
D
I

S
C

U
S

S
I

O
N

 
P

A
P

E
R

 
S

E
R

I
E

S

Forschungsinstitut 
zur Zukunft der Arbeit
Institute for the Study 
of Labor 

A General Double Robustness Result for Estimating 
Average Treatment Effects

IZA DP No. 8084

March 2014

Tymon Słoczyński
Jeffrey M. Wooldridge



 
A General Double Robustness Result for 

Estimating Average Treatment Effects 
 
 
 

Tymon Słoczyński 
Michigan State University, 

Warsaw School of Economics and IZA 
 

Jeffrey M. Wooldridge 
Michigan State University 

and IZA 
 
 
 
 

Discussion Paper No. 8084 
March 2014 

 
 
 

IZA 
 

P.O. Box 7240 
53072 Bonn 

Germany 
 

Phone: +49-228-3894-0 
Fax: +49-228-3894-180 

E-mail: iza@iza.org 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
The IZA research network is committed to the IZA Guiding Principles of Research Integrity. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post Foundation. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 8084 
March 2014 

 
 
 
 
 
 

ABSTRACT 
 

A General Double Robustness Result for Estimating 
Average Treatment Effects* 

 
In this paper we study doubly robust estimators of various average treatment effects under 
unconfoundedness. We unify and extend much of the recent literature by providing a very 
general identification result which covers binary and multi-valued treatments; unnormalized 
and normalized weighting; and both inverse-probability weighted (IPW) and doubly robust 
estimators. We also allow for subpopulation-specific average treatment effects where 
subpopulations can be based on covariate values in an arbitrary way. Similar to Wooldridge 
(2007), we then discuss estimation of the conditional mean using quasi-log likelihoods (QLL) 
from the linear exponential family. 
 
 
JEL Classification:    C13, C21, C31, C51 
 
Keywords: double robustness, inverse-probability weighting (IPW), multi-valued treatments, 

quasi-maximum likelihood estimation (QMLE), treatment effects 
 
 
Corresponding author: 
 
Jeffrey M. Wooldridge 
Department of Economics 
Michigan State University 
East Lansing, MI 48824 
USA 
E-mail: wooldri1@msu.edu  

                                                 
* Tymon Słoczyński gratefully acknowledges a START scholarship from the Foundation for Polish 
Science (FNP). 

mailto:wooldri1@msu.edu


1 Introduction

In causal inference settings, doubly robust estimators involve models for both the

propensity score and the conditional mean of the outcome, and remain consistent if

one of these models (but not both) is misspecified. Augmented inverse-probability

weighting (AIPW), the standard doubly robust estimator, was introduced in the

missing data literature by Robins et al. (1994). Its robustness to misspecification

was demonstrated in later work by Scharfstein et al. (1999), and the term “doubly

robust” (or “doubly protected”) was introduced by Robins et al. (2000). This class

of estimators continues to be an important topic of research in statistics, both in

causal inference and in missing data settings, with recent contributions by Bang and

Robins (2005), Tan (2006), Kang and Schafer (2007), Cao et al. (2009), Tan (2010),

Rotnitzky et al. (2012), and others.

In recent years, there has also been substantive interest in doubly robust esti-

mators in the econometric literature. Wooldridge (2007) has developed a general

framework for missing data problems and studied doubly robust estimators of the av-

erage treatment effect (ATE), including inverse-probability weighted QML estimators

with logistic and exponential mean functions. Kaiser (2013) has extended this contri-

bution to decomposition problems and estimating the average treatment effect on the

treated (ATT). Cattaneo (2010), Uysal (2012), and Farrell (2013) have considered

multi-valued treatment effects, with Uysal (2012) studying parametric doubly robust

estimators and Cattaneo (2010) and Farrell (2013) developing (efficient) semipara-

metric methods.1 Other recent papers include Kline (2011), Graham et al. (2012),

and Rothe and Firpo (2013).

