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terms act multiplicatively on the corresponding hazard rates. Marginal frailty distributions are 
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1 Introduction

To describe the distribution of time that a subject spends in a certain state of interest, it is common

to use models in which the exit rate out of the state (or hazard rate) depends multiplicatively on

some unobserved characteristics or frailty term. In the bivariate frailty model (Clayton, 1978),

two duration variables are considered, each with its own hazard rate and its own frailty term.

These durations may describe two parallel, possibly competing, durations of the same subject

(e.g., duration until merger and duration until bankruptcy of a firm) or single durations of two

subjects which belong to the same cluster (e.g., death times of twins). This model has several

applications in biostatistics, economics, engineering and many other fields. See Van den Berg

(2001) for an overview.

The popularity of the bivariate frailty model among practitioners derives in part from the fact

that it allows for a convenient way to model dependence (conditional on observed characteris-

tics) between the duration variables. Dependence between the two duration variables is caused

by dependence between the unobserved characteristics that enter the underlying hazard rates.

Knowledge of the dependence structure of the frailty terms helps us to determine the type of

association between the duration variables. Therefore, it is worth studying which functional forms

of the distribution of the frailty terms are not needlessly restrictive in their implications for the

joint duration distribution.

Our contribution in this paper is twofold. First, we study the notions of negative quadrant

dependence and positive quadrant dependence for the joint distribution of the duration variables

as a function of the quadrant dependence of the frailty terms. Secondly, we study the dependence

between the duration variables under the condition that the frailty terms are gamma distributed.

This choice of distribution is particularly relevant for two reasons. The first reason is that it leads

to convenient functional forms for the duration model and hence it is commonly implemented in

standard statistical software. The second reason is that the frailty distribution among the sub-

jects who are still in the state of interest as time proceeds converges under weak requirements to

a gamma distribution (see Abbring and Van den Berg (2007)). Thus, in many cases the gamma

distribution provides a good approximation of an unknown true distribution. This has further
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increased the popularity of the gamma frailty distribution. Several authors have proposed graph-

ical and numerical procedures to check for the adequacy of the assumption of gamma distribution

for the frailty term. For example, Cui and Sun (2004) propose a supremum-type test statistic,

whose asymptotic critical values are calculated by Monte Carlo simulation, and apply a numerical

method as well as a graphical approach to test the validity of the gamma assumption. Shih and

Louis (1995) apply a graphical method to test the assumption of gamma frailty by calculating the

average of the posterior mean of the frailty given the observed data.

To quantify the degree of dependence between the duration outcomes, we will employ two

association measures, specifically Pearson’s correlation coefficient and Kendall’s tau. The former,

which measures the strength of the linear relationship between two random variables, is com-

monly used in empirical analysis for statistical inference. The latter measures the strength of any

monotonic relationship between two random variables and consequently it is characterized by the

rank-invariant property.

We focus on negative as well as positive dependence between the duration variables. In bio-

statistical applications, the duration variables are usually positively dependent as the correspond-

ing hazard rates share same unobserved or nonmeasurable characteristics (e.g., environmental,

genetic). In social sciences, there are numerous examples of negative dependence between the

duration variables. This can be explained as follows. If an element of the set of covariates is

unobserved in the data, and if this element has a positive effect on one of the hazard rates and

a negative effect on the other, then this leads to a negative dependence between the duration

variables. In labour economics, for instance, consider an individual who is unemployed and faces

two competing exits from the unemployment state: employment and dropping out of the labor

force. If the unemployed individual is strongly motivated (which is not observed) to get a job,

then the exit rate into employment will be negatively associated with the exit rate out of the labor

force. In the latter case, this can be captured by a multiplicative frailty term for the exit rate to

employment that can be thought to be increasing in motivation, and another multiplicative frailty

term for the exit rate into nonparticipation that can be thought to be decreasing in motivation.

The results of this paper are useful for researchers who work with the bivariate gamma frailty

model. First, we discuss which bivariate distributions for the frailty terms generate negative and/or
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positive dependence between the duration variables. Second, we calculate bounds for the Pearson’s

correlation coefficient, if the baseline hazard are of the Weibull form. Moreover, we derive results

on the bounds for the Kendall’s tau which are more general concerning the bivariate gamma frailty

model, as we do not make use of any parametric assumption regarding the interaction of time and

explanatory variables. Finally, we compare our findings with the results of Van den Berg (1997),

who provides nonparametric bounds for these two measures and considers bounds for discrete and

lognormal frailty distributions.

The rest of the paper is structured as follows. Section 2 briefly introduces the bivariate frailty

model and discusses dependence properties of the joint survival function (equivalently, joint distri-

bution) of the duration variables given the dependence structure of the distribution of the frailty

terms. In Section 3, we discuss the properties of different bivariate distributions with gamma

marginals which can be used for modelling the bivariate distribution of the two frailty terms.

Section 4 focuses on the bounds for Pearson’s correlation coefficient, and Section 5 studies the

bounds for Kendall’s tau. Section 6 concludes and discusses possible extensions. The mathemati-

cal proofs are deferred to Appendix A. In Appendix B, we consider the dependence properties of

some popular bivariate copulas. For notational convenience, we will omit the transpose symbol

for vectors throughout the paper.

2 Quadrant dependence in the bivariate frailty model

2.1 Model Framework

Let T1 and T2 represent the nonnegative stochastic durations of interest and X be a vector of

observable characteristics with support X ⊆Rd, where d is a finite positive integer number. Denote

by x ∈ X the realization of X. In addition, introduce two frailty terms V1 ∈ R+ and V2 ∈ R+ that

are independent of the vector X and directly affect the realization of T1 and T2, respectively. The

random variables V1 and V2 capture unobserved or nonmeasurable time-invariant characteristics.

The corresponding hazard rate of the duration variables T1|x, V1 and T2|x, V2 is expressed as
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follows:

θ1(t|x,V1) = λ1(t, x)V1,

θ2(t|x,V2) = λ2(t, x)V2,

(1)

with λ1 : R+×X → (0,∞) and λ2 : R+×X → (0,∞). We shall assume that the functions λ1(., x)

and λ2(., x) are integrable on bounded intervals of the positive real line, that is, the quantities

Λ1(t, x) =
∫ t
0
λ1(ω, x)dω and Λ2(t, x) =

∫ t
0
λ2(ω, x)dω exist for each (t, x) ∈ R+ ×X .

We denote by G the distribution of the bivariate random vector (V1, V2) and by G1 and G2

the marginal distribution of V1 and V2, respectively. The main assumption that will hold through-

out this paper is T1 ⊥ T2|x,V1, V2. In words, the duration variables are stochastically inde-

pendent of each other given the observable characteristics and the frailty terms. Let i = 1, 2,

and consider the survival functions Si(t|x,Vi) = P(Ti > t|x,Vi) and S(t1, t2|x,V1, V2) = P(T1 >

t1, T2 > t2|x,V1, V2). The specification (1) implies Si(t|x,Vi) = exp(−Λi(t, x)Vi), and therefore

S(t1, t2|x,V1, V2) = exp(−Λ1(t1, x)V1 − Λ2(t2, x)V2) when the conditional independence property

T1 ⊥ T2|x,V1, V2 is used. Also, introduce the survival functions Si(t|x) = P(Ti > t|x) and

S(t1, t2|x) = P(T1 > t1, T2 > t2|x). The survival function of Ti|x can be explicitly calculated

by a mixture of exponential distributions in the following way:

Si(t|x) =
∫
R+

exp(−Λi(t, x)v)dGi(v) = LGi (Λi(t, x)) , i = 1, 2, (2)

where the generic symbol L denotes the Laplace Transform (LT) of the corresponding probability

measure. Likewise, the survival function of (T1, T2)|x can be represented by a mixture of bivariate

exponential distributions as follows:

S(t1, t2|x)=
∫
R2

+

exp(−Λ1(t1, x)v1 − Λ2(t2, x)v2)dG(v1, v2)

=LG (Λ1(t1, x),Λ2(t2, x)) . (3)

If V1 ⊥ V2 we get LG(s1, s2) = LG1(s1)LG2(s2) for all (s1, s2) ∈ R2
+ and thus we have, by (2) and

(3), T1 ⊥ T2|x for any x ∈ X . On the other hand, if T1 ⊥ T2|x for some x ∈ X , then V1 ⊥ V2

by noting, in view of (1), that lnVi = − ln Λi(Ti, x) + ϵi for i = 1, 2, where ϵ1, ϵ2 are independent
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random variables with probability density function fi(ϵ) = eϵ exp (−eϵ) .

