.37  On the other hand, after a deviation of 

a player to inactivity in the efficient equilibrium, at least two players would have incentives to 

become active, one of them being the deviator.38 Boncinelli and Pin (2012) provide support for 

this explanation, as they show that in Best Shot Games played in networks under complete 

information, the equilibria that involve a maximum number of active players are the only 

stochastically-stable ones under a class of evolutionary dynamics.39 This result applies directly to 

our set-up.40 Summarizing, there is a trade-off between efficiency and stability. 

                                                            
37 Note that there is one exception. In the purple network, if player E becomes inactive, both players E and D have 
incentives to switch their action. However, note that no matter who switches, we would end up in one of the most 
secure equilibrium (the same argument applies to the equilibrium ACD/BE). 
38For example, in the equilibrium BE/ACD in the Orange network: if B deviates, A, B and C all incur a loss of 50. 
39 The stochastically-stable states are those robust enough to be observed a significant fraction of time under a 
slightly perturbed dynamic (in the limit when the mutation probability goes to zero). Specifically, Boncinelli and Pin 
(2012) find that our more secure equilibria are the only stochastically-stable ones under (perturbed) myopic best 
response dynamics such that the rate at which active players mutate (make mistakes) is of an order sufficiently 
larger than that of inactive players. Otherwise, they show that all the equilibria are stochastically stable.  
40 The equilibrium ACE/BD is the only stable one in the Orange and Green networks, with an additional stable (but 
inefficient) equilibrium of ACD/BE in the Purple network. However, as shown in Online Supplement D, with the 
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Result 1: With complete information and strategic substitutes in Experiment 1, agents’ 
behavior in all three networks is consistent with the inefficient, but stochastically-stable 
equilibrium ACE/BD. Coordination on this equilibrium increases over time. 

Strategic Complements 

For complements, we see an impressive rate of play (96.1 percent) consistent with the 

unique equilibrium (no activity) in the Green and Purple networks.41 The Orange network 

admits two equilibria, with either three active players or none. Here the play resembles the active 

equilibrium, as players B, C, and D are active 74.0 percent of the time, and players A and E are 

inactive 95.6 percent of the time. This is also the efficient equilibrium, since players B, C, and D 

each earn more than with the inactive (secure) equilibrium. Thus, we find strong support for the 

theoretical predictions (players mostly play an equilibrium), and with multiplicity there is 

successful coordination by players (in a clique) on the efficient equilibrium. At the group level 

(see Figure B2 in Online Supplement A), three of the four matching groups coordinate quite well 

on this equilibrium. Over time, equilibrium play becomes more frequent, with a correlation 

coefficient between the period and the frequency of equilibrium play of 0.622 (p < 0.01). 

The estimated probabilities of being active confirm this impression (Table 5). In all 

networks, this estimate for positions A and E choosing active is close to 0. This is also true for 

positions B, C, and D in the Green and Purple networks, while in the Orange network B, C and 

D are predominantly active (the estimated activity rates are respectively 0.843, 0.746 and 0.813).   

Result 2: With complete information and strategic complements in Experiment 1, players 
in the Green and Purple networks play the unique equilibrium, while players in the 
Orange network behave largely consistently with the efficient equilibrium BCD/AE. There 
is increasing coordination on the equilibrium over time.  

Note the difference in outcomes between strategic substitutes and complements: while 

people select the inefficient equilibrium (the most secure one) with substitutes, with 

complements they select the efficient one. We can explain this difference by looking at the 

relation between efficiency and private incentives. With complements, the two equilibria are 

Pareto-ranked, and even if the inefficient equilibrium is secure, with complete information 

participants are able to successfully coordinate on the efficient equilibrium, which is (weakly) 
                                                                                                                                                                                                
Purple network ACE/BD is (generalized) risk-dominant while ACD/BE is not. In any case, one could conjecture 
that an additional explanation for the fact that (in the case of the Purple network) the ACE/BD equilibrium is mostly 
played, whereas there is no support for the ACD/BE equilibrium, could be an aesthetic preference for symmetric 
outcomes (since nodes ACE are symmetrically spatially located in the network as depicted in Figure 1).   
41 Of course, A and E will never wish to be active, since the maximum possible gain is less than the cost. 
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beneficial for all of them. With substitutes there are more subtle considerations, since the 

equilibria are not Pareto-ranked and, therefore, there are individuals in different positions that 

(strictly) prefer different equilibria. Our results suggest that, in this case, security/stability 

considerations play an important role in the equilibrium selected (in line with the findings of 

Rosenkranz and Weitzel, 2012).  

Incomplete information 

Table 6 presents the summary statistics for behavior with incomplete information and 

both strategic substitutes and complements under each probability regime, as well as the 

marginal effects on activity. Figure 3 shows the evolution per network and position across the 40 

periods for both substitutes and complements. 

 [Table 6 and Figure 3] 

Strategic substitutes 

For strategic substitutes we observe that, in each case (p = 0.2 and p = 0.8), modal play 

coincides with play in the unique equilibrium.42 The correspondence is excellent for degrees 1 

and 3, but less so for degree 2. Overall, 87.6 percent of all choices were consistent with 

equilibrium play when p = 0.2 and 84.0 percent when p = 0.8.  

Regarding the effect of connectivity within a particular degree (recall that higher values 

of p imply higher connectivity), Table 6 shows no significant difference in the behavior of 

players with degree 1 across the values of p. For players with degree 2, the probability of being 

active is significantly higher when p = 0.8, with a marginal effect of 0.547; for players with 

degree 3, this probability is marginally-significantly higher with p = 0.8, although the marginal 

effect is small (0.024). Overall, our data are consistent with the equilibrium prediction. 

Next consider the effect of degree on behavior. Participants with degree 2 are much less 

likely to choose activity than those with degree 1; the decrease is quite large when p = 0.2 and 

much smaller when p = 0.8. People with degree 3 have a much lower probability of choosing 

activity than do people with degree 1, for both values of p.  Comparing degree 3 to degree 2, the 

probability of choosing active is significantly lower for participants of degree 3, with a large 

                                                            
42 The proportions are 94.8, 71.8 and 98.9 percent of the time, respectively, for degree 1, 2 and 3 when p = 0.2, and 
92.9, 59.5 and 89.9 percent when p = 0.8. 



 21

difference when p = 0.8 and a much smaller one when p = 0.2.43 All of the differences across the 

probability values are in the direction of the theoretical prediction.44 Hence, our analysis suggests 

that the expected effects of connectivity and degree are observed in the lab.  

We can also examine behavior over the course of the 40 periods. Behavior is quite stable 

for players with degrees 1 and 3 (and very close to the equilibrium prediction). The frequency of 

choosing to be active for players with degree 2 is always below ½ when p = 0.2, and mostly 

above ½ when p = 0.8; this qualitatively follows the equilibrium prediction, although deviations 

are observed. We note that when p = 0.8, players of degree 2 display a convergence to the 

equilibrium. Overall, the correlation coefficient between the period and the frequency of 

equilibrium play is 0.233 (not significant) with p = 0.2 and is 0.594 (p-value < 0.01) with p = 0.8. 

Summarizing, when players face a game of strategic substitutes with low connectivity, 

individual play and the level of coordination is stable over time. With higher connectivity there is 

a strong trend to the unique equilibrium and an increasing level of coordination. 

Result 3: Under incomplete information and strategic substitutes in Experiment 1, people 
consistently play the unique equilibrium and the probability of activity is decreasing with 
the degree and increasing with connectivity.  

Strategic complements 

Now consider the case of strategic complements. When p = 0.2, there is a unique 

equilibrium (all inactive), and play by people with degrees 1 and 2 is strongly consistent with the 

equilibrium prediction (98.0 and 82.1 percent). However, subjects with degree 3 are inactive 

only a bit more than half the time (55.6 percent). Still, in the aggregate, individual play is 

consistent with the equilibrium prediction six out of seven times. When p = 0.8, there are two 

pure-strategy equilibria. In the secure one, no players are active, but in the efficient one players 

with degree 2 and 3 are active. While the behavior of individuals with degree 1 is strongly 

                                                            
43 The marginal effects for degree 2 versus degree 1 are -0.816 and -0.273 for p = 0.2 and p = 0.8, respectively; for 
degree 3 versus degree 1, these are -0.980 and -0.961 for p = 0.2 and p = 0.8, respectively.  Finally, the marginal 
effects for degree 3 versus degree 2 are -0.687 and -0.164 for p = 0.2 and p = 0.8, respectively. 
44 The fact that players with degree 2 play equilibrium strategies less frequently than players with degrees 1 and 3 
may reflect their lower cost from deviating: (I) Consider the case p = 0.2, where players with both degree 2 and 
degree 3 are inactive in equilibrium. A player with degree 3 has more chances of being linked with an active player 
than does a player with degree 2 (i.e. the cost of deviation for a player with degree 2 is lower); (II) Consider the case 
p = 0.8. Here players with both degree 2 and degree 1 are active in equilibrium. Similarly, in this case, the cost of 
deviating to become inactive is lower for players with degree 2 than for players with degree 1 (a deviating player 
with degree 2 is more likely to be linked to an active player), and we could expect more deviations from them. 
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consistent with these equilibria (98.2 percent), the evidence on the behavior of individuals with 

degrees 2 and 3 is mixed, with activity rates of 31.0 and 51.0 percent respectively. 

Regarding the effect of connectivity within a particular degree, the behavior of players 

with degree 1 does not significantly differ across the values of p. Players with degrees 2 and 3 

are significantly more likely to choose to be active for the higher values of p, reflecting attempts 

by the players of higher degree to coordinate on activity. However, these attempts are largely 

unsuccessful over time. The decline over the course of the session is faster when p = 0.2 (where 

activity is not present in any equilibrium) and slower when p = 0.8. 

Concerning the effect of the degree, a person with degree 2 is significantly more likely to 

be active than a person of degree 1, but this difference is considerably larger with p = 0.8 than 

with p = 0.2 (the marginal effects are 0.153 and 0.041, respectively). This qualitatively supports 

the threshold equilibria identified by Galeotti et alii (2010) that, as explained above, depend on 

connectivity. Note that the inefficient (inactive) equilibrium is still present in the scenario with p 

= 0.8, so this result is in line with our behavioral hypothesis on the effects of connectivity on 

equilibrium selection (since players with degree 2 are active in the efficient equilibrium when p 

= 0.8). The same relationship holds between players with degrees 1 and 3, with higher marginal 

effects when p = 0.8 (0.562 versus 0.328 with p = 0.2). Finally, players of degree 3 are 

significantly more likely to be active than players of degree 2, for all values of p. This evidence, 

not predicted by theory, is in line with our behavioral hypothesis on degree, due to the greater 

incentive for players of degree 3 to coordinate on the efficient equilibrium.  

The pattern is revealing. It seems that subjects with higher degrees (particularly with 

degree 3) attempt to coordinate on profitably being active. But these attempts at efficiency 

diminish over time, with low or very low rates of activity for everyone by the end of the session; 

the correlation coefficient between the period and the average frequency of equilibrium play is 

0.926 for p = 0.2, and 0.639 for p = 0.8, significant at the one percent level. So it seems that the 

inefficient (but secure) equilibrium would prevail in the long run. Our interpretation is that 

coordination problems lead participants to eventually play this generalized risk-dominant 

equilibrium. In any event, modal play (in the aggregate) corresponds to this no-activity case.  

Summarizing, when players face a game of strategic complements, individual play with 

low connectivity converges to the unique equilibrium with an increasing level of coordination; 

individual play with higher connectivity appears to converge to the inefficient equilibrium. 
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Result 4: Under incomplete information and strategic complements in Experiment 1, the 
modal play coincides with the unique equilibrium with lower connectivity, while the 
probability of activity increases with the degree and connectivity. With high connectivity, 
there is convergence towards the inefficient (but secure) equilibrium. 

Certainty versus uncertainty with strategic complements 

We find a difference in play when it is certain that the Orange network is in force 

(complete information) and when this is only very likely (p = 0.8).45 The question that arises is 

whether this difference is driven by there simply being any element of uncertainty regarding the 

network in force. Recall that the result with complete information is driven by the ability of the 

BCD clique (i.e., the positions with degree 2 or 3) to coordinate on activity, and that the potential 

benefit of such coordination is only one-third of the potential loss from trying. Perhaps even a 

tiny amount of uncertainty will make such coordination too difficult to achieve.  

Accordingly, we conducted another treatment in which the probability that the Orange 

network is in force is 0.95. There are two equilibria: the efficient one where players with degree 

2 and 3 are active (analogous to the one played when the Orange network was certain) and a 

second one in which all players are inactive (the inefficient one, to which behavior converged in 

our treatment of incomplete information with p = 0.8).46 If we observe differences between this 

environment and one with complete certainty, it indicates that coordination on efficient-but-risky 

equilibrium is too difficult without common knowledge of the precise network having been 

implemented. This explanation is in part based on the abundant experimental evidence that 

people are loss adverse and tend to overestimate small probabilities.  

While the activity rate for degree-1 players is always negligible, the aggregated activity 

rates observed for players with degree 2 or 3 with p = 0.95 look considerably closer to those by 

players in positions C (degree 2), and B and D (degree 3) with complete information when the 

Orange network was in force (hereafter we denote this environment by p = 1) than to those found 

with incomplete information and p = 0.8. The activity rates for players of degree 2 are 31.0, 67.9, 

                                                            
45 Note that, although we cannot strictly say that the set of equilibria under complete information with the Orange 
network (p = 1) and under incomplete information with p = 0.8 are the same (since the strategy spaces differ), they 
are indeed equilibria of the very same nature, and the comparison is meaningful. Clearly, the inefficient equilibrium 
(all inactive) reflects the very same arguments in both cases. In the efficient equilibrium with p = 1 positions B, C 
and D (all degree 2 or 3) are active, and positions A and E (degree 1) are inactive and, in the efficient equilibrium 
with p = 0.8, players with degree 2 and 3 are active, while inactive with degree 1 (since with high probability they 
are in the BCD clique of the Orange network, as in the Green and Purple networks the incentives are to be inactive).   
46 When p = 0.95, if players are coordinated in the efficient equilibrium, the probability of a loss when an agent has 
degree 3 is approximately 1%, while this probability is 7% when he has degree 2. Then, assuming coordination in 
the efficient equilibrium, over a total of 40 periods an individual would experience, on average, one period of losses. 
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and 72.8 percent for p = 0.8, 0.95, and 1, respectively, while the corresponding activity rates for 

players of degree 3 are 51.0, 75.7, and 74.6 percent. So at first glance it seems that there is no 

pure uncertainty effect. However, the patterns of play over time suggest otherwise. 

 [Figure 4] 

  Simple inspection of Figure 4 shows a clear negative trend in the rate of activity in both 

treatments of incomplete information (p = 0.8 and p = 0.95), but no evidence of decay with 

complete information (p = 1). Table 7 provides analytic evidence of this visual evidence: 

 [Table 7] 

We report the estimated rates of activity by treatment and degree for the average period 

(20) and for the last period (40).47 Comparing each of these rates in the two treatments with 

incomplete information, we find a clear and highly significant evidence of the connectivity effect 

for degrees 2 and 3. Across the treatments p = 0.95 and p = 1 we find that, while in period 20 

there is no significant difference, in period 40 the differences are significant at 5% in the 

direction of a higher activity rate with complete information. Table 7 also shows that the trend in 

the activity rate for degree 2 is significantly more negative with p = 0.95 than with complete 

information. So it seems that the effect of uncertainty per se changes over time, indicating that 

learning plays a role in how participants react to uncertainty. The trends suggest that the 

inefficient equilibrium will eventually prevail with incomplete information, while the efficient 

equilibrium prevails with complete information. Thus, it appears that uncertainty per se 

(regardless of the degree) is enough to derail attempts to coordinate on the efficient equilibrium. 

One may wonder why the effect of uncertainty does not appear until time has passed in 

the sessions. We suspect that this is a contagion effect in the coordination game. When players 

observe that some other players are inactive (together with the fact that they also face an 

uncertain context), they also become inactive. So we feel that the uncertainty matters together 

with the coordination context players face: Given the uncertainty, players may have different 

thresholds regarding how much perceived inactivity induces them to become inactive. 

Result 5: We see that even a very small amount of uncertainty about the network in force 
(p = 0.95) can lead to considerable differences over time with respect to behavior with 
certainty, derailing attempts to achieve the efficient equilibrium. 

 

                                                            
47 We estimated the probability of being active using a logit panel model with random effects. 
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4.2 Experiment 2 

As mentioned earlier, we only consider strategic complements in Experiment 2, as these 

are better suited for testing equilibrium selection. 

