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ABSTRACT 
 

Why is Old Workers’ Labor Market More Volatile? 
Unemployment Fluctuations over the Life-Cycle* 

 
Since the last recession, it is usually argued that older workers are less affected by the 
economic downturn because their unemployment rate rose less than the one of prime-age 
workers. This view is a myth: older workers are more sensitive to the business cycle. We 
document volatilities of worker flows and hourly wage across age groups on CPS data. We 
find that old worker’s job flows are characterized by a higher responsiveness to business 
cycles than their younger counterparts. In contrast, their wage cyclicality is lower than prime-
age workers’. Beyond this empirical contribution, we show that a life-cycle Mortensen & 
Pissarides (1994) model is well suited to explain these facts: older workers’ shorter work-life 
expectancy endogenously reduces their outside options and leads their wages to be less 
sensitive to the business cycle. Thus, in a market where wage adjustments are small, 
quantities vary a lot: this is the case for older workers, whereas the youngest behave like 
infinitively-lived agents. Our theoretical results point out that Shimer (2005)’s view on the MP 
model is consistent with prime-age workers’ labor market while aging endogenously 
introduces real wage rigidities, allowing to match what we observe for old workers, without 
specific assumptions as in Hagendorn & Manovskii (2008). 
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1 Introduction

The last recession has dramatically deteriorated labor market conditions. Figure 1 displays monthly
unemployment rate across age groups since 1976. The unemployment ramp up in the aftermath of
the financial crisis shows the depth of the so-called Great Recession. Figure 1 shows substantial
differences across age groups.

Figure 1: Unemployment rate by age. BLS monthly data. 1976 January - 2013 March
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It is often stressed that old workers were less affected by the economic downturn, and more generally
by the business cycle. This view is reinforced by the last recession: prime-age workers’ unemploy-
ment rate has risen by 5.5 percentage points, from 3.5% in 2007 to 9% in 2009. In contrast, the
unemployment rate of workers aged 55+ displays an increase of 4 percentage points (from 3% to
7% in the same period). Are these statistic sufficient to establish a stylized fact? In our view, the
answer is no. We document the respective roles of job loss and job finding in shaping the change in
unemployment across age groups using monthly CPS data. Secondly, we propose a new perspective
on the structure of joblessness across age groups along the business cycle. Our findings lead us to
challenge the view that the brunt of the recession is not borne by old workers because they expe-
rienced a moderate hike in their unemployment rates. We also document, using the same monthly
data set, the fact that the highest volatile labor markets are also the ones where the volatility of the
hourly wage is the smallest. In this paper, we put forward the view that, when considering several
business cycle episodes, old workers’ labor market adjustments actually display more volatility than
the one prevailing for their younger counterparts. We then argue, using a life cycle Mortensen &
Pissarides (1994), that the work-life expectancy plays a key role in accounting for the high respon-
siveness of old workers’ job flows to the business cycle. The basic intuition is the following: because
their is no incentive to search close to retirement, a short horizon reduces the outside option value

2



to zero, leading wage to be more rigid at the end of the life cycle. Then, quantities (prices) are
more (less) volatile at the end of the life cycle. Numerical experiments support this view. Our key
mechanism relies on the distance to retirement. In the model, agents differ only with respect to
this dimension. We lay thereby stress on the difference between old workers, close to retirement,
and their younger counterparts, prime-age individuals. This then entices us to consider only 2 age
groups (older versus prime-age workers). In the last part of the paper, we include a third age group
(young workers) as a robustness check. We also include an exogenous increase in the labor produc-
tivity in order to match the age-increasing pattern of the hourly wage, and show that the "horizon
effect" keeps its dominant role in the explanation of the age-decreasing volatilities.

In this paper, we first investigate the forces behind the age heterogeneity in joblessness. Using
Shimer (2012)’s methodology, we measure workers’ flows between employment and unemployment
using CPS monthly male data between March 1976 and March 2013. Historical averages suggest
that older workers (55-61 years old) are characterized by slower employment exit and longer unem-
ployment spell than prime-age workers (25-54 years old). Job finding and separation rates fall with
age. These results are consistent with the age-decreasing transitions found in the male population in
Choi et al. (2013), Menzio et al. (2012) and Gervais et al. (2012). Beyond these long-run features, we
first document business cycle fluctuations in worker flows across age groups in the US. More surpris-
ingly, the volatility of the cyclical component of workers’ transition rates display an age-increasing
pattern: older workers’ are more responsive to the business cycle than their younger counterparts.1

Data show that older workers’ higher relative sensitivity to the business cycle is more striking for
the job finding rate than for the job separation rate. We also investigate the business cycle response
of real hourly wage, using monthly CPS data, and show that the life-cycle pattern of wage volatility
is actually age-decreasing, which is consistent with the large labor market adjustments found for
old workers. Our empirical investigation adds to the existing literature along 2 dimensions: first,
previous papers (Gomme et al. (2005), Jaimovich & Siu (2009)) have focused only on age-specific
cyclicality of worked hours and employment. However, since Mortensen & Pissarides (1994)’s sem-
inal work, it is known that worker flows matter in shaping labor market adjustments. This is the
focus of our paper. Elsby et al. (2010) and Elsby et al. (2011) document the age pattern of worker
flows but they did not investigate business cycle features. This paper fills this gap. Secondly, we
also characterize wage cyclicality across age groups at business cycle frequencies. Jaimovich & Siu
(2009) do so using annual data. In our view, since recessions typically last less than a year (with
the exception of the 1981 and 2008 episodes), it is paramount to document wage fluctuations using
infra-annual data.

We then develop a theoretical model to account for the reason why older workers could be more
sensitive (in relative terms) to the business cycle than their younger counterparts. This model must
explain three facts: old workers’ labor market is characterized by less rotations (levels of job finding

1We perform several checks to make sure that this is a robust business cycle features.
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and separation rate are lower for old workers) but displays more volatile behavior than prime-age
workers. At the same time, the average hourly wages of the older workers are the highest, but its
volatilities is the are smallest. We then show that the Mortensen & Pissarides (1994) (hereafter MP)
model including aggregate uncertainty and extended to introduce life-cycle feature is well suited for
this challenge. Indeed, older workers’ shorter horizon prior to retirement endogenously reduces
their outside options and then leads their wage to be less sensitive to labor market fluctuations:
given that the incentives to search are low for older workers, their threat point during an expansion
does not improve in the wage bargaining, therefore preserving the incentive to post new vacancies.
As a result, business cycle has large impact on unemployment, and worker flows for old workers.
Intuitively, older workers act as static agents ("no future"). They do not smooth fluctuations. As
usual, in a market where wage adjustments are small, quantities vary a lot: this the case for older
workers, whereas prime-age workers have behaviors closed to the ones of an infinitively-lived agent.
Our theoretical results point out that Shimer (2005)’s view on the MP model2 is consistent with
prime-age workers’ labor market while aging endogenously introduces real wage rigidities, allowing to
match what we observe for old workers, without specific assumptions as in Hagendorn & Manovskii
(2008) or in Hall & Milgrom (2008). Our evidence on CPS real hourly wage is consistent with these
features. In our view, Shimer (2005)’s criticism on the MP model actually constitutes a powerful
opportunity for the model to match age-specific data. Indeed, Shimer (2005) actually describes what
is observed on prime-age workers’ labor market, with smaller quantity adjustments than the ones
prevailing for older workers. But, if the "reservation wage effect" (search opportunity pushes wages
upward) is relevant only for prime-age workers because these workers are far away from retirement,
older workers, close to retirement (they do not search anymore), agree to moderate wage increases
during booms, then older workers’ flows are hit harder by the business cycle. The important point
is that, unlike Hagendorn & Manovskii (2008), we preserve the Hosios condition and endogenously
obtain varying changes in the search value in the wage dynamics through another channel than the
one proposed by Hall & Milgrom (2008).

We show that there exists calibration restrictions allowing to match the "steady state" stylized facts.
Under these restrictions, theory predicts the age-increasing pattern of the standard deviations of
both cyclical job finding and separations rates, as it is observed in the data. These quantitative
results underline the impact of work-life expectancy on labor market fluctuations by age.

Finally, we include young workers in this paper. First, this allows us to check the robustness of our
statistical results: we find in US data that the volatilities of quantities (prices) estimated for the
older worker are larger (lower) than the ones of the younger workers. Previous papers found that

2Shimer (2005) underlines that, following an expansion, the increase in outside opportunities puts an upward
pressure on wages (wage reservation effect), which reduces firms’ incentives to post new vacancies: the MP model
generates a large adjustment in prices and small changes in quantities on the labor market, which is not consistent
with the aggregate data. Shimer (2005)’s criticism deals with the consistency of the MP model with aggregate data,
under the restriction of a representative infinitively-lived agent.
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the cyclical volatility of employment and hours worked is U-shaped as a function of age (Gomme
et al. (2005), Jaimovich & Siu (2009)). Using CPS data, we actually find an age-increasing volatility
profile, using 3 age-groups (16-24, 25-54 and 55-61), thereby providing a robustness check to our
stylized facts. If these data confirm that older workers are more sensitive to the business cycle
than their younger counterparts, whether prime-age or young. The introduction of the young group
adds another challenge to the theory: how can we account for the difference between younger and
prime-age workers, as both age-groups are far from retirement (the horizon gap is negligible with
respect to the duration of the job)? We then introduce two specificities on the youth labor market.
First, given that approximately all men participate, those among them who have decided to opt for
the labor market when they were still young are relatively more likely to fit the tasks requested by
firms. Second, the cost of a young hiring in the labor market is a lack of information on the match
between individual aptitude and that requested by firms (mismatch).3 In the MP model, the first
phenomena can be captured by a higher level of the average of the match-specific productivity for
these people 4. Concerning the mismatch, we introduce an age-specific probability to draw a new
opportunity inside the firm: if there is more mismatch in the youth labor market segment, then more
transitions from current job to a new job come after an unemployment episode, and less through a
new opportunity inside the same firm.5 Quantitative results at the business cycle frequencies show
that these additional features explain a fraction of the gaps between the youth and the prime-age
labor markets.

This paper bridges the gap between two strands of the literature: the one aiming at matching levels
of employment rates across age groups without considering business cycle features (Ljungqvist &
Sargent (2008), Cheron et al. (2013), Menzio et al. (2012), Gervais et al. (2012)) and the one
looking at fluctuations in unemployment rates, without considering age heterogeneity (Fujita &
Ramey (2012) among others). Unlike Cheron et al. (2013), we propose a directed search setting.
With this assumption, under the Hosios condition, labor market fluctuations are efficient. We
restrict our analysis to this efficient allocation in order to focus on the impact of age heterogeneity
on unemployment fluctuations. 6 Moreover, this simplifying assumption allows us to solve the
model more easily, in the spirit of the solution provided by Menzio & Shi (2010) (block recursive
equilibrium).

The paper is organized as follows. Section 2 documents workers’ transitions rates by age groups
3This is not the case for those who pursue their studies and test their ability to work in different areas.
4In the following, we refer to this assumption as the "composition effect" that accounts for the fact that participants

are on average closer to employment than the aggregate population. In the quantitative analysis, we also introduce
human capital accumulation over the life-cycle. Thus, this "composition effect" does not imply that the young
workers’ average total productivity is larger than for the other age groups.

5This simple assumption, which leads to reduce the labor hoarding value of younger workers, is in the same spirit
as the more sophisticated model proposed by Gervais et al. (2012).

6Future research will be devoted to reducing the gap between the observed and predicted fluctuations by our first
rank allocation. Moreover, given that the undirected search equilibrium is inefficient, the additional trade externality
gives some foundations for age-specific labor market policies (See Cheron et al. (2011) and Cheron et al. (2013)).
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and age patterns in their responsiveness to business cycles on US data. We consider only old versus
prime-age workers. We also investigate wage fluctuations by age. In Section 3, we develop life
cycle matching model with directed search, endogenous destruction, search effort and aggregate
uncertainty uncertainty. All workers are the same except for their work-life expectancy. We first
provide a steady state analysis (section 4) to uncover the conditions under which the model can
match the historical averages of finding and separation rates across age groups based on hetero-
geneity in work-life expectancy only. In section 5, we provide an analytical characterization of the
age specific impact of the business cycle on labor market outcomes in the model. Section 6 brings
the model to the data. After calibrating the key parameters of the model to match age-specific
levels of job finding and separation rates, and real hourly wages, we show that the model matches
the age-increasing volatility in transition rates between prime-age and old workers as well as the
age-decreasing volatility in real hourly wage. We bring the model closer to the data by adding
youth unemployment (16-24) and an exogenous increase in human capital with age. The distance
to retirement plays a key role in accounting for old workers’ high responsiveness to the business
cycle. In addition, in order to match the different volatilities between young and prime-age workers,
we show that the "composition" and the "mismatch" effects explains a fraction of the gap between
the youth and the prime-age labor market fluctuations.

2 Measuring fluctuations in unemployment, workers’ transition rates

and hourly wages by age in US data

The life cycle is divided into 2 age groups: 25-54 and 55-61. We chose the same age groups as
in Elsby et al. (2010), except that we consider only individuals prior to retirement (as we do not
consider retirement choices in the model). In addition, the choice of age groups is consistent with
the evidence found in Choi et al. (2013) and Menzio et al. (2012) who assess age profiles of worker
flows. They find sharp changes in job finding probabilities and separation for workers aged 55+.
Finally, we restrict our attention to men, since female transitions are also linked to fertility and
child rearing, that are not modeled in the paper.

We aim at analyzing the cyclical behavior of workers’ transition between employment and unem-
ployment by age. We compute the age profile of transitions from employment to unemployment
(job separation) and transitions from unemployment to employment (job finding).

2.1 Measuring fluctuations in unemployment and workers’ transition rates by
age in US data

Using monthly CPS data, between January 1976 and March 2013, we follow all the steps de-
scribed in Shimer (2012). We compute sample-weighted gross flows between employment states and
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seasonally adjust the time series using the same ratio-to-moving average technique as in Shimer
(2012). We then correct for time aggregation in order to take into account transitions occurring
within the month. We get time series for the instantaneous transition rates for each age group
and consider quarterly averages to smooth out the noise. We then get quarterly data on workers’
instantaneous transition rates (JSRt and JFRt) and the corresponding unemployment steady state(
ut = JSRt

JSRt+JFRt

)
between 1976Q1 and 2013Q1. The time series are displayed in figures 2 and 3.

Figure 2: Job Separation Rate by age group, JSR, CPS monthly data, Men, 1976 Q1 - 2013Q2.
Means. Authors’ calculations. Recession in shaded area.
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Figure 3: Job Finding Rate by age group, JFR, CPS monthly data, Men, 1976 Q1 - 2013Q2.
Means. Authors’ calculations. Recession in shaded area.
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2.1.1 Mean: Old workers face slower exit from employment and longer unemployment
spells

The mean of the time series is reported in Table 1. Like Elsby et al. (2010), we find large differences
in levels of separation rates across age groups. Old workers who face low unemployment rates are
characterized by low rates of entry into unemployment. The average job tenure when prime-age
amounts to 4.9 years (58.8 months, 1

1−e−0.017163 ) versus 7.2 years when old (86.7 months, 1
1−e−0.011608 ).

Differences in job finding rates are less striking but significant: the length of unemployment spell
is 2.9 months ( 1

1−e−0.41274 ) for prime-age workers versus 3.5 months ( 1
1−e−0.3362 ) for old workers.

The levels of inflow and outflow rates of unemployment fall with age. As stressed by Elsby et al.
(2011) on UK data, with slower exit from employment and longer unemployment spell, old workers
face a less fluid labor market than their younger counterparts. This slower exit from employment
and unemployment is missed when one simply looks at unemployment rates across age groups. In
addition, the differences in job finding rates would actually predict an age increasing profile for
unemployment. As a result, Table 1 suggests that the low level of unemployment rate for old
workers is actually driven by their low level of exit from employment. This is consistent with Elsby
et al. (2011) and Gervais et al. (2012).

Estimated means are consistent with the decreasing transitions with age found in the male popula-
tion in Choi et al. (2013), Menzio et al. (2012) and Gervais et al. (2012). The level of our transition
rates is larger in our data than in their calculations because we discard employment states that are
considered in previous papers (namely inactivity for Choi et al. (2013) and job-to-job transitions
for Menzio et al. (2012)). In addition, Menzio et al. (2012) restrict their sample to individuals with
a high school degree. 7 Elsby et al. (2010) also compute unemployment outflows and inflows, using
employment and unemployment stocks in which separations are captured by the flows of workers
who report having been unemployed for less than one month (as in Shimer (2012)). The BLS
provides time-series for short-term unemployment by age and sex. This yields higher transition
rates than those obtained from disaggregated data. However, changes along the business cycle are
consistent with the ones they report.