2.2 Quadrant dependence

We first begin with the definitions of negative quadrant dependence and positive quadrant depen-

dence (Lehmann, 1966).

Definition 1 An R2
+−valued bivariate random vector (W1,W2) and its distribution function are

said to be negative (positive) quadrant dependent if

P(W1 ≤ w1,W2 ≤ w2) ≤ (≥)P(W1 ≤ w1)P(W2 ≤ w2) for all (w1, w2) ∈ R2
+.

Equivalently, an R2
+−bivariate random vector (W1,W2) and its survival function are said to be

negative (positive) quadrant dependent if

P(W1 > w1,W2 > w2) ≤ (≥)P(W1 > w1)P(W2 > w2) for all (w1, w2) ∈ R2
+.

In the sequel, we use the acronyms NQD and PQD for the terms negative quadrant dependent

and positive quadrant dependent, respectively. These two dependence concepts are the weakest

for describing the dependence structure between two random variables. In particular, the density

function of a bivariate random vector is reverse rule of order two, the strongest notion of negative

dependence, only if the underlying distribution function is NQD. Likewise, the density function

of a bivariate random vector is totally positive of order two, the strongest concept of positive

dependence, only if the corresponding distribution is PQD. 1. Next, we recall the definition of the

concordance ordering ≺C that can be found in Joe (1997).

Definition 2 Suppose Pa and Pb are bivariate distribution functions on R2
+ or bivariate survival

functions on R2
+ with specific marginals P1 and P2. If Pa(w1, w2) ≤ Pb(w1, w2) for all (w1, w2) ∈

1A function f : A ⊆ R2 7→ R+ is totally positive of order two if

f(max(x1, y1),max(x2, y2))f(min(x1, y1),min(x2, y2))− f(x1, x2)f(y1, y2) ≥ 0

for (x1, x2), (y1, y2) ∈ A. In case the above inequality is reversed, the functionf is reverse rule of order two (Joe,
1997).
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R2
+, then we say that Pb is more concordant than Pa, written as Pa ≺C Pb.

We first obtain the following result which states that any concordance ordering between two

different distributions of (V1, V2) will result in the same concordance ordering between the corre-

sponding survival functions of (T1, T2)|x.

Proposition 1 Let Ga and Gb represent two different distributions of the random vector (V1, V2)

with Ga ≺C Gb. Also, denote by Sa and Sb the corresponding mixtures of bivariate exponential

distributions as defined in (3). Then, Sa ≺C S
b for each x ∈ X .

An important remark about Proposition 1 is that its result can be extended to any arbitrary

bivariate hazard model in which the S(t1, t2|x,v1, v2) is a bounded, continuous and 2 − positive

function in (v1, v2) for all (t1, t2, x) ∈ R2
+×X (see Appendix A). The next corollary directly follows

from Proposition 1 by setting Ga(v1, v2) ≤ G1(v1)G2(v2) = Gb(v1, v2), (v1, v2) ∈ R2
+, for the NQD

result and Ga(v1, v2) = G1(v1)G2(v2) ≤ Gb(v1, v2), (v1, v2) ∈ R2
+ for the PQD result.

Corollary 1 Let T1 and T2 be the duration variables that are generated by the bivariate frailty

model (1). If (V1, V2) is NQD (PQD), then (T1, T2)|x is NQD (PQD) for every x ∈ X .

2.3 Association measures for the duration variables

In Sections 4 and 5 we shall consider bounds for the values of Pearson’s correlation coefficient

and Kendall’s tau, respectively. The former quantitatively describes the strength of the linear

relationship between T1 and T2, whereas the latter is a rank correlation coefficient between T1

and T2. According to Corollary 1, the type of quadrant dependence of the random vector (V1, V2)

determines the type of quadrant dependence of the random vector (T1, T2)|x for any x ∈ X and

thereby the sign of these two association measures.

Assuming that E(Ti|x) < ∞ and E(T 2
i |x) < ∞ for x ∈ X and i = 1, 2, the conditional on x

Pearson’s correlation coefficient between T1 and T2 is expressed as

ρ(T1, T2|x) =
Cov(T1, T2|x)

[Var(T1|x)Var(T2|x)]
1
2

. (4)
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By Hoeffding’s identity we have

Cov(T1, T2|x) =
∫
R2

+

[S(t1, t2|x)− S1(t1|x)S2(t2|x)] dt1dt2.

Therefore, if (T1, T2)|x is NQD for all x ∈ X it will hold that S(t1, t2|x)− S1(t1|x)S2(t2|x) ≤ 0 for

all (t1, t2, x) ∈ R2
+ ×X and therefore ρ(T1, T2|x) ≤ 0 for any x ∈ X . The previous inequalities will

be reversed in case (T1, T2)|x is PQD.

The main drawback of Pearson’s correlation coefficient is that it is not rank-invariant, that

is, generally ρ(T1, T2|x) ̸= ρ(h1(T1), h2(T2)|x) for any nonlinear strictly monotone transformations

h1 and h2. A measure that satisfies this property is the Kendall’s tau which has attracted the

interest of researchers who work on duration analysis (Wang et al., 2000; Martin and Betensky,

2005; Beaudoin et al., 2007; Oakes, 2008). To be more precise, consider two independent copies

(TA1 , T
A
2 )|x and (TB1 , T

B
2 )|x of the bivariate random vector (T1, T2)|x. The value of τ(T1, T2|x) for

any x ∈ X is calculated by the following difference

τ(T1, T2|x) = P
[
(TA1 − TB1 )(TA2 − TB2 ) > 0|x

]
−P

[
(TA1 − TB1 )(TA2 − TB2 ) < 0|x

]
,

which gives

τ(T1, T2|x) = 2P
[
(TA1 − TB1 )(TA2 − TB2 ) > 0|x

]
− 1. (5)

Clearly, it holds that −1 ≤ τ(T1, T2|x) ≤ 1 for all x ∈ X and it is also easy to see that the value

of τ(T1, T2|x) is equal to −1 (+1) if and only if T2 = h(T1), with h to be a strictly decreasing

(increasing) transformation. Some further elaboration of (5) gives

τ(T1, T2|x) = 4

∫
R2

+

S(t1, t2|x)dS(t1, t2|x)− 1. (6)

Note that we have chosen to express τ(T1, T2|x) as a functional of S(t1, t2|x) and not of F (t1, t2|x),

where F (t1, t2|x) = 1 − S1(t1|x) − S2(t2|x) + S(t1, t2|x), as we find it more convenient for the

analysis in the sequel. Hence, in case (T1, T2)|x is NQD for all x ∈ X , it will hold that S(t1, t2|x) ≤

S1(t1|x)S2(t2|x) for all (t1, t2, x) ∈ R2
+ ×X and by using the result of Theorem 2 of Tchen (1980)
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it can be readily shown that τ(T1, T2|x) ≤ 0 for any x ∈ X . On the other hand, if (T1, T2)|x is

PQD the previous inequalities will go in the opposite direction.

3 Bivariate frailty distribution with gamma marginals

To derive bounds for the values of the two association measures, we assume Vi ∼ Gamma(ki, µi)

for i = 1, 2, where the parameters ki and µi are defined as shape parameter and scale parameter,

respectively, and we assume that they are strictly positive. More precisely, the probability density

of Vi is given by

gi(v) =
1

µkii Γ(ki)
vki−1 exp(− v

µi
), vi > 0, ki > 0, µi > 0,

where the Eulerian gamma function Γ is computed by Γ(k) =
∫∞
0
ωk−1 exp(−ω)dω for k > 0.