Complete information 

Table 8 presents summary statistics for behavior in the three networks with complete 

information, as well as the marginal effects on activity. In all networks, the modal play 

corresponds (to varying degrees) to the efficient equilibria. For the Blue network, all positions 

except A should be active. Indeed A is never active, and the rates for B, C, and E (with three 

neighbors) are well over 90 percent.  The activity rate for position D, with exactly two neighbors, 

is only 76 percent.48  In the Red network, position A is never active, so B has only one 

potentially-active neighbor and so is rarely active.  C has three links and is nearly always active.  

However, positions D and E are only active 75-80 percent of the time; this pattern is similar to 

that for the Blue network. Note the difference in play for B versus D and E, even though each 

has two neighbors. Finally, the efficient equilibrium is least likely for the Brown network.  While 

the play of positions A and B (one and three links, respectively) conforms well to the equilibrium 

predictions, C, D, and E (two links) have activity rates between 58 to 67 percent.49  

There is a positive effect of degree, since within each network the frequency of activity is 

higher for players with degree 3. We also see a positive effect of clustering, as both players with 

degree 2 who should be active in the efficient equilibrium and players with degree 3 are more 

likely to be active in the Red network (with clustering coefficient of 0.5 than in the Brown 

network (clustering coefficient 0). There are also higher activity rates for the more connected 

(and more clustered) Blue network (clustering coefficient 0.6) than the others. So the results are 

in line with our behavioral hypothesis. Figure 5 shows the evolution for each network and 

position over time. We do not find any time trends for any position in any of the networks. 

[Table 8 and Figure 5] 

For the econometric analysis we estimate a model analogous to that described in 

Experiment 1. Across networks and positions (at the average period and average risk levels) we 

see that players predicted to be active in the efficient equilibrium for each network have an 

                                                            
48 Recall that activity with complements is only profitable with at least two active neighbors. 
49 It is a bit puzzling that B is more active than C, D, and E, since B’s third neighbor is certainly inactive and so B, 
C, D, and E are essentially equivalent; it seems that B is somehow affected by the presence of the third link. 
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estimated activity rate ranging from 0.581 to 0.996. These results confirm that the efficient 

equilibrium prevails for all three networks. Note that the only difference between the Blue and 

Red networks is one extra link in the Blue network; this extra link changes the probability that B 

players choose to be active from 92.86 percent to 18.52 percent, a highly dramatic decrease that 

is consistent with the equilibrium prediction (in the efficient equilibrium, position B is active in 

the Blue network, but inactive in the Red one).  

Result 6: In Experiment 2 with complete information, the efficient equilibrium prevails in 
every network. There is a strong effect of degree on activity, as well as an effect of clustering. 

Incomplete information 

Table 9 presents the summary statistics for behavior with incomplete information, as well 

as the marginal effects on activity. Figure 6 shows the evolution per degree over time. 

 [Table 9 and Figure 6] 

Modal play for all degrees corresponds to the efficient equilibrium both when p = 0.2 and 

p = 0.8. In both treatments there is a positive effect of degree on activity levels (degree 3 is, 

respectively, 22.4 and 17.1 percentage points more active than degree 2). Regarding the effect of 

connectivity, there is no difference across values of p for players with degree 3, but there is a 

small difference for players with degree 2 (6.7 percentage points) that suggests a positive effect 

on the selection of the efficient equilibrium.50 The main difference in time trends across the two 

values of p is that there is a clear negative trend for players with degree 2 when p = 0.2, while the 

trend with p = 0.8 is constant (or even slightly positive). There are no time trends for players of 

degree 1 (who are almost never active) or for players of degree 3 (who are almost always active).  

To test the significance of the effects for degree and connectivity, we report (in the 

bottom part of Table 9) the marginal effects for players of each degree, estimated using an 

econometric model similar to that used for Experiment 1. We see a significant degree effect on 

the likelihood of activity. Comparing rates for degree 1 and the other degrees gives very large 

marginal effects. There is also a small but significant effect of degree for players of degrees 2 

and 3; this is not predicted in equilibrium but is in the direction of our behavioral hypothesis. The 

estimated increase in the probability of activity is 5.2 and 9.3 percentage points when p = 0.2 and 

p = 0.8, respectively. Both marginal effects are significant at the 10% level with two-tailed tests.  

                                                            
50 While a 6.7 percentage-point increase is certainly not large, it is nevertheless nearly one-quarter of the maximum 
27.5 percentage-point increase possible from the activity rate with p = 0.2. 
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Finally, the marginal effects of connectivity (p = 0.8 versus p = 0.2) on the probability of 

activity, measured at the average risk levels, are reported in the middle of Table 9. Since Figure 6 

has shown a great difference in trends across p = 0.2 and p = 0.8 for players with degree 2, we 

measure the marginal effect at both the average period (20) and the final period (40).   

At period 20, there are no significant differences for any degree. This is unsurprising for 

degree-3 players, since the frequency of activity is already very high when p = 0.2. However, 

when we use period 40 to measure the marginal effect of connectivity for players with degree 2, 

we find significance at the 10% level on a two-tailed test.51 Hence, there is some effect of 

connectivity on activity rates for players with degree 2, but people need some periods of learning 

before this effect kicks in. No difference is observed or predicted for players of degrees 1 or 3.52  

Summarizing, we have: 

Result 7: With incomplete information in Experiment 2, modal play corresponds to the 
efficient equilibrium for all probability values. Once again, there is a strong effect of 
degree and we see evidence that the probability of activity increases with the connectivity. 

4.3 Experiment 3 

In Table 10, we display the frequencies of activity by degree and network, as well as the 

marginal effects on activity. As before, players with degree 1 are rarely active, with rates ranging 

from three to seven percent. We see a strong degree effect on the activity, as these rates increase 

by degree in all three networks and for each degree. In network 1, this increase is steady (three to 

25 to 61 to 81 percent), while in networks 2 and 3 the rate jumps to around 90 percent for degree 

2 and is almost 100 percent with degree 3 or 4.53 

 [Table 10] 

                                                            
51 The econometric analysis shows that, both for degree 2 and 3, the differences in the trends corresponding to 
treatments p = 0.8 and p = 0.2 (measured by the marginal effect of treatment on the marginal effect of period by 
degree) are positive and significant (at the five percent level for degree 2 and the 10 percent level for degree 3).  
52 Once again, the marginal effects (not reported here) of risk preference on the probability of being active are not 
significant for any degree or connectivity level. 
53 In the third session of network 3, we identified one person whose behavior was anomalous. This individual was 
always active when her degree was 2, whereas she was always inactive when her degree was 3 or 4.  This pattern is 
in stark contrast to the incentive structure of the game and the behavior of all the other 179 subjects that played 
either in networks 1, 2 or 3. Thus, although we keep the data of this session for our analysis, we decided to remove 
the data from this specific anomalous individual throughout all our analysis. Consider that without this individual, 
we have completely full activity for players with degree 3 and 4, while this person is never active with degree 3 or 4 
(but is active at a lower degree); furthermore, network 2 has full activity for players of degrees 3 and 4. Thus, if we 
include this individual and compare behavior in networks 2 and 3, we would find an odd ‘clustering’ effect. 
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We find a clear connectivity effect when behavior is compared across network 1 and 

either network 2 or 3, as the activity rates in networks 2 and 3 (higher connectivity than network 

1) are much higher than in network 1 for players with multiple connections. In Figure 7 we 

observe the evolution of activity in each network (by degree). The results show convergence to 

the inefficient equilibrium in network 1 and clear adherence to the efficient equilibrium in 

networks 2 and 3. This shows a clear and strong connectivity effect. 

[Figure 7] 

Regarding clustering, we can compare network 2 to network 3 (with a clustering 

coefficient of zero in network 2 and a coefficient of 0.31 for network 3). Since players with 

degree 3 and 4 are already fully active in network 2, to identify a clustering effect we can only 

consider players with degree 2. Still, the activity rate in network 2 is already very high (88.1 

percent) for degree 2 and the probability of being active is only slightly higher in network 3 (92.9 

percent). Nevertheless, the modest 4.8 percentage-point increase does represent more than 40 

percent of the maximum 11.9 percentage-point increase possible. We do see some suggestive 

evidence of a clustering effect at the session level: In all three sessions of network 2, there is 

only partial activity for degree-2 players. By comparison, players with degree 2 in network 3 are 

fully active in two of three sessions, with partial inactivity for degree 2 players in network 2. 

In order to study the significance of these effects, as before we estimate a logit panel-data 

model with random effects and report the marginal effects across networks in relation to the 

probability of being active (measured at the average period and risk levels). The estimations 

show a significant connectivity effect on the choice of being active (the marginal effect for 

players with degrees 2, 3 and 4, comparing network 1 to either of networks 2 or 3). However, the 

clustering effect (marginal effect of network 3 over network 2, measured for players with degree 

2) is not significant, perhaps due to the high activity rate in network 2 (ceiling effect).  

Summarizing, we have: 

Result 8: Activity rates increase with players’ degree in all three networks in Experiment 
3. Comparing across networks, we find a clear and strong effect of connectivity, as well 
as suggestive evidence of a clustering effect. 

5. Discussion 

In this section, we address issues of behavior with respect to equilibrium predictions. We 

first consider how well the experimental data fit the theoretical predictions, and then discuss the 
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extent to which potential multiple equilibria manifest in each treatment, as well as the issue of 

convergence over time. Finally, and perhaps most importantly, we examine the underpinnings of 

factors that appear to drive the selection of a particular equilibrium or equilibria.  

5.1 Conformance of the experimental results to theory and hypotheses 

Experiment 1 

The results in Experiment 1 are quite consistent with the theoretical predictions for 

behavior in our games. These results not only provide very strong qualitative support, but also 

surprisingly strong quantitative support. With complete information and strategic substitutes, 

87.6 percent of choices correspond to a (stochastically-stable) equilibrium. When the game 

involves strategic complements, play corresponds to the predicted equilibrium 96.1 percent (100 

percent in the last 10 periods) of the time when it is unique. Matters are a bit more complicated 

when there are two equilibria. While overall the efficient equilibrium is played 74 percent of the 

time by the players who should be active (82.6 percent over all players), one of the four 10-

person groups converged to the no-activity equilibrium. In the last 10 periods of the session, the 

activity rate for players B, C, and D combined was 83.9 percent overall for three of the groups, 

but was only 11.1 percent for the other group.54 So we see heterogeneity across groups. 

The results with incomplete information are particularly striking, given the much greater 

complexity of this environment. With substitutes, play is consistent with the unique equilibrium 

87.6 percent of the time when p = 0.2 and 84.0 percent of the time when p = 0.8. Play in the last 

10 periods is even more consistent with the equilibrium for both p = 0.2 (91.0 percent) and p = 

0.8 (91.2 percent).55 But these percentages are relatively low for subjects with degree 2, as there 

is a substantially lower expected cost if one deviates from equilibrium play. 

With incomplete information and complements, play is consistent with the unique 

equilibrium 85.7 percent of the time (97.2 percent in the last 10 periods) when p = 0.2. When p = 

0.8, there is an additional equilibrium in which players of degree 2 and 3 are active. The overall 

activity rates are 31.0 percent for players with degree 2 and 51.0 percent for players of degree 3, 

                                                            
54 Purely in terms of expected value, being active pays off for player B, C, or D if the chance that both of the other 
two players are also active is at least 2/3, which corresponds to 81.6 percent for each player without correlation. But 
a taste for social efficiency (Charness and Rabin, 2002) may lower this threshold.   
55 The rates in the last 10 periods for degrees 1, 2, and 3 with p = 0.2 are 99.5 percent, 72.7 percent, and 100 percent, 
respectively. The rates in the last 10 periods for degrees 1, 2, and 3 with p = 0.8 are 94.6 percent, 78.4 percent, and 
95.2 percent, respectively. 
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painting a murky picture. However, these rates decline to 4.3 percent and 14.9 percent in the last 

10 periods, so that behavior appears to be converging to the no-activity equilibrium.  

The observed effects of degree and connectivity on activity support the notion of 

threshold equilibria, which implies a negative relationship between degree and activity with 

substitutes, but a positive one with complements. Furthermore, activity rates for agents with 

degrees 2 or 3 are higher for both complements and substitutes with higher connectivity (agents 

with degree 1 should never be active with complements for either p-value, but should always be 

active with substitutes for either p-value).56  

Experiment 2 

The results of Experiment 2 (with strategic complements only) are more mixed, but 

provide strong qualitative and some quantitative support for equilibrium play. In this design, 

there is always a secure equilibrium with no activity and an efficient equilibrium (not the same 

across networks) with activity by a proper subset of the players. With complete information, 81.2 

percent of the overall choices correspond to the efficient equilibrium. The likelihood is highest 

for the Blue network, lower for the Red network, and lowest for the Brown network. Note that 

this pattern matches the number of 3-player cliques in each network, showing the difficulties in 

successful coordination on activity. All four groups coordinate on the efficient equilibrium with 

the Blue network, but one group in the Red network and two groups in the Brown network fail to 

do so.57 

The equilibria with incomplete information are the same for p = 0.2 and p = 0.8, with a 

no-activity equilibrium and one in which players with degrees 2 and 3 are active; players of 

degree 1 should never be active.58 While activity rates are slightly higher for degree-2 players 

with more connectivity (79.21 percent versus 72.48 percent), the activity rates for degree-3 

                                                            
56 Summarizing, the activity rates with substitutes for degrees 1, 2, and 3, respectively, drop from 95 to 28 to 1 
percent with p = 0.2 and from 93 to 60 to 10 percent for p = 0.8. The activity rates with complements increase from 
two to 18 to 44 percent for p = 0.2 and from two to 31 to 51 percent for p = 0.8. Regarding connectivity, the 
comparisons with substitutes across p = 0.2 and p = 0.8 are 28 versus 60 percent for degree 2, and one versus 10 
percent for degree 3; the respective comparisons with complements are 18 versus 31 percent (44 versus 51) for 
degree 2 (3). 
57 The rate for players predicted to be active in the Red network is 83.5 percent for the three coordinating groups, but 
only 42.5 percent for the other group; the corresponding rates for the final 10 periods are 79.1 and 22.2 percent. By 
the same token, the rate is 86.1 percent for the two coordinating groups in the Brown network and is 38.2 percent for 
the two non-coordinating groups; the corresponding rates for the final 10 periods are 88.3 and 18.7 percent. 
58 Recall that there was also an additional evanescent (weak) equilibrium for p = 0.8, in which a player with degree 
2 is not active. Yet, this equilibrium does not have any behavioral impact (cf. Footnote 31). 
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players are essentially the same with low and high connectivity (94.87 and 96.36 respectively). 

There is no time trend except for degree-2 players and low connectivity, as the respective activity 

rates in the last 10 periods for degree-2 players and degree-3 players are 62.14 and 93.86 percent 

when p = 0.2 and 78.95 and 98.06 percent when p = 0.8. Indeed with p = 0.2, while two groups 

fully converge to the efficient equilibrium (99.38 percent activity in the last 10 periods for 

players with more than one degree), the other two do not (47.50 percent activity in the last 10 

periods) and in fact seem to be headed toward the no-activity equilibrium.  

The effects of degree are consistent with our hypothesis, as there is more activity with 

higher degree with both complete and incomplete information. We also confirm the effect of 

connectivity in the latter case. With complete information, the increased connectivity and 

clustering in the Blue network lead to higher activity rates than in the other networks. In 

addition, comparing behavior in the Red network to that in the Brown network allows us to 

identify a pure effect of clustering, holding connectivity constant. Table 8 shows that, for the 

players predicted to be active in the efficient equilibrium, the frequencies of activity in the Red 

network is higher than in the Brown network, with aggregate frequencies of 71.0 percent and 

64.2 percent, respectively. Since the frequency of activity is higher in the Red network than in 

the Brown network for all four groups, a binomial test that conservatively considers each group 

to be only one independent observation gives p = 0.062 on a (justified) one-tailed test. So there 

does appear to be an effect from clustering. 

Experiment 3 

In this difficult stress test with 20-person networks, the theoretical predictions do fairly 

well. The activity rates increase steadily by degree, at least up to the point where the activity rate 

is near 100 percent (for degrees 3 and 4 in networks 2 and 3). All three networks had the same 

two equilibria, one with no activity and an efficient one with activity by all players with multiple 

links. We have hypotheses regarding connectivity and clustering that can be tested by comparing 

activity rates across network 1 and network 2 (change in connectivity only) and across network 2 

and network 3 (change in clustering only), respectively. Figure 7 indicates that the efficient 

equilibrium predominates in networks 2 and 3.  However, there is considerable decay over time 

with network 1 for players with multiple links. 

In fact, the pattern becomes clearer if we examine the session-level data for network 1. In 

one session, activity rates were completely stable, about five percent, 43 percent, 85 percent, and 
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100 percent for degrees 1, 2, 3, and 4, respectively, both on average and for the last 10 periods. 

There is sharp decay in activity rates in both of the other sessions, where the average activity 

rates in the last 10 periods are zero, 2.5, 17.5, and 62.5 percent for degrees 1-4, respectively. 