2.1.2 Business cycle : Old workers face more cyclical job flows

The cyclical behavior transition rates are characterized in recession by a rise in separations (figure
2) and a significant drop in the job finding rate (figure 3). It is striking that, in recession, the fall in
the outflow rate seems of the same magnitude across age groups. For instance, in the 2001 recession,
the job finding rate fell by 0.2 for all age groups (from 0.6 to 0.4 for prime age and from 0.5 to

7Steady state unemployment is consistent with the BLS unemployment rate across age groups (0.051714 for 25-
54,0.041289 for 55+ and 0.064696 for 16+. Source: BLS monthly SA data, 1976 Jan-2013 March, Men). In appendix
A.9, we also check that steady state unemployment rate by age is consistent with BLS time series
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Table 1: Mean. CPS monthly data, Men, quarterly averages. 1976Q1 - 2013Q1. Authors’ calcula-
tions.

All: 16-61 Prime-age: 25-54 Old: 55-61

JSR Job Separation Rate 0.020766 0.017163 0.011608
1 0.68 a

JFR Job Finding Rate 0.42995 0.41274 0.3362
1 0.81

u Unemployment rate 0.048914 0.042691 0.036589
1 0.86

a Old workers’ JSR is 0.68% prime-age workers’ JSR.

nearly 0.3 for old workers). However, the magnitude of this fall is very different across age groups
when scaled it by the average job finding rate of each age group. Since old (prime age) workers are
characterized by lower (higher) levels of job finding rates, the fall in unemployment outflows in the
2001 recession is large (small) for this age group. This high (low) responsiveness of old (prime age)
workers, relative to their younger (older) counterparts, is the key business cycle fact that we want
to investigate.

In order to do so, we identify the cyclical component of each time series using the Hodrick Prescott
filter, with smoothing parameter 105 on monthly logged data. Detrended data are reported in
figures 4 and 5 in Appendix A.1. The figures confirm the contrast in the responsiveness of old and
young workers’ transition rates to the business cycle. Old workers transition rates display larger
fluctuations than the ones observed for prime age individuals, with sharper changes in transition
rates in periods of expansion or economic downturn.

Business cycle facts on the de-trended data are reported in Table 2. We indeed find that the
volatility of transitions rates increases with age. The increase in volatility in the job finding rate is
striking from prime - aged to old individuals (the volatility goes up from 0.17 to 0.22). This is the
key business cycle feature that we want to understand using our theoretical model.

2.1.3 Robustness

We show in appendix A that this salient feature is robust when we consider an alternative smoothing
parameter for the HP filter, inactivity (Appendix A.3), transition for men and women (Appendix
A.4) or Elsby et al. (2010) data (Appendix A.5). In addition, in appendix A.6, we compute rolling 10-
year standard deviation of de-trended data and show the evolution of changes in relative volatilities.
Old workers’ job flows display more cyclical behavior. In Appendix A.7, in the spirit of Jaimovich
& Siu (2009), we evaluate the impact of changing age decomposition on our aggregate results. The
high sensitivity of old workers’ transition rates remains a robust feature. Finally, we check that our
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Table 2: Standard deviation. CPS Monthly data, Men, 1976 June - 2012 Sept, HP filter with
smoothing parameter 105. Authors’ calculations.

All: 16-61 Prime-age: 25-54 Old: 55-61

JSR Job Separation Rate 0.11025 0.14385 0.20151
1 1.4 a

JFR Job Finding Rate 0.16434 0.17025 0.22407
1 1.3161

u Unemployment rate 0.23997 0.2742 0.32582
1 1.1883

a Old workers’ HP filtered-JSR standard deviation is 1.4 times higher than prime-age workers’.

age effect is not a composition due, e.g. to a higher proportion of low education in the population
of older workers. We show in Appendix A.8 that the level and the volatilities have the same age
profiles within each sub-group, "High school degree and less" and "More than High school". Our
age effect is not a skill effect.

2.2 Real hourly wage

Using monthly CPS data8, between January 1979 and March 2013, we document the business cycle
response of male real hourly wage across age groups. 9 Hourly wage w is usual weekly earnings
divided by usual weekly hours, for men only. We then deal with outliers, deflate by inflation and
technology growth, seasonally adjust then take quarterly averages (see Appendix B for further
details).

Table 3 reports the descriptive statistics for male real hourly wage and figure 6 in Appendix A.1
plots the corresponding time series. The levels are age-increasing, which is consistent with the view
that experience makes workers more productive. Interestingly, wage cyclical volatility actually falls
with age.

In a nutshell, the empirical evidence seems to point at different patterns of cyclicality across age
groups : old worker’s job flows are characterized by larger volatility than their younger counterparts
and lower wage responsiveness to the business cycle. Our findings on the volatilities per age of the

8This is still work in progress. As a result, we have only wage from 1995 January onwards. We still need to
add wages from January 1979 to January 1995. Data on earnings are available in the Basic CPS from January 1979
onwards.

9Jaimovich et al. (2013) use the annual March Supplement to look at wage cyclcality. However, among the 5
recessions that occurred in our sample (1976Q1-2013Q1), only 2 of them (1981 and 2008) lasted more than 1 year.
It is then paramount to document fluctuations in wage using infra-annual data. Monthly CPS provide information
on earnings from only one-fourth of the CPS total sample of approximately 60,000 households. We check that our
levels of wage are consistent with Heathcote et al. (2010) and BLS weekly earnings by age and that the HP filtered
volatility is consistent with Jaimovich et al. (2013)’s.
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Table 3: Real hourly wage w. CPS monthly data, quarterly averages, male, 1995Q1-2013Q1.
Authors’ calculations.

All: 16-61 Prime-age: 25-54 Old: 55-61

Mean(w) 16.3672 17.68812 19.41792
1 1.1 a

Std(w) 0.017 0.019 0.018
1 0.93

a Old workers’ w 1.1 times higher than prime-age workers’.

hourly wage can view as consistent to our finding on worker flows and unemployment stock. Indeed,
in a market with more rigid prices, the large part of the adjustments are done by the quantities.
Nevertheless, on cannot consider real wage rigidity as an acceptable assumption : there is a decline
in the wage volatility with the worker age, but the lowest volatility is still larger than zero.

3 A life-cycle matching model with aggregate uncertainty

In this section, we present an extension of the Mortensen & Pissarides (1994) model that introduces
life-cycle features and aggregate shocks.10 Beyond the life-cycle pattern of the job flows and stocks,
our objective is to evaluate the impact of age heterogeneity on business cycle elasticities. Thus, in
our economy à la MP, there is stochastic aging, as in Castañeda et al. (2003), Ljungqvist & Sargent
(2008) and Hairault et al. (2010). Unlike Cheron et al. (2013), we have aggregate shocks, as in e.g.
Fujita & Ramey (2012). In addition, unlike Cheron et al. (2013), we have age-directed search as in
Menzio et al. (2012). This implies that there is no externality coming form heterogenous workers
in the matching function. The decentralized allocation is then efficient if the Hosios condition is
satisfied.11

In sections 3 to 5, all workers are the same except for their work-life expectancy. In our view,
this is the key mechanism that drives the observed differences in job flows cyclicality between old
workers and their younger counterparts, prime-age workers. In order to provide a good theory for
the different cyclicality between prime-age and young workers, we need additional features that will
be presented in section 6.

10Since Mortensen & Pissarides (1994) or Mortensen (1994), there have been a lot of papers that provide empirical
evaluation of the MP model with respect to its ability to explain the labor market fluctuations. This model has
been also tested in the context of Dynamic Stochastic General Equilibrium models: see Merz (1994), Langot (1995)
or Andolfatto (1996) with exogenous separations, Denhaan et al. (2000) with endogenous separations. Pissarides
(2009)’s paper have revived this literature.

11Job-to-job transitions without saving (as in Fujita & Ramey (2012)) or with savings (as in Lise (2013)) are
discarded. More generally, the incorporation of the matching frictions within a Bewley-Huggett-Aiyagari type model,
as it is done by ? in the case of a infinitely lived agent, is left for future research.

11



3.1 Demographic setting, shocks and matching

The Life Cycle. Unlike the large literature following MP, we consider a life-cycle setting charac-
terized by an age at which workers exit the labor market, interpreted as the exogenous retirement
age. There are 2 age groups i: prime age and old workers, respectively A and O. All prime-age work-
ers A enter the labor market as unemployed workers. We assume stochastic aging. The probability
of remaining a prime age worker in the next period is (πA. Conversely, the probability of becoming
old is 1 − πA. We divide the periods as old workers into 7 years, one for each year: O = {Oi}7i=1,
with a probability of remaining in age class Oi in the next period is πOi . With probability 1− πO7,
old workers reach the retirement age T : in order to have a constant population size, we assume that
this mass of exiting workers is replaced by an equal mass of prime-age workers.

We need weekly data12, but only unfrequent transitions are significant with respect to the long run
life-cycle features: thus the number of value functions is given by the number of age classes in the
labor market, whereas the step of the each value function is the month.

With πi 6= πj , for i, j = 1, ..., 8 and i 6= j, the size of age groups are not equal. The size of each group
is deduced from Π, given that the total size of the population is normalized to unity. The population
of each group can be divided into two types of agent: the unemployed ui and the employed ni, such
that mi = ui + ni, with 1 =

∑
imi. We thereby discard the participation margin. In our view,

this is not a very restrictive assumption because we introduce an age-specific search effort which
can converge towards zero at the end of the working life, before the retirement age. These old
unemployed workers can thus be considered as non-participants. Their number is endogenously
determined at the equilibrium.

Shocks. A worker-firm match can produce an output level of zε during month t, where z and ε are
respectively the aggregate and the match-specific productivity factor. The aggregate productivity
component follows the exogenous process:

log(z′) = ρ log(z) + ν ′ (1)

where ν ′ is an i.i.d. normal disturbance with mean zero and standard deviation σν .

Firms are small and each has one job. For a common aggregate component of the productivity z,
the destruction flows derive from idiosyncratic productivity shocks that hit jobs at random. At the
end of each month t, a new productivity level for month t + 1 is drawn with probability λi ≤ 1

in the distribution G(ε), with ε ∈ [0, 1]. The higher λi, the lower the persistence of the current
productivity draw. The probability to draw a new match-specific productivity depends on workers’
age. This assumption allows to account for the heterogeneous persistence across age groups: when
persistence is high, it is more difficult to improve match-specific productivity.

12This is needed to capture the high frequencies transitions on the labor market, even if we aggregate these simulated
data to compute stylized facts on quarterly averages of monthly data.
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Once a shock occurs, the firm either keeps on producing or destroys the job. Each week, employed
workers are faced with layoffs when their job becomes unprofitable. The firms decide to close down
any job whose productivity is below a productivity threshold (the reservation productivity) denoted
Ri(z).

Finally, unlike MP, new jobs are not opened at the highest productivity: their productivity level
is also drawn in the distribution G(ε). The age-i − 1 workers who become age-i workers (with
probability 1− πi−1), whereas they have been contacted at the age i− 1, will be hired if and only
if their productivity is larger than the threshold Ri(z), ie. the reservation productivity of an age-i
worker, because the productivity value is revealed after the firm has met the worker.

Matching with directed search. We consider an economy where labor market frictions imply
that there is a costly delay in the process of filling vacancies. We assume that age is perfectly
observed and that a worker who applies to a job not matching its age-characteristic, will have a
nil production, and thus a nil surplus. Firms choose how many and what type of vacancies to
open, where the type of a vacancy is simply defined by worker’s age. Since search is directed, the
probability for a worker to meet a firm depends on his age.

Since firms can ex-ante age-direct their search, there is one matching function by age. Let vi(z) be
the number of vacancies, ui(z) the number of unemployed workers, and ei(z) the endogenous search
effort for a worker of age i. The matching function gives the number of contact,M(vi(z), ei(z)ui(z)),
where M is increasing and concave in both its arguments, and with constant returns-to-scale. From
the perspective of a firm, the contact probability is q(θi(z)) ≡ M(vi(z),ei(z)ui(z))

vi(z)
= M(1, θ−1

i (z))

with θi(z) = vi(z)
ei(z)ui(z)

the corresponding labor market tightness. The probability for unemployed
workers of age i of being employed is then defined by ei(z)p(θi(z))[1 − G(Ri(z))] with p(θi(z)) ≡
M(vi(z),ei(z)ui(z))

ei(z)ui(z)
= M(θi(z), 1) the contact probability of the effective unemployed worker. Note

that the hiring process is then age-differentiated via an age-specific search intensity (vi(z)), an
age-specific reservation productivity (Ri(z)) and an age-specific search effort (ei(z)).

3.2 Firms’ and workers’ inter-temporal values

Firms’ problem. Any firm is free to open a job vacancy directed to an age-specific labor market
and engage in hiring. c denotes the flow cost of hiring a worker and β ∈ [0, 1] the discount factor.
Let Vi(z) be the expected value of a vacant position in age-i labor market, given the aggregate
state of the economy z at time t, and Ji(z, ε) the value of a job filled by a worker of age i with
productivity ε in aggregate state z. The firm’s search value is given by:

Vi(z) = −c+ q(θi(z))βEz

[
πi

∫ 1

0
Ji(z

′, x)dG(x) + (1− πi)Vi(z′)
]

+ (1− q(θi(z)))βEzVi(z′)

13



where the operator Ez denote the expectation with respect to the aggregate productivity component
z. Given that search is directed, if the worker ages between the meeting and the production processes
(with a probability 1 − πi), the job is not filled. We will assume hereafter the standard free-entry
condition, ie. Vi(z) = 0, ∀i, z, which leads to:

c

q(θi(z))
= βπiEz

∫ 1

0
Ji(z

′, x)dG(x)

Vacancies are determined according to the expected value of a contact with an age-i unemployed
worker, which depends on the uncertainty in the hiring process arising from the two components of
productivity z and ε.

Given a state vector (z, ε) and for a bargained wage wi(z, ε), the expected value Ji(z, ε) of a filled
job by a worker of age i, ∀i ∈ [Y, ..., O6], is defined by:

Ji(z, ε) = max



zε− wi(z, ε)

+βπi(1− se)

(
λiEz

∫ 1
0 Ji(z

′, x)dG(x)

+(1− λi)EzJi(z′, ε)

)

+β(1− πi)(1− se)

(
λi+1Ez

∫ 1
0 Ji+1(z′, x)dG(x)

+(1− λi+1)EzJi+1(z′, ε)

) ; 0


Notice that, for i = O7, aging implies retirement. The value function becomes:

JO7(z, ε) = max

 zε− wO7(z, ε)

+βπO7(1− se)
(
λO7Ez

∫ 1
0 JO7(z′, x)dG(x) + (1− λO7)EzJO7(z′, ε)

) ; 0


The short horizon reduces the value of a filled job, for a given wage. When the horizon is short, if
the wage falls, older workers’ value can still be positive such that it can be profitable for firms to
hire old workers.

Workers’ problem. Values of employed (on a match of productivity ε) and unemployed workers
of any age i 6= O7, are respectively given by:

Wi(z, ε) = max



wi(z, ε)

+βπi

 (1− se)

(
λiEz

∫ 1
0 Wi(z

′, x)dG(x)

+(1− λi)EzWi(z
′, ε)

)
+seEzUi(z′)


+β(1− πi)

 (1− se)

(
λi+1Ez

∫ 1
0 Wi+1(z′, x)dG(x)

+(1− λi+1)EzWi+1(z′, ε)

)
+seEzUi+1(z′)


;Ui(z)


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Ui(z) = max
ei(z)



b− φ(ei(z))

+βπi

(
ei(z)p(θi(z))Ez

∫ 1
0 Wi(z

′, x)dG(x)

+(1− ei(z)p(θi(z)))EzUi(z′)

)

+β(1− πi)

(
ei+1(z)p(θi+1(z))Ez

∫ 1
0 Wi+1(z′, x)dG(x)

+(1− ei+1(z)p(θi+1(z)))EzUi+1(z′)

)


with b ≥ 0 denoting the instantaneous opportunity cost of employment and φ(.) the convex function
capturing the disutility of search effort ei. For i = O7, these values are simply given by

WO7(z, ε) = max


wO7(z, ε)

+βπO7

 (1− se)

(
λO7Ez

∫ 1
0 WO7(z′, x)dG(x)

+(1− λO7)EzWO7(z′, ε)

)
+seEzUO7(z′)

 ;UO7(z)


UO7(z) = max

eO7
(z)


b− φ(eO7(z))

+βπO7

(
eO7(z)p(θO7(z))Ez

∫ 1
0 WO7(z′, x)dG(x)

+(1− eO7(z)p(θO7(z)))EzUO7(z′)

) 
The optimal search effort decision of the worker then satisfies the following condition:

φ′(ei(z)) = βπip(θi(z))Ez

[∫ 1

0
Wi(z

′, x)dG(x)− Ui(z′)
]

The marginal cost of search effort at age i is equalized to its expected marginal return.