In the next two subsections we shall discuss possible parameterizations of G and the dependence

structure they induce on (T1, T2)|x.

3.1 Bivariate gamma distributions

Before proceeding to the description of two bivariate gamma distributions, recall that if T1 and

T2 are generated by (1), then S(t1, t2|x) =LG (Λ1(t1, x),Λ2(t2, x)) and Si(t|x) = LGi (Λi(t, x)) for

i = 1, 2. The first distribution that we study as a candidate for the parameterization of G is the

double bivariate gamma Kotz et al. (2000), which has the following stochastic representation

Vi = µi(V0 + V0i), i = 1, 2, (7)

with V0 ∼ Gamma(k0, 1) and V0i ∼ Gamma(k0i, 1) being independent gamma variates. The

marginal distribution of Vi is gamma distribution with shape parameter k0+k0i and scale parameter

µi.

Cherian (1941) studied the above distribution for µ1 = µ2 = 1 and k01 = k02. The use of

the double bivariate gamma distribution is widespread in applications in the field of biostatistics

(Korsgaard and Andersen, 1998; Zhong and Li, 2002; Jonker et al., 2009) and demography (Yashin

et al., 1995). By using Bayes’ law we can deduce that the vector (V1, V2) is PQD and consequently,
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by Corollary 1, the vector (T1, T2)|x is PQD for each x ∈ X . There is an alternative way to view

that (T1, T2)|x is PQD for this case. The LT of the double gamma distribution is expressed as

LG(s1, s2) = LG0(µ1s1 + µ2s2)LG01(µ1s1)LG02(µ2s2) for any (s1, s2) ∈ R2
+. Provided that V0 ∼

Gamma(k0, 1), it holds that LG0(µ1s1 + µ2s2) ≥ LG0(µ1s1)LG0(µ2s2) for all (s1, s2) ∈ R2
+, from

which it is straightforward to infer that (T1, T2)|x is PQD. Finally, note that for the limiting case

k0i → 0 we get that P(µ2V1 = µ1V2) → 1.

The second bivariate gamma distribution that we consider for modelling G is mostly known

by its LT, which is expressed as follows

LG(s1, s2) = (1 + µ1s1 + µ2s2 + µ12s1s2)
−k, (s1, s2) ∈ R2

+, (8)

with k > 0, µ1 > 0, µ2 > 0 and µ1µ2 − µ12 ≥ 0. The above LT corresponds to a bivariate gamma

distribution with V1 ∼ Gamma(k, µ1) and V2 ∼ Gamma(k, µ2). Kotz et al. (2000) call it the

Kibble and Moran bivariate distribution. This bivariate gamma distribution is used by Henderson

and Shimakura (2003) who apply a Poisson-gamma model in longitudinal data to account for

individual-random effects and within-individual serial correlation. The case µ12 = 0 corresponds

to P(µ2V1 = µ1V2) = 1 and the case µ1µ2 − µ12 = 0 corresponds to independence between V1 and

V2. It is easy to verify that LG(s1, s2) ≥ LG1(s1)LG2(s2) for all (s1, s2) ∈ R2
+, and therefore the

random vector (T1, T2)|x is PQD for each x ∈ X .

Parameterization of G by using one of the two above distributions is convenient: although

the corresponding densities have quite complicated expressions, the LT for each distribution has

closed form expression which in turn gives a closed form expression for S(t1, t2|x) as well. The

main drawback of using one of these two bivariate distributions is that the (T1, T2)|x is PQD, and

consequently the ρ(T1, T2|x) and τ(T1, T2|x) will be nonnegative for all x ∈ X . On the other hand,

Børing (2009) develops a three-parameter bivariate gamma distribution that allows for negative

as well as positive correlation between V1 and V2. Clearly, its advantage compared to the two

previous gamma distributions is that it also allows for negative correlation between V1 and V2 and

the same for T1 and T2. However, we cannot say anything about quadrant dependence as negative

(positive) correlation between V1 and V2 does not necessarily imply negative (positive) quadrant
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dependence between these two random variables (and consequently between T1 and T2). In the

next subsection, we consider the notion of one-parameter copula for parameterizing G and as we

shall discuss, it is possible that both types of quadrant dependence can be attained for the random

variables V1 and V2.

3.2 Copula with gamma marginals

The advantage of using the copula approach is that it allows us to separate the bivariate distribu-

tion G into the marginals G1, G2 and an R-valued pure dependence parameter ψ which captures

the level of dependence between V1 and V2. Nelsen (2006) provides a detailed exposition of the

important concept of copula.

According to the celebrated Sklar’s theorem (Sklar, 1959) and given that the distributions

G1, G2 are continuous functions, there exists a unique copula Cψ : [0, 1]2 → [0, 1] such that

G(v1, v2) = Cψ(G1(v1), G2(v2)) for all (v1, v2) ∈ R2
+. It is not difficult to see that Cψ is the

distribution of the random vector (G1(V1), G2(V2)). Conversely, for any given bivariate distribution

G we can construct the corresponding copula by considering the quantity G(G−1
1 (v1), G

−1
2 (v2)),

where G−1
i (v) = inf{ω ∈ R : Gi(ω) ≥ v} for i = 1, 2. Hence, we have ψ = k0 for the double

bivariate gamma and ψ = µ12 for the Kibble and Moran bivariate distribution.

It is well-known that the following Frechet bounds apply:

max{G1(v1) +G2(v2)− 1, 0} ≤ Cψ(G1(v1), G2(v2)) ≤ min{G1(v1), G2(v2)} (9)

for every (v1, v2) ∈ R2
+.When Cψ(G1(v1), G2(v2)) = max{G1(v1)+G2(v2)−1, 0} for each (v1, v2) ∈

R2
+, it holds that G1(V1) + G2(V2) − 1 = 0 with probability one, and the random variables V1

and V2 are called countermonotonic. When Cψ(G1(v1), G2(v2)) = min{G1(v1), G2(v2)} for all

(v1, v2) ∈ R2
+, it holds G1(V1) = G2(V2) with probability one, and the random variables V1 and V2

are called comonotonic. Equivalently, if Cψ equals the lower (upper) Frechet bound, the random

variable V1 is a strictly decreasing (increasing) function of V2. Note that when P(µ2V1 = µ1V2) = 1,

which implies k1 = k2, the G coincides with the upper Frechet bound, and thus both of the two

bivariate gamma distributions that were studied in the previous subsection allow, in the limit, this
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probabilistic behavior.

The family of bivariate copulas that we could use to parameterize Cψ is, for instance, either

the Archimedean family or the Farlie-Gumbel-Morgenstern (FGM) family. In Appendix B, we

provide a discussion about the functional form and dependence properties of three Archimedean

copulas, Clayton, Frank, Gumbel, and also the FGM copula. Note that the Clayton copula we

describe in Appendix B is a simple extension of the copula introduced by Clayton (1978). The three

aforementioned Archimedean copulas are quite flexible in terms of positive dependence between V1

and V2 (and consequently, between T1 and T2) in the sense that they can be, in the limit, equal to

the upper Frechet bound (9). Regarding negative dependence, the Gumbel copula does not admit

a representation such that V1 and V2 are negatively dependent. However, the Clayton copula and

the Frank copula allow for negative dependence, with the Frank copula converging towards the

lower Frechet bound (9) for limiting values of the dependence parameter ψ. Note that the Clayton

copula equals the lower Frechet bound for some certain value of the parameter ψ; however, if ψ

converges towards this particular value the copula does not converge to the lower Frechet bound.

On the other hand, the FGM copula does allow for both negative and positive dependence. But,

its shortcoming is that it does not allow for strong (either positive or negative) dependence, that

is, for any values of the parameter ψ, the Frechet bounds (9) cannot be approached.