1More generally, Farrell (2013) has considered post model selection inference on various average
treatment effects of interest when the number of covariates can exceed the number of observations.
In this context double robustness allows for accurate coverage even if the outcome model or the
propensity score model (but not both) is not sparse.
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In this paper, we unify and extend some of this recent literature on doubly robust

estimators by providing a very general identification result which accounts for the

majority of interesting problems. We cover both binary and multi-valued treatments;

the average treatment effect, the average treatment effect on the treated, and average

treatment effects for other subpopulations of interest; unnormalized and normalized

weighting; and linear, logistic, and exponential mean functions. Inverse-probability

weighting (IPW) is also easily shown to be a special case within our approach. As

far as we know, this is the first paper to consider all these problems jointly and

provide such a general identification result. Moreover, unlike in the majority of these

recent studies, our parameters of interest are defined as a solution to a population

optimization problem, and not to a moment condition. Our approach also carefully

explains the anatomy of double robustness in a very general setting.

The remainder of the paper is organized as follows. In Section 2, we introduce

notation as well as main assumptions and estimands. In Section 3, we present our

identification results and discuss several special cases within this approach. In Sec-

tion 4, we discuss estimation. Finally, we summarize our main findings in Section 5.

2 Parameters of Interest and Assumptions

We assume some treatment to take on G+ 1 different values, labeled {0, 1, 2, . . . , G}.

For a given population, let W represent the treatment assignment. Typically, W = 0

represents the absence of treatment, but this is not important for what follows. The

leading case is G = 1, and then W = 0 denotes control and W = 1 denotes treatment.

For each level of treatment, g, we assume counterfactual outcomes, Yg, g ∈

{0, 1, 2, . . . , G}. Most of the common treatment effects are defined in terms of the
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mean values of the Yg. For example, let

µg = E(Yg), g = 0, 1, 2, . . . , G (1)

denote the mean values of the counterfactual outcomes across the entire population.

Assuming g = 0 to be the control, the average treatment effect of treatment level g is

τg,ate = E(Yg − Y0) = µg − µ0. (2)

We may also be interested in the average treatment effect for units actually receiving

this level of treatment, namely

τg,att = E(Yg − Y0|W = g) = E(Yg|W = g)− E(Y0|W = g). (3)

With more than two treatment levels, we can define similar quantities comparing any

two of them. The important point is that our goal is to estimate

E(Yg) or E(Yg|W = h) (4)

for treatment levels g and h.

Let X denote a vector of observed, pre-treatment covariates that predict treatment

and have explanatory power for the Yg. We assume that treatment is unconfounded

conditional on X. We will refine this assumption when we state the general results;

the most restrictive form we use is that treatment is unconfounded with respect to

each counterfactual outcome:

W ⊥ Yg | X , g = 0, 1, 2, . . . , G, (5)
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where “⊥” means “independent of” and “|” denotes “conditional on”. If D(·|·) denotes

conditional distribution, we can write unconfoundedness as D(W |Yg, X) = D(W |X).

In estimating the parameter τg,att, we will see that we only need to assume uncon-

foundedness with respect to Y0, the counterfactual in the control state.

In what follows it is helpful to define binary treatment indicators as

Wg = 1[W = g], g = 0, 1, 2, . . . , G (6)

as well as the generalized propensity score (Imbens, 2000) for treatment level g as

pg(x) = P(Wg = 1|X = x). (7)

By unconfoundeness of treatment,

pg(X) = P(Wg = 1|Yg, X). (8)

3 Identification Results

Let q(Yg, X) be any function of the counterfactual response, Yg, and the covariates,

X; we assume q(Yg, X) to have a finite absolute first moment. Also, let D be a binary

variable which – like the treatment W – is unconfounded with respect to each Yg,

conditional on X. In other words, D is independent of Yg, conditional on X. In

applications, D might be a deterministic function of X, in which case its inclusion

serves to isolate a subset of the population. Another important case is when D is an

indicator for a different level of treatment.

Let η = P(D = 1) be the unconditional probability that D = 1 and assume that

η > 0. The special case of P(D = 1) = 1 is important and is allowed. Also, define
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the propensity score for D as

r(x) = P(D = 1|X = x); (9)

by unconfoundedness,

r(X) = P(D = 1|Yg, X). (10)

3.1 A General Result on Weighting

The following lemma is crucial for one half of our general double robustness result.

