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Abstract In the context of low Mach number flows, successful methods are
Asymptotic Preserving and IMEX schemes. Both schemes for hyperbolic equa-
tions rely on a splitting of the convective flux into stiff and nonstiff parts. This
choice is not arbitrary and has an influence on both the stability and the ac-
curacy of the resulting methods. In this work, we consider a first-order IMEX
scheme based on different splittings. Using the modified equation approach, we
can show that a new class of splittings based on characteristic decomposition,
also introduced in this work, gives rise to a stable method with a time step
independent of the small quantity ε, whereas a splitting taken from literature
can be identified to be stable only for small values of the CFL number.

1 Introduction, underlying equations and flux splitting

In recent years there has been a renewed interest in the computation of sin-
gularly perturbed differential equations. These equations arise, e.g., in the
simulation of low-speed fluid flows. Here we are interested in computing waves
with vastly different speeds. The goal is to resolve slow waves accurately and
efficiently with a large time step, while approximating the fast waves in a
stable way, using the same time step.

A class of algorithms that has found particular attention are the Asymptotic
Preserving schemes introduced by Jin [9] building on work with Pareschi and
Toscani [11]. For an excellent review article, consult [10]; we refer to [7,4,6,1,
14,16] for various applications of this method in different contexts.

All the algorithms used by the authors cited above rely on identifying
stiff and nonstiff parts of the underlying equation. This point is generally
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considered crucial as a well-chosen splitting guarantees a good behavior of the
algorithm. A splitting is usually obtained by physical reasoning, see e.g. the
fundamental work by Klein [12].

Having obtained a splitting into stiff and nonstiff parts, the nonstiff part
is then treated explicitly, and the stiff one implicitly. This procedure natu-
rally leads to so-called IMEX schemes as introduced in [2], see also [3,15] for
an interesting discussion on the quality of these schemes in the asymptotic
limit. In [8] the authors show that, if both the explicit and the implicit part
(considered separately) are stable, then so is the full algorithm. However, their
procedure does not yield quantitative information on the CFL numbers needed
for stability.

In this work, we investigate stability of the lowest-order IMEX scheme for
linear equations using the (heuristic) idea of the modified equation approach,
see [18]. We derive the modified parabolic system of equations of second order
and investigate under what conditions its solutions are damped. For simple
problems, we can investigate this analytically, for more involved problems, we
use numerical examples. The idea of the modified equation is closely related to
L2-stability, often also called linear stability, introduced in [13] as the famous
von-Neumann analysis. Strang [17] showed that, under some assumptions, it
is enough to consider only linearized problems, so the approach used in this
work is actually more general than it seems on first sight.

In this publication, we consider the linear system of conservation laws

ut +Aux = 0 ∀(x, t) ∈ Ω × (0, T ) (1)

u(x, 0) = u0(x) ∀x ∈ Ω (2)

with a constant matrix A ∈ Rd×d that has d distinct eigenvalues and a full set
of corresponding eigenvectors. For simplicity, we consider a periodic setting
with a period of one. Therefore, without loss of generality, we set Ω := [0, 1].
Furthermore, we assume that the matrix A is a function of a parameter ε ∈
(0, 1] such that with ε → 0, some eigenvalues of A diverge towards infinity.
We assume that u0 is a smooth periodic function on R with unit periodicity,
so that one can expect u to be smooth.

The motivation to consider (1) stems from considering linearized versions
of classical systems of conservation laws

vt + f(v)x = 0, (3)

e.g., the (non-dimensionalized) Euler equations at low Mach number ε, with
v = (ρ, ρu,E)T and

f(ρ, ρu,E) :=
(
ρu, ρu2 +

p

ε2
, u(E + p)

)T
. (4)

Its linearization around a state (ρ, ρu,E) yields a matrix A with eigenvalues

λ = u, u± c

ε
. (5)
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Note that two eigenvalues tend to infinity as ε→ 0.
To highlight the difficulties posed by eigenvalues of multiple scales we dis-

cuss a standard, explicit finite volume scheme

un+1
j − unj
∆t

+
Ĥn
j+ 1

2

− Ĥn
j− 1

2

∆x
= 0 (6)

with consistent numerical flux Ĥn
j+ 1

2

. From the stability conditions by Courant,

Friedrichs and Lewy [5], it is known that explicit schemes are only stable under
a CFL condition, which is typically given by