4 Pearson’s correlation coefficient

In this section we focus our attention on Pearson’s correlation coefficient under the assumption of

λi(t, x) = αit
αi−1φi(x) for i = 1, 2, with αi > 0, t ∈ R+ and φi : X → (0,∞). Namely, the hazard

rates of the bivariate frailty model (1) are expressed as

θ1(t|x,V1) = α1t
α1−1φ1(x)V1,

θ2(t|x,V2) = α2t
α2−1φ2(x)V2.

(10)

The specification (10), which is widely known as the Weibull bivariate frailty model, is a special

case of the bivariate frailty model θi(t|x,Vi) = λ̃i(t)φi(x)Vi, where λ̃i is called baseline hazard and

12



φi is known as regressor function.

Next, we recall that

ρ(T1, T2|x) =
Cov(T1, T2|x)

[Var(T1|x)Var(T2|x)]
1
2

, x ∈ X .

The covariance and the variance formulas are given by

Cov(T1, T2|x) = E [E(T1T2|x,V1, V2)]−
2∏
i=1

E [E(Ti|x,Vi)] (11)

and

Var(Ti|x) = E [Var(Ti|x,Vi)] + Var [E(Ti|x,Vi)] (12)

for i = 1, 2, where the outer expectations and variance in the right-hand side of the two above

equations are taken with respect to the distribution of the frailty terms. The term E [Var(Ti|x,Vi)]

captures the autonomous variation, whereas the term Var [E(Ti|x,Vi)] captures the variation due

to the presence of the frailty term. Under specification (10), the variable Ti|x,Vi follows a Weibull

distribution with shape parameter αi and scale parameter (φi(x)Vi)
− 1
αi and thus E(Ti|x,Vi) and

Var(Ti|x,Vi) are proportional to V
− 1
αi

i and V
− 2
αi

i , respectively. Denote by ρ12 the Pearson’s corre-

lation coefficient between V
− 1
α1

1 and V
− 1
α2

2 . Assuming that

E

(
V

− 1
αi

i

)
<∞, E

(
V

− 2
αi

i

)
<∞ for each αi > 0,

we write

ρ12 =

E

(
V

− 1
α1

1 V
− 1
α2

2

)
− E

(
V

− 1
α1

1

)
E

(
V

− 1
α2

2

)
2∏
i=1

[
E

(
V

− 2
αi

i

)
−
[
E

(
V

− 1
αi

i

)]2] 1
2

. (13)

13



After doing some algebra we can rewrite ρ(T1, T2|x) as follows

ρ(T1, T2|x) = ρ12

2∏
i=1

δ(αi) + (δ(αi)− 1)

[
E

(
V

− 1
αi

i

)]2
E

(
V

− 2
αi

i

)
−
[
E

(
V

− 1
αi

i

)]2


− 1
2

, (14)

with

δ(αi) =

[
Γ(1 + 1

αi
)
]2

Γ(1 + 2
αi
)
, αi > 0. (15)

The function δ is a strictly decreasing function in αi, with limαi→0 δ(αi) = ∞ and limαi→∞ δ(αi) =

1. One important observation from (14) is that the value of ρ(T1, T2|x) for fixed α1 and α2 depends

on the strength of the linear relationship between the random variables V
− 1
α1

1 and V
− 1
α2

2 and not

between the random variables V1 and V2. The latter is a consequence of the nonlinearity of the

model (10).

Recall from Section 2.1 that if (V1, V2) is NQD (PQD) the (T1, T2)|x is NQD (PQD) for any

x ∈ X and therefore the ρ(T1, T2|x) is nonpositive (nonnegative). This works in formula (14) by

way of the term ρ12. In particular, if (V1, V2) is NQD (PQD) the (V
− 1
α1

1 , V
− 1
α2

2 ) is NQD (PQD) as

well due the monotonic relationship between Vi and V
− 1
αi

i for each αi > 0, which in turn implies

that ρ12 is nonpositive (nonnegative).

Define for (α1, α2) ∈ (0,∞)2

bl(α1, α2) = − 1

[δ(α1)δ(α2)]
1
2 + [(δ(α1)− 1)(δ(α2)− 1)]

1
2

(16)

bu(α1, α2) =
1

[δ(α1)δ(α2)]
1
2

. (17)

As shown by Van den Berg (1997), for Weibull baseline hazards and any arbitrary joint distribution

function of the random vector (V1, V2) the bounds for ρ(T1, T2|x) are the following:

bl(α1, α2) < ρ(T1, T2|x) < bu(α1, α2) (18)

for each pair (α1, α2) ∈ (0,∞)2. The bounds are tight for certain bivariate distributions of (V1, V2)
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with discrete support; that is, they are approached arbitrarily closely. Given that δ(αi) is strictly

decreasing in αi, it is obvious from the above result that the range of possible values of ρ(T1, T2|x)

is increasing in αi and thus the extreme values −1 and 1 are possible to obtain for αi → ∞. This

result can be explained as follows: to obtain maximum correlation it is required that the first type

of variation E [Var(Ti|x,Vi)] be minimal relative to the second type of variation Var [E(Ti|x,Vi)]

for each = 1, 2, and that the correlation between V
− 1
α1

1 and V
− 1
α2

2 be maximal. For αi → ∞ the

first type of variation decreases and is dominated by the second type, and thus it is possible to

obtain any value in the interval (−1, 1). Reverse statement will hold for αi → 0.

Given that Vi ∼ Gamma(ki, µi), it can be easily shown that

E

(
V

− 1
αi

i

)
=

Γ
(
ki − 1

αi

)
Γ(ki)

µ
− 1
αi

i , E

(
V

− 2
αi

i

)
=

Γ
(
ki − 2

αi

)
Γ(ki)

µ
− 2
αi

i , (19)

and therefore the restriction ki >
2
αi

is imposed so that the the first two moments of V
− 1
αi

i are

defined for i = 1, 2. Then we can express ρ(T1, T2|x) as follows:

ρ(T1, T2|x) = ρ12

2∏
i=1

δ(αi) + (δ(αi)− 1)
Γ2

(
ki − 1

αi

)
Γ
(
ki − 2

αi

)
Γ (ki)− Γ2

(
ki − 1

αi

)
− 1

2

. (20)

In the next two subsections we shall investigate how the assumption of gamma distributed

frailties affect the behavior of ρ(T1, T2|x). In particular, our interest is in studying whether the

lower and upper bound of (18) can be arbitrarily approached in case the distribution of (V1, V2)

has gamma marginals.

4.1 Lower bound for the Pearson’s correlation coefficient

We first fix our attention on the lower bound of the linear correlation coefficient. The next

proposition establishes a nonsharp (i.e., not necessarily attained) lower bound for the ρ(T1, T2|x).

Proposition 2 Suppose T1 and T2 are the duration variables that are generated by the bivariate

frailty model (10), with (α1, α2) ∈ (0,∞)2, V1 ∼ Gamma(k1, µ1) and V2 ∼ Gamma(k2, µ2). Then,
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the following inequality holds

ρ(T1, T2|x) ≥ bgl(α1, α2), x ∈ X ,

with

bgl(α1, α2) = min
k1>

2
α1

k2>
2
α2

 2∏
i=1

Γ (ki)

Γ
(
ki +

1
αi

) −
2∏
i=1

Γ
(
ki − 1

αi

)
Γ(ki)

 2∏
i=1

Γ
(
ki − 2

αi

)
Γ(ki)

−
Γ2

(
ki − 1

αi

)
Γ2(ki)

− 1
2

×
2∏
i=1

δ(αi) + (δ(αi)− 1)
Γ2

(
ki − 1

αi

)
Γ
(
ki − 2

αi

)
Γ (ki)− Γ2

(
ki − 1

αi

)
− 1

2

.

The next table lists the bounds bl(α1, α2) and bgl(α1, α2) for different values of α1, α2. To

make the comparison between bl(α1, α2) and bgl(α1, α2) more transparent, all numbers have been

rounded off to three decimal digits.