The final step in the proof of the lemma uses the simple identity

E(D · Z) = P(D = 1) · E(Z|D = 1) (11)

for D a binary variable and Z any random variable with E (|Z|) <∞.

Lemma 1: Assume that Wg and D are each unconfounded with respect to Yg,

conditional on X. Define η = P(D = 1) and assume η > 0. Further, pg(x) > 0 for all

x ∈ X , where pg(x) is defined in (7). Then,

1

η
· E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= E [q(Yg, X)|D = 1] . (12)

Proof: The proof that

E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= E [r(X)q(Yg, X)] (13)

is similar to Wooldridge (2007), and is an implication of iterated expectations and
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unconfoundedness

E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= E

{
E
[

Wg

pg(X)
r(X)q(Yg, X)

∣∣∣∣Yg, X]}
= E

{[
E(Wg|Yg, X)

pg(X)
r(X)q(Yg, X)

]}
= E

{[
E(Wg|X)

pg(X)
r(X)q(Yg, X)

]}
= E [r(X)q(Yg, X)] , (14)

because E(Wg|X) = pg(X). Next, we show that

E [r(X)q(Yg, X)] = E [D · q(Yg, X)] (15)

which again follows by iterated expectations and unconfoundedness of D:

E [D · q(Yg, X)] = E {E [D · q(Yg, X)|Yg, X]}

= E {[E(D|Yg, X)q(Yg, X)]}

= E {[E(D|X)q(Yg, X)]}

= E [r(X)q(Yg, X)] . (16)

Finally,

E [D · q(Yg, X)] = (1− η) · E [D · q(Yg, X)|D = 0] + η · E [D · q(Yg, X)|D = 1]

= η · E [q(Yg, X)|D = 1] . (17)
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Combining the three pieces gives

E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= η · E [q(Yg, X)|D = 1] , (18)

which completes the proof, because η > 0 is assumed. �

3.2 Unnormalized versus Normalized Weighting

In the previous setup, given a random sample {(Wig, Di, Xi, Yi) : i = 1, 2, . . . , N},

Lemma 1 suggests how to consistently estimate µg,1 ≡ E [q(Yg, X)|D = 1]:

1

η̂

[
N−1

N∑
i=1

Wig

pg(Xi)
r(Xi)q(Yi, Xi)

]
, (19)

where η̂
p→ η > 0. One simple, unbiased and consistent estimator of η is

η̂ = N−1

N∑
i=1

Di = ND/N, (20)

where ND is the number of observations with Di = 1. The estimator of µg,1 is then

µ̂g,1,unnormalized = N−1
D

N∑
i=1

Wig

pg(Xi)
r(Xi)q(Yi, Xi). (21)

In special cases, several papers have discouraged empirical researchers from using

η̂ = ND/N , because it leads to a weighted average where the weights do not sum to

unity. In particular, the weight for observation i is

1

ND

Wig

pg(Xi)
r(Xi), (22)

7



and these do not usually sum to unity across i. It is a simple adjustment to obtain a

consistent estimator whose weights are guaranteed to sum to unity. To choose such

weights, note that we can apply Lemma 1 to q(Yg, X) ≡ 1 to get

η = E
[
Wg

pg(X)
r(X)

]
, (23)

and so an alternative unbiased and consistent estimator of η is

η̂ = N−1

N∑
i=1

Wig

pg(Xi)
r(Xi). (24)

When we plug this estimator in (19) for η̂, we obtain

µ̂g,1,normalized =

[
N∑
i=1

Wig

pg(Xi)
r(Xi)

]−1 N∑
i=1

Wig

pg(Xi)
r(Xi)q(Yi, Xi) (25)

and now the weights,

[
N∑
j=1

Wjg

pg(Xj)
r(Xj)

]−1

Wig

pg(Xi)
r(Xi), (26)

necessarily sum to unity across i.

Many applications of inverse-probability weighted (IPW) estimators, including

those to doubly robust estimation, use normalized weights because the weights are

applied to an objective function, such as a squared residual or a quasi-log likelihood

function. For example, to estimate µg = E(Yg), we can solve

min
mg∈R

N∑
i=1

Wig

pg(Xi)
(Yi −mg)

2, (27)

and the solution is easily seen to be the estimator with normalized weights.

