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We propose a new method for the solution of discretised elliptic PDE eigen-
value problems. The new method combines ideas of domain decomposition, as
in the automated multi-level substructuring (short AMLS), with the concept of
hierarchical matrices (short H-matrices) in order to obtain a solver that scales
almost linearly (linear up to logarithmic factors) in the size of the discrete space.
Whereas the AMLS method is very effective for PDEs posed in two dimensions,
it is getting very expensive in the three-dimensional case, due to the fact that the
interface coupling in the domain decomposition requires dense matrix operations.
We resolve this problem by use of data-sparse hierarchical matrices. In addition
to the discretisation error our new approach involves a projection error due to
AMLS and an arithmetic error due to H-matrix approximation. A suitable choice
of parameters to balance these errors is investigated in examples.

Mathematics Subject Classification (2000) 65F15, 65F30, 65F50, 65H17,
65N25, 65N55
Keywords Automated multi-level substructuring, hierarchical matrices, elliptic
PDE eigenvalue problem

1 Introduction

A very efficient approach to solve an elliptic PDE eigenvalue problem is the so-called auto-
mated multi-level substructuring (short AMLS) method. AMLS is a substructuring method
which was mainly developed by Bennighof and co-authors [6, 22, 4] and is based on the
classical component mode synthesis (short CMS).

∗Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen,
Germany. Email: {gerds,lgr}@igpm.rwth-aachen.de.
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The CMS is as well a substructuring method which was already developed in the 1960s
to solve large scale eigenvalue problems in structural engineering analysis. The method was
firstly described by Hurty [21] and further improved by Craig and Bampton [10]. During
the years CMS became very popular and was studied by many researchers, e.g. in [8, 9]
a mathematical analysis of CMS is given and in [26] an overview over different versions of
CMS.

The single-level substructuring performed in CMS is extended in AMLS to the multi-level
case. The idea in AMLS is to partition the spatial domain of the PDE eigenvalue problem
recursively into several subdomains. On each of these subdomains similar eigenvalue prob-
lems are defined which are typically small and easy to solve. From each of these subproblems
suitable solutions are selected which are meant to represent the global problem on the sub-
domain. All selected solutions together form a subspace. The global eigenvalue problem is
projected onto this subspace and a reduced eigenvalue problem is obtained which is typically
much smaller than the original problem and correspondingly much easier to solve. Finally,
the eigenpairs of the reduced eigenvalue problem deliver the sought eigenpair approximations
of the global eigenvalue problem.

In [5, 22, 23] AMLS has proven to be very effective for solving large-scale eigenvalue prob-
lems arising in structural engineering analysis. Especially when a large number of eigenpair
approximations is required AMLS is more effective than classical approaches using algebraic
eigensolvers which are coupled with a preconditioner or a linear solver (cf. [20]). The big
advantage of AMLS is that it computes several eigenpairs at once whereas the computational
costs of classical approaches are at least linear in the number of sought eigenpairs. A very
popular of such a classical approach is the shift-invert block Lanczos (short SIL) algorithm
[16] which is commonly used in structural engineering. Kropp and Heiserer presented break-
through calculations in [23]. They benchmarked AMLS against SIL within a vibro-acoustic
analysis of an automobile body and could show that AMLS running on a commodity work-
station is several times faster than SIL running on a supercomputer.

When AMLS is applied to a discrete eigenvalue problem it computes only eigenpair ap-
proximations whereas SIL computes numerically almost exact eigenpairs. This seems to be
disadvantageous, however, in our setting a discrete eigenvalue problem results always from
a finite element discretisation of a continuous eigenvalue problem. Correspondingly all com-
puted eigenpairs of the discrete problem are related to a discretisation error. As long as
the projection error caused by AMLS is of the same order as the discretisation error the
computed eigenpair approximations of AMLS are of comparable quality as the eigenpairs
computed by SIL or some other classical approach.

Although AMLS has proven to be very effective, one problem is the computation of the
interface eigenvalue problem via dense matrix operations. In the three-dimensional case the
complexity is dominated by this part.

In this paper we present a new approach called H-AMLS which is a combination of the
AMLS method andH-matrices. H-matrices [18, 19] are a data-sparse approximation of dense
matrices which e.g. result from the inversion [3] or the LU -factorisation [14] of the stiffness
matrix from the finite element discretisation of an elliptic partial differential operator. The
big advantage of H-matrices is that they allow matrix algebra in almost linear complexity
[13]. In the new method this fastH-matrix algebra is used to compute the reduced eigenvalue
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problem and thus H-AMLS is well-suited for three-dimensional problems.
The remainder of the paper is organised as follows: In Section 2 the elliptic eigenvalue

problem and the underlying problem setting is introduced. After this, in Section 3, we give
a description of the classical AMLS method. We explain and motivate the method first in a
continuous setting and then describe it in an algebraic setting to show how AMLS is applied
in practice. In Section 4, we outline why the classical AMLS method is getting expensive in
the three-dimensional case and give in Section 5 a short introduction to H-matrices. Finally,
in Section 6, we present the new H-AMLS method and provide in Section 7 numerical results
of H-AMLS applied to a three-dimensional problem.

2 Problem Description

In this paper we want to solve the continuous eigenvalue problem{
Lu = λu in Ω,

Lu = 0λ on ∂Ω
(1)

where L is a uniformly elliptic second order partial differential operator in divergency form

Lu = − div
(
A∇u

)
= −

d∑
i,j=1

∂

∂xi

(
aij

∂

∂xj
u

)

where the coefficients of the symmetric matrix A := (aij)
d
i,j=1 are L∞(Ω)-functions and Ω is

a d-dimensional domain (d = 2, 3) with a Lipschitz boundary ∂Ω. In weak formulation (1)
can be expressed as {

find (λ, u) ∈ R×H1
0 (Ω) such that

a(u, v) = λ (u, v)0aaa∀ v ∈ H1
0 (Ω)

(2)

where a(u, v) :=
∫

Ω
∇uTA∇v dx is a symmetric, coercive bilinear form and (u, v)0 :=

∫
Ω
uv dx

is the inner product of L2(Ω).
The continuous eigenvalue problem (2) possesses a countable family of eigensolutions(

λj, uj
)∞
j=1
∈ R>0 ×H1

0 (Ω) (3)

where the eigenvalues λj are positive and where we can assume that the eigensolutions are
arranged in such a way that λj ≤ λj+1 holds.

We approximate solutions of the continuous eigenvalue problem by discretisation. Using
an N -dimensional finite element space denoted by VN ⊂ H1

0 (Ω) and spanned by its basis

functions
(
ϕ

(N)
i

)N
i=1

the continuous eigenvalue problem (2) is discretised by{
find (λ(N), x(N)) ∈ R× RN with

K x(N) = λ(N)M x(N)
(4)
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where the stiffness matrix

K :=
(
a
(
ϕ

(N)
i , ϕ

(N)
j

))N
i,j=1
∈ RN×N (5)

and the mass matrix

M :=
((
ϕ

(N)
i , ϕ

(N)
j

)
0

)N
i,j=1
∈ RN×N (6)

are both sparse, symmetric and positive definite. The eigenvalues of (4) are positive and the

corresponding eigenpairs
(
λ

(N)
j , x

(N)
j

)N
j=1
∈ R>0 × RN can be arranged in such a way that

λ
(N)
j ≤ λ

(N)
j+1 holds.

From eigenvalue approximation theory it follows that the discrete eigenpairs of (4) are

approximating the continuous eigensolutions of (2). More precisely, cf. [17], it holds λ
(N)
j →

λj for N → ∞ and a subsequence of
(
u

(N)
j

)∞
N=1

is converging in H1
0 (Ω) against uj, where

u
(N)
j is defined by u

(N)
j :=

∑N
i=1

(
x

(N)
j

)
i
· ϕ(N)

i ∈ VN , and we assume that ‖u(N)
j ‖0 = 1 and

‖uj‖0 = 1 with ‖ · ‖0 := (·, ·)1/2
0 .

Here it has to be noted that only the smaller eigenvalues λj and their corresponding
eigenfunctions uj can be approximated by the finite element space VN (cf. [2, 25]), because
the approximation error increases with increasing eigenvalue.

Correspondingly we are only interested in computing a portion of the eigenpairs of (4),
e.g., the first

nev = CN1/3 ∈ N or nev = CN1/2 ∈ N

eigenpairs, for some constant C > 0.
Because we are interested in a large number of eigensolutions, the AMLS method is used

to solve the eigenvalue problem (2), respectively (4). If the number of sought eigensolutions
nev is rather small, e.g. nev = 5, other approaches like the subspace iteration are better
suited.