(α1, α2) bl(α1, α2) bgl(α1, α2)

(0.5, 1) −0.175 −0.125

(0.5, 2) −0.254 −0.233

(1, 1) −0.333 −0.220

(1, 2) −0.472 −0.366

(1, 3) −0.535 −0.520

(1.5, 2) −0.582 −0.397

(2, 2) −0.647 −0.451

(2, 3) −0.719 −0.580

(4, 4) −0.860 −0.590

(5, 5) −0.860 −0.599

Table 1: bl(α1, α2) and bgl(α1, α2) values.
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In view of the results of Table 1, we can claim that the bound bgl(α1, α2) is generally closer to zero

than the bound bl(α1, α2). These results reveal a limitation of the the bivariate Weibull gamma

frailty model to fit data with relatively large negative dependence between the duration variables.

Note that the bound bgl(α1, α2) is not expected to be tight as three successive inequalities were

employed to derive it. In fact, there could be values of α1, α2 such that bl(α1, α2) > bgl(α1, α2);

however, this is clearly due to the use of the three inequalities as bl(α1, α2) covers all the bivari-

ate distributions with support on R2
+ and trivially all the bivariate distributions with gamma

marginals.

To improve the lower bound for the exponential case (i.e., α1 = α2 = 1) we carry out Monte

Carlo simulation. For the exponential model we have ρ(T1, T2|x) = ρ12
(√

k1k2
)−1

. For given

marginals G1 and G2, ρ12 will be minimized if and only if the distribution of (V −1
1 , V −1

2 ) is equal

to the lower Frechet bound. However, due to the fact that V −1
i is strictly decreasing transformation

of Vi, the ρ12 will be minimized for fixed G1 and G2 if and only if G(v1, v2) = max{G1(v1)+G2(v2)−

1, 0} for each (v1, v2) ∈ R2
+. In case G is parameterized by the Frank copula, the lower Frechet

bound can be approached very well for limiting values of the dependence parameter. To derive an

estimation of the minimum value of ρ12 for fixed k1 and k2, we draw gamma random variables V1

and V2 by using the relationship G1(V1) +G2(V2)− 1 = 0.

For the study of the values of ρ12 and ρ(T1, T2|x) we present two figures. The first figure shows

values of ρ12 as a function of k1 and k2. Note that we have reversed the axes with the values of k1

and k2 so that we have a clearer picture.

The second figure displays the values of ρ(T1, T2|x) as a function of k1 and k2.

The estimated value of the lower bound is about −0.14, which is clearly much closer to zero

than the tight bound −1
3
. From the two above graphs we can easily notice the two opposite effects

of the value of the shape parameters on the values of ρ12 and ρ(T1, T2|x). More precisely, ρ12

approaches arbitrarily closely the value −1 for large values of k1 and k2. However, large values

of the shape parameters weaken the linear relationship between the duration variables as the

variation of the random variable Ti|x-due to the presence of the frailty-is negligible with respect

to the autonomous variation. To see this, consider for simplicity the case k1 = k2 = k. Then,

we obtain E [Var(Ti|x,Vi)] = ((k − 1)k)−1 = O(k−2) and Var [E(Ti|x,Vi)] = ((k − 1)2(k − 2)) =
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Figure 1: Plot of ρ12 as a function of k1 and k2, if α1= α2 = 1.
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Figure 2: Plot of ρ(T1, T2|x) as a function of k1 and k2, if α1= α2 = 1.

O(k−3) = o(k−2) for k → ∞ and i = 1, 2.

Next, we consider three other possible families of distributions for G with marginals different

from gamma. In particular, Mardia (1970) shows that if the random vector (V −1
1 ,V −1

2 ) follows the

Filon-Isserk bivariate Beta distribution, the ρ(T1, T2|x) can attain any values in the interval (−1
3
, 0].
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Moreover, Van den Berg (1997) shows that if (Vi)
−1 =

k∑
j=1

U2
ij for i = 1, 2 and some finite positive

integer k, where the vector (U1j, U2j) follows a bivariate normal distribution, the lower bound of

ρ(T1, T2|x) is about −0.23. Finally, Van den Berg (1997) shows that if Vi = exp (ηi0 + ηi1N ), where

ηi0 ∈ R and ηi1 ∈ R\{0} for i = 1, 2 and N is a normally distributed random variable, the lower

bound of ρ(T1, T2|x) is about −0.17. In view of these results and using as criterion the bounds for

Pearson’s correlation coefficient, the assumption that the distribution of (V1, V2) is characterized

by gamma marginals seems quite restrictive for attaining large negative values.

4.2 Upper bound for Pearson’s correlation coefficient

We now concentrate on the bivariate frailty model that has the property P(µ2V1 = µ1V2) = 1,

which in turn implies G(v1, v2) = min{G1(v1), G2(v2)} for all (v1, v2) ∈ R2
+ and k1 = k2 = k.

Under the assumption of identical Weibull baseline hazards-that is, α1 = α2 = α- we have ρ12 → 1

for any k > 2
α
. Also, for k → 2

α
and given that limk→ 2

α
Γ2

(
k − 2

α

)
→ ∞, we get by (20)

ρ(T1, T2|x) →
[
Γ(1 + 1

α
)
]2

Γ(1 + 2
α
)

= bu(α, α).

Therefore, if α1 = α2 = α the upper bound of (18) can be arbitrarily approached in case G is

equal either to one of the two bivariate gamma distributions of Section 3.1 or to one of the three

Archimedean copulas described in detail in Appendix B.

Next, we turn our attention to the case α1 ̸= α2 and Vi ∼ Gamma(k, µi) for i = 1, 2; that

is, k1 = k2 = k. Although imposing the assumption that both marginals have the same shape

parameter may seem restrictive, it is rather general. In particular, it includes as special cases the

bivariate frailty model in which P(µ2V1 = µ1V2) = 1 that we described above for α1 = α2 and also

the bivariate frailty model for which (V1, V2) is distributed according to the Kibble and Moran

bivariate gamma distribution. The next proposition analytically establishes a nonsharp bound for

this case that is strictly smaller than the nonparametric upper bound (18).

Proposition 3 Let T1 and T2 be the duration variables that are generated by the bivariate frailty

model (10) with α1 > α2 > 0, V1 ∼ Gamma(k, µ1) and V2 ∼ Gamma(k, µ2). Then the following
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inequality holds

ρ(T1, T2|x) < bgu(α1, α2), x ∈ X ,

with

bgu(α1, α2) =
1

[δ(α2)]
1
2

δ(α1) + (δ(α1)− 1)
Γ2

(
2α1−α2

α1α2

)
Γ
(

2(α1−α2)
α1α2

)
Γ
(

2
α2

)
− Γ2

(
2α1−α2

α1α2

)
− 1

2

< bu(α1, α2).

The next table reports the bounds bu(α1, α2) and bgu(α1, α2) for different values of α1, α2, with

α1 > α2. Like in the case with the lower bound, we have rounded all the numbers off to three

decimal points.

(α1, α2) bu(α1, α2) bgu(α1, α2)

(0.5, 0.25) 0.049 0.037

(0.75, 0.25) 0.071 0.041

(1, 0.5) 0.289 0.204

(2, 0.5) 0.362 0.194

(2, 1) 0.627 0.469

(5, 1) 0.689 0.423

(5, 2) 0.864 0.704

(10, 2) 0.880 0.669

(10, 5) 0.968 0.921

(20, 10) 0.999 0.976

Table 2: bu(α1, α2) and bgu(α1, α2) values.

The reason that bgu(α1, α2) < bu(α1, α2) is that the shape parameter k is bounded from below

by the maximum between the values of the ratios 2
α1

and 2
α2

so that the first two moments of

V
− 1
αi

i for i = 1, 2 are defined. Moreover, the bound of Proposition 3 is not attained as the gamma

distribution is not closed under power transformation. In particular, if V1 ∼ Gamma(k, µ1)

the random variable V
α2
α1
1 , for any fixed positive α1, α2 with α1 ̸= α2, does not follow a gamma
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distribution, and this implies that we cannot have ρ12 = 1 such that V1 and V2 are gamma

distributed. Hence, even if P(µ2V1 = µ1V2) = 1 we will always have ρ12 < 1 for any fixed values

of α1, α2, with α1 ̸= α2.