3.3 Job surplus, Nash sharing rule and reservation productivity

The surplus Si(z, ε) generated by a job of productivity zε is the sum of the worker’s and the firm’s
surplus: Si(z, ε) ≡ Wi(z, ε)− Ui(z) + Ji(z, ε), given that Vi(z) = 0 at the equilibrium. Thus, using
the definitions of Ji(z, ε), Wi(z, ε), and Ui(z), the surplus is given by:

Si(z, ε) = max



zε− b+ φ(ei(z))

+βπi(1− se)

 [
λi − γei(z)p(θi(z))

1−se

]
Ez
∫ 1

0 Si(z
′, x)dG(x)

+(1− λi)EzSi(z′, ε)


+β(1− πi)(1− se)

 [
λi+1 − γei+1(z)p(θi+1(z))

1−se

]
Ez
∫ 1

0 Si+1(z′, x)dG(x)

+(1− λi+1)EzSi+1(z′, ε)


; 0


The reservation productivity Ri(z) can then be defined by the condition Si(z,Ri(z)) = 0. As in
MP, a crucial implication of this rule is that the job destruction is mutually optimal, for the firm
and the worker. Si(z,Ri(z)) = 0 indeed entails Ji(z,Ri(z)) = 0 and Wi(z,Ri(z)) = Ui(z). Note
that the lower bound of any integral over Si(z, ε) is actually the reservation productivity, as no

15



productivity levels below the reservation productivity yield a positive job surplus. Given Si(z, ε),
the Nash bargaining leads to

Wi(z, ε)− Ui(z) = γSi(z, ε) and Ji(z, ε) = (1− γ)Si(z, ε)

Using this sharing and the definitions of the value functions, the wage rule is

wi(z, ε) = γ

(
zε+ cei(z)θi(z) +

1− πi
πi+1

cei+1(z)θi+1(z)

)
+ (1− γ) (b− φ(ei(z))) (2)

Because workers age, the returns on search activity is an average between age i and age i + 1. In
addition, when agents are identical except for their work-life expectancy, prime-age worker’s wage
is higher than old workers’ because the search efforts, θi(z) and ei(z), are age-decreasing. This is
counterfactual. To solve this problem, we introduce in section 6 an exogenous increase in human
capital with age. More precisely, we assume that zi = zhi and bi = bhi, where hi is the exogenous
human capital of the agent at the age i. We then show that distance to retirement still plays a key
role in shaping age-specific cyclicality even when the model takes into account this age-increasing
human capital.

3.4 Equilibrium

Definition 1. The labor market equilibrium with directed search in a finite-horizon environment is
defined by the search efforts of vacant jobs and unemployed workers, respectively θi(z) and ei(z),
and the separation rule (the reservation productivity), Ri(z):

c

q(θi(z))
= (1− γ)βπiEzSi(z

′) (3)

φ′(ei(z)) = γp(θi(z))βπiEzSi(z
′) (4)

zRi(z) = b− φ(ei(z))

−βπi(1− se)

 [
λi − γei(z)p(θi(z))

1−se

]
EzSi(z

′)

+(1− λi)EzSi(z′, Ri(z))


−β(1− πi)(1− se)

 [
λi+1 − γei+1(z)p(θi+1(z))

1−se

]
EzSi+1(z′)

+(1− λi+1)EzSi+1(z′, Ri(z))

 (5)

given the average and individual surpluses :

Si(z
′) ≡

∫ 1

Ri(z′)
Si(z

′, x)dG(x) (6)

Si(z, ε) = max

{
z(ε−Ri(z)) + βπi(1− λ)(1− se)Ez[Si(z′, ε)− Si(z′, Ri(z))]
+β(1− πi)(1− λ)(1− se)Ez[Si+1(z′, ε)− Si+1(z′, Ri(z))]

; 0

}
(7)

The stock-flow dynamics on the labor market are given in Appendix C.1 by equations (25), (26),
(27) and (28), whereas the dynamics of the aggregate shock is given by (1).
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Proposition 1. The directed search assumption implies that the problem is block-recursive.

Proof. As in Menzio & Shi (2010), if we find a fix point for SO7(z, ε) which is a function of choices at
the age O7 (the terminal age) only, we then obtain {SO7(z, ε), θO7(z), RO7(z), eO7(z)}, ∀z, ε, using
the equations (3), (5) and (4). Given these solutions for the labor market of the age-O7 workers,
we can solve for the age-O6 workers using the system given in definition 1 until age i = A.

The algorithm for this first step is the same as the one described in Fujita & Ramey (2012) for the
solution of the MP model in the infinite horizon case. It is extended to account for the endogenous
search effort from unemployed workers. See Appendix C.5 for a description of the algorithm.

Proposition 2. If the Hosios condition is satisfied, the equilibrium is efficient.

Proof. By backward induction, it is trivial to show that, if γ = η, then the labor market allocation
for older workers is efficient. Given this result, the same conclusion applies on prime-age workers’
labor market.

In this paper, we assume that this restriction is satisfied. This simplifying assumption, in the spirit
of Menzio & Shi (2010), is also used in Menzio et al. (2012). It then allows us to measure the
gap between optimal fluctuations and the observed business cycle. Cheron et al. (2011) discuss the
impact of a non-directed search equilibrium per age. They show that non-directed search generates
additional trade externality giving some foundations to age-specific labor market policies: because
older workers create a negative externality in the hiring process, it could be optimal to retain them
inside the firms or to subsidy their non-participation.

4 Steady state analysis: Accounting for the age-decreasing levels

of transition rates

In this section, we show that the model replicates the age-decreasing levels of transition rates found
on the data (Table 1). We then consider the steady state of our economy, and stress the key
mechanisms that allow to match the pattern of labor reallocation of prime-age and old workers.
This steady state analysis is a first step for the validation of our theory: the model is required to
match the transition rates measured as the average over all the sample. This will also simplify the
exposition of economic mechanisms when we consider the stochastic economy (section 5).

Transition rates fall with age in the data, meaning that, at the steady state, for age i, the model
must generate an age-pattern of transition rates such that

JSRi ≈ se + (1− se)λiG(Ri) > JSRi+1 (8)

JFRi ≈ eip(θi)[1−G(Ri)] > JFRi+1 (9)
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If we only focus on endogenous variables13, the job separation rate is only a function of the reserva-
tion productivity (Ri), whereas the job finding rate is a function of search efforts ({ei; θi} and the
reservation productivity. This observed pattern is puzzling since, in the model, the value of a match
is determined by a single variable, its surplus. Using this single variable, the model must produce
an equilibrium outcome in which, it is optimal to have old workers kept inside the firm while, at
the same time, firms are less willing to hire them.

4.1 Steady state equilibrium by age

Since Mortensen & Pissarides (1994)’s seminal paper, the information in the surplus (equation (7)
in definition 1) can be decomposed in two parts: (i) the expected average value of the surplus
gives the incentive to search (Si in equations (3) and (4)), (ii) whereas its marginal value provides
information on the separation decision (equation (5)). Given that ei(z) can be easily deduced
from θi(z) (equations (4) and (3)), we only focus on the labor market tightness and reservation
productivity. At the conditional steady state, ie. a steady state indexed by a permanent level of z,
we have, omitting z to simplify the notations:

c

q(θi)
= (1− γ)βπiSi (10)

Ri = b+ Σi − Λi − Γi(Ri) (11)

where Σi, Λi and Γi(Ri) denote respectively the value of search opportunities Σi = πiγeip(θi)βSi +

(1−πi)γei+1p(θi+1)βSi+1−φ(ei), labor hoarding Λi = πi(1− se)λiβSi+ (1−πi)(1− se)λi+1βSi+1,
and the continuation value Γi(Ri) = (1− se)(1− λi)(1− πi)βSi+1(Ri). Given that Si is a function
of Ri and Σi a function of θi, equation (10) represents the job creation curve (JC), whereas (11) is
the job destruction curve (JD). At each age i, and thus for a given set of variable representing the
equilibrium at age i+1, JC defines a negative relationship between θi and Ri: the firm’s investments
in search are large when a wide set of jobs is profitable (low value of Ri). JD defines a positive
relationship between θi and Ri: the set of profitable jobs is reduced when the search process allows
to be more selective (high value of θi).

We will show in the following sections that there exists an equilibrium such that reservation pro-
ductivity falls with age (section 4.2) as well as labor market tightness hence search effort (section
4.3). Both elements play a role in generating an age-decreasing profile of transition rates.

4.2 The steady-state life-cycle pattern of reservation productivity

Equation (8) suggests that the age-decreasing job separation rate can be obtained as soon as the
reservation productivity falls with age. The reservation productivity (equation (11)) is the sum of

13The job separation rate is also a function of the age-specific probability to draw an new match-specific productivity
(λi).
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unemployed worker’s current surplus (unemployment benefit and home production, b) and the net
value of new opportunities. The latter consists of the difference between the return on opportunities
outside the firm (Σi) and within the firm at the current productivity level (Γi(Ri)) or after a change
in productivity (Λi). The reservation productivity differs across age groups because workers differ
with respect to their expected time on the labor market. For workers who are close to retirement,
only current surplus matters. The reservation productivity converges to the unemployed worker’s
current surplus b as the worker ages. In contrast, prime-age workers have a long work-life expectancy
on the labor market. We have basically two cases. In the first, the value of the labor hoarding Λi

is larger than the search returns Σi. In this case, Ri < b and the reservation productivity can only
be age-increasing, which is not in accordance with the data of the job separation rates. We then
exclude this case. In the other case, we have Σi > Λi, leading to Ri > b: a age-decreasing pattern
of the job separation is then possible.

Thus, reservation productivity for prime age workers is larger than that of their older counterparts
(Ri > Ri+1) as long as the expected return on their search activity is larger than the expected
gain from opportunities within the firm (Σi > Λi + Γi(Ri)). If we consider the marginal job, we
have Γi(Ri) → 0. Thus, a sufficient condition for Ri > Ri+1 is Σi > Λi or γeip(θi) > (1 − se)λi,
∀i. 14 This gap between γeip(θi) and λi simply measures the efficiency of unemployment search
relative to labor hoarding. This condition underlines that the value of search can be manipulated by
agents through their choices on {ei, θi} whereas the labor hoarding value is driven by an exogenous
process λi: the younger they are, the larger the incentive to invest in the labor market because a
longer horizon allows them to recoup more easily their search costs. This age-dynamic of reservation
productivity is consistent with the evidence found in the US data reported in Table 1. 15

4.3 Hirings and search efforts along the life-cycle

According to Equation (9), the decline in the reservation productivity tends to increase the job
finding rate along the life cycle, since more jobs become acceptable. This is not consistent with
the data (Table 1). For the job finding rate to decline with age, the model must predict a large
decline in search efforts ({ei; θi}) and thus a large decline in the meeting rate (through the contact
probability of the unemployed worker (eip(θi))) at the end of the working life. The fall in ei and θi

14The intuition beyond this restriction is the following: at the end of the life-cycle, we have RS → b. If ΣA > ΛA ⇒
ΣA − ΛA > 0, then RA > RS . In order to have RY > RA, we also need ΣY − ΛY > ΣA − ΛA > 0. This can be an
equilibrium result if the horizon effect is large enough and/or if the labor hoarding value is low for younger workers.
It is indeed the case because λY is small: younger workers’ opportunities to change productivity inside the firm is
lower then the one prevailing for their older counterparts. See the discussions below concerning these two points.

15In Cheron et al. (2013), all the other cases are analyzed: the age-increasing reservation productivity case, implying
Σi < Λi ∀i, and the U -shape pattern of the reservation productivity, implying Σi > Λi, for i < î and Σi < Λi, for
i ≥ î. Given that the US data are not in accordance with these two last cases, we restrict our analysis to case where
the steady state of the model match the long run value of the JSR.
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must compensate the decline in the reservation productivity. Recall that, for age group i, {ei, θi}
are positively linked to the expected surplus Si, which is given by equation (6). We determine below
the age profile of the expected surplus from a match.

If the reservation productivity is age-decreasing, implying an age-decreasing separation rates as in
the data, then we have Si(ε) = Ωi(ε−Ri) where Ωi is a polynomial which accounts for actualization,
leading to Ωi > Ωi+1. In this case, we have Si =

∫ 1
Ri
Si(x)dG(x) = Ωi

∫ 1
Ri

(x − Ri)dG(x) =

Ωi

∫ 1
Ri

[1−G(x)]dx. Thus we have 16:

Si − Si+1 = (Ωi − Ωi+1)

∫ 1

Ri

[1−G(x)]dx− Ωi+1

∫ Ri

Ri+1

[1−G(x)]dx

where (i) the first term accounts for the “horizon effect”, leading the expected surplus to be age-
decreasing (Si > Si+1) because, for a given draw of match-specific productivity ε, a shorter horizon
prior to retirement leads each match-specific surplus to decline with the worker’s age (Si(ε) >

Si+1(ε) ⇔ Ωi − Ωi+1 > 0), and (ii) the second term captures a “selection effect” leading surplus
to be age-increasing (Si < Si+1) because, when Ri > Ri+1, older workers are less selective than
younger workers when new opportunities are available for them. If the number of new jobs that
become profitable after aging, relative to the number of jobs that are already profitable at younger
ages, is small enough, the expected surplus can be age-decreasing. In this case, where "the horizon
effect" dominates the "selection effect", the expected surplus declines with age, leading search efforts
(ei and θi) to be age-decreasing. 17

4.4 The wage age-profile

In our MP-life-cycle model, there is heterogeneity within each age group because each job is char-
acterized by a match-specific productivity. Thus, the model generates a wage distribution per age.
If we want to compare the model predictions with the stylized facts, it is then necessary to compute
an Average wage per age, which is:

Wi(z) = γzG(Ri(z)) + (1− γ) (b+ Σi(z)) (12)

where G(Ri(z)) = 1
ni(z)

∫ 1
Ri(z)

xdni(z, x) denotes the average productivity of age-i workers, whereas
dni(z, x) is the mass of age-i employees on a x-productivity job. This distribution is endogenous and

16see Appendix C.2
17This restriction seems to be realistic simply because new jobs becoming profitable with aging are actually in a

small interval ([Ri, Ri+1]), whereas the other jobs are in a large interval (at least [Ri(z), 1]). Empirically, we need
the selection effect to be small enough. In which case, the age-dynamics of the expected surplus is driven by the
horizon effect. The model can then generate an age-decreasing JFR. Notice that beyond its impact on the expected
surplus, the selection effect has also a direct impact on the JFR though 1−G(Ri): after a meeting, it is easier to be
productive for old workers. Thus, at the end, we need a large enough horizon effect in order to dominate the other
two channels (the direct channel through ei and θi and the indirect effect through Ri) through which the selection
effect generates an age-increasing profile for the JFR.
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depends on the worker movements in the job distribution (entries, exits and productivity changes).
Another difference with respect to the exogenous distribution G(ε) is that dni(z, ε) change with the
business cycle. 18

If we assume that search efforts (θi(z) and e(z)) and reservation productivity are age-decreasing 19,
how is the age-dynamics of the average wage? When a worker ages, the decline in Σi(z) pushes
Wi(z) downward: the horizon effect reduces the outside options and thus the average wages. But,
at the same time, when workers age, they become less selective: the reservation productivity Ri(z)
falls. This produces two opposite effects: firstly, the set of accepted wage increases, leading to
push-up Wi(z), but secondly, this decline in the selective process raises the employment rate ni(z)
and concentrates the wage at the bottom of the distribution because d

dRi(z)
dni(z, x) > 0.20 Thus,

steady-state average wage can be age-decreasing. Since it is not the case in the data, we introduce
human capital accumulation in the quantitative section.21

5 The age-specific impact of the business cycle in the model

Does the restrictions allowing to match the steady state per age of the worker flows compatible with
the stylized facts by which older worker flows’ are more sensitive to the business cycle than their
younger counterparts? Indeed, in the previous section, we have shown that the sizes of valuations
of future options depend on workers’ age. This necessarily affects business cycle elasticities which
become age-dependent. This section is devoted to explain why a model that takes into account
the life cycle gives more chance to the Diamond-Mortensen-Pissarides (DMP) setting to reproduce
the large volatility of labor market outcomes. Following Shimer (2005) or Nagypal & Mortensen
(2007), we derive comparative statics results that describe how the equilibrium market tightness
implied by the model changes with aggregate productivity across steady states. For this type of
analysis, it is sufficient to focus on conditional steady states (see Nagypal & Mortensen (2007)),
ie. the equilibrium contingent to a permanent realization of the aggregate productivity z, and
to approximate the impact of shock on z as a permanent change. In the same spirit, we present
analytical results under the approximation that transitions between ages do not matter for the
fluctuations within an age class: the high persistence in an age class leads to neglect the low
probability of aging at business cycle frequencies22.