3 The AMLS method

Although AMLS can be described in a purely algebraic way without any geometry informa-
tion of the underlying partial differential equation we explain the method first in a continuous
setting. In the continuous setting it is easier to understand the idea behind AMLS and why
the method is working. After this we will describe AMLS in an algebraic setting to show
how the method is used in practice. For ease of understanding we start with the description
of a single-level version of AMLS which is extended to a multi-level version afterwards.

3.1 Single-Level Case: Continuous Setting

In the single-level case AMLS is actually a generalisation of the classic CMS. The initial
point of AMLS in the continuous setting is the eigenvalue problem (2) which will be denoted
as global eigenvalue problem in this particular section. In the first step of AMLS the domain
Ω is partitioned into two non-overlapping subdomains Ω1 and Ω2 which share the interface
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Ω 7→ Ω1 Ω2

Γ

Figure 1: Partitioning of the domain Ω into two non-overlapping subdomains.

Γ := Ω1 ∩ Ω2. In Figure 1 an example of such a partitioning is given for a two-dimensional
domain.

After this suitable subspaces of H1
0 (Ω) are defined which are associated with the subdo-

mains Ωi (i = 1, 2) and the interface Γ. For the subdomains Ωi we define

VΩi
:=
{
v ∈ H1

0 (Ω)
∣∣ v|Ω\Ωi

= 0
}

built of all admissible functions which are equal to zero on Ω \ Ωi, and for Γ we define

VΓ :=
{
EΩτ

∣∣ τ ∈ H1/2
00 (Γ)

}
.

Here H
1/2
00 (Γ) denotes the trace space of H1

0 (Ω) on the interface Γ and EΩτ ∈ H1
0 (Ω) is the

extension of the trace function τ ∈ H1/2
00 (Γ) which is defined as the solution of the Dirichlet

problem 
find EΩτ ∈ H1

0 (Ω) such that

a(EΩτ, v) = 0aa∀ v ∈
{
u ∈ H1

0 (Ω)
∣∣u|Γ = 0

}
,

aaaaEΩτ = τ on Γ.

For the three subspaces the following theorem holds:

Theorem 1. The direct sum
VΩ1 ⊕ VΩ2 ⊕ VΓ

is an a-orthogonal decomposition of H1
0 (Ω).

Proof. A proof can be found in [6] in the context of an eigenvalue problem from linear
elastodynamics. However, this proof can be applied for generic H1-elliptic bilinear forms.

In the second step of AMLS we define for each subspace separate eigenvalue problems; for
VΩi

(i = 1, 2) the so-called fixed-interface eigenvalue problem{
find (λ, u) ∈ R× VΩi

such that

a(u, v) = λ (u, v)0aaa∀ v ∈ VΩi
,

(7)

and for VΓ the so-called coupling mode eigenvalue problem{
find (λ, u) ∈ R× VΓ such that

a(u, v) = λ (u, v)0aaa∀ v ∈ VΓ.
(8)
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Note that the only difference to the global eigenvalue problem (2) is that the functions u
and v in (7) and (8) are elements of VΩi

or VΓ instead of H1
0 (Ω). According to Theorem 1 it

follows that (7) and (8) are the orthogonal projections of the global eigenvalue problem onto
the subspaces VΩ1 , VΩ2 and VΓ.

The fixed-interface and the coupling mode eigenvalue problems each possess a countable
family of eigensolutions which are given by(

λi,j , ui,j
)∞
j=1
∈ R>0 × VΩi

with λi,j ≤ λi,j+1

for the fixed-interface eigenvalue problem (7) and by(
λΓ,j , uΓ,j

)∞
j=1
∈ R>0 × VΓ with λΓ,j ≤ λΓ,j+1

for the coupling mode eigenvalue problem (8). Because the eigenfunctions ui,k and uΓ,k form
a basis of H1

0 (Ω) we obtain

H1
0 (Ω) =

2⋃
i=1

span
{
ui,j

∣∣ j ∈ N
} ⋃

span
{
uΓ,j

∣∣ j ∈ N
}
. (9)

In the third step the global eigenvalue problem is projected onto a suitable finite dimen-
sional subspace of H1

0 (Ω) which is set up to represent the whole system. Selecting only these
eigenfunctions in (9) which belong to a small eigenvalue this subspace is defined by

Un :=
2⋃
i=1

span
{
ui,j

∣∣ j = 1, . . . , ni

} ⋃
span

{
uΓ,j

∣∣ j = 1, . . . , nΓ

}
(10)

for given natural numbers n1, n2 and nΓ with n = n1 + n2 + nΓ.
The modal truncation performed in (10) is motivated by two reasons. One reason is

that only the first p(N) � N eigenfunctions can be well approximated by a finite element
space using N degrees of freedom (short DOF), where p(N) is for example p(N) = N1/3 or
p(N) = N1/2. Another reason from a more practical point of view is that eigenfunctions
belonging to larger eigenvalues have much lower participation in the response of the system
than eigenfunctions belonging to lower eigenvalues.

Projecting the global eigenvalue problem (2) onto Un the so called reduced eigenvalue
problem {

find (λ, u) ∈ R× Un such that

a(u, v) = λ(u, v)0aaa∀ v ∈ Un
is obtained with the eigensolutions(

λ
(n)
j , u

(n)
j

)n
j=1
∈ R>0 × Un with λ

(n)
j ≤ λ

(n)
j+1. (11)

In the fourth and last step of AMLS the first nev eigensolutions (11) are computed which are
approximating the sought eigensolutions (λj, uj)

nev
j=1 of the global eigenvalue problem (2).
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Theorem 2. The coupling mode eigenvalue problem (8) is equivalent to the eigenvalue prob-
lem {

find (λ, u) ∈ R×H1/2
00 (Γ) such that

〈Su, v〉 = λ〈Mu, v〉aa;∀v ∈ H1/2
00 (Γ)

(12)

where S and M are operators acting on the trace space H
1/2
00 (Γ) which are given in strong

form by

Sτ =
2∑
i=1

(
(A∇EΩi

τ) · ni
)∣∣

Γ
and Mτ =

2∑
i=1

−
(
(A∇Gi(EΩi

τ)) · ni
)∣∣

Γ

for τ ∈ H1/2
00 (Γ). Here ni denotes the outward normal unit vector on Γ for the subdomain

Ωi; EΩi
is the subdomain extension operator defined by EΩi

τ := (EΩτ)|Ωi
; and Gi(f) is the

solution of the Dirichlet problem{
find Gi(f) ∈ VΩi

such that

a(Gi(f), v) = (f, v)0a,∀ v ∈ VΩi
,

(13)

i.e., Gi is the Green’s function of problem (13).

Proof. The proof of the theorem can be found in [6] in the context of an eigenvalue problem
from linear elastodynamics, however, it can be applied for generic H1-elliptic bilinear forms.
The operator M is derived according to [6] and the operator S according to [24].

Remark 3. i) S is the so-called Steklov-Poincaré operator associated to the bilinear form

a(·, ·) which is symmetric, continuous and coercive in H
1/2
00 (Γ) (cf. [24]). M is the so-called

mass operator associated to the bilinear form a(·, ·) (cf. [6]).
ii) The fixed-interface eigenvalue problem (7) is equivalent to the eigenvalue problem{

find (λ, u) ∈ R×H1
0 (Ωi) such that

a(u, v) = λ(u, v)0aaaa,∀v ∈ H1
0 (Ωi).

(14)

iii) The benefit of the representation (14) and (12) compared to (7) and (8) is that the
eigenvalue problems are solely solved and evaluated on the subdomains Ωi respectively the
interface Γ.