5 Kendall’s tau

We now proceed with the derivation of bounds for the range of values of the Kendall’s tau as the

results of Van den Berg (1997) do not directly carry over to the bivariate gamma frailty model.

As explained in Section 2, for two independent copies, (TA1 , T
A
2 )|x and (TB1 , T

B
2 )|x, of the bivariate

random vector (T1, T2)|x we have

τ(T1, T2|x) = 2P
[
(TA1 − TB1 )(TA2 − TB2 ) > 0|x

]
− 1, x ∈ X . (21)

In contrast to the Pearson’s coefficient case, we will not assume anything about the range of

values of the shape parameters. Also, we will not impose any condition on the functional form

of λi except for the limiting result limt→∞
∫ t
0
λi(ω, x)dω = ∞ (i = 1, 2). We will make use of the

equality

lnVi = − ln Λi(Ti, x) + ϵi, i = 1, 2, (22)

with ϵ1, ϵ2 being independent random variables that have probability density function fi(ϵ) =

eϵ exp (−eϵ) . The above equation is an equivalent representation of (1). Also, recall that Si(t|x) =

LGi (Λi(t, x)) for (t, x) ∈ R+ × X . Provided that Vi ∼ Gamma(ki, µi), it follows Si(t|x) = (1 +

µiΛi(t, x))
−ki . Therefore, the stochastic duration Ti can be expressed in structural form as follows

Ti = Λ−1
i

(
1

µi
U

− 1
ki

i − 1

µi
, x

)
, Ui ∼ Uniform(0, 1), i = 1, 2. (23)

We first focus on the lower bound of the values of τ(T1, T2|x). We assume that G(v1, v2) =

max{G1(v1) + G2(v2) − 1, 0} for each (v1, v2) ∈ R2
+. This implies that G1(V1) + G2(V2) − 1 = 0

with probability one. Hence, V2 is a strictly decreasing transformation of V1 and we can write, by
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(22),

ln Λ2(T2, x) = H(T1, ϵ1, ϵ2, x), (24)

whereH(., ϵ1, ϵ2, x) is a strictly decreasing function, limt→∞ H(t, ϵ1, ϵ2, x) = h(t, x) for all (ϵ1, ϵ2, x) ∈

R2 × X , and h(., x) is a strictly decreasing function. By using the rank-invariant property of

Kendall’s tau and combining (21) and (24), we have

τ(T1, T2|x) = 2P
[
(TA1 − TB1 )(H(TA1 , ϵ

A
1 , ϵ

A
2 , x)−H(TB1 , ϵ

B
1 , ϵ

B
2 , x)) > 0

]
− 1. (25)

Clearly, τ(T1, T2|x) can be also written as follows

τ(T1, T2|x) = 2P
[{

(TA1 − TB1 ) > 0
}
∩
{
H(TA1 , ϵ

A
1 , ϵ

A
2 , x)−H(TB1 , ϵ

B
1 , ϵ

B
2 , x) > 0

}]
+

2P
[{
(TA1 − TB1 ) < 0

}
∩
{
H(TA1 , ϵ

A
1 , ϵ

A
2 , x)−H(TB1 , ϵ

B
1 , ϵ

B
2 , x) < 0

}]
− 1. (26)

For k1 → 0 and µ1 = O(k−1
1 ) we have TA1 → ∞ and TB1 → ∞ which yield {H(TA1 , ϵ

A
1 , ϵ

A
2 , x) −

H(TB1 , ϵ
B
1 , ϵ

B
2 , x) > 0} → {h(TA1 , x) − h(TB1 , x) > 0} = {TA1 − TB1 < 0} and {H(TA1 , ϵ

A
1 , ϵ

A
2 , x) −

H(TB1 , ϵ
B
1 , ϵ

B
2 , x) < 0} → {h(TA1 , x) − h(TB1 , x) < 0} = {TA1 − TB1 > 0}. By making use of these

limiting statements, it is obvious, by using (26), that τ(T1, T2|x) → −1.

To derive the conditions needed to be satisfied for the upper bound of the τ(T1, T2|x) values,

we require that G be equal to the upper Frechet bound, namely, G(v1, v2) = min{G1(v1), G2(v2)}

for each (v1, v2) ∈ R2
+. Under this scenario, G1(V1) = G2(V2) with probability one. Thus, V2 is a

strictly increasing transformation of V1 and therefore we can write, by (22),

ln Λ2(T2, x) = Y(T1, ϵ1, ϵ2, x), (27)

where Y(., ϵ1, ϵ2, x) is a strictly increasing function and limt→∞ Y(t, ϵ1, ϵ2, x) = y(t, x) for all

(ϵ1, ϵ2, x) ∈ R2 × X , and y(., x) is some strictly increasing function. Performing identical cal-
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culations to the ones of the previous paragraph we obtain

τ(T1, T2|x) = 2P
[{

(TA1 − TB1 ) > 0
}
∩
{
Y(TA1 , ϵ

A
1 , ϵ

A
2 , x)− Y(TB1 , ϵ

B
1 , ϵ

B
2 , x) > 0

}]
+

2P
[{

(TA1 − TB1 ) < 0
}
∩
{
Y(TA1 , ϵ

A
1 , ϵ

A
2 , x)− Y(TB1 , ϵ

B
1 , ϵ

B
2 , x) < 0

}]
− 1. (28)

For k1 → 0 and µ1 = O(k−1
1 ) we obtain TA1 → ∞ and TB1 → ∞ which in turn gives {Y(TA1 , ϵ

A
1 , ϵ

A
2 , x)−

Y(TB1 , ϵ
B
1 , ϵ

B
2 , x) > 0} → {y(TA1 , x) − y(TB1 , x) > 0} = {TA1 − TB1 > 0} and {Y(TA1 , ϵ

A
1 , ϵ

A
2 , x) −

Y(TB1 , ϵ
B
1 , ϵ

B
2 , x) < 0} → {y(TA1 , x) − y(TB1 , x) < 0} = {TA1 − TB1 < 0}. Given the equality

P
[
(TA1 − TB1 ) > 0|x

]
= P

[
(TA1 − TB1 ) < 0|x

]
= 1

2
for all x ∈ X and making use of (28), the

limiting result τ(T1, T2|x) → 1 is obtained.

We summarize the above discussion to the next proposition.

Proposition 4 Suppose T1 and T2 are the duration variables that are generated by the bivariate

frailty model (1) with V1 ∼ Gamma(k1, µ1) and V2 ∼ Gamma(k2, µ2). Then the following double

inequality holds:

−1 < τ(T1, T2|x) < 1, x ∈ X .

The extreme bounds −1 and 1 are tight in the sense that they can be approached arbitrarily closely.

More precisely, if G(v1, v2) = max{G1(v1)+G2(v2)− 1, 0} for each (v1, v2) ∈ R2
+ and k1 → 0 with

µ1 = O(k−1
1 ), or k2 → 0 with µ2 = O(k−1

2 ), we obtain τ(T1, T2|x) → −1. On the other hand, if

G(v1, v2) = min{G1(v1), G2(v2)} for each (v1, v2) ∈ R2
+ and k1 → 0 with µ1 = O(k−1

1 ), or k2 → 0

with µ2 = O(k−1
2 ), then τ(T1, T2|x) → 1.

Therefore, by assuming gamma marginals for the distribution of (V1, V2) a necessary condition

for approaching the lower bound of τ(T1, T2|x) is the distribution of (V1, V2) be equal to the Frank

copula. On the other hand, the upper bound of τ(T1, T2|x) can be approached arbitrarily closely

if the bivariate distribution is modelled by the two bivariate gamma distributions of Section 3.1 or

one of the three Archimedean copulas presented in Appendix B. Note that if P(µ2V1 = µ1V2) = 1,

which clearly gives G(v1, v2) = min{G1(v1), G2(v2)} for each (v1, v2) ∈ R2
+, we will have k1 = k2 →

0.