8



3.3 Special Cases

Before considering doubly robust estimation, it is useful to see how some important

special cases in the literature fit into the current framework. We are primarily in-

terested in showing the population moments that establish identification, but the

formulas also suggest simple estimators – using either unnormalized or normalized

weights.

Binary treatments: Let G = 1, W0 = 1−W1 = 1−W , and p0(X) = 1− p1(X) =

1− p(X). Then, with q(Yg, X) = Yg and Y = (1−W ) ·Y0 +W ·Y1, Lemma 1 implies

τate = E(Y1 − Y0) = E
[
W · Y
p(X)

− (1−W ) · Y
1− p(X)

]
, (28)

with D = 1 in both cases. This expression leads directly to the Horvitz and Thompson

(1952) estimator. An expression that leads to normalized weights is

τate =
E
[
W ·Y
p(X)

]
E
[

W
p(X)

] − E
[

(1−W )·Y
1−p(X)

]
E
[

1−W
1−p(X)

] , (29)

where the denominators in both expressions are equal to unity but their sample coun-

terparts will not be. Similarly, we can use Lemma 1 to write the average treatment

effect on the treated as

τatt = E(Y1 − Y0|W = 1) =
E(W · Y )

P(W = 1)
−

E
[

1−W
1−p(X)

p(X) · Y
]

P(W = 1)
, (30)

9



because D = W , η = P(W = 1), and r(X) = p(X). Instead of dividing by P(W = 1),

we can divide the second expectation by

E
[

(1−W ) · p(X)

1− p(X)

]
(31)

to obtain an estimator with normalized weights. In particular, the estimate of τatt is

obtained from the simple regression,

Yi on 1, Wi (i = 1, 2, . . . , N), (32)

using weights

Wi + (1−Wi)
p(Xi)

1− p(Xi)

1− η
η

, (33)

an estimator suggested by Busso et al. (2009). (In practice, we do not know the

propensity score and we would replace it with a consistent estimator.)

More generally, we can write the average treatment effect for any subpopulation

of interest as

E(Y1 − Y0|D = 1) =
1

η
· E
[
W

p(X)
r(X) · Y − 1−W

1− p(X)
r(X) · Y

]
, (34)

as long as this subpopulation is defined by D, a binary variable which is unconfounded

with respect to potential outcomes, conditional on X. A leading case is when D is a

deterministic function of X, so we are looking at a subpopulation determined by the

conditioning variables that appear in the propensity score.
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Dose-response function: Let D = 1 and define the dose-response function as

µ = (µ0, µ1, . . . , µG). See also Imbens (2000). Then, we can use Lemma 1, along with

Y = W0 · Y0 +W1 · Y1 + . . .+WG · YG, (35)

to write the dose-response function as

µ =

(
E
[
W0

p0(X)
Y

]
,E
[
W1

p1(X)
Y

]
, . . . ,E

[
WG

pG(X)
Y

])
. (36)

In estimating the mean µg, we can write an expression that leads directly to normal-

ized weights, namely

µg =
E
[

Wg

pg(X)
Y
]

E
[

Wg

pg(X)

] , (37)

where the denominator is unity for all g.

Average effects of multi-valued treatments: The expression in (37) suggests

that the average gain in going from the control, g = 0, to treatment level g is:

τg,ate = E(Yg − Y0) =
E
[

Wg

pg(X)
Y
]

E
[

Wg

pg(X)

] − E
[

W0

p0(X)
Y
]

E
[

W0

p0(X)

] . (38)

Similarly, the average treatment effect on those receiving treatment level g, relative

to no treatment, is:

τg,att = E(Yg − Y0|W = g) =
E(Wg · Y )

P(W = g)
−

E
[

W0

p0(X)
pg(X) · Y

]
E
[

W0

p0(X)
pg(X)

] . (39)
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4 Doubly Robust Estimators

We now develop doubly robust (DR) estimators of various average treatment effects

by considering estimation of

µg,1 ≡ E(Yg|D = 1). (40)

As we saw in Section 3, various average treatment effects can be obtained by appro-

priate choice of D, where D = 1 simply defines a subpopulation of interest.