νmax := λmax
∆t

∆x
=

(u+ c
ε )∆t

∆x
< 1. (7)

In the limit as ε→ 0, one mainly wants to resolve the advective wave traveling
with speed u. Given the restrictive CFL condition (7), this would imply that
one needs O(ε−1) steps to advect a signal across a single grid cell. For small
ε, this is prohibitively inefficient, and for many schemes also prohibitively
dissipative. However, using

ν̂ := u
∆t

∆x
< 1 (8)

as advective CFL condition would result in an unstable scheme.
One potential remedy is to use fully implicit or mixed implicit / explicit

(IMEX) methods. The latter class of methods requires a splitting of A into
components with ’slow’ and ’fast’ waves. More specifically, one seeks matrices
Â and Ã, such that

A = Â+ Ã, (9)

with the following conditions posed on Â and Ã:

Definition 1 The splitting (9) is called admissible, if

– both Â and Ã induce a hyperbolic system, i.e., they have real eigenvalues
and a complete set of eigenvectors.

– the eigenvalues of Â are bounded independently of ε.

In this work, we give a recipe for identifying efficient and stable classes of
flux splittings. We use the well-known modified equation analysis as a tool for
(heuristically) investigating L2-stability.

The paper is outlined as follows: In Section 2, we introduce so-called char-
acteristic splittings, which will be basic ingredients for a stable scheme. In
Section 3, we introduce the lowest-order IMEX scheme, while in Section 4, we
investigate this scheme for stability using the modified equation approach. In
Section 5, we show that the characteristic splittings are stable in the sense as
explained in Section 4. Section 6 shows an example of an unstable scheme.
Finally, Section 7 offers conclusions and future work.
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2 Characteristic splitting

In this section, we introduce a new class of splittings that, with our analysis
to be presented, turns out to be uniformly stable in ε without any additional
stabilization terms. The splitting relies on a characteristic decomposition of
the matrix A, i.e., A can be decomposed into

A = QΛQ−1 (10)

for an invertible Q and Λ := diag(λ1, . . . , λd). The idea of the characteristic
splitting is to split the matrix Λ into stiff and nonstiff parts as

Λ = Λ̂+ Λ̃, (11)

where Λ̂ and Λ̃ are diagonal matrices and define an admissible splitting of Λ
in the sense of Definition 1. Consequently, the entries of Λ̂ can be bounded
independently of ε. Subsequently, the splitting is defined as

Â = QΛ̂Q−1 and Ã = QΛ̃Q−1. (12)

Obviously, the splitting is admissible in the sense of Definition 1. In the sequel,
we give two simple examples.

2.1 Prototype Matrix

We consider a prototype matrix A given by

A =

 a 1 0
1
ε2 a

1
ε2

0 1 a

 . (13)

Its eigenvalues are

λ = a, a±
√

2

ε
, (14)

and for simplicity, we consider a to be positive, i.e., λmax := a +
√
2
ε is the

largest eigenvalue.
In order to be fully explicit for ε = 1, we use a characteristic splitting with

Λ̂ := diag
(
a−
√

2, a, a+
√

2
)
, (15)

Λ̃ := diag

(
−
√

2(1− ε)
ε

, 0,

√
2(1− ε)
ε

)
. (16)

Consequently, we can derive matrices Â and Ã via (12) as

Â =

a ε 0
1
ε a

1
ε

0 ε a

 , Ã =

 0 1− ε 0
1−ε
ε2 0 1−ε

ε2

0 1− ε 0

 . (17)
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2.2 Euler equations

Here, we give a straightforward splitting of the linearization of equation (3)
with Euler fluxes (4). As the matrix A := f ′(ρ, ρu,E) is hyperbolic for any
choice of (ρ, ρu,E), it can also be diagonalized. Its eigenvalues are given in (5)
as

λ = u, u± c

ε
(18)

for c :=
√

γp
ρ . A straightforward splitting is given by using the diagonal ma-

trices

Λ̂ := diag (u− c, u, u+ c) , (19)

Λ̃ := diag

(
−c(1− ε)

ε
, 0,

c(1− ε)
ε

)
. (20)

Again, the stiff part vanishes for ε = 1; Â and Ã are defined via (12).