By applying results of Embrechts et al. (2002), we have that τ(T1, T2|x) → −1 if and only
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if S(t1, t2|x) → max{S1(t1|x) + S2(t2|x) − 1, 0} for all (t1, t2, x) ∈ R2
+ × X , or equivalently,

S1(T1|x) + S2(T2|x)− 1 = 0 for all x ∈ X with probability approaching one. On the other hand,

τ(T1, T2|x) → 1 if and only if S(t1, t2|x) → min{S1(t1|x), S2(t2|x)} for all (t1, t2, x) ∈ R2
+ × X ,

or equivalently, S1(T1|x) = S2(T2|x) for all x ∈ X with probability approaching one. Hence, in

view of Proposition 1, the condition in Proposition 4 that G is equal to the lower (upper) Frechet

bound is indispensable. We should also point out here that S(t1, t2|x) can be written in a copula

form as a function only of S1(t1|x) and S2(t2|x) and not of x because

S(t1, t2|x) = LG
(
L−1
G1
(S1(t1|x)),L−1

G2
(S2(t2|x))

)
, (t1, t2, x) ∈ R2

+ ×X ,

where L−1 denotes the inverse of the LT of the corresponding probability measure.

6 Conclusions

We examine the dependence structure in bivariate frailty models in which the duration variables

are dependent by way of the frailty terms. We first show that if the distribution of the frailty terms

is negative (positive) quadrant dependent, then the conditional, on observed characteristics, joint

survival function of the duration outcomes is negative (positive) quadrant dependent as well. To

quantify the level of dependence between the duration variables, we consider Pearson’s correlation

coefficient and Kendall’s tau. We provide bounds for the range of values of these measures under

the assumption of gamma distributed frailty terms. To model the dependence structure between

the frailty terms, we can use either standard bivariate gamma distributions or copulas with gamma

marginals. The former induce only positive dependence between the duration variables, whereas

the latter can induce positive and/or negative dependence. Strong negative (positive) dependence

between the duration outcomes can be generated by bivariate distributions of the frailty terms

which can be, in the limit, equal to the lower (upper) Frechet bound.

We calculate bounds for the values of Pearson’s correlation coefficient if the baseline hazards

have a Weibull specification. Regarding the negative values, we analytically provide a nonsharp

lower bound. We improve the lower bound for the exponential case by means of Monte Carlo
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simulation. The resulting lower bound is closer to zero than its nonparametric analogue which

is derived by Van den Berg (1997). For positive values of Pearson’s coefficient we show that the

upper bound of Van den Berg (1997) can be approached arbitrarily closely in case the Weibull

specifications are identical. Moreover, we provide an upper bound for different Weibull specifi-

cations which is strictly smaller than the nonparametric bound. The resulting bound cannot be

attained due to the fact that the gamma distribution is not closed under power transformation.

In contrast to Pearson’s correlation coefficient, Kendall’s tau can take any value in the interval

(−1, 1) regardless of the functional form specification about the hazard rates. If the bivariate

distribution of the frailty terms approaches the lower (upper) Frechet bound and the first moment

of the frailty term(s) is finite, then the lower (upper) bound can be approached arbitrarily closely.

In particular, we should impose the condition that one of the two shape parameters converges

towards zero.

In terms of practical choices for functional forms, we make the following recommendations.

First, if the interest is models that are able to capture a negative association between say two

duration variables, and if the researcher wants to restrict him/herself to bivariate gamma frailty

distributions, then the researcher should choose the bivariate gamma distribution that is based on

the Frank copula. This specification allows for a larger range of negative associations than other

specifications. Secondly, if the researcher wants to capture the largest possible range of negative

associations between the duration variables regardless of the functional form of the frailty distri-

bution, then the researcher should refrain from using bivariate gamma frailty distributions and

instead adopt discrete frailty distributions. The latter are known to provide maximum flexibility

in terms of association (Van den Berg, 2007).

A fruitful topic for future research is the study of bounds for the two association measures

in bivariate duration models where the two duration variables are parallel and the realization of

one of these two variables affects the hazard rate of the other. Moreover, a promising topic for

investigation is the study of the range of values for local measures of dependence such as the cross-

ratio function (Clayton, 1978). Finally, it is of practical relevance to consider the concepts of lower

tail and upper tail dependence between the duration variables. In particular, if the data display

dependence between extreme values of the duration variables, we should know which bivariate
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distributions for the frailty terms allow such a dependence pattern.
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Appendix A

This appendix presents the mathematical proofs for the first three propositions in the main text.

Proof of Proposition 1. By definition

Sj(t1, t2|x)=
∫
R2

+

S(t1, t2|x,v1, v2)dGj(v1, v2), j = a, b, (A-1)

where S(t1, t2|x,v1, v2) = exp (−Λ1(t1, x)v1 − Λ2(t2, x)v2) for (t1, t2, x, v1, v2) ∈ R2
+×X ×R2

+. The

integrand is a continuous bounded function in (v1, v2) for any (t1, t2, x) ∈ R2
+ × X . Moreover,

it holds that ϑ2

ϑv1ϑv2
S(t1, t2|x,v1, v2) > 0 for each (t1, t2, x, v1, v2) ∈ R2

+ × X × (0,∞)2 (i.e., the

S(t1, t2|x,v1, v2) is a 2−positive function in v1, v2). Given that Ga ≺C G
b, we obtain the inequality

Sa(t1, t2|x)≤Sb(t1, t2|x) for all (t1, t2, x) ∈ R2
+ × X by Theorem 2 of Tchen (1980). Recall also

that

Si(t|x) =
∫
R+

exp (−Λi(t, x)v) dGi(v), i = 1, 2. (A-2)

Provided that Ga and Gb are characterized by the fixed marginals G1 and G2, it follows that the

bivariate survival functions Sa and Sb are characterized by the same marginals, S1 and S2. This

in turn implies that Sa ≺C S
b for each x ∈ X .

Define for each ε > 0 the digamma function

ψ(ε) =
Γ

′
(ε)

Γ (ε)
(A-3)

and the polygamma function

ψ(n)(ε) =
dnψ(ε)

dεn
, n ∈ N, (A-4)

with ψ(0)(.) = ψ(.). Moreover, it holds that

ψ(n)(ε) = (−1)n+1

∫
R+

tn

1− e−t
e−εtdt, ε > 0. (A-5)

We state Lemma 1 which is needed for the proof of Proposition 2 and 3. Its simple proof, which

makes use of (A-4) and (A-5), is omitted.
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Lemma 1 Let (ε1, ε2, ε3) ∈ (0,∞)3. Then,

Γ (ε1) Γ (ε1 + ε2 + ε3)− Γ (ε1 + ε2) Γ (ε1 + ε3) > 0.

Proof of Proposition 2. Recall that

ρ(T1, T2|x) = ρ12

2∏
i=1

δ(αi) + (δ(αi)− 1)
Γ2

(
ki − 1

αi

)
Γ
(
ki − 2

αi

)
Γ (ki)− Γ2

(
ki − 1

αi

)
− 1

2

(A-6)

for x ∈ X , where

ρ12 =

E

(
V

− 1
α1

1 V
− 1
α2

2

)
− E

(
V

− 1
α1

1

)
E

(
V

− 1
α2

2

)
2∏
i=1

[
E

(
V

− 2
αi

i

)
−
[
E

(
V

− 1
αi

i

)]2] 1
2

. (A-7)

Note that by Lemma 1 we get Γ
(
ki − 2

αi

)
Γ (ki)−Γ2

(
ki − 1

αi

)
> 0 for ε1 = ki− 2

αi
and ε2 = ε3 =

1
αi
, with ki >

2
αi
. Given also that δ(αi) > 1 for each αi > 0, our problem reduces to bound from

below the numerator of (A-7), for fixed marginals G1, G2, .