While some hubs still cling to the possibility of gaining through activity, we speculate that they 

would eventually give up and the no-activity equilibrium would be reached. 

So adding seven links to the 20 in network 1 greatly affects behavior. Activity rates are 

lower in all sessions of network 1 than in any sessions of either network 2 or network 3, and two 

of the three sessions with network 1 clearly converge to the no-entry equilibrium. Yet, for some 

reason, the efficient equilibrium is played in networks 2 and 3. This brings us to our next section. 

5.2 Equilibrium selection 

We find some strong and interesting patterns, and generally a strong adherence both 

qualitatively and quantitatively to the theoretical predictions. Nevertheless, a key issue for policy 

is that of equilibrium selection, where theory is typically silent. How can we predict which of 

multiple equilibria will prevail? Our results shed some light on this issue and perhaps permit us 

to make some conjectures about equilibrium selection in games on networks.  

Overall, there is a strong tendency for a group to converge to one of the theoretical 

equilibra.59 When there is a unique equilibrium, this is played almost universally. We again 

mention that this is also the case in games of incomplete information, where players don’t even 

know the network that has been drawn, let alone their position in it.  

But there are definite patterns in the data that beg for an explanation. In Experiment 1, a 

particular equilibrium is played in all three networks with strategic substitutes and complete 

information. This equilibrium, with three active players, is secure and nearly as efficient as the 

equilibrium in which only two players are active.60 With strategic complements, only the Orange 

network has an equilibrium involving activity; this requires full coordination by the members of 

a 3-person clique, as the potential loss from being active is three times the potential gain. This 

clique is successful in coordinating on the efficient equilibrium in three of the four groups, with 

an overall activity rate of 86.08 percent in the final 10 periods (11.11 percent activity rate in the 

other group). Yet, this kind of equilibrium does not manifest (see Figure 3) when the probability 

                                                            
59 Throughout the paper, we have ignored the existence of mixed-strategy equilibra in our networks, as these do not 
seem to have behavioral impact.  
60 Again, the net social benefit is 350, which is 87.5 percent of the net social benefit of 400 with two active players.  
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is 80 percent that the Orange network has been drawn.61 In Experiment 2, with complete 

information the efficient equilibrium is largely present in the Blue and the Red networks, which 

both have a clique, but less so in the clique-less Brown network. Perhaps surprisingly, the 

efficient equilibrium is mostly played even when there is only a 60 percent chance (incomplete 

information, p= 0.2) that a network with (at least) one clique has been drawn (which happens in 

the blue and the red network). Finally, in Experiment 3, the efficient equilibrium was played in 

two of the networks, but not in most sessions of the less-connected third.  

One general tendency we see is that people have a strong taste for coordinating on 

efficient outcomes. There is considerable evidence (e.g., Charness and Rabin 2002; Engelmann 

and Strobel 2004) that people like social efficiency. This is similar to the taste for achieving 

payoff-dominant outcomes (all agents receive their highest payoff), found in the experimental 

literature (e.g., Charness, 2000). Equilibrium selection may reflect a group’s overall taste for 

efficiency. If many people in a group are willing to take the chance on the efficient (but risky) 

equilibrium with activity, they may well be able to sustain the maximum payoff stream. This is 

idiosyncratic across groups and will essentially fall on either side of a threshold value. Certain 

conditions enhance the likelihood that the efficient equilibrium is selected. 

We have seen that connectivity often influences the likelihood of activity, affecting 

which equilibrium emerges. A more active equilibrium occurs in Experiment 1 with strategic 

substitutes and incomplete information when the connectivity increases; with strategic 

complements the more active equilibrium collapses over time. With complements and complete 

information, the extra link in the Orange network generally leads to successful coordination on 

the active equilibrium. We see some evidence of a connectivity effect in Experiment 2 with 

incomplete information, as half of the groups converged on the no-activity equilibrium with p = 

0.2, but no groups did with p = 0.8. Finally, there is a clear effect of connectivity when 

comparing behavior in networks 1 and 2 of Experiment 3 (with complements and incomplete 

information). 

The manner in which the network is connected also matters; we consider the clustering 

coefficient, which reflects the number of cliques in the network. There is no direct way to test for 

clustering effects in Experiment 1, since the Orange network differs from the others by having 

                                                            
61 Even if the strategy spaces differ, the equilibria in the Orange network with certainty and in the incomplete 
information scenario with high connectivity are of the same nature (cf. Footnote 45).  
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both an extra link and a corresponding new clique. Nevertheless, the success in reaching the 

efficient equilibrium in the Orange network with complements and complete information 

suggests that clustering may have an effect. In Experiment 2, we do find a small-but-significant 

clustering effect with both complete and incomplete information. In Experiment 3, there is a 

modest increase in the activity rate for players with degree 2 when cliques are present.62 

A third factor that feeds into equilibrium selection is the degree of uncertainty. To some 

extent, this may help to explain why cliques are more effective, since there is in some sense more 

certainty when a group is fully connected. And even when it is very probable (p = 0.95) that a 

clique is present, the efficient equilibrium (predominant with complements and certainty in 

Experiment 1) has collapsed into the no-activity equilibrium in half the groups. It is not so easy 

to coordinate when the loss from failure is triple the potential gain from success, and any degree 

of uncertainty substantially exacerbates the difficulty. With known positions, there may be a 

flavor of common knowledge, as each individual in the clique knows that the other individuals in 

the clique, etc., know the situation. Perhaps the awareness of a shared fate makes people more 

confident about the likelihood of successful coordination.  

Thus, while people have a taste for social efficiency, the hurdle appears to be too high for 

some coordination problems.  We have also seen that groups are willing to absorb a limited cost 

to attain the near-efficient (and more secure) equilibrium in Experiment 1 (positions A, C, and E 

active) with complete information and substitutes, rather than an equilibrium with full efficiency 

(one less active player). This equilibrium is stochastically-stable (see Footnote 39) under a class 

of evolutionary dynamics and gives seven-eighths of the total payoffs received in an efficient 

one. Our view is that this represents a group awareness of the riskiness of having only two active 

players. This is not unfamiliar in other coordination games. For example, Rosenkranz and 

Weitzel (2012) report that, when they find convergence, it is to equilibria where each inactive 

player is connected to at least two active players.  

Summarizing, we see a number of intertwining factors that in combination determine the 

selected equilibrium in games on networks. Higher connectivity and more clustering increase 

activity rates and facilitate coordination on efficient outcomes. Uncertainty (incomplete 

information) is a negative influence on activity rates, but can be overcome when the coordination 

                                                            
62 Players of degree 3 or 4 are fully active even without any cliques (network 2), so this can’t increase by 
introducing cliques (network 3) and in fact it remains the same.   
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problem is less severe or when the active equilibrium is unique. There is also a strong taste for 

efficiency, but people will take a slight payoff reduction to ensure profits if one other person 

deviates from the equilibrium. No one of these factors is determinative, but can be seen as 

reinforcing or weakening beliefs in the likelihood of successful coordination. That said, nearly 

every group has largely converged to an equilibrium by the end of the 40 periods in the session. 

6. Conclusion 

Networks are a ubiquitous feature of the social and economic landscape, with important 

applications in the areas of bargaining, job search, political interactions, and systems 

compatibility, among others. The question of how network structure affects behavior is a vital 

one for business decisions and governmental policy. We conduct an experiment designed to test 

how games with strategic substitutes or complements, which are general to many economic 

environments, are played on a variety of networks. We include the case of incomplete 

information in our experimental design, and to the best of our knowledge we are one of the first 

to consider experimentally the challenging case of uncertainty and its effects on aspects of the 

network structure. In our view, there is almost always a degree of uncertainty concerning the 

prevailing network structure in the field, so this is a very relevant design choice.  

A central issue in network theory is that of equilibrium selection, since it is more difficult 

to make informed policy decisions when one cannot predict the effects of network structure on 

outcomes. Considerable theoretical research has been conducted on trying to refine these or to 

gain insight into how to predict which of a multiplicity of equilibria actually prevails. Our 

principal objectives in conducting our experiments were to test theoretical predictions with 

complete and incomplete information and to provide empirical evidence that sheds light on 

factors that influence which equilibrium will actually prevail in practice in network settings. In 

fact, our results suggest that the problem of equilibrium multiplicity may in practice not be so 

severe. This is particularly true with complete information and substitutes in Experiment 1, 

where people seem to be willing to trade a relatively small difference in potential gain for an 

increased likelihood of actually receiving a gain. We find that a number of factors help to 

mediate which equilibrium prevails. There are higher rates of activity (and so higher 

profitability) with higher connectivity and clustering, and people have a definite taste for 

efficiency when there is not much uncertainty and risk is limited. 
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We find that play conforms very strongly to the qualitative and quantitative theoretical 

predictions for whether agents are active or inactive. The degree to which this is true is 

impressive with complete information and, considering the cognitive challenge of making 

decisions under uncertainty, is somewhat startling with incomplete information. While play is 

remarkably close to equilibrium predictions even in early periods, this further improves in later 

periods, indicating that people learn over time to avoid mis-coordination. When we consider only 

the more ‘settled’ behavior in the last 10 periods, we observe strong convergence to an 

equilibrium for almost every group. In the case of incomplete information, we also find strong 

qualitative support for the predicted relationships between degree and activity and connectivity 

and activity. Our results are robust to a variety of smaller networks and larger networks. 

Overall, we feel that experimental research such as this will be quite useful in making 

pragmatic choices regarding which network structure to implement and in predicting outcomes 

for an already-existing network structure. Given the uncertainty in the field environment, further 

experimental research that incorporates incomplete information and uncertainty certainly seems 

worthwhile. It might also be interesting to examine how communication between players in a 

network may have an impact on equilibrium selection. Our results have shown a remarkable 

degree of equilibrium play and coordination on a particular equilibrium without any 

communication, but it seems promising to study whether communication may even further 

improve successful coordination on the efficient equilibrium.  Choi and Lee (2014) is a first step 

in this direction. Finally, it would be valuable to develop experiments involving endogenous 

network formation with multiple players. One major difficulty is that a large number of networks 

are possible, making it difficult to get enough data to draw even tentative conclusions.  One 

approach is to provide an existing framework with some specified options, as in Charness and 

Jackson (2007), but that is just a start. Improved behavioral network theory may well be the 

result of the knowledge gleaned from this and future laboratory experiments.  
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Tables and Figures 

Table 1: Equilibria in Experiment 1 

I) With complete information 

 Network Active nodes Inactive nodes 

Substitutes 

Orange 
A, C, E B, D 
B, E A, C, D 
A, D B, C, E 

Green 

A, C, E B, D 
B, D A, C, E 
B, E A, C, D 
A, D B, C, E 

Purple 
A, C, D B, E 
A, C, E B, D 
B, E A, C, D 

Complements 
Orange 

B, C, D A, E 
- A, B, C, D, E 

Green - A, B, C, D, E 
Purple - A, B, C, D, E 

II) With incomplete information 

 Probability of the 
Orange network 

Active degrees Inactive degrees 

Substitutes 
0.2 1 2, 3 
0.8 1, 2 3 

Complements 
0.2 - 1, 2, 3 

0.8 
- 1, 2, 3 
2, 3 1 

 0.95 (addendum to 
Experiment 1) 

- 1, 2, 3 
 2, 3 1 
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Table 2: Equilibria in Experiment 2 

 I) With complete information 

Network Active nodes Inactive nodes 

Blue 
B, C, D, E A 
- A, B, C, D, E 

Red 
C, D, E A, B 
- A, B, C, D, E 

Brown 
B, C, D, E A 
- A, B, C, D, E 

 II) With incomplete information  

Probability of the Blue 
network 

Active degrees Inactive degrees 

0.2 
- 1, 2, 3 
2, 3 1 

0.8 
- 1, 2, 3 
2, 3 1 
3 1, 2 (weak equilibrium) 

 
 
  

Table 3: Network Characteristics in Experiment 3 

 

 

 

Table 4: Equilibria in Experiment 3 

Network Active degrees Inactive degrees 

Network 1 
- 1, 2, 3, 4 
2, 3, 4 1 

Network 2 
- 1, 2, 3, 4 
2, 3, 4 1 

Network 3 
- 1, 2, 3, 4 
2, 3, 4 1 

  

 Network 1 Network 2 Network 3 

Degree 
distribution 
(# nodes) 

degree = 1  8 4 4 
degree = 2  6 4 4 
degree = 3 4 6 6 
degree = 4 2 6 6 

Number of links 20 27 27 
(Global) Clustering coefficient 0 0 0.31 
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Table 5: Complete information in Experiment 1 

Frequencies of activity by treatment, network and player position 

 Orange Green Purple 
Active 

(%) 
Total 

Active 
(%) 

Total 
Active 

(%) 
Total 

Substitutes 

A 
88 

(94.62) 
93 

96 
(91.43) 

105 
113 

(92.62) 
122 

B 
8 

(8.60) 
93 

16 
(15.24) 

105 
6 

(4.92) 
122 

C 
63 

(67.74) 
93 

70 
(66.67) 

105 
115 

(94.26) 
122 

D 
10 

(10.75) 
93 

18 
(17.14) 

105 
22 

(18.03) 
122 

E 
85 

(91.40) 
93 

99 
(94.29) 

105 
112 

(91.80) 
122 

Total 
254 

(54.62) 
465 

299 
(56.95) 

525 
368 

(60.33) 
610 

Complements 

A 
4 

(3.51) 
114 

1 
(0.95) 

105 
1 

(0.99) 
101 

B 
85 

(74.56) 
114 

4 
(3.81) 

105 
13 

(12.87) 
101 

C 
83 

(72.81) 
114 

11 
(10.48) 

105 
1 

(0.99) 
101 

D 
85 

(74.56) 
114 

2 
(1.90) 

105 
5 

(4.95) 
101 

E 
6 

(5.26) 
114 

1 
(0.95) 

105 
1 

(0.99) 
101 

Total 
263 

(46.14) 
570 

19 
(3.62) 

525 
21 

(4.16) 
505 

Estimated activity rates by treatment, network and player position  
(at period = 20 and average risk level) 

  Substitutes Complements 
Position Orange Green Purple Orange Green Purple 

A 
0.989*** 
(0.007) 

0.975*** 
(0.014) 

0.977*** 
(0.013) 

0.010 
(0.007) 

0.000 
(0.000) 

0.000 
(0.000) 

B 
0.011 

(0.008) 
0.048* 
(0.025) 

0.013 
(0.009) 

0.843*** 
(0.050) 

0.007 
(0.006) 

0.050* 
(0.027) 

C 
0.767*** 
(0.076) 

0.754*** 
(0.079) 

0.990*** 
(0.008) 

0.746*** 
(0.067) 

0.010 
(0.009) 

0.000 
(0.000) 

D 
0.023 

(0.014) 
0.091** 
(0.039) 

0.097** 
(0.040) 

0.813*** 
(0.057) 

0.001 
(0.002) 

0.006 
(0.007) 

E 
0.978*** 
(0.014) 

0.987*** 
(0.010) 

0.970*** 
(0.016) 

0.000 
(0.001) 

0.001 
(0.002) 

0.000 
(0.000) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
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Table 6: – Incomplete information in Experiment 1 

Frequencies of activity by connectivity (p) and degree 

  
p = 0.2 p = 0.8 

Active 
(%) 

Total 
Active 

(%) 
Total 

Substitutes 

degree = 1 
731 

(94.81) 
771 

628 
(92.90) 

676 

degree = 2 
156 

(28.16) 
554 

225 
(59.52) 

378 

degree = 3 
3 

(1.09) 
275 

55 
(10.07) 

546 

Total 
890 

(55.63) 
1600 

908 
(56.75) 

1600 

Complements 

degree = 1 
15 

(1.97) 
763 

12 
(1.76) 

681 

degree = 2 
107 

(17.89) 
598 

116 
(31.02) 

374 

degree = 3 
106 

(44.35) 
239 

278 
(51.01) 

545 

Total 
228 

(14.25) 
1600 

406 
(25.37) 

1600 

Marginal effects of connectivity (p) by treatment and degree  
(p = 0.8 vs. p = 0.2 at period 20 and average risk level) 

 Substitutes Complements 

degree = 1 
0.004 

(0.009) 
-0.000 
(0.001) 

degree = 2 
0.547*** 
(0.083) 

0.111** 
(0.056) 

degree = 3 
0.024** 
(0.010) 

0.233* 
(0.132) 

Marginal effects of degree by treatment and connectivity (p)  
(at period 20 and average risk level) 

 Substitutes Complements 

degree = 2 vs. degree = 1 
p = 0.2 

-0.816*** 
(0.041) 

0.041** 
(0.017) 

p = 0.8 
-0.273*** 

(0.064) 
0.153*** 
(0.053) 

degree = 3 vs. degree = 1 
p = 0.2 

-0.980*** 
(0.007) 

0.328*** 
(0.091) 

p = 0.8 
-0.961*** 

(0.009) 
0.562*** 
(0.095) 

degree = 3 vs. degree = 2 
p = 0.2 

-0.164*** 
(0.045) 

0.287*** 
(0.079) 

p = 0.8 
-0.687*** 

(0.063) 
0.409*** 
(0.061) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
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Table 7. Experiment 1  

Estimated activity rates by connectivity (p), degree and period (at average risk level) 

 p = 0.80 p = 0.95 p = 1 

degree = 2 
period = 20 

0.153*** 
(0.053) 

0.805 
(0.072) 

0.746 
(0.067) 

period = 40 
0.007*** 
(0.004) 

0.416 
(0.131) 

0.747** 
(0.102) 

degree = 3 
period = 20 

0.563*** 
(0.095) 

0.919 
(0.034) 

0.828 
(0.045) 

period = 40 
0.012*** 
(0.006) 

0.388 
(0.117) 

0.685** 
(0.090) 

Estimated trends of activity rates by connectivity (p) and degree (at period 20 and average risk level) 

degree = 2 
-0.008 
(0.003) 

-0.014 
(0.004) 

0.000*** 
(0.000) 

degree = 3 
-0.047*** 

(0.008) 
-0.011 
(0.004) 

-0.006 
(0.002) 

***, **,* denote significant difference respect to treatment p=0.95 at 1%, 5% and 10% levels, 
respectively, two-tailed tests  

Note that p = 1 means the orange network in the treatment of complete information.  
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Table 8. Complete Information in Experiment 2 

Frequencies of activity by network and player position 

 Blue Red  Brown 

Position 
Active 

(%) 
Total 

Active 
(%) 

Total 
Active 

(%) 
Total 

A 
0 

(0.00) 
112 

1 
(0.93) 

108 
2 

(2.00) 
100 

B 
104 

(92.86) 
112 

20 
(18.52) 

108 
79 

(79.00) 
100 

C 
109 

(97.32) 
112 

92 
(85.19) 

108 
62 

(62.00) 
100 

D 
85 

(75.89) 
112 

70 
(64.81) 

108 
60 

(60.00) 
100 

E 
108 

(96.43) 
112 

68 
(62.96) 

108 
56 

(56.00) 
100 

Degree 2^ 
85 

(75.89) 
112 

138 
(63.88) 

216 
178 

(59.33) 
300 

Degree 3 
321 

(95.54) 
336 

92 
(85.19) 

108 
79 

(79.00) 
100 

Estimated activity rates by network and player position 
(at period 20 and average risk level) 

 Blue Red Brown 

A 
0.000 

(.) 
0.000 

(.) 
0.000 

(.) 