3 IMEX discretization

Based on a splitting as given in (9), we introduce a straightforward first-order

IMEX discretization based on nonstiff and stiff numerical fluxes Ĥ and H̃. We
assume that the temporal domain is subdivided as

0 = t0 < t1 < . . . < tN = T (21)

with constant spacing ∆t := tn+1 − tn; and that we have a subdivision

Ω :=

J⋃
j=0

[xj− 1
2
, xj+ 1

2
] (22)

also with constant spacing ∆x := xj+ 1
2
− xj− 1

2
and cell midpoints xj . As

is customary, we denote an approximation to u(xj , t
n) by unj . Furthermore,

the vector (un0 , . . . u
n
J) is denoted by un. Now we can introduce a (classical)

first-order IMEX scheme:

Definition 2 A sequence (u0, . . . , uN ) is a solution to an IMEX discretization,
given that

Inj (un, un+1) :=
un+1
j − unj
∆t

+
Ĥn
j+ 1

2

− Ĥn
j− 1

2

∆x
+
H̃n+1
j+ 1

2

− H̃n+1
j− 1

2

∆x
= 0 ∀j, n.

(23)

Here, nonstiff and stiff numerical fluxes are defined by

Ĥnj+ 1
2

:=
1

2
Â
(
unj+1 + unj

)
− α̂

2

(
unj+1 − unj

)
(24)

H̃n+1
j+ 1

2

:=
1

2
Ã
(
un+1
j+1 + un+1

j

)
− α̃

2

(
un+1
j+1 − u

n+1
j

)
, (25)

with (positive) numerical viscosities α̂ and α̃.
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For fixed ε, consistency analysis of the scheme is well-known. However, we
have to consider both ε and ∆t as small parameters. The crucial point is that
we restrict our analysis to cases where the magnitude of u and its derivatives
are independent of ε. (Especially, no derivative behaves as O(ε−1) or worse.)
This assumption is reasonable, as only these solutions allow for an asymptotic
limit as ε→ 0.

Lemma 1 Let Un denote the vector (u(x0, t
n), . . . , u(xJ , t

n)) with u solution
to (1) whose derivatives can be bounded independently of ε; and similarly for
Un+1. Furthermore, let O(∆x) = O(∆t). Then, the local truncation error is
of order ∆x, i.e., there holds

Inj (Un, Un+1) = O(∆x). (26)

Proof Apply a Taylor expansion to (23) and note that all the derivatives of u
can be bounded independently of ε.

The focus of this paper is on uniform stability as ε → 0, where the fast
wave speeds tend to infinity. As outlined in the introduction, the goal is to
overcome the inefficiency of a fully explicit scheme due to condition (7), or the
instability due to condition (8). In the following (cf. Lemma 3), we will derive
upper bounds on the nonstiff CFL number that assure stability (in a sense to
be made more precise) of IMEX scheme (23) for a characteristic splitting.

4 Modified equation analysis

In this section, we derive the modified equation [18] corresponding to (23).
As we consider a periodic setting, we can solve the resulting parabolic system
explicitly using Fourier series. Using Plancherel’s theorem, we investigate the
stability of the modified equation. This yields a practical criterion for the
stability of the IMEX scheme.

We start by deriving the modified equation corresponding to (23).

Theorem 1 Let w be a smooth solution of

wt +Awx =
∆t

2

(
(α̂+ α̃)∆x

∆t
Id−(Â− Ã)A

)
wxx. (27)

Furthermore, we consider vector Wn := (w(x0, t
n), . . . , w(xJ , t

n)). Then, for
fixed ε and O(∆x) = O(∆t), the IMEX scheme (23) is a second order accurate
discretization of (27), i.e.