Denote by El the expectation with respect to the probability measure max{G1(v1) +G2(v2)−

1, 0}. By using the formula for the covariance and employing Hoeffding’s identity, we get

E

(
V

− 1
α1

1 V
− 1
α2

2

)
≥ El

(
V

− 1
α1

1 V
− 1
α2

2

)
. (A-8)

The mapping ω 7→ (ω)−1 is strictly convex and thus Jensen’s inequality entails

El

(
V

− 1
α1

1 V
− 1
α2

2

)
≥

[
El

(
V

1
α1
1 V

1
α2
2

)]−1

, (A-9)

which together with (A-8) implies

E

(
V

− 1
α1

1 V
− 1
α2

2

)
≥

[
El

(
V

1
α1
1 V

1
α2
2

)]−1

(A-10)

For G = max{G1(v1) + G2(v2) − 1, 0}, the random vector (V1, V2) is NQD, which in turn gives
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that the (V
1
α1
1 , V

1
α2
2 ) is NQD as well due to the fact that V

1
αi
i is strictly increasing transformation

of Vi for i = 1, 2. Using again the formula of the covariance and Hoeffding’s identity we get

El

(
V

1
α1
1 V

1
α2
2

)
≤ E

(
V

1
α1
1

)
E

(
V

1
α2
2

)
. (A-11)

Therefore, combining (A-10) and (A-11) we deduce

E

(
V

− 1
α1

1 V
− 1
α2

2

)
≥

[
E

(
V

1
α1
1

)
E

(
V

1
α2
2

)]−1

. (A-12)

For m < ki, the m−th moment of Vi and V
−1
i is given by

E (V m
i ) =

Γ (ki +m)

Γ (ki)
µmi , E

(
V −m
i

)
=

Γ (ki −m)

Γ(ki)
µ−m
i . (A-13)

Hence, use of the formulas (A-6), (A-7), (A-12) and (A-13) for m = 1
ai

and m = 2
ai

and some

algebra yields the thesis of the proposition.

Proof of Proposition 3. For i = 1, 2 the ratio within the brackets in the formula of ρ(T1, T2|x),

see (A-6), can be rewritten as 1
F(yi(k),α

−1
i )−1

for yi(k) = k − 2
αi
, where F(ε1, ε2) = Γ(ε1)Γ(ε1+2ε2)

Γ2(ε1+ε2)
,

ε1 > 0, ε2 > 0. We first show that F(ε1, ε2) is strictly decreasing in ε1 for each ε2 ∈ (0,∞), which

in turn will imply that F(yi(k), α
−1
i ) is strictly decreasing in k for any positive αi. Taking the

logarithm of F(ε1, ε2) and then differentiating with respect to ε1, we obtain

ϑ logF(ε1, ε2)

ϑε1
= ψ(ε1) + ψ(ε1 + 2ε2)− 2ψ(ε1 + ε2), (A-14)

Differentiating ϑ logF(ε1,ε2)
ϑε1

with respect to ε2 it follows

ϑ

ϑε2

[
ϑ logF(ε1, ε2)

ϑε1

]
= 2ψ

(1)

(ε1 + 2ε2)− 2ψ
(1)

(ε1 + ε2). (A-15)

Clearly, ψ(2)(ε) ≤ 0 for ε > 0, which in turn implies ϑ
ϑε2

[
ϑ logF(ε1,ε2)

ϑε1

]
≤ 0 for all (ε1, ε2) ∈ (0,∞)2

by using (A-5). Hence, given that ϑ logF(ε1,0)
ϑε1

= 0 it follows ϑ logF(ε1,ε2)
ϑε1

≤ 0 for all (ε1, ε2) ∈ (0,∞)2.

Therefore, given that ρ(T1, T2|x) is strictly decreasing in F(yi(k), α
−1
i ) for ρ12 > 0, it follows that it
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is strictly decreasing in k for every positive αi, and consequently, for ρ12 = 1, k → max{ 2
α1
, 2
α2
} =

2
α2

and by continuity of Γ(.), the bound is obtained. By Lemma 1, we have logF(ε1, ε2) > 0 for

all ε1 > 0, ε2 > 0 and thus Γ
(

2(α1−α2)
α1α2

)
Γ
(

2
α2

)
− Γ2

(
2α1−α2

α1α2

)
> 0 for all α1, α2 > 0,with α1 > α2.

Using also the property δ(α1) > 1 for each α1 > 0, the inequality bgu(α1, α2) < bu(α1, α2) is shown.

Appendix B

In this appendix we provide a brief discussion about the Archimedean family, the FGM family

of copulas, and their corresponding properties. The Archimedean family is constructed according

to Cψ(ω1, ω2) = ξ
[−1]
ψ (ξψ(ω1) + ξψ(ω2)) with ξψ : [0, 1] → [0,∞), ξ

′

ψ(ω) < 0, ξ
′′

ψ(ω) > 0 for each

ω ∈ (0, 1) and ξψ(1) = 0. The function ξ
[−1]
ψ (ω) is called pseudo-inverse and is equal to ξ−1

ψ (ω) if

ω < ξψ(0) and 0 elsewhere. In case ξ−1
ψ (ω) = ξ

[−1]
ψ (ω) for every ω ∈ [0,∞), both the copula and

the respective generator are called strict. The case of ξψ(ω) = − lnω corresponds to independence

between the underlying random variables. Nelsen (2006) describes this important class of copulas.

We first describe the three most popular copulas which belong to the Archimedean family.

Clayton Copula: For ξψ(ω) =
1
ψ
(ω−ψ − 1) we obtain the Clayton copula which is given by

Cψ(ω1, ω2) = max
{(
ω−ψ
1 + ω−ψ

2 − 1
)
, 0
}− 1

ψ
, ψ ∈ [−1,∞)\0. (B-1)

If ψ ∈ [−1, 0) the Cψ is NQD and for every ψ ∈ (0,∞) the Cψ is PQD. Additionally, C−1(ω1, ω2)

= max{ω1 + ω2 − 1, 0}, limψ→∞Cψ(ω1, ω2) = min{ω1, ω2} and limψ→0Cψ(ω1, ω2) = ω1ω2 for every

(ω1, ω2) ∈ [0, 1]2. Note that limψ→−1Cψ(ω1, ω2) ̸= max{ω1 + ω2 − 1, 0}, which implies that Cψ is

not right-continuous at −1.

Frank Copula: If we apply ξψ(ω) = − ln e−ψω−1
e−ψ−1

as generator, we get the Frank copula

Cψ(ω1, ω2) = − 1

ψ
ln

[
1 +

(e−ψω1 − 1)(e−ψω2 − 1)

e−ψ − 1

]
, ψ ∈ (−∞,∞)\0. (B-2)

For any ψ ∈ (−∞, 0) the Cψ is NQD and for every ψ ∈ (0,∞) the Cψ is PQD. Additionally,

limψ→−∞Cψ(ω1, ω2) = max{ω1+ω2−1, 0}, limψ→∞Cψ(ω1, ω2) = min{ω1, ω2} and limψ→0Cψ(ω1, ω2)
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= ω1ω2 for all (ω1, ω2) ∈ [0, 1]2.

Gumbel Copula: For ξψ(ω) = (− lnω)ψ we get the Gumbel copula which is expressed as

Cψ(ω1, ω2) = exp
[
−
(
(− lnω1)

ψ + (− lnω2)
ψ
) 1
ψ

]
, ψ ∈ [1,∞). (B-3)

The Cψ(ω1, ω2) is PQD for any ψ ∈ (1,∞). Moreover, limψ→∞Cψ(ω1, ω2) = min{ω1, ω2}, C1(ω1, ω2) =

ω1ω2 for any (ω1, ω2) ∈ [0, 1]2.

Finally, another copula that we could employ for parameterizing G is the Farlie-Gumbel-

Morgenstern (FGM) copula.

Farlie-Gumbel-Morgenstern Copula: This family of distributions is expressed as

Cψ(ω1, ω2) = ω1ω2 + ψω1ω2(1− ω1)(1− ω2), ψ ∈ [−1, 1]. (B-4)

If ψ ∈ [−1, 0) the Cψ is NQD, if ψ ∈ (0, 1] the Cψ is PQD, and C0(ω1, ω2) = ω1ω2 for any

(ω1, ω2) ∈ [0, 1]2.
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