It is helpful to divide the argument into two subsections. The first part of the DR

result is when a conditional mean function is correctly specified, and here we need to

draw on important results from the literature on quasi-MLE estimation of correctly

specified conditional means. The second part requires an application of Lemma 1 and

a basic understanding of the linear exponential family of distributions.

The setting is that for a counterfactual outcome Yg a parametric mean function is

specified, which we write as {mg(x, θg) : x ∈ X , θg ∈ Θg}. Along with the specification

of the mean function, we choose as an objective function a quasi-log likelihood (QLL)

from the linear exponential family (LEF). As discussed in Gourieroux et al. (1984) –

see also Wooldridge (2010, Chapter 13) – the LEF has the feature that it identifies the

parameters in a correctly specified conditional mean. What is somewhat less known

is that if the QLL is chosen so that the conditional mean function represents the

so-called canonical link, then the unconditional mean is consistently estimated even

if the conditional mean function is misspecified. We use this fact in Section 4.2.

In what follows we assume regularity conditions such as smoothness of the condi-

tional mean functions in βg and enough finite moments so that standard consistency

and asymptotic normality results hold for quasi-maximum likelihood estimation.
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4.1 Part 1: The Conditional Mean Is Correctly Specified

In this subsection we assume that the conditional mean is correctly specified which

means that, for some vector θog ∈ Θg,

E(Yg|X = x) = mg(x, θ
o
g), x ∈ X , (41)

where X is the support of X. As shown in Gourieroux et al. (1984), if q(Yg, X; θg) is

a QLL from a density in the LEF with mean function mg(x, θg), then θog is a solution

to

max
θg∈Θg

E[q(Yg, X; θg)|X] (42)

for all outcomes X, which means

E[q(Yg, X; θog)|X] ≥ E[q(Yg, X; θg)|X]. (43)

We use parametric models for the propensity scores, pg(x), say Fg(x; γg). We

allow this model to be misspecified, but assume that the estimator settles down to

a limit: γ̂g
p→ γ∗g where γ∗g is sometimes called the “pseudo-true value”. Similarly,

P(D = 1|X = x) is modeled parametrically as J(x;ψ) with ψ̂
p→ ψ∗. In obtaining

γ̂g and ψ̂ we would almost certainly use the Bernoulli log likelihood. In other words,

we estimate stanard binary response models by MLE. (More precisely, by quasi-MLE

because we allow the binary response models to be misspecified.)

Then the weighted objective function for estimating θog is

N−1

N∑
i=1

Wig

Fg(Xi; γ̂g)
J(Xi; ψ̂) · q(Yi, Xi; θg). (44)

Using standard convergence results – for example, Newey and McFadden (1994) and

13



Wooldridge (2010, Chapter 12), (44) converges in probability to

E
[

Wg

Fg(X; γ∗g)
J(X;ψ∗) · q(Yg, X; θg)

]
= E

{
E
[

Wg

Fg(X; γ∗g)
J(X;ψ∗) · q(Yg, X; θg)

∣∣∣∣X]}
= E

{
E(Wg|X)

Fg(X; γ∗g)
J(X;ψ∗) · E[q(Yg, X; θg)|X]

}
= E

{
pg(X)J(X;ψ∗)

Fg(X; γ∗g)
E[q(Yg, X; θg)|X]

}
. (45)

But pg(X)J(X;ψ∗)/Fg(X; γ∗g) ≥ 0 so

pg(X)J(X;ψ∗)

Fg(X; γ∗g)
E[q(Yg, X; θog)|X] ≥ pg(X)J(X;ψ∗)

Fg(X; γ∗g)
E[q(Yg, X; θg)|X] (46)

for all X. By iterated expectations, θog is a solution to

max
θg∈Θg

E
[

Wg

Fg(X; γ∗g)
J(X;ψ∗) · q(Yg, X; θg)

]
(47)

and, provided the mean function is well specified and the distribution of X is suffi-

ciently rich, θog will be the unique solution. The conclusion is that, even if P(Wg =

1|X) and P(D = 1|X) are misspecified, we consistently estimate the parameters θog

in the correctly specified conditional mean,

E(Yg|X) = mg(X, θ
o
g). (48)

Because D is unconfounded conditional on X,

E(Yg|X,D) = E(Yg|X) (49)
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and so

E(Yg|D = 1) = E[mg(X, θ
o
g)|D = 1]. (50)

It follows that a consistent estimator of µg,1 = E(Yg|D = 1) is

µ̂g,1 = N−1
D

N∑
i=1

Di ·mg(Xi, θ̂g), (51)

where ND is the number of observations with Di = 1.