In this section we have seen how the global problem is projected onto orthogonal sub-
spaces leading to three different subproblems defined on the subdomains Ωi and the interface
Γ. Eigenfunctions belonging to the smallest eigenvalues are selected from each of these
subproblems to form a suitable finite dimensional subspace on which the global problem is
projected. A reduced problem is obtained whose solutions are approximating the sought
solutions of the global problem.
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3.2 Single-Level Case: Algebraic Setting

The initial point of the description of AMLS in the algebraic setting is the discrete eigenvalue
problem (4). For reasons of convenience the upper index of λ(N) and x(N) in (4) — indicating
the DOF of the finite element discretisation — is left out in this particular section and the
following eigenvalue problem {

find (λ, x) ∈ R× RN with

K x = λM x
(15)

is considered with the eigenpairs
(
λj, xj

)N
j=1
∈ R>0 × RN and λj ≤ λj+1. Because the

matrices K and M in (15) result from a finite element discretisation each row and column
index is associated with a basis function which has typically a small support. Using the
substructuring of Ω = Ω1∪Ω2 with Γ = Ω1∩Ω2 from the section before, the row and column
indices can be reordered in such a way that

K =


Ω1 Ω2 Γ

Ω1 K11 K13

Ω2 K22 K23

Γ K31 K32 K33

 and M =


Ω1 Ω2 Γ

Ω1 M11 M13

Ω2 M22 M23

Γ M31 M32 M33

 (16)

holds with Kij,Mij ∈ RNi×Nj and N1 + N2 + N3 = N . The labels Ω1,Ω2 and Γ in (16) are
indicating to which subset the indices are associated, i.e., if the supports of the corresponding
basis functions are inside Ωi or intersecting Γ.

Performing a block LDLT -decomposition in the next step of AMLS the matrix K is block
diagonalised by K = LK̃LT with K̃ = diag

[
K11, K22, K̃33

]
and

L :=

 Id
Id

K31K
−1
11 K32K

−1
22 Id

 .
The submatrix K̃33 given by

K̃33 = K33 −K31K
−1
11 K13 −K32K

−1
22 K23

is the Schur complement of diag[K1, K2] in K and it is typically dense. The matrix M is

transformed correspondingly by computing M̃ := L−1ML−T with

M̃ =

M11 M̃13

M22 M̃23

M̃31 M̃32 M̃33


where M̃33 is given by

M̃33 = M33 −
2∑
i=1

(
K3iK

−1
ii Mi3 +M3iK

−1
ii Ki3 −K3iK

−1
ii MiiK

−1
ii Ki3

)
.
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A part of the sparsity structure is lost in K̃ and M̃ . All submatrices K̃ii and M̃ij whose row
or column indices are associated with the interface Γ are now typically dense.

The eigenvalue problems (K,M) and (K̃, M̃) are equivalent, i.e., the eigenvalues of both

problems are equal and if x̃ is an eigenvector of (K̃, M̃) then x = L−T x̃ is an eigenvector of
(K,M).

At first glance, the reason for the applied eigenvalue problem transformation of (K,M)

is not obvious. But it can be shown that the eigenvalue problem (K̃33, M̃33) corresponds to
the finite element discretisation of the continuous coupling mode eigenvalue problem (12),
cf. [24] and [6], and the eigenvalue problems (Kii,Mii) for i = 1, 2 are the respective finite
element discretisations of the continuous fixed-interface eigenvalue problems (14).

In the next step of the AMLS method the eigenvalue problems (K11,M11), (K22,M22) and

(K̃33, M̃33) are solved. Corresponding to the modal truncation applied in (10) in the contin-

uous setting, only those eigenpairs of (K11,M11), (K22,M22) and (K̃33, M̃33) are computed
which belong to the smallest ki ∈ N eigenvalues for given ki ≤ Ni and i = 1, 2, 3. In the
following these partial eigensolutions are

Kii Si = Mii SiDi (i = 1, 2) and K̃33 S3 = M̃33 S3D3 (17)

where the matrix Si ∈ RNi×ki contains column-wise the ki selected eigenvectors and the di-
agonal matrix Di ∈ Rki×ki contains the corresponding eigenvalues (i = 1, 2, 3). Furthermore,

the eigenvectors are normalised by STi MiiSi = Id (i = 1, 2) and ST3 M̃33S3 = Id.

Remark 4. How many eigenvectors have to be selected in (17) from each subproblem is
not easy to answer. On one side ki should be small to obtain in the further proceeding of
AMLS a reduced problem of small size which can be easily solved. On the other side enough
spectral information has to be kept to obtain sufficiently good eigenpair approximations from
the reduced problem. Using different approaches in [11] and [27] heuristics have been derived
on how to select eigenpairs. These heuristics are based purely on the analysis of the algebraic
eigenvalue problem (K̃, M̃) without using any geometry information of the underlying partial
differential equation. One possible strategy for the eigenpair selection in (17) — which is
also used in Section 7 where numerical results are presented — is as follows: Select in
each subproblem only those eigenpairs whose eigenvalues are smaller than a given truncation
bound ω> 0.

In the next step of AMLS the block diagonal matrix

S := diag [S1, S2, S3] ∈ RN×k

with k := k1 + k2 + k3 � N is defined which is built of all selected eigenvectors. Then the
matrices K̂ := ST K̃ S ∈ Rk×k and M̂ := ST M̃ S ∈ Rk×k are computed where it holds

K̂ = diag [D1, D2, D3] and M̂ =

 Id M̂13

Id M̂23

M̂31 M̂32 Id

 ,
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Ω1 Ω2

Γ 7→ Γ1 Γ2

Γ

Ω1,1

Ω1,2

Ω2,1

Ω2,2

Figure 2: Extending the single-level substructuring of Ω to a two-level substructuring.

and a reduced eigenvalue problem is obtained{
find (λ̂, x̂ ) ∈ R× Rk with

K̂ x̂ = λ̂ M̂ x̂
(18)

with the eigenpairs
(
λ̂j, x̂j

)k
j=1
∈ R>0 × Rk and λ̂j ≤ λ̂j+1.

In the last step of AMLS the smallest nev eigenpairs of (18) are computed. The vectors

ŷj := L−TS x̂j with j = 1, . . . , k (19)

are Ritz-vectors of the original eigenvalue problem (K,M) respective to the subspace spanned

by the columns of the matrix S, and λ̂j are the respective Ritz-values. The pairs (λ̂j, ŷj)
nev
j=1 are

approximating the sought smallest nev eigenpairs of the original eigenvalue problem (K,M).

Remark 5. i) Because the eigenpairs of the reduced eigenvalue problem (K̂, M̂) are pri-
marily used to approximate the eigensolutions of the continuous problem (2) and not the
eigenpairs of the discretised problem (K,M), the approximation error of AMLS is influenced
by the finite element discretisation and the modal truncation applied in (17). As long as
the error caused by the modal truncation is of the same order as the discretisation error the
eigenpair approximations derived from the reduced problem (K̂, M̂) are of comparable quality
as the eigenpair approximations derived from the problem (K,M).

ii) The reduced eigenvalue problem (K̂, M̂) is much easier to solve than the original eigen-
value problem (K,M) because the number of selected eigenpairs in (17) is typically quite
small and therefore the order of the reduced problem is much smaller than the order of the
original problem. Furthermore, the matrices K̂ and M̂ are sparse, i.e., M̂ has the same block
zero structure as M and K̂ is even a diagonal matrix. Correspondingly a sparse eigensolver
can be used to compute the smallest nev eigenpairs of (K̂, M̂).

iii) The matrix partitioning (16) can also be done in a purely algebraic way by applying
graph partitioning algorithms like nested dissection to the graph of the matrix |K|+ |M |.

3.3 Multi-Level Case: Algebraic Setting

The single-level version of the AMLS method explained in the section before can be easily
extended to the multi-level case. Using the substructuring from the single-level case we
further subdivide the subdomains Ω1 and Ω2 each into two non-overlapping subdomains
which share some interface as it is illustrated in Figure 2. This substructuring can be applied
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again recursively to the resulting subdomains until a certain level is exceeded or the size of
the subdomains falls below some given limit.

The further proceeding of AMLS in the multi-level case is analogous to the single-level case.
As in (16) the row and column indices of the matrices K and M are reordered to achieve
a matrix partitioning according to the performed domain substructuring. For example the
matrix partitioning of K corresponding to the domain substructuring applied in Figure 2 is

K =



Ω1,1 Ω1,2 Γ1 Ω2,1 Ω2,2 Γ2 Γ

Ω1,1 K11 K13 K17

Ω1,2 K22 K23 K27

Γ1 K31 K32 K33 K37

Ω2,1 K44 K46 K47

Ω2,2 K55 K56 K57

Γ2 K64 K65 K66 K67

Γ K71 K72 K73 K74 K75 K76 K77


. (20)

Kij is the submatrix of K in block row i and block column j with i, j = 1, . . . ,m where m is
equal to the number of subdomains and interfaces contained in Ω. In the next step the eigen-
value problem (K,M) is transformed equivalently to (K̃, M̃), i.e., K is block diagonalised via

K = LK̃LT by performing a block LDLT -decomposition and M is transformed correspond-
ingly by M̃ = L−1ML−T . Due to the transformation a part of the sparsity structure is lost
in K̃ and M̃ . All submatrices K̃ii and M̃ij are now typically dense if their respective row or
column indices are associated with an interface. In the next step the partial eigensolutions
of the subproblems (K̃ii, M̃ii) are computed. Note that K̃ii = Kii and M̃ii = Mii if their row
indices are associated with one of the subdomains. Let the partial eigensolution be given
again by

K̃ii Si = M̃ii SiDi with STi M̃iiSi = Id

for i = 1, . . . ,m, where Si ∈ RNi×ki contains column-wise ki ≤ Ni selected eigenvectors and
the diagonal matrix Di ∈ Rki×ki the corresponding eigenvalues. In the next step the reduced
eigenvalue problem (K̂, M̂) is obtained by computing K̂ := STKS and M̂ := STMS with
S := diag

[
S1, . . . , Sm

]
. Finally, the nev smallest eigenpairs of the reduced eigenvalue problem

are computed where eigenpair approximations of the original eigenvalue problem (K,M) are
obtained by (19).