18See the section 5.4 for more details on the impact of the business cycle on the employment distribution.
19These restrictions are simply a sufficient condition to match the age-decreasing pattern or JSR and JFR observed

in the data.
20See appendix C.3.
21More specifically, we introduce age-specific labor efficiency (zi = zhi) and age-specific home production efficiency

(bi = bhi)
22This assumption is also consistent with the measures of the worker flows in the data where we consider that the

transitions within an age class are not influenced by the fraction of workers who age in a period (the month). This
approximation is acceptable if 1−πi

πi+1
→ 0. In the calibrated model, we have 1−πi

πi+1
∈ [7e− 4; 2e− 2] showing that this

21



For expositional simplicity, we also assume in what follows that the disutility of search effort is such
that φ(ei) =

e1+φi
1+φ and that the matching function is M(vi, eiui) = v1−η

i (eiui)
η, with φ > 0 and

η ∈ (0; 1).

Volatilities can be inferred from a log-linear approximation of equations (8) and (9)

ĴSRi =
JSRe
JSR

εG|RiR̂i (13)

ĴFRi = êi + (1− η)θ̂i −
G(Ri)

1−G(Ri)
εG|RiR̂i (14)

where εG|Ri denotes the elasticity of the function G with respect to Ri. The job separation rate are
driven by counter-cyclical movements in R̂i while the counter-cyclical behavior of the reservation
productivity reinforces the pro-cyclical behavior of the job finding rate. To determine the age profile
of volatility in JSR and JFR, we will examine below the responsiveness of reservation productivity
(section 5.1) and search efforts (section 5.2). Both variables, reservation productivity and labor
market tightness, are the solution of a system of equations involving the free entry condition and
zero surplus.

More specifically, in order to decompose the macroeconomic impact of the aggregate productivity
shock, we use the following system:23

(JC)


c

q(θi(z))
= βπiJi(z)

Ji(z) = ze(Ri(z))− wi(z) + (1− γ)[(1−G(Ri(z)))Λi(z) + Γi(z)]

wi(z) = γze(Ri(z)) + (1− γ) (b+ Σi(z)) (1−G(Ri(z)))

(JD)

{
zRi(z) = wi(z,Ri(z))− (1− γ)[Λi(z) + Γi(z,Ri(z))]

wi(z,Ri(z)) = γzRi(z) + (1− γ) (b+ Σi(z))

where Ji(z) =
∫ 1
Ri(z)

Ji(z, x)dG(x), wi(z) =
∫ 1
Ri(z)

wi(z, x)dG(x), e(Ri(z)) =
∫ 1
Ri(z)

xdG(x) and
Γi(z) =

∫ 1
Ri(z)

Γi(z, x)dG(x). These variables denote respectively the expected value of a filled
vacancy for the firm, the ex-ante average wage cost, the average productivity and the average of
the continuation value.

The Log-linear approximation of the previous system leads to the following dynamic of the (JC)

approximation is acceptable.
23Given that all the variables are evaluated conditionally on a particular level of z, we have:

Σi(z) = −φ(ei(z)) + βγ
[
πiei(z)p(θi(z))Si(z) + (1− πi)ei+1(z)p(θi+1(z))Si+1(z)

]
Λi(z) = β(1− se)

[
πiλiSi(z) + (1− πi)λi+1Si+1(z)

]
Γi(z, ε) = β(1− se)(1− πi)(1− λi+1)Si+1(z, ε)
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curve: 24

(JC)


θ̂i = 1

1−η Ĵi

Ĵi = ze(Ri)
ze(Ri(z))−wi(z) ẑ −

wi
ze(Ri(z))−wi(z) ŵi −RiG

′(Ri)
zRi+(1−γ)Λi
ze(Ri(z))−wi(z)R̂i

ŵi = γ ze(Ri)wi
ẑ + (1− γ)Σi(1−G(Ri))

wi
Σ̂i −RiG′(Ri)w(Ri)

wi
R̂i

Fluctuations in the search effort of the firm, θ̂i are driven by the dynamic of the job value Ĵi.
The wage equation then shows that changes in (JC) are dampened if the search value is highly
pro-cyclical: high wages in boom reduce the increase in the firm value and thus moderates its
incentive to hire more workers. Another crucial point is the fact that, when we combine the Ĵi and
the ŵi equations, the term on R̂i disappears: indeed, the ex-ante productivity draw leads firms to
compare expected productivity to expected labor costs, both take into account the dynamics of the
selective process accounting by Ri. Hence, this model with endogenous destructions shares the same
properties with respect to the JC curve dynamics as the simple model with exogenous destructions.
This (JC) system then provides the intuition behind Shimer (2005)’s criticism of the DMP model:
ex-ante wage variations dampen the firm surplus volatility, thereby reducing the incentive to invest
in vacancy in economic booms. This leads the DMP model to predict small changes in labor market
quantities.

The Log-linear approximation of the (JD) system are given by:

(JD)

{
R̂i = −ẑ + wi(Ri)

b+Σi
ŵri −

(1−γ)Λi
b+Σi

Λ̂i − (1−γ)Γi(Ri)
b+Σi

Γ̂ri

ŵri = γ zRi
wi(Ri)

(ẑ + R̂i) + (1− γ) Σi
wi(Ri)

Σ̂i

The system shows that movements in (JD) curve are also dampened if the wage is highly pro-
cyclical.

The size of the age-specific ex-ante wage response to the business cycle is then at the heart of
the age-specific volatilities of worker flows. In the two wage equations, inter-temporal behaviors,
summarized by fluctuations in the search value Σ̂i, magnify the wage sensitivity to the business
cycle. The longer the worker’s opportunity to find a job, the larger the ex-ante wage sensitivity to
changes in the value of the labor market prospects. Thus, others things being equal, if, for older
workers, Σi is small, the pro-cyclical behavior of ex-ante wage is dampened. Given that our steady
state analysis leads to the restrictions Σi > Σi+1 (the horizon effect), the elasticity of ex-ante wages
(the average wage for the (JC) curve, or the reservation wage for the (JD) curve) to the search
option (Σi) declines with the worker’s age. Hence, ex-ante wages becomes more rigid when workers
age. Other thinks being equal, this generate more volatility in the quantities (worker inflows and
outflows) in the labor market for older workers.

24Using the approximation 1−πi
πi+1

→ 0, we obtain Λi(z) = β(1− se)πiλi Ji(z)1−γ . This leads to

Ji(z) =
ze(Ri(z))− wi(z)

1− β(1− se)πiλi 1−(1−λi)G(Ri(z))
1−λi

and Λ̂i = Ĵi
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5.1 Job separation rate volatility: elasticity of reservation productivity by age

Given that the job separation rate is a monotonic function of the reservation productivity, the
analysis of this variable is sufficient to characterize the age pattern of separation fluctuations.
Combining the wage reservation equation and the reservation productivity of the (JD)-curve, using
the definition of the surplus and its approximation25, we have Γ̂ri (z) ≈ R̂i, leading to

R̂i = − b+ Σi

b+ Σi + Γi(Ri)
ẑ +

Σi

b+ Σi + Γi(Ri)
Σ̂i −

Λi
b+ Σi + Γi(Ri)

Λ̂i

Given that the Log-linear approximations of the free entry condition and the FOC w.r.t e lead to
Σ̂i ≈ 1+φ

φ θ̂i and Λ̂i ≈ ηθ̂i respectively, we deduce that Σ̂i > Λ̂i. Thus, assuming that Σi is age-
decreasing (our assumption in order to match the observed first order moments characterizing the
steady state), the variations in search values (Σ̂i) dominate the volatility in labor hoarding values
(Λ̂i). The expression of R̂i then shows that fluctuations in inter-temporal values, dominated by
changes in Σ̂i, dampen fluctuations in Ri(z). In recession, prime-age workers are highly sensitive
to the decrease in labor market opportunities because they have a future. The change in their
reservation wage dampens the impact of the business cycle. For old workers, the same effect is at
work, even if the future is very short. However, at the end of the life cycle, we have Σi → 0 and
thus Λi → 0 because Σi > Λi, leading Ri to be highly sensitive to current aggregate shocks. In
other words, R̂i = −ẑ for old workers: old workers’ reservation productivity respond to the aggre-
gate shock on a one-for-one basis. In contrast, for prime-age workers, the reservation productivity
responsiveness is less than one, in absolute value.

5.2 Job finding rate volatility: elasticity of search efforts by age

Let us first analyze the volatility of labor market tightness that depends on the expected value of a
filled vacancy.26 By introducing the log-linear approximation of the ex-ante wage in the log-linear
approximation of the expected firm surplus, we obtain:

Ĵi =
ze(Ri)

ze(Ri(z))− (b+ Σi)(1−G(Ri))
ẑ − Σi(1−G(Ri))

ze(Ri(z))− (b+ Σi)(1−G(Ri))
Σ̂i (15)

Recall that Σi is an increasing function of γ (a large bargaining power leads to a high search value).
Using equation (15), we can recover all the cases discussed in the literature.

In Shimer (2005), without age-heterogeneity, equation (15) boils down to :

Ĵ =
z

z − (b+ Σ(γ))
ẑ − Σ(γ)

z − (b+ Σ(γ))
Σ̂(γ) (16)

25See Appendix C.4.
26Equation (14) suggests that in order to understand the volatility age profile of JFR, we need to characterize the

elasticity of search efforts for firms and workers. Labor market tightness and search effort ({θi, ei}) depend on the
expected value of a filled vacancy Ji. The Log-linear approximations of the free entry condition and the FOC w.r.t
the search effort of the unemployed workers leads to êi = 1

φ
θ̂i. Thus, we focus in this section on θi. The volatility of

ei behaves in a similar way.
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In Shimer (2005), b the value of leisure is restricted to measure the replacement rate in the United-
States: thus, b is small and denoted by b = b−. Concerning the bargaining power, Shimer (2005)
assumes that the Hosios condition is satisfied and thus sets γ to be equal to η. For the calibration,
Shimer (2005) uses an information on η and sets it at the upper end of the range of estimates
reported in Petrongolo & Pissarides (2001). Given that η = γ, this implies that the bargaining
power is large, γ = γ+, and thus the value of the search is also large (Σ(γ+) >> 0). With Shimer
(2005)’s calibration 27, the direct impact of the productivity shock is small ( z

z−(b−+Σ(γ+))
) because

the direct impact of b is larger than the indirect impact of γ on this multiplier, whereas the impact
of fluctuation in search opportunities are not negligible (Σ(γ+) 6= 0). This calibration leads to
minimize the predicted impact of an aggregate shock on hiring decision in the DMP model.

In Hagendorn & Manovskii (2008), in equation (16), a new calibration of this model is proposed.
First, the value of leisure includes unemployment benefits as well as home production, leading to
a high value for b, denoted b+ and such that b+ > b− + Σ(γ+). Concerning the bargaining power,
Hagendorn & Manovskii (2008) do not assume that the Hosios condition is satisfied and set a low
value for γ such that γ ≈ 0⇒ Σ(γ−)→ 0. With this calibration, the impact of search opportunities
is negligible (Σ ≈ 0) and the direct impact of ẑ is maximized z

z−b+ . With this calibration strategy 28,
Hagendorn & Manovskii (2008) show that the DMP model can generate the observed fluctuation of
worker flows. Nevertheless, their solution is obtained in a economy where the unemployment rates
are lower than their optimal counterparts, because γ < η, suggesting that something is missing in
the model.

An alternative solution, suggested in Hall (2005), is provided in Hall & Milgrom (2008): this setup
provides a game where the weight of the search value Σ in the wage equation can be arbitrary very
small. 29.

In our case, prime-age workers lie between Shimer (2005)’s and Hagendorn & Manovskii (2008)’s
workers, and look like Hall & Milgrom (2008)’s workers:

ĴA =
ze(RA(z))

ze(RA(z))− (b+ ΣA)(1−G(RA(z)))
ẑ − ΣA(1−G(RA(z)))

ze(RA(z))− (b+ ΣA)(1−G(RA(z)))
Σ̂A(17)

In order to reproduce the average volatility of workers flows, it is necessary to calibrate the value
of home production at a larger value than the one proposed by Shimer (2005), which is consistent
with Hall (2005). The important point is that, unlike Hagendorn & Manovskii (2008), we preserve

27The values in Shimer (2005) are γ = 0.72 and b = 0.4.
28The values in Hagendorn & Manovskii (2008) are γ = 0.061 and b = 0.943.
29The values in Hall & Milgrom (2008) are γ = 0.5445 and b = 0.71. Nevertheless, the solution of the wage equation

depends on additional parameters. Indeed, in their “strategic bargaining”, if for simplicity it is assumed that (i) the
worker receives payoff b and the employer incurs no cost while bargaining continues and (ii) they renegotiate the
division of the match product zε whenever it changes, then the outcome of a symmetric (γ = 0.5) alternating-offers
game is w = b+0.5(zε− b). This shows that it exists a calibration of the costs incurred during the bargaining process
leading the wage to be independent of the search opportunity value Σ.
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the Hosios condition and we endogenously obtain varying changes in the search value in the wage
dynamics though another channel than the one proposed by Hall & Milgrom (2008). We have for
old workers

ĴO =
ze(RO(z))

ze(RO(z))− b(1−G(RO(z)))
ẑ (18)

With aging, the returns on search is nil for older workers, leading ΣO → 0, and reducing the elasticity
of wages w.r.t. Σ̂i when workers age. Then, with a calibration for the value of leisure such that
b > b−, the aging endogenously leads average flows to look like Hall & Milgrom (2008)’s workers
(even if γ = η > 0). In contrast, prime-age workers highly value search opportunities (ΣA > 0), the
very element that moderates the elasticity of the job value w.r.t. aggregate shocks in equation (17).
This then explains the lower elasticity of search efforts to the business cycle for prime-age workers
than for old workers.

5.3 Worker flow volatility: the equilibrium analysis

In the two previous sections, we have presented the results on the impact of the business cycle using
partial equilibrium analysis in order to decompose in an intuitive way the economic forces at work
in the model. In this section, using the same set of simplifying assumptions ((i) conditional steady
states and (ii) negligible impact of age transitions on fluctuations within an age class, ie. 1−πi

πi+1
→ 0),

we show that the results are robust to the equilibrium analysis. Indeed, we obtain:

R̂i ≈ −
b+ Σi

(
1− 1+φ

φ
1
η

)
b+ Σi

(
1 + 1+φ

φ
1
ηεI|R

)
− Λi(1 + εI|R)

ẑ (19)

θ̂i ≈
1

η

1 + εI|R
b+ Σi

(
1− 1+φ

φ
1
η

)
b+ Σi

(
1 + 1+φ

φ
1
ηεI|R

)
− Λi(1 + εI|R)

 ẑ (20)

êi ≈
1

φ

1

η

1 + εI|R
b+ Σi

(
1− 1+φ

φ
1
η

)
b+ Σi

(
1 + 1+φ

φ
1
ηεI|R

)
− Λi(1 + εI|R)

 ẑ (21)

where εI|R =
∣∣∣ I′RI ∣∣∣, with I(Ri(z)) =

∫ 1
Ri(z)

(1−G(x))dx.

Proposition 3. When JFRi and JSRi are age-decreasing, older workers are more sensitive to the
business cycle than prime-age workers, because old workers have no future.

Proof. Using (19), (20) and (21), if we assume that the values of Σi and Λi are at their lowest level
for older workers ΣO = ΛO = 0, and at their highest level for prime-age workers ΣA = b

1+φ
φ

1
η
−1

, we

deduce that

R̂O ≈ −ẑ R̂A ≈ 0

θ̂O ≈ 1
η

[
1 + εI|R

]
ẑ θ̂A ≈ 1

η ẑ

êO ≈ 1
φ

1
η

[
1 + εI|R

]
ẑ êA ≈ 1

φ
1
η ẑ
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therefore |R̂O| > |R̂A|, |θ̂O| > |θ̂A| and |êO| > |êA|.