B 
0.989*** 
(0.007) 

0.065** 
(0.034) 

0.913*** 
(0.042) 

C 
0.996*** 
(0.003) 

0.992*** 
(0.005) 

0.581*** 
(0.120) 

D 
0.882*** 
(0.052) 

0.753*** 
(0.091) 

0.668*** 
(0.109) 

E 
0.999*** 
(0.001) 

0.785*** 
(0.085) 

0.674*** 
(0.110) 

Degree 2^ 
0.882*** 
(0.052) 

0.769*** 
(0.080) 

0.641*** 
(0.091) 

Degree 3 
0.995*** 
(0.003) 

0.992*** 
(0.005) 

0.913*** 
(0.042) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
^ Here we are only referring to those players with degree 2 active in the efficient equilibrium. 
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Table 9. Incomplete information in Experiment 2 

Frequencies of activity by connectivity (p) and degree 

 p = 0.2 p = 0.8 

 
Active 

(%) 
Total 

Active 
(%) 

Total 

degree = 1 
25 

(7.81) 
320 

23 
(7.19) 

320 
 

degree = 2 
603 

(72.48) 
832 

339 
(79.21) 

428 

 

degree = 3 
425 

(94.87) 
448 

821 
(96.36) 

852 

 

Total 
1053 

(65.81) 
1600 

1183 
(73.94) 

1600 

 

Marginal effect of connectivity (p) by degree and period  
(p = 0.8 vs. p = 0.2 at average risk level) 

period = 20 period = 40 

degree = 1 
0.001 

(0.005) 
-0.001 
(0.002) 

degree = 2 
-0.041 
(0.060) 

0.272* 
(0.151) 

degree = 3 
-0.000 
(0.001) 

0.004 
(0.004) 

Marginal effect of degree by connectivity (p)  
(at period 20 and average risk level) 

degree = 2 vs. degree = 1 
p = 0.2 0.943*** 

(0.030) 

p = 0.8 0.900*** 
(0.049) 

degree = 3 vs. degree = 1 
p = 0.2 0.995*** 

(0.003) 

p = 0.8 0.994*** 
(0.004) 

degree = 3 vs. degree = 2 
p = 0.2 0.052* 

(0.031) 

p = 0.8 0.093* 
(0.051) 

***, **,* denote significance at 1%, 5%, 10% levels, respectively, two-tailed tests 
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Table 10. Experiment 3  

Frequencies of activity by network and degree 

 Network 1 Network 2 Network 3 

 
Active 

(%) 
Total 

Active 
(%) 

Total 
Active 

(%) 
Total 

degree = 1 
26 

(2.71) 
960 

16 
(3.33) 

480 
34 

(7.17) 
474 

degree = 2 
177 

(24.58) 
720 

423 
(88.13) 

480 
434 

(92.93) 
467 

degree = 3 
291 

(60.62) 
480 

720 
(100) 

720 
707 

(99.58) 
710 

degree = 4 
195 

(81.25) 
240 

719 
(99.86) 

720 
709 

(100) 
709 

Marginal effect of network by degree (at period 20 and average risk level) 

Network 2 vs. Network 1 Network 3 vs. Network 1 Network 3 vs. Network 2 

degree = 1 
0.004 

(0.004) 
0.010* 
(0.006) 

0.006 
(0.006) 

degree = 2 
0.832*** 
(0.038) 

0.836*** 
(0.037) 

0.004 
(0.014) 

degree = 3 
0.284*** 
(0.060) 

0.284*** 
(0.060) 

-0.001 
(0.000) 

degree = 4 
0.051*** 
(0.019) 

0.051*** 
(0.019) 

0.000 
(0.000) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
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Figure 2: Relative frequency of active choices across periods, by network 
player position and treatment – Experiment 1, Complete information 
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Figure 3: Relative frequencies of choices by degree, games, and p  
Incomplete information, Experiment 1 

Substitutes 
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See Table 1 for equilibrium predictions. Periods 

0
.5

1
0

.5
1

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0
.5

1
0

.5
1

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40



 51

Figure 4. Observed activity probabilities, by degree and p, Experiment 1 

                      
See Table 1 for equilibrium predictions. 
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Figure 5. Observed probabilities of being active, by network and position in      
Experiment 2, Complete information                        

	

	
See Table 2 for equilibrium predictions. 
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Figure 6. Observed probabilities of being active, by connectivity and degree 
Experiment 2 

 
See Table 2 for equilibrium predictions. 
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Figure 7. Observed probabilities of being active, by network and degree  
Experiment 3 

 
See Table 4 for equilibrium predictions. 
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Appendix: Proofs 

 
Complete information, 5-player networks 
 

Let ݏ ∈ ሼ0,1ሽ	݅ ∈ ሼܣ, ,ܤ ,ܥ ,ܦ  ሽ be the action of the player in position ݅ where 1 means to beܧ
active 0 means to be inactive. Then a strategy profile is give by s = (sA, sB, sC, sD, sE). Let be ܰ 
the set of player that have a link to player ݅ and ݊ ൌ | ܰ|. Let ߨሺݏ,  ሻ be the expected payoffିݏ
of the player in position i. 
 
Proposition 1. Consider the scenario of strategic substitutes and complete information of 
Experiment 1. In the Orange network the pure-strategy Nash equilibria are: (1,0,1,0,1), 
(1,0,0,1,0), and (0,1,0,0,1). In the Green network the pure-strategy Nash equilibria are 
(1,0,1,0,1), (0,1,0,1,0), (1,0,0,1,0), and (0,1,0,0,1). In the Purple network the pure-strategy Nash 
equilibria are (1,0,1,0,1), (1,0,1,1,0), and (0,1,0,0,1). All these equilibria are strict. 
 
Proof: It suffices to prove the following claim: In a Nash equilibrium (i) ݏ ൌ 1 if and only if, 
∀݆ ∈ ܰ, ݏ ൌ 0; and (ii) ݏ ൌ 0 if and only if ∃݆ ∈ ܰ	ݏ. .ݐ ݏ ൌ 1. Then the result directly follows. 

To prove the claim, assume a Nash equilibrium where ∀݆ ∈ ܰ, ݏ	 ൌ 0. Then the best response of 

player ݅ is ݏ ൌ 1 because ߨሺ0, ሻିݏ 	ൌ 0 and ߨሺ1, ሻିݏ 	ൌ 50. Assume a Nash equilibrium where 
∃݆ ∈ ܰ	ݏ. .ݐ ݏ	 ൌ 1, then the best response of player ݅ is ݏ ൌ 0 because ߨሺ0, ሻିݏ 	ൌ 100 and 

,ሺ1ߨ ሻିݏ 	ൌ 50. Assume a Nash equilibrium where ݏ ൌ 1 and ∃݆ ∈ ܰ	ݏ. .ݐ ݏ	 ൌ 1, then the best 

response of player ݅ is ݏ ൌ 0 because ߨሺ0, ሻିݏ 	ൌ 100 and ߨሺ1, ሻିݏ 	ൌ 50, a contradiction. 
Assume a Nash equilibrium where ݏ ൌ 0 and ∀݆ ∈ ܰ, ݏ	 ൌ 0, then the best response of player ݅ 

is ݏ ൌ 1 because ߨሺ0, ሻିݏ 	ൌ 0 and ߨሺ1, ሻିݏ 	ൌ 50, a contradiction. It is straightforward to see 
that all the equilibria are strict. QED 
 
Proposition 2. Consider the scenario of strategic complements and complete information of 
Experiment 1. In the Orange network there are two pure-strategy Nash equilibria: (0,0,0,0,0), 
and (0,1,1,1,0). In the Green and Purple networks there is a unique Nash equilibrium: 
(0,0,0,0,0). All these equilibria are strict. 
 
Proof: We first prove the following claim: ݏ ൌ 1 is a best response if and only if ∑ ∈ேݏ  2. 

To this aim, suppose a strategy profile where ∑ ∈ேݏ  2. Then, the best response of player ݅ is 

ݏ ൌ 1, since ߨሺ0, ሻିݏ ൌ 50	and	ߨሺ1, ሻିݏ  66.66. Suppose now a strategy profile where 
ݏ ൌ 1 is a best response and ∑ ∈ேݏ ൏ 2. Then, ߨሺ0, ሻିݏ ൌ 50 and ߨሺ1, ሻିݏ  33.33, a 

contradiction. Thus, the claim follows. The claim implies that, in all Nash equilibria, ݏ ൌ
0	݂݅	݊ ൌ 1.  
Consider the Orange network. Since players A and E choose 0 in all Nash equilibria (݊ ൌ ݊ா ൌ
1), in a pure-strategy Nash equilibrium either ݏ ൌ ݏ ൌ ݏ ൌ 1 or ݏ ൌ ݏ ൌ ݏ ൌ 0. Consider 
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the Green and the Purple Network. Players A and E in the Green network, and players A, C and E 
in the Purple network choose 0 in all Nash equilibria (all of them have ݊ ൌ 1). Hence, in a Nash 
equilibrium, players B and D in the Green network and player D in the Purple network also 
choose action 0, since they have ݊ ൌ 2 and one of their neighbors has ݊ ൌ 1 (and, therefore, 
chooses action 0). It follows that, in a Nash equilibrium, also player C in the Green network and 
player B in the Purple network choose action 0, since all their neighbors also choose 0. It is 
straightforward to see that all the equilibria are strict. QED 

 
Incomplete information, 5-player networks 

In Incomplete information scenario players are not informed about which network has 
been drawn, but they know their own degree (the number of neighbors they have, either 1, 2 or 
3). With this information in hand, each player decides whether to be active (action 1) or not 
(action 0). Since each player only learns her degree (and the prior p), she can only condition her 
behavior on this information. In this sense, a (symmetric) strategy profile is represented by a 
vector ݏ ൌ ሺݏଵ, ,ଶݏ ݏ ଷሻ, whereݏ ∈ ሼ0, 1ሽ is the action chosen by an agent with degree ݆ ∈
ሼ1, 2, 3ሽ. There are 8 strategy profile candidates to be a pure – strategy Nash equilibrium: sI = 
(0,0,0), sII = (1,0,0), sIII = (0,1,0), sIV = (0,0,1), sV = (1,1,0), sVI = (1,0,1), sVII = (0,1,1) and sVIII = 

(1,1,1). Let ߨ
ሺݔ, ∋	ሻ be the payoff of an agent (indexed by iିݔ ܰ) with degree j	∈ ሼ1,2,3ሽ. 

Proposition 3. In the scenario of strategic substitutes and incomplete information of Experiment 
1 there exists a unique pure-strategy Bayes-Nash equilibrium: ሺ1, ଶݏ

∗, 0ሻ, with ݏଶ
∗ ൌ 0 if p = 0.2 

and ݏଶ
∗ ൌ 1 if p = 0.8. All these equilibria are strict. 

 
Proof. We first define some conditional probabilities that shall be useful in the proof. Let q1(j) be 
the expected probability for an agent that, conditional on having degree 1, her neighbor has 

degree j. By applying Bayes’ rule we get q1(2) = ଷሺଵିሻ

ହሺଵିሻାସ
 and q1(3) = ଶ

ሺଵିሻାସ

ହሺଵିሻାସ
. Let q2(j1,j2) be 

the expected probability for an agent that, conditional on having degree 2, her neighbors have 

degrees j1 and j2. By applying Bayes’ rule we get q2(1,2) = ଶሺଵିሻ

ସሺଵିሻାଶ
, q2(2,2) = ଵି

ସሺଵିሻାଶ
, q2(1,3) 

= ଵି

ସሺଵିሻାଶ
 and q2(3,3) = ଶ

ସሺଵିሻାଶ
. Let q3(j1,j2,j3) be the expected probability for an agent that, 

conditional on having degree 3, her neighbors have degrees j1, j2 and j3. By applying Bayes’ rule 

we get q3(1,1,2) = ଵି
ଵାଷ

 and q3(1,2,3) = ସ

ଵାଷ
.  

First, we prove that candidates sI, sIII, sIV, sVI, sVII and sVIII cannot be equilibria. 

For all  ∈ ሺ0,1ሻ, sI is not an equilibrium, since ߨ
ଵሺ0, ିݔ

ூ ሻ ൌ 0 ൏ 50 ൌ ߨ
ଵሺ1, ିݔ

ூ ሻ. 
Regarding sIII, in order to be an equilibrium, it would require ߨ

ଵሺ0, ିݔ
ூூூሻ  ߨ

ଵሺ1, ିݔ
ூூூሻ and 

ߨ
ଶሺ1, ିݔ

ூூூሻ  ߨ
ଶሺ0, ିݔ

ூூூሻ, i.e., q1(2) 
ଵ

ଶ
 and 

ଵ

ଶ
	q2(1,2) + q2(2,2), but these inequalities are 

incompatible for all  ∈ ሺ0,1ሻ. 
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Regarding sIV, in order to be an equilibrium, it would require ߨ
ଶሺ0, ିݔ

ூሻ  ߨ
ଶሺ1, ିݔ

ூሻ and 

ߨ
ଷሺ1, ିݔ

ூሻ  ߨ
ଷሺ0, ିݔ

ூሻ, i.e., q2(1,3) + q2(3,3) 
ଵ

ଶ
 and 

ଵ

ଶ
	q3(1,2,3), but these inequalities are 

incompatible for all  ∈ ሺ0,1ሻ. 

For all  ∈ ሺ0,1ሻ, sVI is not an equilibrium, since ߨ
ଷሺ1, ିݔ

ூሻ ൌ 50 ൏ 100 ൌ ߨ
ଷሺ0, ିݔ

ூሻ. 
For all  ∈ ሺ0,1ሻ, sVII is not an equilibrium, since ߨ

ଶሺ1, ିݔ
ூூሻ ൌ 50 ൏ 100 ൌ ߨ

ଶሺ0, ିݔ
ூூሻ. 

For all  ∈ ሺ0,1ሻ, sVIII is not an equilibrium, since ߨ
ଵሺ1, ିݔ

ூூூሻ ൌ 50 ൏ 100 ൌ ߨ
ଵሺ0, ିݔ

ூூூሻ. 