For further illustration we refer to [12] where a two-level version of AMLS in the algebraic
setting is described, and for the description of the multi-level case in the continuous setting
we refer to [6]. To summarise the AMLS method an overview of all necessary operations is
given in Table 1.

The benefit of the multi-level approach is that the substructuring of the domain or respec-
tively the partitioning of the matrices K and M can be applied recursively until eventually in
(17) the size of the subproblems (K̃ii, M̃ii) is small enough to be solved easily. However, the
recursion will only affect the size of subproblems corresponding to subdomains and not those
related to interfaces. When the spatial domain Ω is three-dimensional this is a bottleneck.
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Ω

(a) Domain Ω = (0, 1)3.

n

n

n

(b) Discretised domain with n3

DOF; DOF are indicated by
small dots and only the grid as-
sociated to the DOF is marked.

Γ

Γ1

Γ2

(c) Two-level substructuring of
the discretised domain leading
to interfaces of the size O(n2).

Figure 3: Discretisation of the domain Ω = (0, 1)3 and performing a two-level substructur-
ing.

4 Efficiency Problems in the Three-Dimensional Case

In the following we refer to submatrices whose row or column indices are associated with
an interface as interface matrices. In the three-dimensional case these interface matrices are
getting relatively large in AMLS which leads to very high computational costs. In contrast
to submatrices which are associated only with subdomains the size of the interface matrices
cannot be reduced by further substructuring as discussed in the previous section.

To illustrate this we take a look at the initial eigenvalue problem (2) with the domain
Ω = (0, 1)3. To solve the problem with AMLS it has to be discretised first. This can be done
for example by decomposing Ω = (0, 1)3 into n+ 1 equispaced subintervals in each direction
and using standard P1 finite elements, cf. Figure 3b. The resulting eigenvalue problem is
given in (4) where the matrices K and M are of size N ×N with N = n3. Assuming that a
two-level substructuring is used in AMLS we obtain a matrix partitioning like in (20). The
number of rows or columns of the interface matrices are O(N2/3) as it is illustrated in Figure
3c. These interface matrices are relatively large and their size cannot be reduced by further
substructuring.

During the AMLS method a couple of matrix operations have to be performed on these
interface matrices, e.g., computing the inverse, the matrix product or the partial eigenso-
lution. Beside that the interface matrices are relatively large they are dense as well. For
example in the two-level version of AMLS the inverse of the interface matrices K̃33 and K̃66

has to be computed when the block LDLT -decomposition is performed to block diagonalise
K = LK̃LT . These operations alone lead to costs of O

(
(N2/3)3

)
= O (N2). A way to help

out here are so-called hierarchical matrices which are shortly introduced in the next section.
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5 Hierarchical matrices

H-matrices [18, 19] are data-sparse but possibly dense matrices. The underlying idea is to
reorder the row and columns of a matrix such that certain submatrices can be represented
or approximated by low rank matrices. To represent such a fully populated but data-sparse
matrix of size N × N only O(N log2N) data is necessary instead of storing N2 entries.
Moreover, H-matrices provide exact matrix-vector multiplication and approximated matrix(-
matrix) operations (e.g. multiplication, addition, inversion, LU -factorisation) which are
performed in almost linear complexity O(N logαN) with α = 1, . . . , 4 (cf. [13, 15]).

The stiffness matrix resulting from the finite element discretisation of an elliptic partial
differential operator is sparse. However, its inverse and its LU -factors are fully populated.
In [3] and [14] it is shown that the inverse and the LU -factors can be approximated by
H-matrices and that these approximations can be computed with almost linear complexity.
This motivates to use the fast H-matrix algebra in the AMLS method to compute the block
diagonalisation K = LK̃LT and the matrix transformation M̃ = L−1ML−T .

To do this the sparse matrices K and M have to be converted into H-matrices. For this
purpose a suitable H-matrix format has to be provided which is based on the geometry data
of the underlying partial differential equation. To introduce this H-matrix format and the
basic concept of H-matrices we first explain how the inverse of a stiffness matrix is approxi-
mated by an H-matrix.

Assume A ∈ RN×N is the stiffness matrix resulting from the finite element discretisation
of an elliptic partial differential operator. The matrix A is sparse, however, its inverse A−1 is
fully populated. Recalling the definition of the stiffness matrix in (5) each row and column
index i ∈ I := {1, . . . , N} of A and respectively of A−1 is associated with a basis function

ϕ
(N)
i of the underlying finite element space VN . For each index set t ⊂ I we define its support

by

Ωt :=
⋃
i∈t

supp
(
ϕ

(N)
i

)
.

Correspondingly each submatrix

A−1|s×t :=
(
(A−1)ij

)
i∈s,j∈t with s, t ⊂ I

of A−1 is associated with geometry information. Based on the geometric separation of the
index sets s and t certain subblocks s × t ⊂ I × I can be identified that allow a low rank
approximation of the respective submatrices A−1|s×t. More precisely, submatrices A−1|s×t
whose index sets s and t fulfil the so-called admissibility condition

min
{

diam(Ωs), diam(Ωt)
}
≤ η dist(Ωs,Ωt) (21)

are well suited for a low rank approximation (cf. [3]). The parameter η > 0 controls the
number of admissible subblocks s × t and is set to η := 50 in the rest of the paper. The
quantities

diam(Ωt) := max
{
‖x− y‖2

∣∣ x, y ∈ Ωt

}
and

dist(Ωs,Ωt) := min
{
‖x− y‖2

∣∣ x ∈ Ωs, y ∈ Ωt

}

13



are the diameter and the distance of the supports of s and t. Subblocks s × t fulfilling the
admissibility condition (21) are called admissible and the corresponding submatrices A|s×t
are approximated by so-called Rk-matrices which are defined as follows.

Definition 6 (Rk-matrix). Let be k,m, n ∈ N0. The matrix R ∈ Rn×m is called Rk-matrix
if it is factorised by

R = UV T for suitable matrices U ∈ Rn×k, V ∈ Rm×k.

When the rank k is small compared to n and m the representation of an Rk-matrix
R ∈ Rn×m is much cheaper than in full-matrix representation because only k(n+m) entries
have to be stored instead of nm. Furthermore, the product and the sum of two Rk-matrices
can be evaluated much more efficiently than in full-matrix representation when k is small.

To exploit the low rank approximation property of submatrices fulfilling (21) we reorder
the row and column indices of A−1. For this purpose the index set I is divided according
to a geometric bisection of its support into two disjoint index sets s, t ∈ I with I = s ∪̇ t.
In this context s and t are denoted as sons of I and S(I) := {s, t} as the set of sons of
I. This geometric bisection is applied recursively to the son index sets until the cardinality
of an index set falls below some given limit nmin ∈ N. Such a partitioning is illustrated in
Figure 4a and 4b for a two-dimensional problem. The described geometric bisection results
in a disjoint partition of the index set I where the obtained subsets of the partitioning tend
to be geometrically separated.