Inj (Wn,Wn+1) = O(∆x2). (28)

Proof It is well-known that the modified equation for a first-order discretization
is a parabolic equation, i.e., we expect w to fulfill

wt +Awx = Bwxx (29)
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for a (yet unknown) viscosity matrix B that is in class O(∆x). Applying the
Cauchy-Kovalewskaya expansion to (29) gives

wt = −Awx +Bwxx (30)

wtt = −A(wt)x +B(wt)xx
(30)
= A2wxx +O(∆t). (31)

To simplify the presentation, we slightly abuse our notation, and write wnj for
w(xj , t

n). Using (31) at position (xj , t
n),

wn+1
j − wnj
∆t

= wt +
∆t

2
wtt +O(∆t2) (32)

= wt +
∆t

2
A2wxx +O(∆t2) (33)

and

Ĥn
j+ 1

2

− Ĥn
j− 1

2

∆x
=

1

2∆x
Â
(
wnj+1 − wnj−1

)
− α̂

2∆x

(
wnj−1 − 2wnj + wnj+1

)
(34)

= Â wx −
α̂∆x

2
wxx +O(∆x2). (35)

Similarly,

H̃n
j+ 1

2

− H̃n
j− 1

2

∆x
=

1

2∆x
Ã
(
wn+1
j+1 − w

n+1
j−1

)
− α̃

2∆x

(
wn+1
j−1 − 2wn+1

j + wn+1
j−1

)
(36)

= Ãwx(xj , t
n+1)− α̃∆x

2
wxx(xj , t

n+1) +O(∆x2). (37)

From (30),

wx(xj , t
n+1) = wx(xj , t

n)−∆tAwxx +O(∆t2), (38)

while wxx(xj , t
n+1) = wxx(xj , t

n) +O(∆t). Therefore,

H̃n
j+ 1

2

− H̃n
j− 1

2

∆x
= Ãwx −∆tÃAwxx −

α̃∆x

2
wxx +O(∆x2). (39)

Now we plug (32), (34) and (39) into (23) to obtain, always at position
(xj , t

n),

Inj (Wn,Wn+1) (40)

= wt +
∆t

2
A2wxx + Âwx −

α̂

2
∆xwxx (41)

+ Ãwx −∆tÃAwxx −
α̃

2
∆xwxx +O(∆x2) (42)

= wt + (Â+ Ã)wx (43)

+
∆t

2

(
A2 − 2ÃA− α̂∆x

∆t
Id−α̃∆x

∆t
Id

)
wxx +O(∆x2). (44)
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This is O(∆x2) if and only if w fulfills (29) with

B =
∆t

2

(
−A2 + 2ÃA+ α̂

∆x

∆t
Id +α̃

∆x

∆t
Id

)
(45)

=
∆t

2

(
(α̂+ α̃)∆x

∆t
Id−(Â− Ã)A

)
. (46)

Note that we have repeatedly used the assumption O(∆x) = O(∆t). This proves
the claim.

In the sequel, we show how (27) can be used to determine whether (and
under what CFL condition) the IMEX scheme (23) is stable. We begin by
deriving an exact solution to (29) using a Fourier ansatz. Note that A is a
d× d matrix.

Lemma 2 Let w0 be given by

w0(x) =
∑
k∈Z

a
1
k
...
adk

 ei2πkx. (47)

Furthermore, let w be a solution to

wt +Awx = Bwxx ∀(x, t) ∈ Ω × (0, T ) (48)

w(x, 0) = w0(x) ∀x ∈ Ω. (49)

Then, w admits a representation

w(x, t) =
∑
k∈Z

a
1
k(t)
...

adk(t)

 ei2πkx (50)

with a1k, . . . , a
d
k fulfilling the system of d differential equationsa

1
k(t)′

...
adk(t)′

 = Ak

a
1
k(t)
...

adk(t)

 (51)

for

Ak := (−i2πkA− 4π2k2B) (52)

and initial conditions a
1
k(0)
...

adk(0)

 =

a
1
k
...
adk

 . (53)
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Proof The proof exploits direct computations and starts with assuming that
the representation (50) is correct. Thus, plugging (50) into (48), one obtains

∑
k∈Z


a

1
k(t)′

...
adk(t)′

+ i2πkA

a
1
k(t)
...

adk(t)

+ 4π2k2B

a
1
k(t)
...

adk(t)


 ei2πkx = 0. (54)

Exploiting the linear independence of ei2πkx for different k, one obtains (51).