Finally, we prove that candidates sII is an equilibrium if and only if   ଵ

ଶ
, and that sV is an 

equilibrium if and only if  
ଶ

ଷ
. Let us start with sII. First, we observe that, for all  ∈ ሺ0,1ሻ, 

ߨ
ଵሺ1, ିݔ

ூூ ሻ ൌ 50  0 ൌ ߨ
ଵሺ0, ିݔ

ூூ ሻ and ߨ
ଷሺ0, ିݔ

ூூ ሻ ൌ 100  50 ൌ ߨ
ଷሺ1, ିݔ

ூூ ሻ. Hence, in order to 

be an equilibrium, it requires ߨ
ଶሺ0, ିݔ

ூூ ሻ  ߨ
ଶሺ1, ିݔ

ூூ ሻ, i.e., q2(1,2) + q2(1,3) 
ଵ

ଶ
,	which 

simplifies to  
ଵ

ଶ
. Thus, if p = 0.2, sII is a strict equilibrium and, if p = 0.8, it is not an 

equilibrium. Consider now sV. First, we observe that, for all  ∈ ሺ0,1ሻ, ߨ
ଷሺ0, ିݔ

 ሻ ൌ 100 
50 ൌ ߨ

ଷሺ1, ିݔ
 ሻ. Hence, in order to be an equilibrium, it requires both ߨ

ଵሺ1, ିݔ
 ሻ  ߨ

ଵሺ0, ିݔ
 ሻ 

and ߨ
ଶሺ1, ିݔ

 ሻ  ߨ
ଶሺ0, ିݔ

 ሻ, i.e., 
ଵ

ଶ
 q1(2) and 

ଵ

ଶ
 q2(1,2) + q2(2,2) + q2(1,3). The second 

inequality implies the first one, and the equilibrium condition simplifies to  
ଶ

ଷ
. Thus, if p = 

0.2, sV is not an equilibrium and, if p = 0.8, it is a strict equilibrium. QED 
 
Proposition 4. In the scenario of strategic complements and incomplete information of 
Experiment 1, if p = 0.2 there is a unique Bayes-Nash equilibrium: (0,0,0); if p ∈ {0.8, 0.95}, 
there are two pure-strategy Bayes Nash equilibria: (0,0,0) and (0,1,1). All these equilibria are 
strict. 
 
Proof. The conditional probabilities q1(j), q2(j1,j2) and q3(j1,j2,j3) are defined in the proof of 
Proposition 3. We first prove that candidates sII, sIII, sIV, sV, sVI, and sVIII cannot be equilibria: 

For all  ∈ ሺ0,1ሻ, sII, sV, sVI and sVIII are not equilibria, since ߨ
ଵሺ1, ିݔ

ூூ ሻ 
ଵ

ଷ
൏ 50 ൌ ߨ

ଵሺ0, ିݔ
ூூ ሻ. 

For all  ∈ ሺ0,1ሻ, sIII is not an equilibrium, since ߨ
ଶሺ1, ିݔ

ூூூሻ ൌ
ଵ

ଷ
ሺݍଶሺ1,2ሻ  2ሺݍଶሺ2,2ሻሻ ൏

50 ൌ ߨ
ଶሺ0, ିݔ

ூூூሻ. Regarding sIV, in order to be an equilibrium, it would require ߨ
ଷሺ1, ିݔ

ூሻ 

ߨ
ଷሺ0, ିݔ

ூሻ, i.e., 
ଵ

ଷ
ଷሺ1,2,3ሻݍ  50. However, the inequality does not hold since, for any ∈ ሺ0,1ሻ, 

ଷሺ1,2,3ሻݍ ൏ 1. 
We now prove that candidates sI is an equilibrium for all  ∈ ሺ0,1ሻ, and that candidate sVII is 

an equilibrium if and only if   1/2. We start with candidate sI. For all  ∈ ሺ0,1ሻ, and ݇ ∈ ሼ1,2,3ሽ, 

ߨ
ሺ0, ሻିݔ ൌ 50  0 ൌ ߨ

ሺ1,  .ሻ. Hence sI is a strict equilibrium. Now consider candidate sVIIିݔ

First, we observe that, for all  ∈ ሺ0,1ሻ, ߨ
ଵሺ0, ିݔ

ூூሻ ൌ 50  100/3 ൌ ߨ
ଵሺ1, ିݔ

ூூሻ. Hence, in 

order to be an equilibrium, it requires both ߨ
ଶሺ1, ିݔ

ூூሻ  ߨ
ଶሺ0, ିݔ

ூூሻ and ߨ
ଶሺ1, ିݔ

ூூሻ 
ߨ
ଶሺ0, ିݔ

ூூሻ, i.e., 
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ଵ

ଷ
ሺݍଶሺ1,2ሻ  ଶሺ1,3ሻݍ  ଶሺ2,2ሻݍ2  ଶሺ2,3ሻሻݍ2  50	and  

ଵ

ଷ
ሺݍଷሺ1,1,2ሻ  ଷሺ1,2,3ሻሻݍ2  50.  

The first inequality simplifies to   1/2 and the second one simplifies to   1/5.	Hence, if p = 
0.2, sVII is not an equilibrium and, if p = 0.8 it is a strict equilibrium (since both inequalities 
strictly hold). QED  
 

Proposition 5. In the scenario of Experiment 2 (strategic complements and incomplete 
information), (i) if p ൌ	 0.2, there are two pure-strategy Bayes-Nash equilibria: (0,0,0) and 
(0,1,1); these equilibria are strict. (ii) If p=0.8 there are two pure-strategy strict Bayes-Nash 
equilibria: (0,0,0) and (0,1,1); and there is a pure-strategy weak Bayes-Nash equilibria: (0,0,1). 
 

Proof. We first redefine the conditional probabilities for the case of Experiment 2. By applying 

Bayes’ rule we get q1(2) = ଵି
ଶ
, q1(3) = ଵା

ଶ
, q2(2,2) = ଵି

ଶሺାଷሺଵିሻሻ
, q2(1,3) = ଵି

ଶሺାଷሺଵିሻሻ
, q2(2,3) = 

ଶሺଵିሻ

ାଷሺଵିሻ
, q2(3,3) = 

ାଷሺଵିሻ
, q3(1,2,2) = ଵି

ଶሺଷାሺଵିሻሻ
, q3(2,2,2) = ଵି

ଶሺଷାሺଵିሻሻ
, q3(1,3,3) = 

ଷାሺଵିሻ
, and 

q3(2,3,3) = ଶ

ଷାሺଵିሻ
. 

For all  ∈ ሺ0,1ሻ, sII, sV, sVI and sVIII are not equilibria, since ߨ
ଵ൫1, ൯ିݔ 

ଵ

ଷ
൏ 50 ൌ

ߨ
ଵ൫0,  ൯. For allିݔ ∈ ሺ0,1ሻ, since ߨ

ଶሺ1, ିݔ
ூூூሻ ൌ

ଵ

ଷ
൫2ݍଶሺ2,2ሻ  ଶሺ2,3ሻ൯ݍ ൏ 50 ൌ ߨ

ଶሺ0, ିݔ
ூூூሻ, 

sIII is not an equilibrium. 
We now prove that candidate sI is an equilibrium for all  ∈ ሺ0,1ሻ, and that candidate sVII is an 

equilibrium if and only if   1/2. We start with candidate sI. For all  ∈ ሺ0,1ሻ, and ݇ ∈ ሼ1,2,3ሽ, 

ߨ
ሺ0, ሻିݔ ൌ 50  0 ൌ ߨ

ሺ1,  .ሻ. Hence sI is a strict equilibrium. Now consider candidate sVIIିݔ

First, we observe that, for all  ∈ ሺ0,1ሻ, ߨ
ଵሺ0, ିݔ

ூூሻ ൌ 50  100/3 ൌ ߨ
ଵሺ1, ିݔ

ூூሻ. Hence, in 

order to be an equilibrium, it requires both ߨ
ଶሺ1, ିݔ

ூூሻ  ߨ
ଶሺ0, ିݔ

ூூሻ and ߨ
ଷሺ1, ିݔ

ூூሻ 
ߨ
ଷሺ0, ିݔ

ூூሻ, i.e., 

  
ଵ

ଷ
ሺ2ݍଶሺ2,2ሻ  ଶሺ1,3ሻݍ  ଶሺ2,3ሻݍ2  ଶሺ3,3ሻሻݍ2  50	and  

ଵ

ଷ
ሺ2ݍଷሺ1,2,2ሻ  ଷሺ1,3,3ሻݍଷሺ2,2,2ሻ2ݍ3  ଷሺ2,3,3ሻሻݍ3  50.  

It can be directly verified that both inequalities (strictly) hold for any  ∈ ሺ0,1ሻ and, therefore, sVII 
is a strict equilibrium. 

Finally, consider sIV. First, we observe that, for all  ∈ ሺ0,1ሻ, ߨ
ଵሺ0, ିݔ

ூሻ ൌ 50  100/3 ൌ
ߨ
ଵሺ1, ିݔ

ூሻ. Hence, in order to be an equilibrium, it requires both ߨ
ଶሺ0, ିݔ

ூሻ  ߨ
ଶሺ1, ିݔ

ூሻ and 

ߨ
ଷሺ1, ିݔ

ூሻ  ߨ
ଷሺ0, ିݔ

ூሻ, i.e., 

  50 
ଵ

ଷ
ሺݍଶሺ1,3ሻ  ଶሺ2,3ሻݍ    and	ଶሺ3,3ሻሻݍ2

ଵ

ଷ
ሺ2ݍଷሺ1,3,3ሻ  ଷሺ2,3,3ሻሻݍ2  50.  

The first inequality simplifies to   0.8 and the second one simplifies to   0.5.	Therefore, sIV is 
not an equilibrium if p = 0.2, and it is a weak equilibrium if p = 0.8. QED  
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Incomplete information, 20-player networks 
 

In this scenario players are informed about which network is in place but they do not know the 
specific position they have in the network. They know only their own degree (the number of 
neighbors they have, either 1, 2, 3 or 4). With this information in hand, each player decides 
whether to be active (action 1) or not (action 0). Since each player only learns her degree, she 
can only condition her behavior on this information. In this sense, a (symmetric) strategy profile 
is represented by a vector s ൌ ሺsଵ, sଶ, sଷ, sସሻ, where s୨ ∈ ሼ0, 1ሽ is the action chosen by an agent 

with degree j ∈ ሼ1, 2, 3,4ሽ.  
 

Proposition 6. In the scenario of Experiment 3 in the three 20-player networks there are two 
pure-strategy Bayes-Nash equilibria: ሺ0, 0, 0, 0ሻ and ሺ0, 1, 1, 1ሻ. Both equilibria are strict. 

 

Proof. Let ߨ
ሺݔ, ሻିݔ ≡ ߨ

ሺݔሻ be the payoff of an agent (indexed by i	∈ ܰ) with degree j	∈
ሼ1,2,3,4ሽ from action ݔ when other players choose ିݔ. Note that (i) in all Nash equilibria, ݏଵ ൌ 0 

because ߨ
ଵሺ0, ሻିݔ 	ൌ 50 and ߨ

ଵሺݔ, ሻିݔ 	
100
3

; (ii) the strategy profile ሺ0, 0,0, 0ሻ is a strict 

Bayes-Nash equilibrium in all networks because a deviation to action 1 produces a payoff of 0 
(against a payoff of 50 from action 0). Then there are 7 strategy profiles candidates to be a pure-
strategy Bayes-Nash equilibrium: all possible combinations of ݏଶ, ,ଷݏ  excluding ݏ ସ inݏ
ሺ0, 0,0, 0ሻ.  

Consider Network 1. Strategy ሺ0,1,0,0ሻ is not an equilibrium because	݅ߨ
2ሺ1, െ݅ሻݔ ൌ

22.22	  50 ൌ ݅ߨ
2ሺ0, ߨ	. Strategy ሺ0,0,1,0ሻ is not an equilibrium because	െ݅ሻݔ

ଷሺ1, ሻିݔ ൌ 16.66 ൏
50 ൌ ߨ

ଷሺ0, ݅ߨ	. Strategy ሺ0,0,0,1ሻ is not an equilibrium because	ሻିݔ
4ሺ1, െ݅ሻݔ ൌ 0 ൏ 50 ൌ

݅ߨ
4ሺ0, ߨ െ݅ሻ. Strategy ሺ0,1,1,0ሻ is not an equilibrium becauseݔ

ସሺ1, ሻିݔ ൌ 116.66  50 ൌ
ߨ
ସሺ0, ݅ߨ	. Strategy ሺ0,1,0,1ሻ is not an equilibrium because	ሻିݔ

2ሺ1, െ݅ሻݔ ൌ 44.44 ൏ 50 ൌ
݅ߨ
2ሺ0, ߨ . Strategy ሺ0,0,1,1ሻ is not an equilibrium because	െ݅ሻݔ

ଷሺ1, ሻିݔ ൌ 41.66 ൏ 50 ൌ
ߨ
ଷሺ0, ߨ . Finally, strategy ሺ0,1,1,1ሻ is a strict equilibrium because	ሻିݔ

ସሺ1, ሻିݔ ൌ 116.66  50 ൌ
ߨ
ସሺ0, ߨ ,	ሻିݔ

ଷሺ1, ሻିݔ ൌ 58.33  50 ൌ ߨ
ଷሺ0, ߨ ሻ, andିݔ

ଶሺ1, ሻିݔ ൌ 55.55  50 ൌ ߨ
ଶሺ0,   .ሻିݔ

Consider Network 2. Strategy ሺ0,1,0,0ሻ is not an equilibrium because	݅ߨ
2ሺ1, െ݅ሻݔ ൌ 0	 

50 ൌ ݅ߨ
2ሺ0, ߨ	. Strategy ሺ0,0,1,0ሻ is not an equilibrium because	െ݅ሻݔ

ଷሺ1, ሻିݔ ൌ 11.11 ൏ 50 ൌ
ߨ
ଷሺ0, ݅ߨ	. Strategy ሺ0,0,0,1ሻ is not an equilibrium because	ሻିݔ

4ሺ1, െ݅ሻݔ ൌ 44.44 ൏ 50 ൌ
݅ߨ
4ሺ0, ߨ െ݅ሻ. Strategy ሺ0,1,1,0ሻ is not an equilibrium becauseݔ

ଶሺ1, ሻିݔ ൌ 41.66 ൏ 50 ൌ
ߨ
ଶሺ0, ݅ߨ	. Strategy ሺ0,1,0,1ሻ is not equilibrium because	ሻିݔ

2ሺ1, െ݅ሻݔ ൌ 25 ൏ 50 ൌ ݅ߨ
2ሺ0,  .	െ݅ሻݔ

Strategy ሺ0,0,1,1ሻ is not equilibrium because ߨ
ଶሺ1, ሻିݔ ൌ 66.66  50 ൌ ߨ

ଶሺ0,  . Strategy	ሻିݔ
ሺ0,1,1,1ሻ is a strict equilibrium because ߨ

ସሺ1, ሻିݔ ൌ 116.66  50 ൌ ߨ
ସሺ0, ߨ ,	ሻିݔ

ଷሺ1, ሻିݔ ൌ
94.44  50 ൌ ߨ

ଷሺ0, ߨ ሻ, andିݔ
ଶሺ1, ሻିݔ ൌ 66.66  50 ൌ ߨ

ଶሺ0,   .ሻିݔ
Consider Network 3. Strategy ሺ0,1,0,0ሻ is not an equilibrium because	݅ߨ

2ሺ1, െ݅ሻݔ ൌ 0	 
50 ൌ ݅ߨ

2ሺ0, ߨ	. Strategy ሺ0,0,1,0ሻ is not an equilibrium because	െ݅ሻݔ
ଷሺ1, ሻିݔ ൌ 11.11 ൏ 50 ൌ
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ߨ
ଷሺ0, ݅ߨ	. Strategy ሺ0,0,0,1ሻ is not an equilibrium because	ሻିݔ

4ሺ1, െ݅ሻݔ ൌ 33.33 ൏ 50 ൌ
݅ߨ
4ሺ0, ݅ߨ	െ݅ሻ. Strategy ሺ0,1,1,0ሻ is not an equilibrium becauseݔ

2ሺ1, െ݅ሻݔ ൌ 33.33 ൏ 50 ൌ
݅ߨ
2ሺ0, ߨ . Strategy ሺ0,1,0,1ሻ is not an equilibrium because	െ݅ሻݔ

ଶሺ1, ሻିݔ ൌ 33.33 ൏ 50 ൌ
ߨ
ଶሺ0, ߨ . Strategy ሺ0,0,1,1ሻ is not an equilibrium because	ሻିݔ

ଶሺ1, ሻିݔ ൌ 66.66  50 ൌ
ߨ
ଶሺ0, ݅ߨ	. Strategy ሺ0,1,1,1ሻ is a strict equilibrium because	ሻିݔ

4ሺ1, െ݅ሻݔ ൌ 116.66  50 ൌ
݅ߨ
4ሺ0, ߨ ,െ݅ሻݔ

ଷሺ1, ሻିݔ ൌ 94.44  50 ൌ ߨ
ଷሺ0, ߨ ሻ, andିݔ

ଶሺ1, ሻିݔ ൌ 66.66  50 ൌ ߨ
ଶሺ0,  ሻ. QEDିݔ
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Online Supplement A: Figures by groups  

(x,y,z) means group x, network y position z where Network: Orange = 1, Green = 2, Purple =3 
Position: A = 1, B = 2, C = 3, D = 4, E = 5. 