Proposition 3 shows that, if the model can reproduce the shape of worker per age at the steady
state, then this set of restrictions is sufficient to be in accordance with fluctuations of these data
around this steady state.

5.4 Wage elasticity by age

When there is no heterogeneity among matches within a age group (ε = 1), the wage equation
(2) can be used to test the predictions of the model with respect of wage volatilities. Indeed,
in a representative-agent model, without heterogeneity, there is no difference between the wage
bargained at the individual level, the aggregate wage (an average over identical workers at a given
time) and the ex-ante wage (or the mean wage over homogenous jobs) computed by the firm to
predict its expected job value before at match. Thus, in this simple model, one can easily deduce
that if the real wage (measured by the aggregate wage) is rigid in the data, then it is the case for
the ex-ante wage: the DMP model with a rigid wage can then solve the Shimer volatility puzzle.
Nevertheless, the statistics reported in the table 3 show that volatilities are not negligible, which
does not provide empirical support for the rigid wage assumption.

In our MP life-cycle model, the heterogeneous match-productivity leads the average wage and the
ex-ante wage to be different, even if both take into account the individual wage levels (equation (2)).
The average over all workers in t contains an information on the composition of the labor force (the
endogenous distribution of the jobs, dni(z, ε)), whereas the ex-ante wage in t contains information
on the draw of the productivity after the match (the exogenous distribution of the productivity,
dG(ε)). If only ex-ante wages matter for individual decisions, the descriptive statistics can be only
based on average wages. Thus, one can have a rigid ex-ante wage, in the sense discussed in the
section 5, and a volatile average wage, as in table 3. If it is the case, then the DMP model can
predict both workers flow volatilities and wage volatility. In this section, we propose to explain the
main force at work in the average wage dynamics.

The log-linear approximation of equation (12) leads to

Ŵi = γ
zG(Ri)

Wi

(
ẑ + Ĝi

)
+ (1− γ)

Σi

Wi
Σ̂i

where the term Ĝi gives the impact the changes in the job composition on wage fluctuations. In the
appendix C.4, it is shown that on can obtain

Ĝi = Γzi ẑ + Γri R̂i + Γsi Σ̂i

where Γzi , Γri and Γsi ≡ γsiΣi are the elasticities of the average productivity with respect to z, Ri
and Σi. 30 This approximation underlines the channels through which the average productivity

30See the appendix C.4 for more details on the computation.
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Gi depends on the business cycle. The signs of these elasticity Γxi , for x = z, r, s, are ambiguous.
The aggregate productivity (z) has a positive impact on aggregate employment, and thus lowers
the average productivity, but also raises employment at each level of the productivity distribution
through its impact on search efforts (ei(z) and θi(z)). In boom, the fall in Ri increases the set of job
(the integral has a larger span) but lowers its quality (more jobs are concentrated at the bottom),
Moreover, when Ri declines, employment increases, thus average productivity falls. Finally, a rise
in the search value Σi reduces the incentive to post new vacancies. This has a negative impact on
the two dimensions of employment: by reducing its aggregate level, this raises average productivity,
whereas its negative effect on each point lowers average productivity. Finally, we deduce that the
average wage dynamics is given by:

Ŵi = γ
zG(Ri)

Wi

(
(1 + Γzi )ẑ + Γri R̂i + Γsi Σ̂i

)
+ (1− γ)

Σi

Wi
Σ̂i

Thus, for older workers, ie. when ΣO → 0, the average wage can be proxied by

ŴO = γ
zG(Ri)

Wi

(
(1 + ΓzO)ẑ + ΓrOR̂O

)
This shows that this average wage can be highly pro-cyclical if Γri > 0 and large enough. Moreover,
given that the volatility of the JSR is age-increasing, implying R̂i < R̂i+1, the impact of R̂O on
ŴO can be reinforced by the large volatility in the reservation productivity.

In the data, the volatility of the hourly wage is age-decreasing. Thus, an additional test of the
model, which is different than the rigidity of the ex-ante wage in the sense defined in section 5, is its
ability to reproduce the age-pattern of wage cyclical properties. This implies that the calibration
must be such that Γri must be lower enough to ensure that older workers’ wage volatility is the
lowest.

6 Quantitative assessment

In this section, we bring the model to the data. This allows to check that the model’s behavior
is consistent with our analytical results when we give up the simplifying assumptions made in the
previous sections. First of all, we introduce a deterministic human capital accumulation allowing to
the model to match the observed age-increasing pattern of real hourly wages: even if there horizon
is shorter, the older workers can compensate via there human capital accumulations. Under these
steady state restrictions, our goal is to explain the volatility by age, while respecting those observed
at the aggregate level, which is usually computed on the workers aged from 16 years old and more.
This therefore requires us to retain the more general version of our model, ie. that integrating
youth labor market (16-24 years old). This allows us to generate aggregated data that correspond
to macroeconomic time series usually discussed. The "horizon effect" is not discriminating to explain
the differences between the young and the prime-age workers. We then introduce two specificities
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on the youth labor market: a potentially higher "mismatch effect" and a "composition effect" which
account for a difference in the quality of the labor force (section 6.1). It is noticeable that, with
the introduction of youth labor market, who are also far way from retirement, job flows volatilites
found in US data are consistent with our distance-to-retirement effect. Using CPS data, youth job
flows (hourly wage) are found to be less (more) responsive to the business cycle than prime-age
workers’. The data seems to support our view that aging endogenously generates wage sluggishness
and large labor market adjustments.

Secondly, in section 6.2, we gauge the model’s ability to replicate the age volatility profile when we
calibrate the model to fit historical averages. In doing so, we first uncover structural parameters
that allow the model to match the first moments found in the data. Under this calibration, we assess
the model’s ability to generate second order moments consistent with the data. The challenge is
quantitative: will the model’s predicted volatilities be close to the ones observed in the data? Our
result indeed show that the parameter restrictions imposed by the first order moments are sufficient
to generate age-increasing elasticities.

Finally, in section 6.3, a sensitivity analysis is performed.

6.1 Adding the youth labor market : Model’s analytical predictions

Steady state reservation productivity for the youth. If horizon matters for the gap between
older and prime-age workers, it seems intuitive that it is not sufficiently persistent to explain the
large observed differences between young (i = Y ) and prime-age workers. What matters for this gap
could be the specificities of the match-specific productivity. If for young workers, the persistence
of this specific draw of productivity is more persistent than for the other workers, then a bad
draw represents a mismatch and a high probability to be fired before aging. At the opposite, a
good and persistent draw insures the worker to have new opportunities inside the firm. Hence, the
high persistence of the match-specific productivity can be viewed as a reduced form of a selection
process where less informed workers on the specificities of the job can experiment more jobs via
an unemployment transition. This interpretation leads to a restriction: λi is smaller for younger
workers than for older workers, leading younger workers to be more fragile w.r.t. microeconomic
disturbances.31

Steady state hiring and search effort for the youth. To account for the differences between
youth and prime-age workers, we introduce a "composition" effect: on average, the younger workers
who participate have a comparative advantage at work than those who choose to learn at school.32

31Even if eAp(θA) ≈ eY p(θY ), the restriction λY < λA ensures that the gap γeip(θi)− (1− se)λi > 0 is larger for
younger workers than for prime-age workers, leading to RY > RA as in the data.

32Remark that this difference among the population within an age group disappears when worker age because all
the males participate after 25 years old until the retirement age.
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This composition effect is modeled as an age-specific distribution Gi(ε) where the average of ε is
larger in the youth labor market leading to large expected gains for posted vacant job.33

Sensitivity to the business cycle for the youth. How do these structural specificities affect
the business cycle properties of the model?

Proposition 4. Even if the horizon effect does not matter at the beginning of the life-cycle, a lower
λi for young workers than for the other workers reduces their sensitivity to the business cycle.

Proof. Using notations from section 5.3, if the horizon effect does not matter, we have ΣY ≈ ΣA

and ΛY ≈ δΛA with δ = λA/λY < 1. Using (19), (20) and (21), we deduce that R̂Y < R̂A, θ̂Y < θ̂A

and êY < êA if δ < 1, for εI|RY ≈ εI|RA .

A high persistence in the match-specific productivity (low value of λ) reduces the sensitivity of
young worker flows to the business cycle. Indeed, young workers’ low ability to move up on the
productivity distribution leads their current surplus to be highly dependent on current productivity
and the search outside option. Since this last component dampens fluctuations in the job value,
young worker flows are less sensitive to the business cycle.

6.2 Matching the age-increasing volatility in transition rates

6.2.1 Benchmark Calibration

The vector of the model’s parameter is Φ = {Φ1,Φ2} with dim(Φ) = 48. All the usual parameters
provided in the literature are in

Φ1 = {β, {πi}O7
i=Y , γ, η, c, se, ρ, σν} dim(Φ1) = 16

For these parameters, we follow Fujita & Ramey (2012) and Shimer (2005). The parameters
{β, {πi}O7

i=1, γ = η, c, ρ, σν}, which are calibrated to match a monthly discount factor consistent
with an annual interest rate of 4%, whereas the elasticity parameter of the matching function η and
the bargaining weight of workers γ are both set to 0.7. These two values are close to the values of η
and γ (0.72) used in Shimer (2005). The calibration of the vacancy posting cost c uses the results
of Barron et al. (1997) and Barron & Bishop (1985). These authors suggest that an amount to 17
percent of a 40-hour workweek (nine applicants for each vacancy filled, with two hours of work time
required to process each application). This leads to c = 0.17. The parameters for the aggregate
productivity process ρ and σν are set to the values proposed by Shimer (2005). We set πi such that

33Even in the extreme case where ΩY ≈ ΩA and RY ≈ RA, we have SY − SA =

ΩY
(∫ 1

RY
[1−GY (x)]dx−

∫ 1

RY
[1−GA(x)]dx

)
> 0 if EA[ε] > EY [ε].
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an age class correspond to the age groups in the data: i = Y are the 16−24 years old workers, i = A

are the 25− 54 years old workers and i = Oj for j = 1, ..., 7 are the 55, ..., 61 years old workers.

For the other parameters, with the normalization hY (1 + µY ) = 1, we have:

Φ2 = {H,χ, φ, σε, b, {hi, µi, λi}O7
i=Y } dim(Φ2) = 31

where H and χ are the scale parameters, respectively, of the matching function M(vi, eiui) =

Hv1−η
i (eiui)

η, and search cost φ(ei) = χ
e1+φi
1+φ . The parameters hi account for the increase in labor

efficiency when workers age. The average level of the match-specific productivity ε is denoted µi.

We need some restrictions in order to identify these parameters using our first order moments. We
assume that:

• Older workers share the same level of human capital, leading to {hi}O7
i=Y = {hY , hA, hO},

• Older workers share the same λi, leading to {λi}O7
i=Y = {λY , λA, λO},

• Only young workers can be affected by a "composition" effect: {µi}O7
i=Y = {µY , 0}.

The calibration procedure finds parameter values Φ2 that minimize the distance between theoretical
and observed moments Ψtheo(Φ2) − Ψ. The numerical solution for Ψtheo(·) is provided by the
algorithm described in Appendix C.5. The 11 free parameters are

Φ2 = {H,χ, φ, hA, hO, µY , b, λY , λA, λO, σε} dim(Φ2) = 11

whereas the 11 first-order moments provided by the data are:

Ψ = {JFR, JSR,w, {JFRi}Oi=Y , {JSRi}Oi=Y , {wi}Oi=A} dim(Φ2) = 11

where XO = 1
7

∑O7
i=O1

Xi for i = O1, ..., O7, ∀X = JFR, JSR,w. wY is normalized to unity. These
targeted moments are reported in the table 4.

Table 4: First order moments: Ψ
JFRY JFRA JFRO JSRY JSRA JSRO

0.49 0.41 0.33 0.048 0.017 0.011
JFR JSR w wA wO

0.43 0.021 1.55 1.68 1.84

Table 5 summarizes the calibration. Two important results must be stressed.

First, regarding our evaluation of the process of match-specific productivity, given by {λY , λA, λO, σε},
our calibration for the probability of having access to a new draw of match-specific productivity
encompasses the one used in Fujita & Ramey (2012): λY < λFR < λA < λO. Our calibrated values
for λi imply a mean waiting time of one year and five months between switches of the match-specific
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Table 5: Benchmark calibration
External information Φ1

β η = γ c se hY

r = 5% 0.7 0.15 0.001 0.875
ρ σν πY πA {πi}O7

i=Y

0.9895 0.0034 16-24 25-54 55-56...60-61

Calibration Φ2

H b σε χ φ

HLS 0.0975 0.92 0.317 0.29 0.7
FR 0.061 0.934 0.124 - -

µY λY λA λO hA hO

HLS 0.125 0.0495 0.1975 0.225 1.82 1.976
FR - - 0.085 - - -

HLS = our weekly calibration
FR = Fujita and Ramey (2011)’s weekly calibration

productivity for younger workers, whereas, for other workers, this mean waiting time is only one
months and one week (one month) for the prime-age (older) workers.34 Our results show that young
workers are less likely to benefit from changes in productivity during their first nine years of work
experience. If we reduce the interpretation of λ to a job-to-job mobility opportunity, our calibration
seems to contradict the idea that job-to-job mobility is more important at the early stage of a career
(e.g. see the data discussed by Menzio et al. (2012)). However, as the model has only this source
of heterogeneity between jobs at each stage of the life-cycle, it may reflect different phenomena for
each age: a less restrictive interpretation is needed. Thus, the phenomenon of mismatch can be
very relevant in the youth labor market and gradually decrease with experience in the labor market.
A small λ for younger workers can indicate an inability to move up within the firm and improve
match-specific productivity on the job (mismatch looks like a permanent shock). The best option for
these worker is then to look for another job, thereby reducing the distance between the required skill
and the worker’s skills. We deduce that our small value for λY reflects that mismatch is dominant
at the early stage of the life-cycle, whereas, for other workers, the high value of λ may reflect their
ability to adapt to new tasks in the firms. This interpretation of {λY , λA, λO} is consistent with
Menzio et al. (2012)’s results on the estimations of the production parameters of a match. Indeed,
they find that the quality of a match changes once every 8 and a half years.35 Concerning the
uncertainty about the match-specific distribution, our calibrated value of σε is larger than Fujita &
Ramey (2012)’s. Nevertheless, this result is unsurprising when we compare our results to the ones
reported in Menzio et al. (2012), where the productivity of a match in the 90th percentile of the
distribution is approximately 3 times larger than the productivity of a match in the 10th percentile

34For Fujita & Ramey (2012) this mean waiting time for the representative workers is equal to 3 months.
35They also show that the quality of the match is rapidly observed: 70 percent of firms and workers learn the

quality of their match within the first four months, whereas in our model, this quality of the match is perfectly
observed instantaneously.
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of the distribution.

Table 6: Implied values of the outside option∑O7
i=Y mi

[
bi
hi
− φ(essi )

]
bY
hY
− φ(essY ) bA

hA
− φ(essA ) bO

hO
− φ(essO )

0.73 0.56 0.76 0.78

The second comment deals with the value of b. Results reported in table 5 show that our calibrated
value for b is lower than the one used by Fujita & Ramey (2012) in their calibration à la Hagendorn
& Manovskii (2008). Our value is also larger than the more realistic one proposed by Hall &
Milgrom (2008), which is b = 0.7.36 Nevertheless, in our model with endogenous search effort, the
instantaneous value of leisure is actually bi − φ(ei(z)), not b. The net value of home production
is reported in table 6. On average, the value of leisure is close to 0.7. This result shows that our
calibration is closed to Hall & Milgrom (2008)’s estimated value for leisure. If, on average, we are
not in the extreme case proposed by Hagendorn & Manovskii (2008), it is not the case for particular
workers. Hence, for older workers, eO7 → 0, the value of leisure endogenously converges to b, a value
close to Hagendorn & Manovskii (2008)’s calibration. In contrast, for young workers, the net value
of home production is 0.56, which is closer to Shimer (2005)’s calibration (b = 0.4). Even if ei(z)
is an endogenous variable which adjusts along the business cycle, these calibration results suggest
that the model can generate more volatility in the labor market of older workers than for younger
workers.