Remark 1 1. Every periodic piecewise smooth function w0 can be written as
in (47).

2. For future reference, we call Ak the frequency matrices of the modified
equation (27).

The following corollary is a direct consequence from the theory of ordinary
differential equations, and Plancherel’s theorem.

Corollary 1 We consider the setting as in Lemma 2. Then,

‖w(·, t)‖L2(Ω) ≤ ‖w0(·)‖L2(Ω) (55)

holds if

Real(µi) < 0 (56)

for all eigenvalues µi of Ak with k ∈ Z \{0}.

Remark 2 One might argue that Corollary 1 is not needed in the sense that
for every matrix B with B positive definite, there holds (55). Indeed, for B
positive definite and, say A symmetric, one has, using an energy argument
on equation (48) (integration is over Ω, and as the problem is periodic, the
boundary terms vanish)

d

dt

‖w‖2L2(Ω)

2
= (wt, w) = −(Awx, w) + (w,Bwxx) (57)

= (Aw,wx)− (wx, Bwx) = ((wAw)x,
1

2
)− (wx, Bwx) < 0 (58)

and ergo (55). However, this is only a sufficient, not a necessary condition.

Consider, e.g., the pair of matrices A = Id and B =

(
5 1
−2 0

)
. Obviously, B

is not positive definite (note that xTBx < 0 for, e.g., x := (1, 10)T ), however,
the eigenvalues of Ak have negative real part, and consequently, the complete
system (48) is stable. (A tedious computation reveals that the eigenvalues of
Ak are 2πk

(
(±
√

17− 5)πk − i
)
.)

The real part of the eigenvalues of Ak is not affected by the terms coming
from A if matrices A and B can be simultaneously diagonalized. This was the
motivation for considering the characteristic splitting introduced in (12).
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5 Stability of characteristic flux splittings

Now, we combine Theorem 1 and Corollary 1 to obtain a necessary criterion
under what circumstances the IMEX scheme (23) is stable.

We consider the characteristic splitting (12) in the light of Corollary (1).

For a generic splitting with commuting matrices Â and Ã, the frequency matrix
Ak can be written as

Ak = −i2πkA− 2π2k2∆t

(
(α̂+ α̃)∆x

∆t
Id−(Â− Ã)(Â+ Ã)

)
(59)

= −i2πkA− 2π2k2∆t

(
(α̂+ α̃)∆x

∆t
Id−Â2 + Ã2

)
. (60)

Note that A0 = 0, since constant solutions of the modified equations are
independent of time. Therefore we need to analyze only the case k 6= 0. As
we rely on a characteristic splitting, all the matrices occurring in (60) can be
written as QΣQ−1 for some diagonal matrix Σ. Therefore, it is easy to see
that the real part µi of the eigenvalues of Ak is given by

Real(µi) = 2π2k2∆t

(
− (α̂+ α̃)∆x

∆t
+ λ̂2i − λ̃2i

)
(61)

where λ̂i and λ̃i are eigenvalues to Â and Ã, respectively. Claiming that
Real(µi) is negative leads to

(α̂+ α̃)∆x

∆t
> λ̂2i − λ̃2i . (62)

This is a good result in the following sense: λ̂2i can be bounded independently
of ε. Therefore, for

∆t

∆x
<
α̂+ α̃

λ̂2i
, ∀i, (63)

(62) and thus Corollary (1) holds. (63) is a restriction that can be made
independent of ε. We summarize this in the following lemma.

Lemma 3 The characteristic splitting as introduced in (12) can always be
made stable with a time step size independent of ε.

In the sequel, we consider a prototype system in more detail to obtain
quantitative information.
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5.1 Characteristic Splitting of prototype equation

In this section, we consider the prototype matrix from Section 2.1, as it al-
lows for easy computations. The non-dimensionalized advective CFL number
corresponding to A is denoted by

ν̂ :=
a∆t

∆x
. (64)

Given k 6= 0, we consider the frequency matrix Ak for the characteris-
tic splitting introduced in (12). One potential advantage of the characteristic
splitting is that one can compute the eigenvalues explicitly, as all the matrices
commute:

Lemma 4 The real part of the eigenvalues µi of Ak are given by

Real(µ1) = −2π2k2∆x(α̂+ α̃) + 2π2k2∆ta2 (65)