 

Figure B.1: Complete information and substitutes: Relative frequencies of active choices 
across periods, by group, network and position.  
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3, 1, 1 3, 1, 2 3, 1, 3 3, 1, 4 3, 1, 5

3, 2, 1 3, 2, 2 3, 2, 3 3, 2, 4 3, 2, 5

3, 3, 1 3, 3, 2 3, 3, 3 3, 3, 4 3, 3, 5

4, 1, 1 4, 1, 2 4, 1, 3 4, 1, 4 4, 1, 5

4, 2, 1 4, 2, 2 4, 2, 3 4, 2, 4 4, 2, 5

4, 3, 1 4, 3, 2 4, 3, 3 4, 3, 4 4, 3, 5

13, 1, 1 13, 1, 2 13, 1, 3 13, 1, 4 13, 1, 5

13, 2, 1 13, 2, 2 13, 2, 3 13, 2, 4 13, 2, 5

13, 3, 1 13, 3, 2 13, 3, 3 13, 3, 4 13, 3, 5

14, 1, 1 14, 1, 2 14, 1, 3 14, 1, 4 14, 1, 5

14, 2, 1 14, 2, 2 14, 2, 3 14, 2, 4 14, 2, 5

14, 3, 1 14, 3, 2 14, 3, 3 14, 3, 4 14, 3, 5
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Figure B.2: Complete information and complements: Relative frequencies of active choices 
across periods, by group and position in the Orange network.  
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Online Supplement B: Econometric model (Variables and Estimations) 

Experiments 1 and 2 

Network:  

Experiment 1 
Orange = 1, 
Green = 2,  
Purple =3 
Experiment 2 
Blue = 1, 
Red = 2,  
Brown =3 

Position:  

A = 1,  
B = 2,  
C = 3,  
D = 4,  
E = 5. 

Complete information 

dij = 1 if network=i and position = j , 0 otherwise 
tij: interaction between dij and period 

Incomplete information 

d1=1 if p=0.8, 0 otherwise 
degree2 = 1 if player’s degree=2, 0 otherwise 
degree3 = 1 if player’s degree=3, 0 otherwise 
d1_period: interaction between period and d1 
d1_degree2: interaction between d1 and degree2 
d1_degree3: interaction between d1 and degree3 
deg2_period: interaction between degree2 and period 
deg3_period: interaction between degree3 and period 
deg2_per_d1: interaction between degree2, period and d1 
deg3_per_d1: interaction between degree3, period and d1. 
 
risk_0_1: marginal effect of risk when d1=0 and degree==1   
risk_0_2: marginal effect of risk when d1=0 and degree==2 
risk_0_3: marginal effect of risk when d1=0 and degree==3 
risk_1_1: marginal effect of risk when d1=1 and degree==1 
risk_1_2: marginal effect of risk when d1=1 and degree==2 
risk_1_3: marginal effect of risk when d1=1 and degree==3 
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Experiment 1 

Complete information ‐ Strategic Substitutes 

 

Marginal effects of risk 
 

 Coef. Std. Err. z P>z [95% Conf. Interval]

Risk .0083711 .01168 0.72 0.474 -.014525 .031267

 

 
 
 
 

Log likelihood = -388.50483   

Choice Coef. Std. Err. z P>z [95% Conf.Interval]

Period 0.030663 0.047141 0.65 0.515 -0.06173 0.123057

d12 -8.40485 1.7711 -4.75 0 -11.8761 -4.93356

d13 -3.90144 1.265561 -3.08 0.002 -6.38189 -1.42098

d14 -6.95259 1.5288 -4.55 0 -9.94899 -3.9562

d15 -1.80211 1.416295 -1.27 0.203 -4.578 0.973777

d21 -2.43685 1.350567 -1.8 0.071 -5.08391 0.210213

d22 -5.75513 1.357171 -4.24 0 -8.41514 -3.09512

d23 -4.33103 1.260564 -3.44 0.001 -6.80169 -1.86037

d24 -5.59522 1.326514 -4.22 0 -8.19514 -2.9953

d25 -1.22466 1.440592 -0.85 0.395 -4.04816 1.598853

d31 -0.87704 1.366207 -0.64 0.521 -3.55476 1.800676

d32 -6.18386 1.418038 -4.36 0 -8.96316 -3.40455

d33 -2.10023 1.34226 -1.56 0.118 -4.73101 0.530551

d34 -4.85752 1.249787 -3.89 0 -7.30706 -2.40798

d35 -1.86108 1.328373 -1.4 0.161 -4.46464 0.742488

t12 -0.03139 0.073418 -0.43 0.669 -0.17528 0.112509

t13 0.02826 0.053593 0.53 0.598 -0.07678 0.133299

t14 -0.06707 0.065325 -1.03 0.305 -0.19511 0.060959

t15 0.053105 0.068362 0.78 0.437 -0.08088 0.187091

t21 0.078902 0.061831 1.28 0.202 -0.04228 0.200088

t22 -0.0878 0.059385 -1.48 0.139 -0.20419 0.028597

t23 0.046098 0.053475 0.86 0.389 -0.05871 0.150906

t24 -0.0617 0.05645 -1.09 0.274 -0.17234 0.048942

t25 0.050011 0.074264 0.67 0.501 -0.09554 0.195565

t31 0.005485 0.061208 0.09 0.929 -0.11448 0.125452

t32 -0.13539 0.06704 -2.02 0.043 -0.26678 -0.00399

t33 0.106867 0.072718 1.47 0.142 -0.03566 0.249391

t34 -0.09514 0.05377 -1.77 0.077 -0.20053 0.010246

t35 0.040081 0.058256 0.69 0.491 -0.0741 0.154262

Risk 0.008371 0.011682 0.72 0.474 -0.01453 0.031267

_cons 3.491075 1.312174 2.66 0.008 0.919263 6.062888
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Complete information ‐ Strategic Complements 

  

Marginal effects of risk 
 

 Coef. Std. Err. z P>z [95% Conf. Interval]

Risk .0274705 .00797 3.45 0.001 .011846 .043095 

 
 
 
 
 
 

Log likelihood = -280.54602   

Choice Coef. Std. Err. z P>z [95% Conf.Interval]

Period 0.012517 0.045182 0.28 0.782 -0.07604 0.101071

d12 7.203613 1.407627 5.12 0 4.444714 9.962512

d13 5.912277 1.359848 4.35 0 3.247023 8.57753

d14 7.21883 1.402497 5.15 0 4.469987 9.967673

d15 4.015273 1.500287 2.68 0.007 1.074765 6.955781

d21 1.862151 2.698071 0.69 0.49 -3.42597 7.150273

d22 2.566745 1.610425 1.59 0.111 -0.58963 5.723119

d23 5.055612 1.463772 3.45 0.001 2.186673 7.924552

d24 2.257243 1.837471 1.23 0.219 -1.34413 5.85862

d25 1.806821 2.147597 0.84 0.4 -2.40239 6.016034

d31 4.098842 2.678017 1.53 0.126 -1.14998 9.347658

d32 4.726608 1.400217 3.38 0.001 1.982232 7.470983

d33 1.841959 2.148467 0.86 0.391 -2.36896 6.052878

d34 3.49502 1.504369 2.32 0.02 0.546511 6.443529

d35 3.505376 2.435331 1.44 0.15 -1.26779 8.278537

t12 -0.04634 0.051205 -0.9 0.365 -0.1467 0.05402

t13 -0.01217 0.050444 -0.24 0.809 -0.11104 0.086698

t14 -0.05783 0.050785 -1.14 0.255 -0.15737 0.041705

t15 -0.35341 0.138617 -2.55 0.011 -0.62509 -0.08172

t21 -0.36076 0.413782 -0.87 0.383 -1.17175 0.450241

t22 -0.1474 0.088299 -1.67 0.095 -0.32047 0.025659

t23 -0.25116 0.083561 -3.01 0.003 -0.41494 -0.08738

t24 -0.23798 0.174672 -1.36 0.173 -0.58033 0.104369

t25 -0.2018 0.16164 -1.25 0.212 -0.51861 0.115004

t31 -0.97318 0.975 -1 0.318 -2.88415 0.93778

t32 -0.15397 0.062666 -2.46 0.014 -0.2768 -0.03115

t33 -0.31792 0.270881 -1.17 0.241 -0.84884 0.212999

t34 -0.20028 0.090852 -2.2 0.027 -0.37835 -0.02222

t35 -0.61405 0.566495 -1.08 0.278 -1.72436 0.496265

Risk 0.027471 0.007972 3.45 0.001 0.011846 0.043095

_cons -6.23145 1.347641 -4.62 0 -8.87277 -3.59012
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Incomplete information ‐ Strategic Substitutes 

Log likelihood = -835.0852   

Choice Coef. Std. Err. z P>z [95% Conf.Interval]

Period .0353746 .0157977 2.24 0.025 .0044117 .0663375

d1 -.6814024 .6378184 -1.07 0.285 -1.931503 .5686988

degree2 -4.581403 .4443026 -10.31 0.000 -5.45222 -3.710586

degree3 -7.392577 1.027527 -7.19 0.000 -9.406494 -5.37866

d1_period .0466369 .0242576 1.92 0.055 -.0009071 .094181

d1_degree2 1.671407 .6139628 2.72 0.006 .4680618 2.874752

d1_degree3 2.461545 1.148353 2.14 0.032 .210815 4.712274

deg2_period -.0500117 .0189244 -2.64 0.008 -.0871029 -.0129206

deg3_period -.162495 .0831316 -1.95 0.051 -.32543 .0004399

deg2_per_d1 .0302095 .0289505 1.04 0.297 -.0265325 .0869514

deg3_per_d1 .0148065 .0875422 0.17 0.866 -.1567731 .1863861

Risk -.0158006 .0069383 -2.28 0.023 -.0293993 -.0022018

_cons 4.136116 .5870075 7.05 0.000 2.985603 5.28663

Marginal effect of risk 

risk_0_1 -.0002897 .0001697 -1.71 0.088 -.0006223 .0000429

risk_0_2 -.0021784 .0010144 -2.15 0.032 -.0041666 -.0001901

risk_0_3 -.0000198 .0000251 -0.79 0.431 -.000069 .0000294

risk_1_1 -.0002272 .0001254 -1.81 0.070 -.0004729 .0000185

risk_1_2 -.0032382 .0014454 -2.24 0.025 -.0060711 -.0004052

risk_1_3 -.0003819 .0002303 -1.66 0.097 -.0008333 .0000695
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Incomplete information ‐ Strategic Complements 

Log likelihood = -708.07396   

Choice Coef. Std. Err. z P>z [95% Conf.Interval]

Period -.1447516 .0408935 -3.54 0.000 -.2249014 -.0646018

d1 -.5010158 .8928432 -0.56 0.575 -2.250956 1.248925

degree2 4.341514 .5878049 7.39 0.000 3.189437 5.49359

degree3 7.213081 .7566286 9.53 0.000 5.730116 8.696045

d1_period .0096085 .0590735 0.16 0.871 -.1061734 .1253905

d1_degree2 1.385479 .8816709 1.57 0.116 -.3425639 3.113522

d1_degree3 1.891547 1.03034 1.84 0.066 -.1278814 3.910976

deg2_period -.0436345 .0444213 -0.98 0.326 -.1306986 .0434297

deg3_period -.0674082 .047188 -1.43 0.153 -.1598949 .0250785

deg2_per_d1 .016171 .0639297 0.25 0.800 -.1091288 .1414708

deg3_per_d1 -.0309548 .0656667 -0.47 0.637 -.1596591 .0977496

Risk -.0019786 .0082606 -0.24 0.811 -.0181691 .0142118

_cons -3.559826 .797559 -4.46 0.000 -5.123013 -1.996639

Marginal effect of risk 

risk_0_1 -2.75e-06 .0000119 -0.23 0.817 -.000026 .0000205

risk_0_2 -.0000811 .0003397 -0.24 0.811 -.000747 .0005848

risk_0_3 -.0004371 .0018246 -0.24 0.811 -.0040132 .0031391

risk_1_1 -2.02e-06 8.78e-06 -0.23 0.818 -.0000192 .0000152

risk_1_2 -.0002572 .0010765 -0.24 0.811 -.002367 .0018527

risk_1_3 -.0004869 .0020325 -0.24 0.811 -.0044706 .0034969

 

Incomplete information ‐ Strategic Complements ‐ p = 0.95 

Log likelihood = -412.52192 

Choice Coef. Std. Err. z P>z [95% Conf. Interval]

Period -0.06831 0.020013 -3.41 0.001 -0.10754 -0.02909

degree2 6.656791 0.632275 10.53 0 5.417555 7.896027

degree3 8.786581 0.654056 13.43 0 7.504655 10.06851

deg2_period -0.01938 0.026316 -0.74 0.461 -0.07096 0.032195

deg3_period -0.07553 0.025416 -2.97 0.003 -0.12535 -0.02572

Risk 0.00991 0.014227 0.7 0.486 -0.01798 0.037794

_cons -3.95017 0.878676 -4.5 0 -5.67234 -2.228
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Experiment 2 

Complete information 

Log likelihood = -403.98366 

Choice Coef. Std. Err. z P>z [95% Conf. Interval]

Period -0.78131 0.953394 -0.82 0.412 -2.64993 1.087306

d212 7.296092 2.976187 2.45 0.014 1.462872 13.12931

d213 8.593323 3.199112 2.69 0.007 2.323179 14.86347

d214 4.512357 2.864328 1.58 0.115 -1.10162 10.12634

d215 10.06287 3.512437 2.86 0.004 3.178619 16.94712

d222 3.465771 2.897039 1.2 0.232 -2.21232 9.143864

d223 12.1354 3.286807 3.69 0 5.69338 18.57743

d224 5.38125 2.878885 1.87 0.062 -0.26126 11.02376

d225 5.527497 2.895627 1.91 0.056 -0.14783 11.20282

d231 3.632378 3.391387 1.07 0.284 -3.01462 10.27937

d232 6.245805 2.889733 2.16 0.031 0.582033 11.90958

d233 4.87267 2.872389 1.7 0.09 -0.75711 10.50245

d234 5.146739 2.86956 1.79 0.073 -0.4775 10.77097

d235 4.783574 2.871477 1.67 0.096 -0.84442 10.41156

t212 0.797173 0.954438 0.84 0.404 -1.07349 2.667836

t213 0.783776 0.955599 0.82 0.412 -1.08916 2.656715

t214 0.810881 0.953742 0.85 0.395 -1.05842 2.68018

t215 0.774828 0.957463 0.81 0.418 -1.10177 2.651421

t222 0.629482 0.953886 0.66 0.509 -1.2401 2.499064

t223 0.576057 0.954651 0.6 0.546 -1.29503 2.44714

t224 0.72249 0.953831 0.76 0.449 -1.14699 2.591964

t225 0.724289 0.953799 0.76 0.448 -1.14512 2.593701

t231 -0.43954 1.189874 -0.37 0.712 -2.77165 1.89257

t232 0.74131 0.953731 0.78 0.437 -1.12797 2.610588

t233 0.708418 0.953723 0.74 0.458 -1.16084 2.57768

t234 0.713307 0.953636 0.75 0.454 -1.15578 2.582398

t235 0.732869 0.953727 0.77 0.442 -1.1364 2.602138

Risk 0.027857 0.012704 2.19 0.028 0.002958 0.052755

_cons -4.34676 2.900478 -1.5 0.134 -10.0316 1.338073

 
Marginal effects of risk 
 

 Coef. Std. Err. z P>z [95% Conf. Interval]

Risk 0.027857 0.0127 2.19 0.028 0.002958 0.052755
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Incomplete information 

Log likelihood = -564.68216 

Choice Coef. Std. Err. z P>z [95% Conf. Interval]