Given the admissibility condition (21) and the partitioning of the index set I the H-
matrix format of A−1 is constructed by applying algorithm 1 to I × I. Using this algorithm
I × I is recursively subdivided into subblocks s× t until the subblock gets admissible or the
size of the subblock falls below the limit nmin as it is illustrated in Figure 4c. Submatrices
A−1|s×t of admissible blocks s×t are represented in the Rk-matrix format and submatrices of
inadmissible blocks are represented in the full matrix format. To control the approximation
quality of the Rk-matrix approximation the fixed rank is replaced by an adaptive rank. For a
desired approximation accuracy ε > 0 each submatrix A−1|s×t corresponding to an admissible
subblock s× t can be approximated by an Rk-matrix R such that

‖A−1|s×t −R ‖2

‖A−1|s×t ‖2

≤ ε (22)

where the rank k ∈ N0 is as small as possible (cf. [13]).
Let (AH)−1 denote the H-matrix approximation of A−1 computed by Algorithm 1. The

error ‖A−1 − (AH)−1‖ is influenced by the chosen accuracy ε in (22). The matrix A−1 is
fully populated, however, for its H-matrix approximation only O(N log2N) data is needed
for storage. Furthermore, (AH)−1 can be computed in O(N logαN), cf. [13], using a re-
cursive algorithm applied block-wise to the matrix structure and exploiting the Rk-matrix
representation of submatrices fulfilling (21).

To compute the block diagonalisation K = LK̃LT and the matrix transformation M̃ =
L−1ML−T by the fast H-matrix algebra we slightly change the described H-matrix format,
cf. [15]. First we apply a nested dissection as in the classical AMLS method, i.e., the domain
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I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

{1, 2, 5, 6, 9, 10, 11, 14}

{1, 2, 5, 6}

{1, 5}

{1} {5}

{2, 6}

{2} {6}

{9, 10, 13, 14}

{9, 13}

{9} {13}

{10, 14}

{10} {14}

{3, 4, 7, 8, 11, 12, 15, 16}

{3, 4, 7, 8}

{3, 7}

{3} {7}

{4, 8}

{4} {8}

{11, 12, 15, 16}

{11, 15}

{11} {15}

{12, 16}

{12} {16}

(a) Disjoint partitioning of the index set I corresponding to the applied geometric bisection.

geometric
bisection

level 1

level 2

level 3

level 4
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) Geometric bisection of the domain Ω =
(0, 1)2 using nmin = 1. The indices i ∈ I =
{1, . . . , 16} of the nodal points of the basis func-
tions are numbered from 1 in the lower left to
16 in the upper right corner.

1
5
2
6
9

13
10
14

3
7
4
8

11
15

12
16

1 5 2 . . . . . . . . . 16

(c) H-Matrix structure of A−1 ∈ R16×16 ac-
cording to the applied partitioning of I using
admissibility condition (21) and nmin = 1; ad-
missible blocks are coloured green, inadmissible
red.

Figure 4: H-matrix construction for the inverse of the stiffness matrix resulting from a finite
element discretisation of an elliptic partial differential operator on Ω = (0, 1)2 using standard
P1 finite elements on an equispaced grid with 16 DOF.

Ω is recursively partitioned into several subdomains which are divided by interfaces. The
row and column indices of K and M are reordered according to the performed partitioning
of Ω and a matrix partitioning, e.g., of the form (16) or (20) is obtained. As discussed in

Section 3 some of the submatrices K̃ij and M̃ij are fully populated, however, they can be
approximated by H-matrices. For this purpose we apply additionally a geometric bisection
to the index sets associated with the subdomains and interfaces, and reorder the row and
column indices of the submatrices K̃ij and M̃ij correspondingly. In Figure 6 the described
domain partitioning is illustrated.

Using the H-matrix format resulting from the matrix partitioning described above, the
block diagonalisation of K and the transformation of M can be computed by the fast H-
matrix algebra by

K ≈ LHK̃H(LH)T and M̃H≈ (LH)−1M(LH)−T . (23)

An example of the resulting matrix structure is given in Figure 7 for the matrix M̃H. The H-
matrix operations in (23) are performed not exactly but only approximatively. The resulting
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Algorithm 1 H-Matrix Construction

procedure ConstructHMatrix(A−1, ε, nmin, s× t)
if s× t is admissible then

approximate A−1|s×t by Rk-matrix with accuracy ε;
else if min{#s,#t} ≤ nmin then

represent A−1|s×t by a full matrix; . nmin affects the minimal size of the submatrices
else

S(s× t) :=
{
s′ × t′ | s′ ∈ S(s), t′ ∈ S(t)

}
; . S(t) denotes the set of sons of t ⊂ I

for all s′ × t′ ∈ S(s× t) do
ConstructHMatrix( A−1, ε, nmin, s′ × t′ );

end for
end if

end procedure
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Figure 5: H-matrix structure of A−1 ∈ RN×N with N = 2500
using admissible condition (21) and nmin = 100 where A is the
stiffness matrix resulting from a finite element discretisation of an
elliptic partial differential operator on Ω = (0, 1)2.

approximation errors ‖L− LH‖2, ‖K̃ − K̃H‖2 and ‖M̃ − M̃H‖2 are influenced by the chosen
accuracy ε in (22).

6 AMLS combined with H-matrices

In this section a more refined version of the AMLS method using the fast H-matrix algebra
is presented. The benefit of the use of the H-matrices is a reduction in computational time
and storage requirements. However, an additional error due the use of H-matrices occurs
which can influence the quality of the computed eigenpair approximations. This problem is
discussed in the following but first the new method, called H-AMLS, is introduced.

As in the classical AMLS method in the first step ofH-AMLS a nested dissection is applied.
To use the fast H-matrix algebra additionally a geometric bisection is performed as described
in the previous section. In the next step we compute as in (23) the block diagonalisation of
K and the corresponding matrix transformation of M using the fast H-matrix algebra.

The further proceeding of H-AMLS is analogous to the classical AMLS method. Subma-
trices of K̃H and M̃H according to block row i and block column j are denoted by K̃Hij and

M̃H
ij . In the next step the partial eigensolutions of the subproblems (K̃Hii , M̃

H
ii ) are computed

for i = 1, . . . ,m which are given by

K̃Hii Si = M̃H
ii Si Di with STi M̃

H
ii Si = Id, (24)
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Ω1,1 Ω1,2 Γ1 Ω2,1 Ω2,2 Γ2

Ω1 Ω2 Γ

Ω

nested dissection
needed for AMLS

}
geometric bisection
needed for H-matrix
algebra

}
Figure 6: Schematic example of the partitioning of the domain Ω applied in H-AMLS:
A two-level nested dissection (necessary for AMLS, cf. Figure 2) is applied followed by an
additional two-level geometric bisection of the subdomains and a one-level geometric bisection
of the interfaces (necessary for H-matrix approximation).
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(a) one-level nested dis.
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(b) two-level nested dis.
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(c) three-level nested dis.

Figure 7: H-matrix structure of M̃H using a one, two and three-level nested dissection. Red
blocks represent full matrices, green blocks Rk-matrices and white blocks submatrices equal
to zero which don’t cause computational costs in the H-matrix algebra.

where the matrix Si ∈ RNi×ki contains column-wise ki ≤ Ni selected eigenvectors and the
diagonal matrix Di ∈ Rki×ki contains the corresponding eigenvalues. Because in general the
matrices K̃Hii and M̃H

ii slightly differ from K̃ii and M̃ii the corresponding eigensolutions (17)
and (24) can differ as well. To indicate this difference in the H-AMLS method bold symbols
are used for the corresponding matrices and symbols.

In the next step we define S := diag [S1, . . . ,Sm] and the matrices

K̂ := ST K̃HS ∈ Rk×k and M̂ := STM̃HS ∈ Rk×k

are computed which lead to the so-called H-reduced eigenvalue problem{
find (λ̂, x̂) ∈ R× Rk with

K̂ x̂ = λ̂ M̂ x̂
(25)

where the eigenpairs be given by
(
λ̂j, x̂j

)k
j=1
∈ R>0 × Rk with λ̂j ≤ λ̂j+1. In the last step

the smallest nev eigenpairs of (25) are computed leading to the eigenpair approximations
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(λ̂j, ŷj)
nev
j=1 of the original problem (K,M) with ŷj := (LH)−TS x̂j. In contrast to the

classical AMLS method, in general λ̂j is not equal to the Rayleigh quotient

λ̂
rq

j := ŷTj K ŷj
/

ŷTj M ŷj (26)

since the matrix operations in (23) are performed only approximatively. Typically the

Rayleigh quotients λ̂
rq

j deliver better approximations of the sought eigenvalues λj than λ̂j,
especially when the chosen accuracy ε of H-matrix approximation is coarse. To compare
the classical AMLS method with the new H-AMLS method an overview of both methods is
given in Table 1 where the different tasks of the methods are referred to (T1)–(T8).