6.2.2 Quantitative results

Table 7 reports the 2nd order moments predicted by the model. Firstly, we comment the model
implications with respect to the aggregate data (column "All: 16-61"). This allows to compare easily
the performance of our model with the existing evaluations of the DMP model with representative
agent. In the data, the standard deviation of unemployment of 23%.37 This value is under-estimated
by the model simulations (16%). This result is largely explained by our underestimation of the job
finding rate volatility (11 % in the model vs. 16 % in the data38) while our model well predicts
the job separation rate volatility (10 % in the model vs. 11 % in the data). Nevertheless, these
results provide a first support to the DMP model: using an information on age heterogeneity in
order to calibrate the steady state, the theoretical aggregate data on the labor market, stock and
worker flows, display a volatility of the same order as the one observed in the data. There exists a
discrepancy between theory and data but largely smaller than the one underlined by Shimer (2005)

36This value is also used by Menzio et al. (2012).
37Our data on unemployment displays a larger volatility than the ones reported in the literature: 9.6% in Fujita

& Ramey (2012) and 19% in Hagendorn & Manovskii (2008). These two papers do not take into account the last
recession. Moreover, the HP filter used in Fujita & Ramey (2012) extract less cyclical components.

38Notice that, in Hagendorn & Manovskii (2008), the standard deviation of the job finding rate is 11.8 %, a lower
estimate than the one obtained in our data.
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or Fujita & Ramey (2012) in their benchmark calibration. This result comes from our calibration
of the outside options, which are on average over the age classes between Shimer (2005)’s and
Hagendorn & Manovskii (2008)’s. Obviously, one can increase the value of the outside option in
order to match the second order moments of the aggregate data. But, the cost of this strategy is
to create a gap between the model and the first order moments, leading the model to depart from
observed averages on labor market adjustments.

Table 7: Second order moments: data versus theory

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR: US Data 0.11 0.089 0.14 0.20
Model 0.10 0.07 0.17 0.19

JFR: US Data 0.16 0.16 0.17 0.22
Model 0.11 0.04 0.12 0.15

u: US Data 0.23 0.18 0.27 0.32
Model 0.16 0.05 0.25 0.27

w: US Data 0.015 0.026 0.019 0.018
Model 0.0123 0.0127 0.0123 0.0122

US data: Standard deviation, CPS Monthly data, Men, 1976Q1-2013Q1
HP filter with smoothing parameter 105. Authors’ calculations.

Table 7 also reports the second order moments, per age class, implied by the model and those
computed using our data set. The main result is that the model predicts that the volatilities
of the labor market are age-increasing (stock and flows), as in the data. This result shows that
the parameter restrictions imposed by the first order moments are consistent with age-increasing
elasticities. Thus, changes in search value dominate all the other components in the expected job
surplus, including the exogenous age-increasing labor productivity introduced to match life-cycle
pattern of wages. This leads young and prime-age workers to smooth the business cycle because
their outside options are also affected by aggregate shocks. In contrast, older workers, without any
future in the labor market, do not have any outside option and thus are very responsive to the
business cycle.

The second result is that the fit of the model is very good with respect to the prime-age and the older
workers. Indeed, for prime-age and older workers, the model is able to approximatively match the
volatilities per age of unemployment rates and job separations rates, but it slightly underestimates
the volatilities of the job finding rates for these two age groups. These good results come from the
endogenous increase in the outside options with worker’s age: the horizon effect reduces the search
value and thus leads older workers to mimic Hagendorn & Manovskii (2008)’s infinitely lived agents.
One can notice that these results are obtained with a model that predicts a volatility of the real
wage of the same order of magnitude as the observed one, which cannot be the case with a model
with rigid real wage. Moreover, as in the data, the theory predicts a slight decrease in wage volatility
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at the end of the life-cycle. This suggests that the impact of changes in the job composition (Ĝi in
section 5.4) over the business cycle are small enough to be negligible in our understanding of real
wage fluctuations.

Thirdly, business cycle implications with respect to the youth labor market are not satisfying.
Indeed, the predicted volatilities of unemployment and job finding rate are 4 times lower than their
observed counterparts. Only the dynamics of the job separation rate is approximatively matched.
Thus, our assumptions concerning the specificities of this labor market allows us to match the level
of the workers flow and the unemployment rate, but not the elasticity to the business cycle.39 This
mainly comes from the large discrepancy between the first order moments of young and prime-
age workers, which leads to strong differences in age-specific parameter values. These calibration
restrictions are not compatible with business cycle properties for the young workers. Something is
missing in the DMP model to explain fluctutations in this labor market, for example participation
decisions.

The simulations results are encouraging and support the view that adding a horizon effect in the
DMP model is relevant to explain a large part of the differences between prime-age and older
workers along the business cycle, even if our structural specificities of the youth labor market are
not completely convincing. But the main result is that the MP is able to explain why older workers
are more sensitive to business cycle than their younger counterparts.

6.3 Sensitivity analysis

In this section, we simulate the model without any exogenous heterogeneity, except worker’s age
in order to evaluate the robustness of the thesis of the paper: the horizon effect accounts for the
age-increasing pattern of volatilities. Indeed, in the theoretical part of the paper, only horizon
heterogeneity matters: we then discuss the case of a "pure" horizon effect. Nevertheless, in the
quantitative analysis, the objective to match the average level of the data per age leads us to
introduce two exogenous components in our model: firstly, an age-increasing human capital in
order to match the age-increasing pattern of the real wage and secondly composition and mismatch
effects specific to young workers. Hence, in a first experiment, we simulate the model under the
assumption that workers’ labor productivity are homogenous across ages: this implies hi = h and
µi = 0, ∀i. This experience allows to measure the impact of the changes of the human capital on
the elasticities per age of the business cycle. Remark that this model is exactly the one presented
and discussed in the theoretical part of the paper: only the sufficient sources of heterogeneity are
introduced if we want to explain the age-decreasing volatilities of labor market quantities, without
any consideration on the model implications with respect of the steady state properties on wages.
In a second experience, we simulate the model without any exogenous age heterogeneity (hi = h,

39We have tried an alternative identifying assumption, without any success. See appendix C.6.

35



µi = 0 and λi = λ, ∀i): only the horizon effect induces a endogenous age heterogeneity. This
model can only measure the magnitude of the "pure" horizon effect in the explanation of the gaps
between prime-age and older workers. Finally, we propose a calibration where the calibration of
the home production is lower than the one estimated by Hall & Milgrom (2008). This allows us to
test the persistence of the horizon effect even in a economy where the magnitude of labor market
fluctuations is largely underestimated.

Simulation results are reported in table 8. Firstly, all these simulations display a age-increasing

Table 8: Second order moments: Sensitivity analysis

All: 16-61 Y : 16-24 A: 25-54 O: 55-61

JSR: Benchmark 0.10 0.07 0.17 0.19
h & µ 0.15 0.14 0.22 0.26

h & µ & λ 0.23 0.22 0.22 0.24
Low b 0.006 0.002 0.018 0.024

JFR: Benchmark 0.11 0.04 0.12 0.15
h & µ 0.11 0.05 0.12 0.15

h & µ & λ 0.13 0.12 0.12 0.14
Low b 0.04 0.03 0.06 0.07

u: Benchmark 0.16 0.05 0.25 0.27
h & µ 0.18 0.104 0.28 0.32

h & µ & λ 0.27 0.22 0.27 0.29
Low b 0.04 0.025 0.078 0.081

h & µ: Model with homogenous h & µ: hi = hA and µY = 0

h & µ & λ: Model with homogenous h & µ & λ: hi = hA, µY = 0 and λi = λA

Model with low b: bi = rhi such that r −
∑

imiφ(essi ) ≈ 0.5

pattern of the volatilities. Since this effect persists even if no additional heterogeneity is introduced,
our theoretical analysis focus then on the main force at work in the data.

Secondly, if we focus only on the gap between prime-age and older workers, it appears that the
homogeneity of human capital among these two age groups allows to increase the volatilities gen-
erated by the model, in particular the cyclicalities of unemployment and of job separation rate.
Indeed, the reservation productivity is perfectly indexed on the age-specific human capital, whereas
its counterparts, in particular the search returns Σ, are under-indexed on the age-specific human
capital. Thus, when the human capital is homogenous among ages, the countercyclical weight of the
outside option is relatively less valuated than the current profit. This leads to an increase in the job
separation rate volatility and then in unemployment rate.40 The experience where human capital

40This under-indexation phenomena of the "reservation wage" is less important for the job finding rate dynamics
because the weight of the outside options is lower than for the productivity reservation dynamics, see the log-linearized
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and λ are homogenous shows that the decline in λ at the end of the life cycle leads to a reduction in
the gap between the data and simulated volatilities. Indeed, this calibration moderates the weight
of labor hoarding at the end of the life-cycle, this component that dampens the smoothing effect
from the reservation wage effect.

Thirdly, as for the youth labor market, our additional features, composition and mismatch effects,
go in the right direction: when these age-specific components are omitted, the model largely over-
estimates the cyclicality of this labor market which is significantly lower than on the other labor
markets. Nevertheless, the estimated weight of these two age-specific features, induced by the fit of
the first order moments, is larger than their optimal weight with respect to the 2nd order moments.
A gap between the steady state and the cyclical properties must be introduced, though e.g. a more
complex diffusion process of learning on young workers.

Finally, and as usual, the decrease in the value of the home production leads to a large decline of
the predicted volatilities. Nevertheless, our model can predict the age-increase in the cyclicality,
underlying that the horizon effect is robust to the level of variances.

7 Conclusion

In this paper, we contribute to the existing literature along two dimensions. First, we document
business cycle fluctuations in worker flows across age groups in the US. While previous papers
focused on differences in average transition rates across age groups, we extend the current literature
by looking at the age profile of volatilities in workers’ transition rates for young, prime-age and old
workers on CPS data. We find that old worker’s are characterized by a higher responsiveness to
business cycles than their younger counterparts. We perform several checks to ensure that this is
a robust stylized fact. Thus, we show that the brunt of the recession is borne by older workers.
The analysis of the hourly wage dynamics, using monthly data, shows that the cyclicality is age-
decreasing. Then, the data presents a consistent picture of labor market adjustments: the market
with the most rigid price adjusts largely through quantities. This is the case for older workers.

Secondly, we propose a life-cycle Mortensen & Pissarides (1994) model with age-directed search.
First, we show that old workers’ short horizon can quantitatively explain the observed gap between
their job finding and separations rates and the ones for the prime-age workers. Older workers’s
shorter horizon endogenously reduces their outside options, thereby leading their wages to be less
sensitive to the business cycle. Thus, in a market where wage adjustments are small, quantities
vary a lot: this the case for older workers, whereas the youngest behave like infinitively-lived agents.
Older workers do not smooth the impact of aggregate shocks through an expected low returns on
search, because they have no future (a short horizon reduces to zero the option value of search).
We point out that older workers look like Hagendorn & Manovskii (2008)’s workers, but, contrary

systems (JC) and (JD)
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to the proposition of these authors, we show that it is not necessary to calibrate the value of home
production at a larger value than the one proposed by Hagendorn & Manovskii (2008) in order to
match volatilities in workers flows. The important point is that, unlike Hagendorn & Manovskii
(2008), we preserve the Hosios condition and we endogenously obtain varying changes in the search
value in the wage dynamics through another channel than the one proposed by Hall & Milgrom
(2008). Indeed, with aging, the returns on search is nil for older workers, which reduces the elasticity
of wages and raises the responsiveness of worker flows. Aging then endogenously leads average flows
to look like Hagendorn & Manovskii (2008)’s workers. Our results support Pissarides (2009)’s view
that it is not necessary to introduce exogenous wage rigidity in order to reconcile the DMP model
with the data. We show that this mechanism allows us to explain why older workers are more
sensitive to the business cycle than the other workers.

At the margin of this main objective of the paper, we also try to explain why young workers are
less sensitive to the business cycle than the other workers. We show that their short experience
reduces their opportunities to improve their match-specific productivity (mismatch effect) whereas a
composition effect leads to select the closest to the work (composition effect), are needed to explain
the observed gap between their job finding and separations rates and the ones for the prime-age
workers.
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A Stylized facts on worker flows

A.1 HP-filtering with λ = 105

This appendix displays Figures 4, 5 and 6 mentioned in section 2.1.

40



Figure 4: Job Separation Rate by age group, JSR, HP-filtered, Men, 1976Q1 - 2013Q1. Authors’
calculations. Recession in shaded area.
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Figure 5: Job Finding Rate by age group, JFR, HP-filtered, Men, 1976Q1 - 2013Q1. Authors’
calculations. Recession in shaded area.
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A.2 HP-filtering with λ = 1600

Table 9 reports business cycle facts when the smoothing parameter is 1600 rather than 105. The
age-increasing pattern in volatility is robust.
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Figure 6: w, Monthly CPS, Men, Quarterly averages, 1995Q1-2013Q1. Authors’ calculations.
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Table 9: Standard deviation. CPS data, quarterly averages of monthly instantaneous transition
rates,1976Q1-2013Q1, Men, HP filter with smoothing parameter 1600. Authors’ calculations.

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR 0.083638 0.077361 0.10856 0.17571
0.7126 1 1.6186

JFR 0.11848 0.1219 0.12439 0.18647
0.98004 1 1.4991

u 0.16876 0.13661 0.19427 0.25264
0.7032 1 1.3004

A.3 Employment states are employment, unemployment and inactivity

Using Shimer (2012)’s methodology for 3 employment states (Employment, Unemployment and
Inactivity), on CPS data for Men, we get results reported in Tables 10 and 11. With 3 employment
states, the steady state unemployment includes all transitions rates, including those involving inac-
tivity. Tables 10 and 11 suggest that our business cycle facts across age group remain robust when
separations and findings are purged from transition to and from inactivity. The level of exit from
employment as well as the job finding rate fall with age with their volatility increases with age.

When we decompose unemployment fluctuations using β computations as in Shimer (2012), based
on hypothetical unemployment rates. We find that the transitions between unemployment and
unemployment account for 75% of unemployment fluctuations between 1976Q1 and 2013Q1. 41

41We compute counterfactual steady states predicted by time varying finding and separation rates, while other
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Table 10: Mean. Monthly CPS data, 3 states (Employment, Unemployment, Inactivity), 1976 June
- 2012 Sept, Men. Authors’ calculations.

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR 0.021973 0.0498 0.01774 0.012265
2.8073 1 0.69139

JFR 0.38674 0.41812 0.38077 0.30457
1.0981 1 0.79988

u 0.061169 0.12544 0.048787 0.044766
2.5712 1 0.91759

EI 0.020969 0.060632 0.00908 0.017287
UI 0.24631 0.38836 0.17323 0.2194
IE 0.050005 0.1067 0.089367 0.039833
IU 0.045497 0.12421 0.097117 0.026462

Table 11: Standard deviation. Monthly CPS data, 3 states (Employment, Unemployment, Inactiv-
ity), 1976 June - 2012 Sept, Men. Authors’ calculations.

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR 0.10656 0.095019 0.14095 0.19785
0.67413 1 1.4037

JFR 0.15555 0.15902 0.1637 0.21629
0.97144 1 1.3213

u 0.21213 0.15902 0.25506 0.29212
0.62344 1 1.1453

EI 0.055755 0.073621 0.074905 0.10924
UI 0.13217 0.098655 0.15932 0.23929
IE 0.07725 0.11697 0.10092 0.12961
IU 0.094497 0.09714 0.12326 0.23116
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A.4 Employment and Unemployment for all workers

Using Shimer (2012)’s methodology for 2 employment states (Employment, Unemployment), on
CPS data for Men and women, we get results reported in Tables 12 and 13. The main stylized facts
remain relevant : the mean transition rates fall with age while their volatility increases with age.

Table 12: Mean. Monthly CPS data, Employment and Unemployment, 1976Q1 - 2013Q1, Men and
Women. Authors’ calculations.

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR 0.018822 0.04208 0.015499 0.010614
2.715 1 0.68479

JFR 0.42647 0.49789 0.40141 0.33929
1.2404 1 0.84524

u 0.044507 0.080907 0.039397 0.03252
2.0536 1 0.82546

Table 13: Standard deviation. Monthly CPS data, Employment and Unemployment, 1976Q1 -
2013Q1, Men and Women, HP filter with smoothing parameter 105. Authors’ calculations.