Period -0.03954 0.028585 -1.38 0.167 -0.09557 0.016485

d1 2.246575 1.169403 1.92 0.055 -0.04541 4.538561

degree2 9.844207 0.898926 10.95 0 8.082345 11.60607

degree3 13.70468 1.303205 10.52 0 11.15045 16.25892

d1_period -0.0962 0.04866 -1.98 0.048 -0.19157 -0.00083

d1_degree2 -5.43655 1.117169 -4.87 0 -7.62616 -3.24694

d1_degree3 -4.86144 1.554457 -3.13 0.002 -7.90813 -1.81476

deg2_period -0.07148 0.032004 -2.23 0.026 -0.13421 -0.00875

deg3_period -0.05 0.043899 -1.14 0.255 -0.13604 0.036042

deg2_per_d1 0.224834 0.053274 4.22 0 0.120419 0.329249

deg3_per_d1 0.222774 0.06418 3.47 0.001 0.096984 0.348565

Risk 0.011876 0.012558 0.95 0.344 -0.01274 0.036489

_cons -5.29965 1.047908 -5.06 0 -7.35351 -3.24579

Marginal effect of risk 

Choice Coef. Std. Err. z P>z [95% Conf. Interval]

risk_0_1 4.66E-05 5.96E-05 0.78 0.435 -7E-05 0.000164

risk_0_2 0.000597 0.000709 0.84 0.4 -0.00079 0.001986

risk_0_3 9.11E-06 1.29E-05 0.7 0.482 -1.6E-05 3.45E-05

risk_1_1 6.41E-05 0.000082 0.78 0.434 -9.7E-05 0.000225

risk_1_2 0.001013 0.00118 0.86 0.391 -0.0013 0.003326

risk_1_3 9.90E-06 0.000014 0.71 0.481 -1.8E-05 3.74E-05
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Experiment 3 

n2 = 1 if network=2, 0 otherwise 
n3 = 1 if network=3, 0 otherwise 
d2 = 1 if player’s degree=2, 0 otherwise 
d3 = 1 if player’s degree=3, 0 otherwise 
d4 = 1 if player’s degree=4, 0 otherwise 
d2n2: interaction between d2 and n2  
d2n3: interaction between d2 and n3  
d3n2: interaction between d3 and n2  
d3n3: interaction between d3 and n3  
d4n2: interaction between d4 and n2  
d4n3: interaction between d4 and n3  
n2p: interaction variable between n2 and period 
n3p: interaction variable between n3 and period 
d2p: interaction variable between d2 and period 
d3p: interaction variable between d3 and period 
d4p: interaction variable between d4 and period 
d2n2p: interaction variable between d2, n2 and period 
d2n3p: interaction variable between d2, n3 and period 
d3n2p: interaction variable between d3, n2 and period 
d3n3p: interaction variable between d3, n3 and period 
d4n2p: interaction variable between d4, n2 and period 
d4n3p: interaction variable between d4, n3 and period 
 
risk_1_1: marginal effect of risk when network 1 and degree==1   
risk_1_2: marginal effect of risk when network 1 and degree==2 
risk_1_3: marginal effect of risk when network 1 and degree==3 
risk_1_4: marginal effect of risk when network 1 and degree==4 
risk_2_1: marginal effect of risk when network 2 and degree==1   
risk_2_2: marginal effect of risk when network 2 and degree==2 
risk_2_3: marginal effect of risk when network 2 and degree==3 
risk_2_4: marginal effect of risk when network 2 and degree==4 
risk_3_1: marginal effect of risk when network 3 and degree==1   
risk_3_2: marginal effect of risk when network 3 and degree==2 
risk_3_3: marginal effect of risk when network 3 and degree==3 
risk_3_4: marginal effect of risk when network 3 and degree==4 
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Log likelihood = -1047.914  

choice Coef. Std. Err. z P>z [95% Conf. Interval]

period -0.05858 0.024295 -2.41 0.016 -0.10619 -0.01096

n2 1.332241 0.784154 1.7 0.089 -0.20467 2.869154

n3 0.423339 0.780118 0.54 0.587 -1.10566 1.952342

d2 4.759135 0.528128 9.01 0 3.724024 5.794246

d3 7.331392 0.573277 12.79 0 6.207789 8.454995

d4 10.60647 0.856568 12.38 0 8.927626 12.28531

d2n2 0.174066 0.832004 0.21 0.834 -1.45663 1.804763

d2n3 2.272886 0.879686 2.58 0.01 0.548733 3.997039

d3n2 21.21926 4313.574 0 0.996 -8433.23 8475.669

d3n3 2.881053 1.292484 2.23 0.026 0.347831 5.414274

d4n2 1.109566 2.070312 0.54 0.592 -2.94817 5.167304

d4n3 17.64513 4942.264 0 0.997 -9669.02 9704.305

n2p -0.02345 0.038179 -0.61 0.539 -0.09828 0.051381

n3p 0.051894 0.031444 1.65 0.099 -0.00973 0.113522

d2p -0.03878 0.026727 -1.45 0.147 -0.09117 0.013601

d3p -0.03067 0.027 -1.14 0.256 -0.08359 0.022246

d4p -0.09452 0.034091 -2.77 0.006 -0.16134 -0.02771

d2n2p 0.216455 0.044848 4.83 0 0.128555 0.304354

d2n3p 0.089878 0.039223 2.29 0.022 0.013002 0.166754

d3n2p 0.101249 194.1649 0 1 -380.455 380.6575

d3n3p 0.109483 0.068038 1.61 0.108 -0.02387 0.242834

d4n2p 0.277924 0.140703 1.98 0.048 0.002151 0.553697

d4n3p 0.099375 213.2344 0 1 -417.832 418.0312

risk1 0.014794 0.005353 2.76 0.006 0.004303 0.025285

_cons -5.35813 0.596135 -8.99 0 -6.52653 -4.18973

Marginal effect of risk 

choice Coef. Std. Err. z P>z [95% Conf. Interval]

risk1_1_1 4.47E-05 2.52E-05 1.77 0.076 -4.72E-06 9.42E-05

risk1_1_2 0.001786 0.000759 2.35 0.019 0.000298 0.003274

risk1_1_3 0.003011 0.001138 2.65 0.008 0.000781 0.00524

risk1_1_4 0.000718 0.000351 2.04 0.041 2.97E-05 0.001406

risk1_2_1 0.000163 0.000133 1.23 0.22 -9.7E-05 0.000423

risk1_2_2 0.003687 0.001344 2.74 0.006 0.001052 0.006322

risk1_2_3 8.74E-13 . . . . .

risk1_2_4 5.34E-05 9.63E-05 0.55 0.58 -0.00014 0.000242

risk1_3_1 7.17E-05 5.58E-05 1.29 0.199 -3.8E-05 0.000181

risk1_3_2 0.002873 0.001327 2.17 0.03 0.000273 0.005473

risk1_3_3 0.000179 0.000196 0.91 0.361 -0.00021 0.000563

risk1_3_4 9.74E-12 . . . . .
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‐ In the purple network there are three positions with 1 link (positions A, C and E), one 
position with 2 links (position D), and one position with 3 links (position B).  

 
You can notice that both the green and the purple network have one link less that the orange 
one: In the green network positions B and D are not linked, and in the purple network 
positions C and D are not linked.  
Your earnings of the period can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below.  
3.- In each period, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE or INACTIVE (the other participants are asked to make the same 
choice). Your payoff of the period will depend on your choice and on the choices of those 
participants of your group located in positions linked to yours: You earn 100 ECU if either you 
or at least one of the participants located in positions linked to yours choose to be ACTIVE. 
Being active has a cost of 50 ECU. Hence, 

 If you choose to be ACTIVE your period payoff is  ECU for sure [100	– 50]  
 If you choose to be INACTIVE your period payoff can be:  

  ECU if at least one participant linked to you chooses to be ACTIVE, 
or 

  ECU if no participant linked to you chooses to be ACTIVE.  
 
4.- At the end of every period, you will get information about current and past periods. The 
information consists of: 
- The selected network. 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (period) payoff. 
 
5.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
periods, that will be randomly selected across the 40 periods of play (all periods selected will 
have the same probability). These earnings are transformed to cash at the exchange rate of 20 
ECU = 1 €. In addition, just by showing up, you will also be paid a fee of 5 €. 
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At each period, you are equally likely to be located in each of the 5 positions. At each period, 
you will neither be informed of the selected network (color) nor of your position (letter).  
In a network, a link is represented by a line (connection) between two positions. For example, in 
the orange network, position B has three links: it is linked to positions A, C and D (but it is not 
linked to position E). Summarizing: 
‐ In the orange network there are two positions with 1 link (positions A and E), one position 

with 2 links (position C), and two positions with 3 links (positions B and D). 
‐ In the green network there are two positions with 1 link (positions A and E), three position 

with 2 links (positions B, C and D), and no position with 3 links. 
‐ In the purple network there are three positions with 1 link (positions A, C and E), one 

position with 2 links (position D), and one position with 3 links (position B).  
 
You can notice that both the green and the purple network have one link less that the orange 
one: In the green network positions B and D are not linked, and in the purple network 
positions C and D are not linked.  
Your earnings of the period can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below.  
3.- In each period, you will only be informed about how many links your assigned position has 
(1 link, 2 links or 3 links) in the selected network, but you will neither know with certainty which 
is the selected network nor your exact position.  
For example, if at a particular period you are informed that your position has 3 links, there are 
different paths that could lead to this outcome: It may be the case that the selected network is the 
orange network and you have been assigned to position B or D, or it may be the case that the 
selected network is the purple network and you have been assigned to position B.  
4.- In each period, you will be asked to make a choice: to be ACTIVE or INACTIVE (the other 
participants are asked to make the same choice). Your payoff of the period will depend on your 
choice and on the choices of those participants of your group located in positions linked to yours. 
If you choose to be INACTIVE, your period payoff is 50 ECU. If you choose to be ACTIVE, 
your period payoff is calculated as follows: First, add 100 ECU per participant linked to you that 
also chooses to be ACTIVE; then, divide the result by 3. Hence, 

 If you choose to be ACTIVE your period payoff can be: 

 .  ECU if 3 participants linked to you choose to be ACTIVE ቂଵାଵାଵଷቃ, 
or 

 . 	ECU if 2 participants linked to you choose to be ACTIVE ቂ
ଵାଵ

ଷ
ቃ, or 

 .  ECU if 1 participants linked to you chooses to be ACTIVE ቂ
ଵ

ଷ
ቃ, or 

 .  ECU if no participant linked to you chooses to be ACTIVE. 
 If you choose to be INACTIVE your period payoff is .  ECU for sure. 

 
5.- At the end of every period, you will get information about current and past periods. The 
information consists of: 
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- The selected network. 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (period) payoff. 
 
6.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
periods, that will be randomly selected across the 40 periods of play (all periods will be selected 
with the same probability). These earnings are transformed to cash at the exchange rate of 20 
ECU = 1 €. In addition, just by showing up, you will also be paid a fee of 5 €. 
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‐ There are four blue positions: Those positions with three links (5, 11, 19 and 20).  
 

‐ There are two red positions: Those positions with four links (4 and 16).  
 
3.- In each period, you (and the other participants) are randomly assigned by the computer to a 
position from 1 to 20 in the network, all of them being equally likely. The assignment process 
is random: At each period, you are equally likely to be located in each of the 20 positions of the 
network.  
 
 
3.- In each period, you will only be informed of the color of your position, that is, you will 
know how many links your assigned position has: 1 link (yellow), 2 links (green), 3 links (blue) 
or 4 links (red). However, you will not be informed of which is your exact position.  
 
For example, if in a particular period you are informed that your position has 3 links (blue), then 
you know that you can be in position 5, 11, 19 or 20, and that you can be in any of them with the 
same probability. Note that, in such a case, you also know that you cannot be in a yellow, green 
or red position. 
Your earnings of the period can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below. 
 
4.- In each period, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE or INACTIVE (the other participants are asked to make the same 
choice). Your payoff of the period will depend on your choice and on the choices of those 
participants located in positions linked to yours. If you choose to be INACTIVE, your period 
payoff is 50 ECU. If you choose to be ACTIVE, your period payoff is calculated as follows: 
First, add 100 ECU per participant linked to you that also chooses to be ACTIVE; then, divide 
the result by 3. Hence, 
 

 

 If you choose to be ACTIVE your period payoff can be: 
 .  ECU if 4 participants linked to you choose to be ACTIVE 

ቂ
ଵ	ାଵାଵାଵ

ଷ
ቃ, or 

 .  ECU if 3 participants linked to you choose to be ACTIVE 

ቂ
ଵାଵାଵ

ଷ
ቃ, or 

 . 	ECU if 2 participants linked to you choose to be ACTIVE ቂ
ଵାଵ

ଷ
ቃ, or 

 .  ECU if 1 participants linked to you chooses to be ACTIVE ቂ
ଵ

ଷ
ቃ, or 

 
 .  ECU if no participant linked to you chooses to be ACTIVE. 
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 If you choose to be INACTIVE your period payoff is .  ECU for sure. 
  

 
5.- At the end of every period, you will get information about current and past periods. The 
information consists of: 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (period) payoff. 
 
6.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
periods, that will be randomly selected across the 40 periods of play (all periods will be selected 
with the same probability). These earnings are transformed to cash at the exchange rate of 20 
ECU = 1 €. In addition, just by showing up, you will also be paid a fee of 5 €. 
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Part 2 of the experiment 
[Note: These are the instructions for the elicitation of risk attitudes. They were used at the end of 
all experimental sessions] 
In part 2 you need to make 12 decisions. In each decision, your choice can only have monetary 
consequences for you, but not for any other participant. 
 
1) The first decision is as follows: 
You have 100 ECU, of which you can invest as many as you like into a risky option. Your 
investment will be successful with 50% chance. If successful, you get 2.5 times the invested 
amount back. If not successful, you lose your invested amount of ECU. All ECU that you do not 
invest are for you to keep. 
How many ECU would you like to invest into the risky option? 
 
2) The other 11 decisions are fairly similar. 
In each decision you can choose between an option LEFT and an option RIGHT. Your payoff 
from choosing option LEFT depends on in each of the 11 decisions on chance. Choosing option 
RIGHT, however, implies a safe payoff. For instance, you could be asked whether you prefer an 
option LEFT with a 50% chance of getting 100 ECU and a 50% chance of getting 0 ECU or an 
option RIGHT in which you get c ECU for sure. The value c can take on different, positive 
values that you will see on the experimental screen once this part starts. In each of the 11 
decisions you will then need to choose one of the two options. The decision problem will be 
presented on the screen as follows: 
 

LEFT  RIGHT  Your choice 

with 50% chance   100 ECU  

and  

with 50% chance    0 ECU 

 

c ECU for sure 

 

LEFT                        RIGHT 

 

3) Payoff from this part: At the end of the experiment one of your 12 decisions will be randomly 
selected for payment. 
 
If, for instance, your first decision is selected, then you get with 50% chance 2.5 times the 
invested amount, in addition to the amount of ECU that you kept. 
If any of the other 11 decisions is selected, is the option that you chose payoff-relevant. If you 
have chosen the risky option, then you get with 50% chance 100 ECU and with 50% chance 0 
ECU. If you have chosen the safe amount, then you get the amount that was stated in that 
decision. 
 
As in Part 1 the exchange rate is: 20 ECU = 1 Euro. 
After this part, the experiment ends.   
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Online Supplement D: Generalized Risk-Dominance  

 
To study (ordinal) Generalized Risk-dominance, we use the concepts (and notation) introduced 
by Peski (2010). We focus on the scenarios with multiplicity of equilibria. Let N be the set of 
players and let ܽ ൌ ሺܽଵ, … , ܽሻ  be an action (strategy) profile.  
 
Definition 1. Given an action profile a, two action profiles, ߟ and ̅ߟ, are a-associated if, for each 
݅ ∈ ܰ, either ߟ ൌ ܽ or ̅ߟ ൌ ܽ 
 
Definition 2. An action profile a is ordinal GR-dominant if, for each player i, and for each pair 
of a-associated action profiles, ߟ and ̅ߟ,  ܽ is a best response of player i to either ߟ or ̅ߟ.   
 
 
I) Complete information scenario  
 
We denote by ܰ the set of player that have a link to player ݅ and ݊ ൌ | ܰ|. For each ݅ ∈ ܰ, 
ܽ ∈ ሼ0,1ሽ, where 0 means inactive and 1 means active. 
 
I.i) Strategic substitutes 
 
Lemma 1. Consider the game of strategic substitutes defined in Section 3 under the complete 
information scenario. If an action profile a is such that there exists	݅ ∈ ܰ such that (i) ݊  1, 
and (ii) ܽ ൌ 1, then a is not ordinal GR-dominant. 
 
Proof: Let ݆, ݆′ ∈ ܰ. There exist two a-associated action profiles, ߟ and ̅ߟ, such that ߟ ൌ

1, ᇱߟ	 ൌ 0, ߟ̅ ൌ 0, ᇱߟ̅	 ൌ 1. It clearly follows that ܽ ൌ 1 is neither a best response of player i to 

 QED .ߟ̅ nor a best response to ߟ
 
Lemma 2. Consider the game of strategic substitutes defined in Section 3 under the complete 
information scenario. If each player with degree higher than 1 is linked to at least one player 
with degree 1 and each player with degree 1 is linked to one player with degree higher than 1, 
then an action profile a such that, for each ݅ ∈ ܰ, ܽ ൌ 1 if and only if ݊ ൌ 1 is ordinal GR-
dominant. 
 