4.2 Part 2: The Propensity Score Is Correctly Specified

We are still interested in consistently estimating µg,1 = E(Yg|D = 1). Now we assume

that we have correctly specified parametric models for the propensity scores and

P(D = 1|X = x):

P(Wg = 1|X = x) = F (x, γog) (52)

P(D = 1|X = x) = J(x, ψo), (53)

and we still maintain unconfoundedness with respect to Yg. In some cases we will not

estimate P(D = 1|X = x). From Lemma 1 we know that because

1

η
· E
[

Wg

F (X, γog)
J(X,ψo) · q(Yg, X; θg)

]
= E [q(Yg, X; θg)|D = 1] (54)

for all θg, the minimizer θ∗g of E [q(Yg, X; θg)|D = 1], which we assume is unique, is

also the minimizer of

E
[

Wg

F (X, γog)
J(X,ψo) · q(Yg, X; θg)

]
. (55)

15



By the convergence arguments in Section 4.1, the solution θ̂g to (44) is consistent for

θ∗g . So it remains to show that, for estimating µg,1, having a consistent estimator of

θ∗g suffices.

In order to recover µg,1 from mg(X, θ
∗
g), we need to know some further properties

of the LEF family. As discussed in Wooldridge (2007), certain combinations of QLLs

and mean functions generate the important result

E(Yg|D = 1) = E[mg(X, θ
∗
g)|D = 1]. (56)

The key is that for a given LEF we choose the canonical link function to obtain the

conditional mean model. For the normal distribution, which leads to OLS as the

estimation method, the canonical link function leads to a mean linear in parameters.

It is well-known from linear regression analysis that, as long as an intercept is included

in the equation, the average of the fitted values is the same as the average of the

dependent variable. The population result also holds. Thus, if we use a linear model

mg(x, θg) = αg + xβg, then it is always true that

E(Yg|D = 1) = E(α∗g +Xβ∗g |D = 1). (57)

The same is true for the Bernoulli QLL when we use a logistic function for the mean:

mg(x, θg) = Λ(αg + xβg), (58)

which means that if Yg is binary or fractional, then we should use the Bernoulli

QMLE with a logistic mean function. A third useful case is when Yg ≥ 0, in which

case the QLL-mean pair that delivers double robustness is the Poisson QLL and an

exponential mean function: mg(x, θg) = exp(αg + xβg). These cases are discussed in
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more detail in Wooldridge (2007). See also Kaiser (2013) for an application of the

Poisson QMLE with an exponential mean function to decomposition problems. The

new twist here is that the claims hold for any population we choose to define via

D = 1, and because D can be a treatment indicator or an indicator based on X, we

have a single double robustness result for a broad class of average treatment effects.

5 Summary

In this paper we unify the current literature on doubly robust estimators by establish-

ing identification of a large class of average treatment effects under unconfoundedness.

We cover binary and multi-valued treatments as well as the average treatment effect,

the average treatment effect on the treated, and average treatment effects for other

subpopulations of interest (based on covariates). We allow for both unnormalized

and normalized weighting, and cover standard inverse-probability weighted (IPW)

estimators as a special case.

Because doubly robust estimators involve models for both the conditional mean

and the propensity score, and require that at least one of these models is correctly

specified in order to remain consistent, we carefully describe each of these cases.

Similar to Wooldridge (2007), we consider estimation of the propensity score using

Bernoulli QMLE as well as estimation of the conditional mean using various QLLs

from the linear exponential family. More precisely, we consider three cases: OLS

with a linear mean function; Bernoulli QMLE with a logistic mean function; and

Poisson QMLE with an exponential mean function. These nonlinear mean functions

have typically been ignored in recent work, even though they might provide a useful

alternative to a linear model for many outcome variables of interest.
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