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR 0.086295 0.069806 0.11134 0.16103
0.62694 1 1.4463

JFR 0.15671 0.14693 0.16161 0.20154
0.90912 1 1.247

u 0.21221 0.16513 0.2388 0.28343
0.6915 1 1.1869

A.5 Robustness check on Elsby et al. (2010)’s data

We use the data for Figure 8 of their paper. Notice that there are several differences with our
computations. First, they include men and women. Their numbers shall then be compared with
our results in Appendix A.4. Secondly, Elsby et al. (2010) use Shimer (2012)’s formula based
on stocks of unemployed and employed workers (in which separations are proxied by short-term
unemployment) rather than disaggregated data in our case. Their approach yields higher levels of
transition rates. Finally, old workers are 55 years old and more while we restrict our sample to
workers prior to retirement (55-61). We compute business cycle statistics on their database. Since

transition rates are set at their historical mean. We log and HP-filter the time series using a smoothing parameter of
105 and compute the variance decomposition of the cyclical component of steady state unemployment based on βs.
We find that βEU + βUE = 0.7502
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the time series are quarterly, the smoothing parameter on the HP filter is 1600. The results are
reported in tables 14 and 15. We find that the mean of transition rates fall with age while the
standard deviation increases with age.

Table 14: Mean. Elsby et al. (2010) data, 1977Q2 - 2009Q4, Quarterly data, Men and Women.

All: 16+ Young: 16-24 Prime-age: 25-54 Old: 55+

JSR 0.03527 0.10047 0.023898 0.015542
4.2043 1 0.65034

JFR 0.54514 0.7111 0.46652 0.43876
1.5243 1 0.94049

Table 15: Standard deviation. HP-filtered, smoothing parameter 105, 1977Q2 - 2009Q4, Quarterly
data, , Men and Women. Elsby et al. (2010) data.

All: 16+ Young: 16-24 Prime-age: 25-54 Old: 55+

JSR 0.044485 0.046366 0.060651 0.092973
0.76447 1 1.5329

JFR 0.10627 0.095022 0.113 0.15079
0.8409 1 1.3344

A.6 Rolling standard deviation

In this appendix, we present rolling standard deviations computed over a 10-year window, using the
same dataset as in the main text (CPS data, Men, 2 states (E,U), Log HP-filtered quarterly time
series). Results are displayed in figures 7 and 8. The window is 10 years meaning that each point
in the graph provides a measure of volatility over the 10 previous years.

Panel (a) of each figure displays the volatility of each age group while panel (b) provides this measure
relative to the volatility of prime-aged workers. Figures 7 and 8 confirm that the responsiveness of
old workers to business cycles is larger than the ones found for their younger counterparts.

A.7 Taking into account the change in age composition

In this section, we present a simple decomposition exercise to get a sense of how much of our results
on aggregate data is attributable to the change in the age distribution of the workforce. In order to
do so, as in Jaimovich & Siu (2009), we first assess the age structure of the workforce using OECD
Labour Force Statistics annual database on unemployed and employed populations.
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Figure 7: Rolling standard deviation on separation rates by age group, 10 year window, Log HP-
filtered Monthly CPS data, Men. Recession in shaded area.
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Figure 8: Rolling standard deviation on finding rates by age group, 10 year window, Log HP-filtered
Monthly CPS data, Men. Recession in shaded area.
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At any point in time t, the aggregate JSRt is

JSRt =
EUY t + EUAt + EUOt

Et

JSRt =
EUY t
EY t

EY t
Et

+
EUAt
EAt

EAt
Et

+
EUOt
EOt

EOt
Et

JSRt = JFRY t
EY t
Et

+ JSRAt
EAt
Et

+ JSROt
EOt
Et

(22)

with E the total employment stock (E = EY + EA + EO), and EUi the number of transitions
from employment to unemployment for workers of age i at time t. Equation (22) states that the
aggregate JSR is a weighted average of JSR by age, the weights being given by each age group share
in total employment. To isolate the effect due purely to the change in composition, we construct
counterfactual JSR series that holds the age structure fixed at the values observed either at the
beginning

J̃SR1976,t = JFRY t
EY,1976

E1976
+ JSRAt

EA,1976

E1976
+ JSROt

EO,1976

E1976

or at the end of the sample.

J̃SR2012,t = JFRY t
EY,2012

E2012
+ JSRAt

EA,2012

E2012
+ JSROt

EO,2012

E2012

Doing this for every month generates counterfactual time series J̃SR1976,t and J̃SR2012,t. The OCDE
data are consistent with population aging: EY,1976

E1976
= 22.27%, EY,2012E2012

= 13.65% and EO,1976
E1976

= 8.3%,
EO,2012
E2012

= 11%.

We compare the standard deviation of filtered counterfactual JSR with the earlier and later demo-
graphic structure. As expected, the counterfactual time series with the larger share of young people
J̃SR1976 is characterized by a larger sample mean (13% higher) and a lower standard deviation
after HP-filtering with smoothing parameter of 105 (10% lower).

A similar decomposition is performed for the JFR where the weights are given by each age group
share in total unemployment. The OCDE data are consistent with population aging: UY,1976

U1976
=

50%, UY,2012
U2012

= 31.5% and UO,1976
U1976

= 4.4%,
UO,2012
U2012

= 8%. As expected from tables 1 and 2, the
counterfactual time series with the larger share of young people J̃FR1976 is characterized by a
larger sample mean (4% higher) and a lower standard deviation after HP-filtering with smoothing
parameter of 105 (3% lower).

The effects might not seem larger. In our view, this is due to the age groups chosen in our analysis.
The demographic changes have affected the group of prime age workers that also include workers
in their early 50s.
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A.8 Employment and Unemployment by education

The data per age can mix an age effect and a skill effect. Indeed, the older workers are on average
less educated than the younger workers. Thus, our age effect can be a skill effect. In order to
deal with this identification problem, we propose to separate in two skill groups our population: the
labor market participants with an high school diploma and less, and those having a higher education
(More than high school).

Table 16: Mean. Monthly CPS data, Employment and Unemployment, 1976Q1 - 2013Q1, Men.
Authors’ calculations.

High school and less More than high school
All: 16+ 16-54 Old: 55+ All: 16+ 16-54 Old: 55+

JSR 0.034297 0.036999 0.016455 0.014686 0.015344 0.0085209
1 0.44473 1 0.55534

JFR 0.43205 0.43819 0.35042 0.41524 0.42485 0.30959
1 0.7997 1 0.72871

u 0.077717 0.082009 0.050573 0.03659 0.037343 0.029889
1 0.61667 1 0.80039

Table 17: Standard deviation. Employment and Unemployment, Monthly CPS data, 1976Q1 -
2013Q1, Men, HP-filtered, smoothing parameter 105, Authors’ calculations.

High school and less More than high school
All: 16+ 16-54 Old: 55+ All: 16+ 16-54 Old: 55+

JSR 0.13485 0.14002 0.24422 0.14218 0.14512 0.27525
1 1.7441 1 1.8967

JFR 0.16708 0.16673 0.27954 0.17743 0.17878 0.28459
1 1.6766 1 1.5919

u 0.23679 0.23546 0.36584 0.2777 0.27982 0.38679
1 1.5537 1 1.3823

After controlling for education, levels are age-decreasing and volatilities are age-increasing. Thus,
our stylized facts account for a phenomena liked to workers’ age, and is not the result of a compo-
sition effect.

A.9 Steady state unemployment rate and actual unemployment rate

Figure 9 displays the steady state unemployment found when using monthly CPS data for men and
women in a 3 state labor market à la Shimer (2012) and the corresponding BLS unemployment rates.
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Notice that the age groups are not exactly the same. Fluctuations in steady state unemployment
closely match those found in the data.

Figure 9: Steady state unemployment by age and BLS unemployment
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B Computing male real hourly wage by age

In CPS data, questions on wages are asked only of about one-quarter of the entire sample on
the Outgoing Rotation Group. Monthly data on weekly earnings of wage and salary workers are
collected. All self-employed persons are excluded, regardless of whether their businesses are incor-
porated. Data represent earnings before taxes and other deductions and include any overtime pay,
commissions, or tips usually received. Hourly wage is computed as the ratio of usual weekly earnings
to usual weekly hours. We restrict our sample to male workers in 4 age groups : 16-24 (young), 25-54
(prime age) and 55-61 (old) and all age groups (16-61). We delete outliers: individuals whose hourly
wage is greater than 250 dollars or lower than half the net minimum wage prevailing during the year
the data is collected. We also delete young workers working more than 45 hours per week. These
raw time series are detrended to take into account inflation and technological progress. In order to
do so, we use the time series of male weekly earnings for all age groups. This increasing time series
captures the growing trend in aggregate productivity and inflation. We compute the trend on this
time-series and use it to deflate the raw hourly wage time series for each age group. After applying
the x12 method to correct for seasonality, we take quarterly averages of these monthly time series,
log them and extract the cyclical component using the HP filter (105). We check that levels of
real hourly wages are consistent with BLS weekly earnings by age (Median usual weekly earnings,
LEU0252881800, LEU0252882100, LEU0252888100, LEU0252891100) as well as Heathcote et al.
(2010)’s data. As for business cycle features on our real hourly wage, their volatility is in line with
those found by Jaimovich et al. (2013) on annual CPS data.
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C Model

In order to save space, we directly present here the model including young workers (i = Y ). The
markov age process is

Π =



πY 1− πY 0 0 · · · 0

0 πA 1− πA 0 · · · 0

0 0 πO1 1− πO1 · · · 0

0 0 0
. . . . . . 0

1− πO7 0 0 0 · · · πO7



C.1 Stock-flow dynamics

C.1.1 Levels of unemployment and employment

The mass of age-i workers employed during the month t in a firm such that τ ∈ [Ri,t, x], is given by

ni(z, x) =

∫ x

Ri(z)
µ(τ)dτ

where µ(τ) the mass of firms with a productivity z. This stock of jobs evolves as follows:

If i = Y

nY (z′, x) = πY

[
[(1− se)λ(mY − uY (z)) + eY (z)p(θY (z))uY (z)][G(x)−G(RY (z′))]

+(1− se)(1− λ)[nY (z, x)− nY (z,RY (z′))]

]
(23)

If i 6= Y

ni(z
′, x) = πi

[
[(1− se)λ(mi − ui(z)) + ei(z)p(θi(z))ui(z)][G(x)−G(Ri(z

′))]

+(1− se)(1− λ)[ni(z, x)− ni(z,Ri(z′))]

]

+(1− πi−1)

[
[(1− se)λ(mi−1 − ui−1(z)) + ei(z)p(θi(z))ui−1(z)][G(x)−G(Ri(z

′))]

+(1− se)(1− λ)[ni−1(z, x)− ni−1(z,Ri(z
′))]

]
(24)

where, as in Hairault et al. (2010), we assume that when worker ages (from i − 1 to i), his job
contact probability (ei(z)p(θi(z))), and his reservation productivity Ri(z) are those of a worker of
the age i.

C.1.2 Unemployment and employment rates

The dynamics of the unemployment rates by age are given by:

ui(z) = mi − ni(z, 1)⇔ ui(z)

mi︸ ︷︷ ︸
≡uri (z)

= 1− ni(z, 1)

mi︸ ︷︷ ︸
≡nri (z,1)

∀i, z
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The dynamics of the employment rate is given by

If i = Y

nrY (z′, x) = πY

[
[(1− se)λ(1− urY (z)) + eY (z)p(θY (z))urY (z)][G(x)−G(RY (z′))]

+(1− se)(1− λ)[nrY (z, x)− nrY (z,RY (z′))]

]
(25)

If i 6= y

nri (z
′, x) = πi

[
[(1− se)λ(1− uri (z)) + ei(z)p(θi(z))u

r
i (z)][G(x)−G(Ri(z

′))]

+(1− se)(1− λ)[nri (z, x)− nri (z,Ri(z′))]

]

+(1− πi−1)
mi−1

mi

[
[(1− se)λ(1− uri−1(z)) + ei(z)p(θi(z))u

r
i−1(z)][G(x)−G(Ri(z

′))]

+(1− se)(1− λ)[nri−1(z, x)− nri−1(z,Ri(z
′))]

]
(26)

Thus, given the definition of nri (z, x) (equations (25) and (26)), G(1) = 1 and uri (z) = 1− nri (z, 1),
we obtain

If i = Y

urY (z′) = πY


[1− eY (z)p(θY (z))(1−G(RY (z′)))]urY (z)

+(1− se)(1− λ)nrY (z,R1(z′))

+[se + (1− se)λG(RY (z′))](1− uY (z))


+(1− πO7O7)

mO7

mY
(27)

If i 6= Y

uri (z
′) = πi


[1− ei(z)p(θi(z))(1−G(Ri(z

′)))]uri (z)

+(1− se)(1− λ)nri (z,Ri(z
′))

+[se + (1− se)λG(Ri(z
′))](1− uri (z))



+(1− πi−1)
mi−1

mi


[1− ei(z)p(θi(z))(1−G(Ri(z

′)))]uri−1(z)

+(1− se)(1− λ)nri−1(z,Ri(z
′))

+[se + (1− se)λG(Ri(z))](1− uri−1(z))

 (28)

Unemployed workers of age i in month t+ 1 are those of age i in month t who do not age, and

• who do not find a job (first term of the first line of the right-hand side of equations (27) and
(28)),

• employed workers of age i who loose their job in week t + 1 due to a change in aggregate
productivity leading to a change in the reservation productivity42 (second term of the first
line),

• the age-i employed workers who loose their jobs due to a separation, which can result from
an exogenous reason with a probability se and from endogenous decisions with a probability
(1− se)λG(Ri(z

′)) (first term of the second line),
42When Ri(z) < Ri(z

′), the mass of obsolete jobs depends on the job creations over the past. Obviously, if
Ri(z) > Ri(z

′), these jobs do not exist.
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• and the new participants (last term of the second line).

Due to the aging, in these age-i unemployed, there is the mass of the age-i− 1 unemployed who age
without finding a job (the two last lines of (28), which are composed by the same flows than the
two first, except that the age of the agents is not the same). Finally, the second line of the equation
(27) shows that newly born agents enter in the labor market as unemployed workers. Note that
the unemployment dynamics is a function of ni(z,Ri(z′)) and ni−1(z,Ri(z

′)), which are themselves
function of the past values if the unemployment.43 This underlines the interdependence of the age-i
unemployment stock to the unemployment level at previous age. The average unemployment rate
is urt =

∑T
i=1 ui,t.

C.1.3 Transition rates

The job finding rate (JFR) and the job separation rate (JSR) are respectively:

JFRi(z) =
ei(z)p(θi(z))(1−G(Ri(z

′))
[
πiu

r
i (z) + (1− πi−1)mi−1

mi
uri−1(z)

]
uri (z)

JSRi(z) =
(1− se)(1− λ)

[
πin

r
i (z,Ri(z

′)) + (1− πi−1)mi−1

mi
nri−1(z,Ri(z

′))
]

nri (z, 1)

+
[se + (1− se)λG(Ri(z

′))]
[
πi(1− uri (z)) + (1− πi−1)mi−1

mi
(1− uri−1(z))

]
nri (z, 1)

In the basic infinite horizon model, we have πi = 1, ∀i, mi = 1, and ni(z,Ri(z′)) = ni−1(z,Ri(z
′)) =

0 leading to JFR(z) = e(z)p(θ(z))(1 − G(R(z′)) and JSR(z) = se + (1 − se)λG(R(z′)). These
definitions of worker flows have an empirical counterpart and are used by Fujita & Ramey (2012)
to test the ability of the MP model to match labor market features. In the data, it is only possible
to detect the worker age before a transition. Thus, we compute the transition rate conditionally
on being of a given age prior to the transition. In this case, all workers have “the same” age in our
measure of the transition rates by age. The counterparts in the model are:

JFRi(z) = ei(z)p(θi(z))[1−G(Ri(z
′))]

JSRi(z) =
(1− se)(1− λ)nri (z,Ri(z

′)) + [se + (1− se)λG(Ri(z
′))]nri (z, 1)

nri (z, 1)

43Indeed, given the equation (26), we deduce nri (z,Ri(z′)), where z− denotes the realization of the aggregate shock
at the previous period:

nri (z,Ri(z
′)) = πi

[
[(1− se)λ(1− uri (z−)) + ei(z

−)p(θi(z
−))uri (z

−)][G(Ri(z
′))−G(Ri(z))]

+(1− se)(1− λ)[nri (z
−, Ri(z

′))− nri (z−, Ri(z))]

]

+(1− πi−1)
mi−1

mi

[
[(1− se)λ(1− uri−1(z−)) + ei(z

−)p(θi(z
−))uri−1(z−)][G(Ri(z

′))−G(Ri(z))]

+(1− se)(1− λ)[nri−1(z−, Ri(z
′))− nri−1(z−, Ri(z))]

]

and we have the same expression for nri−1(z,Ri(z
′)).
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where nri (z, 1) = 1−uri (z). We use this usual approximation of the worker flows per age in order to
measure the ability of the theory to explain the observed data, computed using the same formula.