Task Matrix Operations AMLS Matrix Operations H-AMLS

(T1) partition matrices
K and M

nested dissection reordering, cf. (16)
and (20)

nested dissection reordering, cf. (16) and
(20), with subsequent geometric bisec-
tion (cf. Section 5)

(T2) block diagonalise K K = LK̃LT → expensive be-
cause of large-sized, dense interface
matrices

K ≈ LHK̃H(LH)T → using fast H-
matrix algebra done in O(N logαN)

(T3) transform M M̃ = L−1ML−T → expensive
because of large-sized, dense inter-
face matrices

M̃H ≈ (LH)−1M(LH)−T → using fast
H-matrix algebra done inO(N logαN)

(T4) compute par-
tial eigensolution for
i = 1, . . . ,m

K̃iiSi = M̃iiSiDi → expensive
when K̃ii and M̃ii are interface ma-
trices because they are dense

K̃Hii Si = M̃H
ii SiDi → use fast H-

matrix algebra when K̃Hii and M̃H
ii are

interface matrices

(T5) define subspace S := diag (S1, . . . , Sm) ∈ RN×k aaa
with k =

∑m
i=1 ki

S := diag (S1, . . . ,Sm) ∈ RN×k aaaa
with k =

∑m
i=1 ki

(T6) compute reduced
eigenvalue problem

K̂ := ST K̃S ∈ Rk×k, aaaaaaaaaaaa
M̂ := STM̃S ∈ Rk×k

K̂ := ST K̃HS ∈ Rk×k, aaaaaaaaaaaaaa
M̂ := STM̃HS ∈ Rk×k → use fast H-
matrix algebra for computation

(T7) solve reduced eigen-
value problem

K̂ x̂j = λ̂j M̂ x̂j for j = 1, . . . , nev K̂ x̂j = λ̂j M̂ x̂j for j = 1, . . . , nev

(T8) transformation of
eigenvectors

ŷj := L−TS x̂j for j = 1, . . . , nev ŷj := (LH)−TS x̂j for j = 1, . . . , nev

final eigenpair approxi-
mations

(λ̂j, ŷj) for j = 1, . . . , nev (λ̂
rq

j , ŷj) for j = 1, . . . , nev aaaaaaa

with λ̂
rq

j := ŷTj K ŷj / ŷTj M ŷj

Table 1: Overview of the classical AMLS and the new H-AMLS method.

6.1 Computational Costs

Beside N and the number of sought eigenpairs nev the computational costs of H-AMLS
depend on the the chosen accuracy ε of the H-matrix operation in (23) and the number of
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selected eigenvectors ki in (24), or respectively, the chosen truncation bound ω (cf. Remark
4). A coarser accuracy ε and a smaller truncation bound ω result in faster computations
and reduced memory requirements of H-AMLS. Of course these parameters can be chosen
arbitrarily, however, their choice depends on the desired approximation accuracy of the sought
nev eigenpairs. This issue is discussed in the next paragraph and in Section 7.

Comparing the different tasks it can be seen that the H-AMLS method is much faster
than the classical AMLS method. The computational costs of task (T1) are negligible.
The computational costs for task (T2) and (T3) are of the order O(N logαN) in H-AMLS
whereas in classical AMLS they are at least of the order O(N2) in the three-dimensional case
(cf. Section 4). Also the computation of the partial eigensolutions (task (T4)) are faster

in the H-AMLS method. The submatrices K̃Hii and M̃H
ii whose row and column indices are

associated to an interface are data-sparse H-matrices and not unstructured dense matrices
as assumed in the classical AMLS method. Correspondingly an eigensolver exploiting the
H-structure can be applied in (24) instead of an eigensolver for dense matrices as it is done in
classical AMLS. For example the eigensolver H-SIS using the fast H-matrix algebra, which
is presented in Section 7, can be applied. Also the H-matrix structure of K̃H and M̃H can
be exploited in H-AMLS using the fast H-matrix-vector multiplication for the computation
of K̂ and M̂. Correspondingly the computation of task (T6) is in H-AMLS faster than in
classical AMLS. Only the computational costs of task (T7) are the same in both methods.

The reduced eigenvalue problems (K̂, M̂) and (K̂, M̂) are both sparse and correspondingly
a sparse eigensolver like ARPACK can be used to compute the smallest nev eigenpairs (cf.

Remark 5ii)). Finally inH-AMLS the Rayleigh Quotients λ̂
rq

j have to be computed. However,
the computational costs of this task are negligible compared to the other tasks because only
2nev sparse matrix-vector multiplications have to be applied.

6.2 Accuracy of the Eigenpair Approximation

The downside of faster computations and reduced memory requirements in H-AMLS —
achieved by a coarsening of the H-matrix accuracy ε and a reduction of the truncation
bound ω — is a possible loss in quality of the eigenpair approximations.

Keeping in mind the initial problem, the Rayleigh quotients λ̂
rq

j in (26) are used to approx-
imate the nev smallest eigenvalues λj of the continuous problem (2). For the approximation
error it holds

|λj − λ̂
rq

j |︸ ︷︷ ︸
error of the

H-AMLS method

≤ |λj − λ(N)
j |︸ ︷︷ ︸

error caused by

the discretisation

+ |λ(N)
j − λ̂j|︸ ︷︷ ︸

error caused by the

modal truncation

+ |λ̂j − λ̂
rq

j |︸ ︷︷ ︸
error caused by the

H-matrix approximation

where λ
(N)
j is the eigenvalue of the discrete problem (4) and λ̂j is the eigenvalue of the

reduced problem (18) from classical AMLS. The upper index of λ
(N)
j is indicating the DOF

of the underlying finite element space VN . The approximation error of the H-AMLS method
is associated with the finite element discretisation, the modal truncation, and the H-matrix
approximation. The error caused by the modal truncation is influenced by the selected
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eigenpairs of the partial eigensolution in (24) or respectively the truncation bound ω (cf.
Remark 4), and the error caused by the use of H-matrix approximation is influenced by the
chosen accuracy ε.

In contrast to the H-AMLS method, the approximation error of classical approaches, like
the SIL algorithm, is only associated with the finite element discretisation because exact
eigenvalues λ

(N)
j of the discrete problem (4) are computed. The corresponding discretisa-

tion errors become reference values for the H-AMLS method. To compete with a classical
approach, the error caused by the modal truncation and the error caused by the use of the
H-matrix approximation have to be small enough that the error of the H-AMLS method is
of the same order as the discretisation error

|λj − λ̂
rq

j |︸ ︷︷ ︸
error of H-AMLS

≈ |λj − λ(N)
j |.︸ ︷︷ ︸

discretisation error

(27)

Dividing (27) by |λj| we obtain the equivalent statement expressed in form of relative errors

δ̂
rq

j :=
|λj − λ̂

rq

j |
|λj|︸ ︷︷ ︸

relative error

of H-AMLS

≈
|λj − λ(N)

j |
|λj|︸ ︷︷ ︸

relative error

of discretisation

=: δ
(N)
j . (28)

In the following the aim is to choose the parameters ω and ε in such a way that (28) holds
while the computational costs and storage requirements of H-AMLS are reduced as much as
possible.

7 Numerical Results

We analyse numerically the H-AMLS method in the following for the Laplace eigenvalue
problem {

−∆u = λu in Ω = (0, 1)3,

−∆u = 0λ on ∂Ω.
(29)

Note that the domain Ω is three-dimensional and it is very costly to solve this problem by
the classical AMLS method (cf. Section 4). The eigenvalues in (29) are