Proof: Consider action profile a, and ݅ ∈ ܰ such that ݊ ൌ 1, and let ݆ ∈ ܰ. Then ܽ ൌ 1 and 

ܽ ൌ 0. Thus, for each pair of a-associated action profiles, ߟ and ̅ߟ, it cannot be the case that 

ߟ ൌ ߟ̅ ൌ 1. It follows that ܽ ൌ 1 is a best response of player i to at least one of the two 

profiles (ߟ̅ ,ߟ). Now consider ݆ ∈ ܰ such that ݊  1 and let ݅ ∈ ܰ such that ݊ ൌ 1. Then 

ܽ ൌ 0 and ܽ ൌ 1. Thus, for each pair of a-associated action profiles, ߟ and ̅ߟ, it cannot be the 
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case that ߟ ൌ ߟ̅ ൌ 0. It follows that ܽ ൌ 0 is a best response of player i to at least one of the 

two profiles (ߟ̅ ,ߟሻ. QED 
  
Proposition 7.  Consider the game of strategic substitutes defined in Section 3 with complete 
information, and consider any of the three networks of Experiment 1. In the Purple network there 
only exists an ordinal GR-dominant equilibrium, and it is the most secure equilibrium ACE/BD. 
In the other two networks (Orange and Green) no equilibrium is ordinal GR-dominant.   
 
Proof: First consider the Orange network. In the equilibria ACE/BD, BE/ACD and AD/BCE, 
respectively, the player in position C, B and D satisfies the conditions (i)-(ii) of Lemma 1. 
Hence, none of the equilibria is ordinal GR-dominant. Now consider the Green network. In the 
equilibria ACE/BD, BD/ACE, BE/ACD and AD/BCE, respectively, the player in position C, B, 
B and D satisfies the conditions (i)-(ii) of Lemma 1. Hence, none of the equilibria is ordinal GR-
dominant. Finally, consider the Purple network. In the equilibria ACD/BE and BE/ACD, 
respectively, the player in position D and B satisfies the conditions (i)-(ii) of Lemma 1. 
Therefore, none of them is ordinal GR-dominant. In contrast, the equilibrium ACE/BD is ordinal 
GR-dominant, since it satisfies the conditions of Lemma 2. QED 
 
I.ii) Strategic Complements 
 
Lemma 3. Consider the game of strategic complements defined in Section 3 under the complete 
information scenario. If an action profile a is such that there exists	݅ ∈ ܰ such that (i) ݊  1, 

(ii) ܽ ൌ 1 and  (iii) ห൛݆ ∈ ܰ: ܽ ൌ 1ൟห ൏ 3, then a is not ordinal GR-dominant. 

 

Proof. Consider action profile a. First, let	݅ ∈ ܰ be such that ห൛݆ ∈ ܰ: ܽ ൌ 1ൟห ൏ 2. Then ܽ ൌ 1 

provides a payoff of at most 100/3 < 50. Thus, it is not a best response to any action profile. 

Now, consider the case ห൛݆ ∈ ܰ: ܽ ൌ 1ൟห ൌ 2, and let ݆, ݆′ ∈ ܰ be such that ܽ ൌ ܽᇱ ൌ 1. There 

exist two a-associated action profiles, ߟ and ̅ߟ, such that ߟ ൌ 1, ᇱߟ	 ൌ 0, ߟ̅ ൌ 0, ᇱߟ̅	 ൌ 1 and 

that, for any ݆′′ ∈ ܰ\ሼ݆, ݆′ሽ, 	ߟᇱᇱ ൌ ᇱᇱߟ̅	 ൌ 0. It clearly follows that ܽ ൌ 1 is neither a best 

response of player i to ߟ nor a best response to ̅ߟ, since in both cases it provides a payoff of 
100/3 < 50. QED 
 
Lemma 4. Consider the game of strategic complements defined in Section 3 under the complete 
information scenario. If the network is such that, for each ݅ ∈ ܰ, ݊ ൏ 4, then the action profile a 
with ܽ ൌ 0 for all ݅ ∈ ܰ is ordinal GR-dominant. 
 
Proof. Consider, for the sake of contradiction, that given two a-associated action profiles, ߟ and 
ܽ ,ߟ̅ ൌ 0 is not a best response to any of them. The fact that ܽ ൌ 0 is not a best response to ߟ 

implies that ݊  2 and ห൛݆ ∈ ܰ: ߟ ൌ 1ൟห  2. But, since ߟ and ̅ߟ are a-associated and ݊ ൏ 4, it 
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follows that ห൛݆ ∈ ܰ: ߟ̅ ൌ 1ൟห  1, a contradiction with the fact that ܽ ൌ 0 is not a best 

response to ̅ߟ. QED 
 
Proposition 8.  Consider the game of strategic complements defined in Section 3 with complete 
information. In any of the networks of Experiments 1 and 2 with multiple equilibria, the secure 
equilibrium is GR-dominant and the efficient equilibrium is not. 
 
Proof: We first note that, in all the scenarios, the secure equilibrium (all players inactive) 
satisfies the conditions of Lemma 4 and, therefore, it is ordinal GR-dominant. We now prove that 
the efficient equilibrium of each scenario is not ordinal GR-dominant by identifying a player 
position that satisfies the conditions of Lemma 3. In the BCD/AE equilibrium of the Orange 
network such a player position is B. In the BCDE/A equilibrium of the Blue network such a 
player position is B. In the CDE/AB equilibrium of the Blue network such a player position is C. 
In the BCDE/A equilibrium of the Brown network such a player position is B. QED 
 
 
II) Incomplete information scenario  
 
II.i) Strategic complements – 5 player networks 
 
Since in our set of 5-player networks, the maximum degree is 3, for each player ݅ ∈ ܰ, ܽ ൌ
ሺܽ,ଵ, ܽ,ଶ, ܽ,ଷሻ ∈ ሼ0,1ሽଷ. For each ݇ ∈{1,2,3}, ܽ, ൌ 0 (ܽ, ൌ 1) represents the choice of 

inactive (active) in the event in which player i has degree k. 
 
Proposition 9. Consider the game of strategic complements defined in Section 3 under any of the 
network generating processes of either Experiment 1 or Experiment 2 with incomplete 
information. The secure equilibrium is ordinal GR-dominant and the efficient equilibrium is not. 
 
Proof. Part 1. We first show that the action profile a such that for each ݅ ∈ ܰ, ܽ ൌ ሺ0,1,1ሻ (i.e., 
the efficient equilibrium) is not ordinal GR-dominant. Consider, without loss of generality, 
player 1. There exist two a-associated action profiles ߟ and ̅ߟ such that ߟଶ ൌ ଷߟ ൌ ሺ0,1,1ሻ and 
ସߟ ൌ ହߟ ൌ ሺ0,0,0ሻ, and ̅ߟଶ ൌ ଷߟ̅ ൌ ሺ0,0,0ሻ and ̅ߟସ ൌ ହߟ̅ ൌ ሺ0,1,1ሻ. Since players are randomly 
allocated in the (selected) network with uniform probability, ܽଵ is a best response to ߟ if and 
only if it is a best reponse to ̅ߟ. Consider the choice of player 1 in the event in which ݊ଵ ൌ 2, 
ܽଵ,ଶ ൌ 1. Let a profile ߟ′ be such that ߟଶ

ᇱ ൌ ଷߟ
ᇱ ൌ ሺ1,1,1ሻ and ߟସ

ᇱ ൌ ହߟ
ᇱ ൌ ሺ0,0,0ሻ, i.e., players 2 

and 3 (4 and 5) are always active (inactive) regardless of their degree. Since the incentives to be 
active are (weakly) increasing in the activity levels of other players, in order to show that 
ܽଵ,ଶ ൌ 1 is not a best response to ߟ, it suffices to show that ܽଵ,ଶ ൌ 1 is not a best response to ߟ′. 
Thus, under profile ߟᇱ, the probability that player 1 has ݇ ∈ ሼ0,1,2ሽ active neighbors is  ൌ
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ቀଶቁቀ
ଶ

ଶିቁ

ቀସଶቁ
. Thus, in such a case, the expected payoff to player 1 is ∑   ݇ 

ୀଶ
ୀ

ଵ

ଷ
ൌ

ଵ

ଷ
	൏ 	50. It 

follows that ܽଵ,ଶ ൌ 1 is not a best response to ߟ′. Thus it is nor neither a best response to ߟ nor to 

 .and, it follows that a is not ordinal GR-dominant ߟ̅
 Part 2. We now show that the action profile a such that for each ݅ ∈ ܰ, ܽ ൌ ሺ0,0,0ሻ (i.e., 
the secure equilibrium) is ordinal GR-dominant. Consider, without loss of generality, player 1. 
There exist two a-associated action profiles ߟ and ̅ߟ such that ߟଶ ൌ ଷߟ ൌ ሺ0,0,0ሻ and ߟସ ൌ ହߟ ൌ
ሺ1,1,1ሻ, and ̅ߟଶ ൌ ଷߟ̅ ൌ ሺ1,1,1ሻ and ̅ߟସ ൌ ହߟ̅ ൌ ሺ0,0,0ሻ. In each profile there are two players in 
ܰ\ሼ1ሽ that are always active (regardless of their degree), and two players in ܰ\ሼ1ሽ that are 
always inactive. Since players are randomly allocated in the selected network with uniform 
probability, ܽଵ is a best response to ̅ߟ if and only if it is a best response to ߟ. 

We now prove that ܽଵ ൌ ሺ0,0,0ሻ is a best response to ߟ. We check it entry by entry. First, 
consider the event in which ݊ଵ ൌ 1. Clearly, ܽଵ,ଵ ൌ 0 is a best response. Second, consider the 

event in which ݊ଵ ൌ 2. Under profile ߟ, the probability that player 1 has ݇ ∈ ሼ0,1,2ሽ active 

neighbors is  ൌ
ቀଶቁቀ

ଶ
ଶିቁ

ቀସଶቁ
. Thus, in such a case, the payoff to player 1 by choosing ܽଵ,ଶ ൌ 0 

(i.e., 50) exceeds ∑   ݇ 
ୀଶ
ୀ

ଵ

ଷ
ൌ

ଵ

ଷ
, which is the expected payoff he would get by choosing 

action 1. Finally, consider the event in which ݊ଵ ൌ 3. Under profile ߟ, with probability 1/2 
player 1 has two active neighbors and one inactive neighbor, and with probability 1/2 player 1 
has one active neighbor and two inactive neighbors. Thus, in such a case, the payoff to player 1 
by choosing ܽଵ,ଶ ൌ 0 (i.e., 50) equals the expected payoff he would get by choosing action 1 

ቀ
ଵ

ଶ

ଵ

ଷ


ଵ

ଶ

ଶ

ଷ
ቁ and, therefore, it is also a best response.  

We now claim that, for any possible pair ሺߟ̅ ,′ߟ′ሻ of a-associated action profiles, then 
ܽଵ ൌ ሺ0,0,0ሻ is a best response to at least one of the action profiles ߟ′ and ̅ߟ′. To see this, note 
that by the definition of a-associated action profiles, at least one of the profiles ߟ′ and ̅ߟ′ must 
have two or more players choosing ሺ0,0,0ሻ. In such a profile, say ߟ′, the activity level in any 
action chosen by each of the remaining players -those not choosing ሺ0,0,0ሻ- is necessarily 
(weakly) lower than that of the full activity action ሺ1,1,1ሻ. Since in profile ߟ exactly two players 
choose action ሺ0,0,0ሻ and the remaining players choose ሺ1,1,1ሻ, and the incentives to play 
ሺ0,0,0ሻ are (weakly) decreasing in the activity levels of the other players, the claim follows. This 
completes the proof. QED  

 
 
II.ii) Strategic complements – 20-player networks 
 
Since in our set of 20-player networks, the maximum degree is 4, for each player ݅ ∈ ܰ, ܽ ൌ
ሺܽ,ଵ, ܽ,ଶ, ܽ,ଷ, ܽ,ସሻ ∈ ሼ0,1ሽସ. For each ݇ ∈{1,2,3,4}, ܽ, ൌ 0 (ܽ, ൌ 1) represents the choice of 

inactive (active) in the event in which player i has degree k. 
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Proposition 10. Consider the game of strategic complements defined in Section 3 under any of 
the network generating processes of Experiment 3. None of the equilibrium profiles is ordinal 
GR-dominant. 
 
Proof. Part 1. We first show that the action profile a such that for each ݅ ∈ ܰ, ܽ ൌ ሺ0,1,1,1ሻ is 
not ordinal GR-dominant. Consider, without loss of generality, player 1. There exist two a-
associated profiles, ߟ and ̅ߟ, such that, for each ݅ ∈ ሼ2,… ,10ሽ, ߟ ൌ ሺ0,0,0,0ሻ and ̅ߟ ൌ ሺ0,1,1,1ሻ 
and, for each ݆ ∈ ሼ11,… ,20ሽ, ߟ ൌ ሺ0,1,1,1ሻ and ̅ߟ ൌ ሺ0,0,0,0ሻ. Consider the event in which 

݊ଵ ൌ 2. Clearly, if ܽଵ,ଶ ൌ 1 is not a best response to profile ߟ, it will neither be to profile ̅ߟ, since 

the later one has one more player choosing the full-inactivity strategy (10 vs. 9 players) and all 
the remaining players choosing the same strategy ሺ0,1,1,1ሻ (recall that all players are randomly 
allocated in the network with uniform probability). Thus, to prove the result it suffices to show 
that ܽଵ,ଶ ൌ 1 is not a best response to profile ߟ.  

To this aim, consider a profile ߟ′ such that, for each ݅ ∈ ሼ2,… ,10ሽ, ߟ
ᇱ ൌ ሺ0,0,0,0ሻ and, 

for each ݆ ∈ ሼ11,… ,20ሽ, ߟ
ᇱ ൌ ሺ1,1,1,1ሻ. In profile ߟ′ there are ten players in ܰ\ሼ1ሽ that are 

always active (regardless of their degree), and nine players in ܰ\ሼ1ሽ that are always inactive. It 
is straightforward to see that if ܽଵ,ଶ ൌ 1 is not a best response to profile ߟ′, it cannot be a best 

response to profile ߟ. Hence, it suffices to prove that ܽଵ,ଶ ൌ 1 is not a best response to profile ߟ′. 
Under profile ߟ′, when ݊ଵ ൌ 2, the probability that player 1 has ݇ ∈ ሼ0,1,2ሽ active neighbors is 


′ ൌ

ቀଵ ቁቀ
ଽ

ଶିቁ

ቀଵଽଶ ቁ
. Thus, in such a case, the expected payoff to player 1 by choosing ܽଵ,ଶ ൌ 1 is 

∑ 
′  ݇ ୀଶ

ୀ
ଵ

ଷ
ൌ 35.1 ൏ 50. Thus ܽଵ,ଶ ൌ 1 is not a best response to profile ߟ′. It follows that 

ܽଵ,ଶ (and, therefore, ܽଵ)  is neither a best response to ߟ nor to ̅ߟ and, thus, a is not ordinal GR-

dominant. 
 Part 2. We now show that the action profile a such that for each ݅ ∈ ܰ, ܽ ൌ ሺ0,0,0,0ሻ is 
not ordinal GR-dominant. Consider, without loss of generality, player 1. There exist two a-
associated profiles, ߟ and ̅ߟ, such that, for each ݅ ∈ ሼ2,… ,10ሽ, ߟ ൌ ሺ1,1,1,1ሻ and ̅ߟ ൌ ሺ0,0,0,0ሻ 
and, for each ݆ ∈ ሼ11,… ,20ሽ, ߟ ൌ ሺ0,0,0,0ሻ and ̅ߟ ൌ ሺ1,1,1,1ሻ. In profile ߟ (profile ̅ߟሻ there are 

nine (ten) players in ܰ\ሼ1ሽ that are always active (regardless of their degree), and ten (nine) 
players in ܰ\ሼ1ሽ that are always inactive. Consider the event in which ݊ଵ ൌ 4. Clearly, if 
ܽଵ,ସ ൌ 0 is not a best response to profile ߟ, it will neither be to profile ̅ߟ (recall that all players 

are randomly allocated in the network with uniform probability). Thus, to prove the result it 
suffices to show that ܽଵ,ସ ൌ 0 is not a best response to profile ߟ.  

Under profile ߟ, when ݊ଵ ൌ 4, the probability that player 1 has ݇ ∈ ሼ0,1,2,3,4ሽ active neighbors 

is ݍ ൌ
ቀଽቁቀ

ଵ
ସିቁ

ቀଵଽସ ቁ
. Thus, in such a case, the payoff to player 1 by choosing ܽଵ,ସ ൌ 0 (i.e., 50) is 

lower than the expected payoff he would get by choosing action 1, i.e., ∑ ݍ  ݇ 
ୀସ
ୀ

ଵ

ଷ
ൌ 63.2. 
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It follows that ܽଵ,ସ (and, therefore, ܽଵ) is neither a best response to ߟ nor to ̅ߟ and, thus, a is not 

ordinal GR-dominant. QED 
 

 