Real(µ2,3) =
−4π2k2∆t

ε2
+

8∆tk2π2

ε
(66)

+ 2π2k2a2∆t− 2π2k2∆x(α̂+ α̃)± 4
√

2aπ2k2∆t. (67)

Proof With the notation introduced in (10) and (12), see also (60), there holds

Ak = −i2πkQΛQ−1 − 2π2k2∆t

(
(α̂+ α̃)∆x

∆t
Id−(Q(Λ̂− Λ̃)Q−1)QΛQ−1

)

(68)

= Q

(
−i2πkΛ− 2π2k2∆t

(
(α̂+ α̃)∆x

∆t
Id−(Λ̂− Λ̃)Λ

))
Q−1 (69)

= Qdiag


−i2πk(a−

√
2
ε )− 2π2k2∆t

(
(α̂+α̃)∆x

∆t + 2
ε2 −

4
ε + 2

√
2a− a2

)
−i2πka− 2π2k2∆t

(
(α̂+α̃)∆x

∆t − a2
)

−i2πk(a+
√
2
ε )− 2π2k2∆t

(
(α̂+α̃)∆x

∆t + 2
ε2 −

4
ε − 2

√
2a− a2

)
Q−1

(70)

Thus, one can conclude that the eigenvalues of Ak are those of the diagonal
matrix. Sorting the eigenvalues conveniently, starting with the one in the mid-
dle, one can conclude that their Real parts are given by formulae (65) and
(66).

The problem under consideration has two asymptotics, namely the one
associated to ε→ 0, and the other one associated to ∆t→ 0 (which automat-
ically includes ∆x → 0). We immediately obtain the following condition for
the negativity of the first eigenvalue:

Lemma 5 Real(µ1) < 0 under the CFL condition

ν̂ < ν1 :=
α̂+ α̃

a
. (71)
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Remark 3 Condition (71) is a condition for the nonstiff CFL number ν̂ from
(64). It depends on both α̂ and α̃. The coefficient α̂ encodes the upwind vis-
cosity of the explicit numerical flux (24), and is usually chosen as a+

√
2, the

largest eigenvalue of the nonstiff matrix. There is more freedom to choose the
viscosity coefficient of the implicit numerical flux (25), and limiting choices

are either α̃ =
√
2(1−ε)
ε (the largest eigenvalue of the nonstiff matrix) or α̃ = 0.

In both cases, α̂+ α̃ ≥ a+
√

2, which gives the sufficient stability condition

ν̂ <
a+
√

2

a
. (72)

This is independent of ε.

Now we discuss Real(µ2,3). Obviously, for ∆t fixed and ε→ 0, Real(µ2,3) <
0, which directly yields the following Theorem:

Theorem 2 Let ∆t be fixed. Then, there exists an ε0 > 0, such that for all
ε < ε0 and all k 6= 0, Real(µ2,3) < 0.

However, this is not the full asymptotics. We therefore change the point of
view: Given a fixed ε, for which ∆t is Real(µ2,3) < 0? The following lemma
provides the crucial estimate:

Lemma 6 We define

ϕ(a) :=

√
2

a+ 2
√

2
. (73)

Now, consider two cases as follows:

1. Let ε ≤ ϕ(a). Then, Real(µ2,3) < 0 holds unconditionally.
2. Let ϕ(a) < ε. Then, Real(µ2,3) < 0 holds for

ν̂ <
(α̂+ α̃)a

−2+4ε
ε2 + a2 + 2

√
2a

(74)

which is automatically fulfilled for

ν̂ ≤ (α̂+ α̃)a

(a+
√

2)2
. (75)

Proof Obviously, one only has to show that

0 >
−4π2k2∆t

ε2
+

8∆tk2π2

ε
+ 2π2k2a2∆t− 2π2k2∆x(α̂+ α̃) + 4

√
2aπ2k2∆t.