C.2 Steady state surplus

The surplus function is defined by

Si(z, ε) = max

{
z(ε−Ri(z)) + βπi(1− λi)(1− se)Ez[Si(z′, ε)− Si(z′, Ri(z))]
+β(1− πi)(1− λi+1)(1− se)Ez[Si+1(z′, ε)− Si+1(z′, Ri(z))]

; 0

}

Thus, at age i+ 1 and for ε = Ri(z), we have, at the conditional steady state

Si+1(z,Ri(z)) = max

{
z(Ri(z)−Ri+1(z)) + βπi+1(1− λi+1)(1− se)Si+1(z,Ri(z))

+β(1− πi+1)(1− λi+2)(1− se)[Si+2(z,Ri(z))− Si+2(z,Ri+1(z))]
; 0

}

Assuming that Si+1(z,Ri(z)) > 0, we obtain:

Si+1(z,Ri(z)) =
z(Ri(z)−Ri+1(z))

1− βπi+1(1− λi+1)(1− se)

+
β(1− πi+1)(1− λi+2)(1− se)
1− βπi+1(1− λi+1)(1− se)

[Si+2(z,Ri(z))− Si+2(z,Ri+1(z))]

For age i+ 2, we then have

Si+2(z,Ri(z)) =
z(Ri(z)−Ri+2(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri(z))− Si+3(z,Ri+2(z))]

Si+2(z,Ri+1(z)) =
z(Ri+1(z)−Ri+2(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri+1(z))− Si+3(z,Ri+2(z))]

We deduce the value for Si+2(z,Ri(z))− Si+2(z,Ri+1(z)), which is

Si+2(z,Ri(z))− Si+2(z,Ri+1(z)) =
z(Ri(z)−Ri+1(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri(z))− Si+3(z,Ri+1(z))]

Introducing this result in the expression of Si+1(z,Ri(z)), we obtain,

Si+1(z,Ri(z)) =
z(Ri(z)−Ri+1(z))

1− βπi+1(1− λi+1)(1− se)

+
β(1− πi+1)(1− λi+2)(1− se)
1− βπi+1(1− λi+1)(1− se)

[
z(Ri(z)−Ri+1(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri(z))− Si+3(z,Ri+1(z))]

]
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This leads to an expression for Si+1(z,Ri(z)) such that

Si+1(z,Ri(z)) = Ωi+1z(Ri(z)−Ri+1(z))

More generally, the surplus is given by, ∀ε ≥ Ri(z)

Si(z, ε) = Ωiz(ε−Ri(z))

where Ωi = ai {1 + ai+1bi+1 [1 + ai+2bi+2(. . .)]} with ai = 1
1−βπi(1−λi)(1−se) and bi = β(1 − πi)(1 −

λi+1)(1 − se) and until i + n ≤ O7. Thus, we have, e.g., ΩO7 = 1
1−βπO7

(1−λO7
)(1−se) and ΩO6 =

1
1−βπO6

(1−λO6
)(1−se)

[
1 +

β(1−πO6
)(1−λO7

)(1−se)
1−βπO7

(1−λO7
)(1−se)

]
...

C.3 Employment distribution

The employment distribution, assuming that 1−πi ≈ 0 and the z is the permanent level of produc-
tivity:

dni(z, ε) ≈
ei(z)p(θi(z)) + [(1− se)λi − ei(z)p(θi(z))]

∫ 1
Ri(z)

dni(z, x)dx

1− (1− se)(1− λi)
dG(ε)

where dni(z, x) is the mass of age-i workers employed on a x-productivity job. The impact of the
change in Ri(z) is given by

d

dRi(z)
dni(z, ε) = − [(1− se)λi − ei(z)p(θi(z))] dni(z,Ri(z))

1− (1− se)(1− λi)
dG(ε) > 0

iff (1− se)λi < ei(z)p(θi(z)), which is always satisfied to have Ri < Ri+1.

C.4 The derivation of the model elasticity to the business cycle

The decision rule on θ leads to

p(θi(z))

∫ 1

Ri(z)
Si(z, x)dG(x) =

1

(1− γ)βπi
cθi(z)

The decision rule on e leads to
φ′(ei(z)) =

γ

1− γ
cθi(z)

Using the functional form, we obtain

ei(z)
1+φ

1 + φ
=

1

1 + φ

γ

1− γ
cei(z)θi(z)⇒ êi(z) =

1

φ
θ̂i(z)

The surplus function, defined by

Si(z, ε) = max

{
z(ε−Ri(z)) + βπi(1− λi)(1− se)Ez[Si(z′, ε)− Si(z′, Ri(z))]
+β(1− πi)(1− λi+1)(1− se)Ez[Si+1(z′, ε)− Si+1(z′, Ri(z))]

; 0

}
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leads to
Si+1(z,Ri(z)) = Ωi+1z(Ri(z)−Ri+1(z))

More generally, the surplus is given by, ∀ε ≥ Ri(z)

Si(z, ε) = Ωiz(ε−Ri(z))

implying ∫ 1

Ri(z)
Si(z, x)dG(x) = Ωiz

∫ 1

Ri(z)
(x−Ri(z))dG(x) = Ωiz

∫ 1

Ri(z)
(1−G(x))dx

If we denote I(Ri(z)) =
∫ 1
Ri(z)

(1−G(x))dx, we have

Ŝi(z) = ẑ − εI|RR̂i(z)

where εI|R =
∣∣∣ I′RI ∣∣∣.

Given the free entry condition, the FOC w.r.t. e and the solution for the surplus, the impled solution
for Σi(z), Λi(z) and Γri (z) are

Σi(z) =
γ

1− γ
c

[
φ

1 + φ
ei(z)θi(z) +

1− πi
πi+1

ei+1(z)θi+1(z)

]
Λi(z) = (1− se)

c

1− γ

[
λiθi(z)

η + λi+1
1− πi
πi+1

θi+1(z)η
]

Γri (z) = β(1− se)(1− πi)(1− λi+1)Ωi+1z(Ri(z)−Ri+1(z))

The Log-linear approximations of the free entry condition, the FOC w.r.t e and the separation
decision rule are:

θ̂i ≈
1

η

[
ẑ − εI|RR̂i

]
êi ≈

1

φ
θ̂i

R̂i ≈ −b+ Σi − Λi − Γi
b+ Σi − Λi

ẑ +
Σi

1+φ
φ − Λiη

b+ Σi − Λi
θ̂i

By combining these equation, we obtain (20), (21) and (19).

The elasticity of the average productivity. In order to compute the elasticities of the average
wage W, it is necessary to use the properties of the employment distribution. Indeed, we have

Ŵi = γ
zGi
Wi

(ẑ + Ĝi) + (1− γ)
Σi

Wi
Σ̂i

where G(Ri(z)) = 1
ni(z)

∫ 1
Ri(z)

xdni(z, x). The Log-linear approximation of this expression is

Ĝi = −n̂i +
1∫ 1

Ri
xdni(x)

(
κri R̂i + κei êi + κθi θ̂i

)

55



where κei = ei
∫ 1
Ri
x∂dni(x)

∂ei
> 0, κθi = θi

∫ 1
Ri
x∂dni(x)

∂θi
> 0 and κri = Ri

[
−Ridni(Ri) +

∫ 1
Ri
x∂dni(x)

∂Ri

]
≶

0. Using the elasticity of the search efforts (êi and θ̂i), which are êi = 1
φ θ̂i and θ̂i = 1

1−η Ĵi, and the
log-linear approximation the age-i employment rate 44

n̂i = ϑei êi + ϑθi θ̂i + ϑri R̂i

where ϑei = 1
1−ηϑ

θ
i > 0 and ϑri < 0, we obtain

Ĝi =

(
−ϑri +

κri∫ 1
Ri
xdni(x)

)
R̂i +

−
(
ϑei

1
φ + ϑθi

)
+

κei
1
φ

+κθi∫ 1
Ri
xdni(x)

1− η

{
ze(Ri)

ze(Ri(z))−(b+Σi)(1−G(Ri))
ẑ

− Σi(1−G(Ri))
ze(Ri(z))−(b+Σi)(1−G(Ri))

Σ̂i

}

We then deduce that

Ŵi = γ
zG(Ri)

Wi

(
(1 + Γzi )ẑ + Γri R̂i + Γsi Σ̂i

)
+ (1− γ)

Σi

Wi
Σ̂i

where

Γzi =
−
(
ϑei

1
φ

+ϑθi

)
+

κei
1
φ
+κθi∫ 1

Ri
xdni(x)

1−η
ze(Ri)

ze(Ri(z))−(b+Σi)(1−G(Ri))

Γri = −ϑri +
κri∫ 1

Ri
xdni(x)

Γsi = −
−
(
ϑei

1
φ

+ϑθi

)
+

κei
1
φ
+κθi∫ 1

Ri
xdni(x)

1−η
Σi(1−G(Ri))

ze(Ri(z))−(b+Σi)(1−G(Ri))

C.5 Numerical algorithm

The model has three exogenous state variables: the worker’s age i, the match-specific productivity
ε and the aggregate productivity z. For the grid of the match-specific productivity ε, we don’t
follow Fujita & Ramey (2012): its highest value xh is set to sufficient large value to generate
mean match productivity of 1, given that G(ε) is approximated by a discrete distribution with
support X = {x1, ..., xM}, satisfying x1 = 1/M , xm− xm−1 = xM/M . The associated probabilities

44At this stage, we consider that the employment rate at the steady state can be approximated by

ni =
1− πi + πieip(θi)(1−G(Ri))

1− πi + πi{eip(θi)(1−G(Ri)) + [se + (1− se)λG(Ri)]}

which means that we consider that the impact of the fluctuations of the people that change age negligible with respect
to their mass. Thus, we have:

∂ni
∂ei

=
πip(θi)(1−G(Ri))πi[se + (1− se)λG(Ri)]

[1− πi + πi{eip(θi)(1−G(Ri)) + [se + (1− se)λG(Ri)]}]2
⇒ ϑei > 0

∂ni
∂θi

=
πieip

′(θi)(1−G(Ri))πi[se + (1− se)λG(Ri)]

[1− πi + πi{eip(θi)(1−G(Ri)) + [se + (1− se)λG(Ri)]}]2
⇒ ϑθi > 0

∂ni
∂Ri

= − πiG
′(Ri){πieip(θi)[1 + se(1− λ)] + (1− πi)(1− se)}

[1− πi + πi{eip(θi)(1−G(Ri)) + [se + (1− se)λG(Ri)]}]2
⇒ ϑri < 0
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{γ1, ..., γM} are γm = g(xm)/M for m = 1, ...,M − 1, where g(x) is the Log-normal density, and
γM = 1 −

∑M−1
i=1 γi. For the aggregate shock, we also follow Fujita & Ramey (2012): we choose

the method presented in Tauchen (1986) in order to represent the process zt as a Markov chain
with a state space Z = {z1, ..., zI}. The transition matrix of this process is Πz = [πzij ], where
πzij = Pr(zt+1 = zj |zt = zi). We then form two transition matrix: firstly, the matrix Πz,ε = [πz,εij ]

where πz,mij = Pr(zt+1 = zj |zt = zi)γm, which gives the joint probability when both aggregate
and match-specific shocks can change simultaneously, and secondly, the matrix Πz = [πzij ], where
πzij = Pr(zt+1 = zj |zt = zi)Im, which gives the probability when only aggregate shock can change,
for each level of match-specific productivity.

Let SO7 the vector [S(x1, z1), · · · , S(xM , z1), · · · , S(x1, zI), · · · , S(xM , zI)], and R be the vector
Z
⊗
X. Then, for an initial guess for eO7(z) and θO7(z), we find the fix point of

SO7 = max
{
R− z + πO7β

[
λΠz,εSO7 + (1− λ)ΠzSO7 −Πe,θ,O7

z,ε SO7

]
; 0
}

where Πe,θ,O7
z,ε SO7 is deduced from the definition of the opposite of the search value, which is φ(eO7)−

γeO7p(θO7)πO7βΠz,εSO7 . At each iteration, we use the FOC w.r.t. e45 to substitute φ(eO7) by
1

1+φγeO7p(θO7)πO7βΠz,εSO7 We then have Πe,θ,O7
z,ε SO7 = φ

1+φγeO7p(θO7)Πz,εSO7 . When convergence
criteria are satisfied, we obtain the decision rules θ?O7

(z), e?O7
(z) and R?O7

(z), and the optimal value
for the surplus S?O7

(x, z), ∀z and ∀x.

For i = O6, we solve the same problem, except that we integrate the solution for the age i = O7 in
the agents’ expectations. Then, we find the fix point of

SO6 = max

 R− z + πO6β
[
λΠz,εSO6 + (1− λ)ΠzSO6 −Πe,θ,O6

z,ε SO6

]
(1− πO6)β

[
λΠz,εS?O7

+ (1− λ)ΠzS?O7
−Πe?,θ?,O7

z,ε S?O7

] ; 0


which gives, when the convergence criteria are satisfied, {θ?O6

(z), e?O6
(z), R?O6

(z)}, and S?O6
(x, z),

∀z and ∀x. we repeat the procedure until i = Y . Given this complete set of decision rules, we
can simulate the Markov chain for JFR and JSR and construct the theoretical distribution of the
employment per age, using equations (3), (5) and (4).

C.6 Matching young workers’ labor market

Vectors Φ1 and Ψ do not change. We minimize the distance Ψtheo(Φ2) − Ψ, where the 11 free
parameters are

Φ2 = {H,χ, φ, hA, hO, bY , b, λY , λA, λO, σε} dim(Φ2) = 11

The difference between this calibration and the one presented in the text is that there is no com-
position effect here (µi = 0, ∀i), but we introduce a home production which is specific to young
workers (they have no children and no house). Calibration is reported in table 18.

45This FOC is φ′(eO7) = γp(θO7)πO7βΠz,εSO7
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Table 18: Calibration: Matching young workers’ labor market

Calibration Φ2

H b σε χ φ

HLS 0.0975 0.912 0.317 0.31 0.7
FR 0.061 0.934 0.124 - -

bY λY λA λO hA hO

HLS 0.7752 0.035 0.174 0.195 1.82 1.976
FR - - 0.085 - - -

HLS = our weekly calibration
FR = Fujita and Ramey (2011)’s weekly calibration

Simulation results are in the table 19. If we focuss on the youth labor market, this identification
strategy leads to a larger gap between the data and the model predictions. Notice that the model
is also able to predict the age-increasing volatilities in accordance with the data.

Table 19: Second order moments: data versus theory. Matching young workers’ labor market

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61

JSR: US Data 0.11 0.089 0.14 0.20
Model 1 0.10 0.07 0.17 0.19
Model 2 0.12 0.01 0.16 0.20

JFR: US Data 0.16 0.16 0.17 0.22
Model 1 0.11 0.04 0.12 0.15
Model 2 0.10 0.036 0.11 0.13

u: US Data 0.23 0.18 0.27 0.32
Model 1 0.16 0.05 0.25 0.27
Model 2 0.17 0.033 0.23 0.27

w: US Data 0.015 0.026 0.019 0.018
Model 1 0.0123 0.0127 0.0123 0.0122
Model 2 0.0114 0.0127 0.0112 0.0111

US data: Standard deviation, CPS Monthly data, Men, 1976 June - 2012 Sept
HP filter with smoothing parameter 105. Authors’ calculations.

Simulations reported in the table 20 show that the horizon effect is the main explanation of these
results. These results underline the robustness of the ones discussed in the last section of the paper.
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Table 20: Second order moments: Sensitivity analysis

All: 16-61 Y : 16-24 A: 25-54 O: 55-61

JSR: Model 2 0.12 0.01 0.16 0.20
h & b 0.11 0.015 0.17 0.22

h & b & λ 0.11 0.17 0.17 0.19
Low b 0.024 0.016 0.045 0.05

JFR: Model 2 0.10 0.036 0.11 0.13
h & b 0.09 0.05 0.12 0.14

h & b & λ 0.12 0.11 0.11 0.14
Low b 0.041 0.041 0.05 0.06

u: Model 2 0.17 0.033 0.23 0.27
h & b 0.16 0.05 0.24 0.29

h & b & λ 0.23 0.19 0.24 0.26
Low b 0.052 0.038 0.094 0.095

h & b: Model with homogenous h & b: hi = hA and bi = bA

h & b & λ: Model with homogenous h & b & λ: hi = hA, bi = bA and λi = λA

Model with low b: bi = rhi such that r −
∑

imiφ(essi ) ≈ 0.4 as in Shimer (2005)
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