λ = λ(α,β,γ) := π2(α2 + β2 + γ2) with α, β, γ ∈ N

and correspondingly it is possible to evaluate the relative errors δ
(N)
j and δ̂

rq

j from (28).
To solve problem (29) by a classical approach or H-AMLS it is discretised first using

standard P1 finite elements as described in Section 4. A discrete eigenvalue problem of the
form (4) is obtained of the size N = n3. The size N represents the DOF and h := 1/(n+1) the

mesh width of the model. The eigenvalues λ
(N)
j of the discrete problem (4) are approximating

the sought smallest nev eigenvalues λj of the continuous problem (29). The approximation

errors of λ
(N)
j depend on h. This issue is illustrated in Table 2 and Figure 8 where the mesh

widths are
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j

∣∣∣∣λj ∣∣∣∣ error |λj − λ(N)
j | rel. error δ

(N)
j max

{
δ

(N)
i | i = 1, . . . , j

}
h1 h2 h3 h1 h2 h3 h1 h2 h3

1 29.60 0.30 0.07 0.01 1.02e-2 2.57e-3 6.42e-4 1.02e-2 2.57e-3 6.42e-4

2 59.21 0.92 0.23 0.05 1.55e-2 3.88e-3 9.71e-4 1.55e-2 3.88e-3 9.71e-4

3 59.21 0.92 0.23 0.05 1.55e-2 3.88e-3 9.71e-4 1.55e-2 3.88e-3 9.71e-4

4 59.21 1.45 0.36 0.09 2.45e-2 6.11e-3 1.52e-3 2.45e-2 6.11e-3 1.52e-3

5 88.82 2.34 0.58 0.14 2.64e-2 6.62e-3 1.65e-3 2.64e-2 6.62e-3 1.65e-3

10 108.56 3.31 0.81 0.20 3.05e-2 7.48e-3 1.86e-3 3.50e-2 8.83e-3 2.21e-3

50 286.21 21.27 5.46 1.37 7.43e-2 1.91e-2 4.81e-3 1.01e-1 2.51e-2 6.27e-3

100 414.52 63.52 16.69 4.19 1.53e-1 4.02e-2 1.01e-2 1.53e-1 4.06e-2 1.09e-2

300 819.17 188.28 37.64 9.20 2.29e-1 4.59e-2 1.12e-2 2.60e-1 7.29e-2 2.20e-2

Table 2: Errors between the eigenvalues λj of the continuous problem (29) and the eigen-

values λ
(N)
j of the discretised problem (K,M) for varying mesh widths. (All values given in

this and the following tables are correct to two digits.)

• h1 := 0.0500 ⇒ N = 6, 859,
• h2 := 0.0250 ⇒ N = 59, 319,
• h3 := 0.0125 ⇒ N = 493, 039.

Halving the mesh width reduces the errors by a factor of approximately 4 but at the same
time the system size increases by a factor of 8. Furthermore, it can be seen that smaller
eigenvalues are better approximated than larger ones as already mentioned in Section 2. The
relative errors δ

(N)
j resemble to an increasing sequence in j. Additional it can be seen (cf.

the last three columns of Table 2) that a finer mesh width is necessary to approximate more
eigenvalues with the same accuracy. For example, to compute the smallest 10 eigenvalues
with a relative accuracy of 1e-2 the mesh width h2 is sufficient while for the smallest 300
eigenvalues a mesh width finer than h3 is necessary and correspondingly more than 493,039
DOF are needed.

As a reference the eigenvalues λ
(N)
j of the discrete problem have been computed by a

shift-invert version of the subspace iteration1 where the arising shift-invert systems have
been solved with the help of the fast H-matrix algebra. As discussed in Section 5 the H-
matrix format can be applied to the mass and stiffness matrix, and preconditioners for the
corresponding shift-invert systems can be computed in almost linear complexity O(N logαN)
(cf. [13, 7]). We prefer the H-matrix approach over sparse direct solvers because they can
be expensive when the spatial domain is three-dimensional. The H-matrix version of the
shift-invert subspace iteration is called H-SIS.

The computational costs of H-SIS for computing the nev smallest eigenpairs are mainly
composed by the costs for the vector iteration (done in O(Cit nevN logN) using H-matrix
algebra), by the costs for computing the preconditioners (done in O(nevN logαN) using H-
matrix algebra), and by the computational costs for maintaining the orthogonality of the
iteration vectors (done in O(Cit n

2
evN) where Cit > 0 is the average number of matrix-vector

multiplications needed for the convergence of one iteration-vector).

1The subspace iteration is also called orthogonal iteration or simultaneous iteration.
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Figure 8: Relative errors δ

(N)
j of the small-

est 300 eigenvalues of the problem (29) for
varying mesh widths h.

There is a wide range of classical approaches and possible improvements for H-SIS. For
example a Block Lanczos process can be used instead of a subspace iteration as it is done in
the SIL algorithm [16], or the computational costs for the orthogonalisation can be reduced
by applying the reorthogonalisation as infrequently as possible and only for those vectors for
which it is necessary (cf. [1]).

Neglecting possible computational costs for the orthogonalisation and the predonditioners,
however, the best possible computational complexity of standard approaches would be

O
(
Cit nev N

)
. (30)

These costs are at least necessary for the matrix-vector multiplication until the iteration-
vectors converge to the smallest sought nev eigenvectors, i.e., the computational costs are
increasing at least linearly in nev. We will show by numerical experiments that we achieve
this complexity by H-AMLS.

Applying H-AMLS, the discrete problem (4) is projected onto a subspace using the fast
H-matrix algebra and the H-reduced eigenvalue problem (25) is obtained where the Rayleigh

quotients λ̂
rq

j are approximating the sought eigenvalues λj of (29). Beside the DOF of the

model, the relative errors δ̂
rq

j depend on the truncation bound ω and the chosen accuracy ε of
the H-matrix approximation. In the following we investigate how these parameters have to
be chosen so that the eigenvalue approximations of H-AMLS compete with those computed
by H-SIS. In particular we will test for nev = 10, 50, 100, 300 how the parameters have to be
selected so that the inequality

γ(N)
nev

< 3 (31)

holds where
γ(N)
nev

:= max
{
δ̂
rq

j / δ̂
(N)
j

∣∣ j = 1, . . . , nev

}
is the maximal ratio between the relative error δ

(N)
j associated to H-SIS (or another classical

approach) and the relative error δ̂
rq

j associated toH-AMLS. If inequality (31) is fulfilled it can
be said that the approximation error of H-AMLS is of the same order as the approximation
error of a classical approach as claimed in (28).
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7.1 Influence of the Modal Truncation

At first only the influence of the truncation bound ω is observed. To do this the H-matrix
approximation is deactivated in (23) by setting the parameter η from (21) to η = 0. Corre-
spondingly no subblock is admissible, no Rk-matrix approximation is applied and the block
diagonalisation of K and the matrix transformation of M in (23) are computed exactly (up to
machine precision). In this situation H-AMLS is equivalent with the classical AMLS method
and correspondingly the computations will be very expensive as described in Section 4.
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Figure 9: Influence of the truncation bound ω to the relative errors δ̂
rq

j of H-AMLS for

varying mesh widths and comparison with the relative errors δ
(N)
j of the classical approach

H-SIS. In this tests the H-matrix approximation was deactivated (η was set to 0).

In Figure 9 the relative errors δ̂
rq

j and in Table 3 the maximal ratios γ
(N)
nev are displayed for

the mesh widths h1, h2 and h3 using the truncation bounds

ω1 := 2000, ω2 := 5000 and ω3 := 10000.

For comparison with the classical approach the errors δ̂
(N)
j are displayed as well in Figure 9.

In Table 3 can be seen that for h1 the truncation bound ω1 is sufficient in such a way that
for all nev = 10, 50, 100, 300 the postulation (31) is fulfilled. For h2 the bound ω2 is sufficient
and for h3 the bound ω3. However, the computational costs are getting very expensive with
increasing DOF because η = 0.
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j nev j

∣∣∣∣γ(N)
nev for h1

∣∣∣∣ ∣∣∣∣γ(N)
nev for h2

∣∣∣∣ ∣∣∣∣γ(N)
nev for h3

∣∣∣∣
ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

10 1.17 1.00 1.00 2.66 1.34 1.06 30.03 3.85 2.58

50 1.22 1.01 1.00 3.08 1.42 1.08 34.64 5.45 2.78

100 1.22 1.01 1.00 3.08 1.42 1.08 35.52 6.22 2.78

300 1.28 1.02 1.00 3.57 1.46 1.11 40.58 6.47 2.78

Table 3: Influence of the truncation bound ω to the maximal ratios γ
(N)
nev for varying mesh

widths. In this tests the H-matrix approximation was deactivated (η was set to 0).

j nev j

∣∣∣∣γ(N)
nev for h1 using ω1

∣∣∣∣ ∣∣∣∣γ(N)
nev for h2 using ω2

∣∣∣∣ ∣∣∣∣γ(N)
nev for h3 using ω3

∣∣∣∣
ε1 ε2 η = 0 ε1 ε2 η = 0 ε1 ε2 η = 0

10 1.21 1.17 1.17 3.63 1.35 1.34 44.27 2.69 2.58

50 1.22 1.22 1.22 3.63 1.43 1.42 44.27 2.87 2.78

100 1.22 1.22 1.22 3.63 1.43 1.42 44.27 2.87 2.78

300 1.29 1.28 1.28 3.63 1.46 1.46 44.27 2.87 2.78

Table 4: Influence of the H-matrix approximation accuracy ε to the maximal ratios γ
(N)
nev

for varying mesh widths.

7.2 Influence of the H-Matrix Approximation

To speed up the computations of the block diagonalisation of K and the matrix transforma-
tion of M in (23) the H-matrix approximation is activated by setting the parameter η in (21)
back to η = 50. Accordingly certain subblocks get admissible and corresponding submatrices
are approximated by Rk-matrices with a given approximation accuracy ε.

In the passage before could be seen that the truncation bound ω1 was sufficient for the mesh
width h1, ω2 for the width h2 and ω3 for the width h3. Using this different truncation bounds
the computations have been done again applying the H-matrix approximation accuracies

ε1 := 1e-1 and ε2 := 1e-2.

The corresponding relative errors δ̂
rq

j are displayed in Figure 10 and in Table 4 the maximal

ratios γ
(N)
nev . In Table 4 can be seen that for h1 the truncation bound ω1 and the accuracy ε1

are sufficient to fulfil postulation (31) for all nev = 10, 50, 100, 300. For h2 are the parameters
ω2 and ε2 sufficient, and for h3 the parameters ω3 and ε2.

In Figure 9 and Figure 10 can be observed that for smaller mesh widths larger truncation
bounds ω and better H-matrix approximation accuracies ε are necessary to fulfil postulation
(31). Furthermore, in Figure 10, with the mesh width h3, can be seen that the approximation
of smaller eigenvalues behaves more sensitive to the chosen accuracy ε than the approximation
of larger eigenvalues.
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Figure 10: Influence of the H-matrix approximation accuracy ε to the relative errors δ̂
rq

j

of H-AMLS for varying mesh widths and comparison with the relative errors δ
(N)
j of the

classical approach H-SIS.

7.3 Analysis of the Computational Time

The computational costs of the benchmarks from the previous section, using sufficient param-
eters ω and ε, are given in Table 5 for nev = 300. The costs of the different tasks (indicated

in Table 1) are displayed there, and the order k of the H-reduced eigenvalue problem (K̂, M̂).

The computation of the block diagonalisation K = LHK̃H(LH)T and the matrix transfor-

mation M̃H = (LH)−1M(LH)−T , task (T2) and (T3), are dominating the costs of the other
tasks. In these benchmarks the eigenpairs of the H-reduced problem have been computed by
the dense eigensolver dsygvx of LAPACK. However, if the size k of the H-reduced problem
is getting larger a sparse eigensolver, e.g. provided by ARPACK, should be used because the
matrices K̂ and M̂ are sparse and only the smallest nev eigenpairs have to be computed (cf.
Remark 5 ii)). Correspondingly in Table 5 can be observed that the computational costs of
task (T7) are increasing stronger than the others.

The parameters ω and ε in the benchmarks have been chosen in such a way that they
fulfil postulation (31), i.e., that the eigenvalue approximations computed by H-AMLS are
of the same quality as approximations computed by a classical approach. In Table 4 can be
seen that the ratios between δ̂

rq

j and δ̂
(N)
j are only slowly increasing in j. It looks like that

ω and ε have to be chosen rather in dependency to the mesh width h than to the number

25



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  100  200  300  400  500  600  700  800

ti
m

e
 i
n
 s

e
c
o
n
d
s

nev

total time tall

Figure 11: Computational time of H-
AMLS for computing the smallest nev =
1, . . . , 790 = 10N1/3 eigenpairs for the mesh
width h3 using the parameters ω3 and ε2.∣∣∣ parameter problem size time for computing (percentage of total time) time

ω ε N k task (T2)–(T3) task (T4)–(T6) task (T7)–(T8) tall avg(tall)

h1 2,000 1e-1 6,859 776 9.78s (67.4%) 2.23s (15.3%) 1.90s (13.1%) 14.50s 7.04s

h2 5,000 1e-2 59,319 3,909 192 (50.2%) 47s (12.3%) 136s (35.6%) 382s 21.45s

h3 10,000 1e-2 493,039 11,679 2,636s (43.9%) 1,498s (24.9%) 1,816s (30.2%) 5,998s 40.55s

Table 5: Computational costs of H-AMLS computing the smallest nev = 300 eigenpairs for
varying mesh widths using sufficient parameters to fulfil postulation (31). tall is the total time
needed for the computations and avg(tall) the average time defined in (32) using nev = 300.

of sought eigenvalues nev to fulfil (31). It seems that in these benchmarks much more than
300 eigenvalue approximations can be computed with nearly the same approximation quality
as of an classical approach. Increasing the number of sought eigenpairs, however, increases
just slightly the computational costs of H-AMLS as it can be seen in Figure 11. This is a
big advantage to classical approaches whose computational costs are at least of the order
O(Cit nevN), i.e., whose costs at least linearly increasing in nev (cf. (30)). This is very useful
particularly because we are interested in computing a large amount of eigenpairs, e.g. the
first nev = CN1/3 or nev = CN1/2 ones for some C > 0, as discussed in Section 2.

In this context a possible measure for the performance of an eigensolver is the needed
computational time per eigenpair and per one Million DOF, formally defined by avg(tall),
where tall is the total time needed for the computation of the first nev eigenpairs and

avg(t) := avg(t, nev, N) :=
106 t

N nev
. (32)

Assume for example that a classical approach has the best possible complexity O(Cit nevN),
where in average 10 iterations are necessary until an iteration vector converges, and the
matrix-vector multiplication takes 5 seconds per one million DOF (experience value from
practice is 1s–10s, depending on the computer and without parallelisation) then the average
computational time of this eigensolver is avg(tall) = 50s.

To get an impression of the average computational time of H-AMLS, we want to determine
avg(tall) for varying N where the number of sought eigenpairs is set to nev := 10N1/3. The H-
matrix accuracy ε and the truncation bound ω, respectively, the number of selected eigenpairs
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Figure 12: Average computational times
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ki in (24) have to be chosen according to the DOF, as discussed in the previous sections, to
obtain eigenpair approximation of comparable quality to classical approaches. As orientation
we use the parameter settings from the benchmarks before. We set ε = 1e-1 for the mesh
width h1 and divide ε by three when h is halved. In stead of adjusting ω, we set the number
of selected eigenpairs to ki := (Ni)

1/3 if the subproblem is associated to a subdomain and to
ki := (Ni)

1/2 if it is associated to an interface. Using this parameter setting postulation (31)
was fulfilled for the mesh widths h1, h2 and h3.

Because in our implementation the dense eigensolver dsygvx is used instead of a sparse
solver as recommended the computational costs of task (T7) are omitted. Correspondingly
we investigate the average computational time avg(tall\T7) using definition (32) with nev =
10N1/3, where tall\T7 is the total computational time minus the time needed for task (T7).
In Figure 12 can be seen that this time is nearly constant which shows — without considering
the time for task (T7) — that H-AMLS computes the first nev = N1/3 eigenpairs with an
optimal complexity of O(Nnev).

Furthermore we investigated in Figure 12 the average computational time avg(ttrafo) where

ttrafo is the time needed for the block diagonalisation K = LHK̃H(LH)T and the matrix

transformation M̃H = (LH)−1M(LH)−T , task (T2) and (T3). These both tasks seem to be
the computational bottleneck of the H-AMLS method. It can be observed that the average
time avg(ttrafo) is slightly decreasing, and it even tends to zero because the computational
costs of these tasks are of the order O(N logαN).

8 Conclusion

To solve an elliptic PDE eigenvalue problem we have combined the automated multi-level sub-
structuring with the concept of hierarchical matrices. Whereas the classical AMLS method is
very effective in the two-dimensional case, it is getting very expensive for three-dimensional
problems. The required computation of the transformed eigenvalue problem (K̃, M̃) is one
computational bottleneck of the classical AMLS method in the three-dimensional case.Using
the fast H-matrix algebra, however, we can compute the transformed eigenvalue problem
very efficiently in almost linear complexity O(N logαN) which is even independent of the

number of sought eigenpairs. Also the computation of the partial eigensolutions (K̃ii, M̃ii)
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and the reduced eigenvalue problem (K̂, M̂) are performed much more efficiently using the
fast H-matrix algebra. Altogether the new H-AMLS method allows us to compute a large
amount of eigenpair approximations in almost optimal complexity.
H-AMLS has to be benchmarked in further examples, especially for problems arising from

applications. However, the numerical results demonstrate the potential of the method in
solving large-scale elliptic PDE eigenvalue problems. Moreover, H-AMLS is well suited for
parallelisation. Last but not least, a recursively applied version of H-AMLS might further
reduce the overall computational costs and lead to a solver of complexity o(Nnev).
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