(76)

We substitute ∆x = a∆t
ν̂ and obtain

0 >
−4

ε2
+

8

ε
+ 2a2 − 2(α̂+ α̃)a

ν̂
+ 4
√

2a (77)

⇔ (α̂+ α̃)a

ν̂
>
−2

ε2
+

4

ε
+ a2 + 2

√
2a. (78)
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(78) is trivially fulfilled, if the right-hand side is not positive, i.e., if

0 ≥ −2

ε2
+

4

ε
+ a2 + 2

√
2a (79)

⇔ 0 ≥ −2 + 4ε+ ε2
(
a2 + 2

√
2a
)

(80)

⇔ 0 ≤ ε ≤ ϕ(a). (81)

This proves the first claim that for all ε ≤ ϕ(a), both Real(µ2,3) are negative.

Now let ϕ(a) < ε. In this case, the right-hand side of (78) is positive, and
therefore one has a restriction on ν̂. One can compute

(α̂+ α̃)a

ν̂
>
−2

ε2
+

4

ε
+ a2 + 2

√
2a (82)

⇔ ν̂

(α̂+ α̃)a
<

1
−2+4ε
ε2 + a2 + 2

√
2a
. (83)

As −2+4ε
ε2 ≤ 2 for 0 ≤ ε ≤ 1, this is fulfilled if

ν̂

(α̂+ α̃)a
≤ 1

2 + a2 + 2
√

2a
=

1

(a+
√

2)2
(84)

This proves the lemma.

With Lemmas 5 and 6 we obtain the following

Theorem 3 For k 6= 0, Real(µ1) < 0 and Real(µ2,3) < 0 if

ν̂ < ν2 := ν1 ψ(ε) (85)

with

ψ(ε) := ψ(ε, a) :=

min

(
1, a2

(
√
2+a)2−2( 1−ε

ε )
2

)
, ε > ϕ(a)

1, ε ≤ ϕ(a).
(86)

From the previous considerations, we can conclude that our scheme is stable
under (at most!) the nonstiff CFL condition.

Corollary 2 We choose α̂ = a +
√

2. Then, the scheme is stable for all 0 ≤
ε ≤ 1 if

(a+
√

2)∆t

∆x
< 1. (87)
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Fig. 1 Plot of function ϕ from (73).

Proof Consider expression (85) and plug in the definition of both ψ from (86)
and ν1 from (71). We consider case ε > ϕ(a) first, and obtain(

α̂+ α̃

a

)
min

(
1,

a2

(
√

2 + a)2 − 2
(
1−ε
ε

)2
)
≥
(
α̂+ α̃

a

)(
a2

(
√

2 + a)2

)
(88)

≥ (a+
√

2)a

(
√

2 + a)2
≥ a

a+
√

2
. (89)

Ergo, ν̂ < a
a+
√
2

is sufficient for (85), which implies (87). Similarly, for ε ≤
ϕ(a), one can easily show that ν̂ < ν1 is fulfilled given that (87) holds.

Remark 4 – The function ϕ(a) has been plotted in Fig. 1. Note that the
bound ε ≤ ϕ(a) implies that there is an ε0 > 0, such that ε < ε0. This is
particularly interesting if one is only interested in the case ε→ 0, because
ultimately, one only has to respect CFL condition (71) which is a condition
on the convective CFL number only.

– In Fig. 2, we plotted the numerically determined maximum allowable ν̂
values such that the real part of the eigenvalues of Ak are negative. For
the particular computations, we choose a = 2, ∆x = 10−2, ∆t = ∆x

aν̂ ,

α̂ = 2 +
√

2, α̃ = 0 or α̃ =
√
2(1−ε)
ε and determine the maximum ν̂, such

that Real(µi) < 0 for all i = 1, 2, 3 and for all |n| ≤ 25. (Note however from
our description of the eigenvalues in (65)-(66), the results are independent
of ∆t, ∆x and n.)

6 On the instability of splittings for the Euler equations

The approach pursued in this paper for the simple splitting as introduced in
(12) can also be applied to other, more involved splittings. However, comput-
ing the eigenvalues of Ak analytically may be hard or even impossible, because
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Fig. 2 Determined CFL number versus a-priori estimates. Left: α̃ = 0, Right: α̃ =
√
2(1−ε)
ε

.

for general splittings, there is no simultaneous diagonalization of the matrices
involved and ergo, one can not compute the eigenvalues easily. What is, how-
ever, possible, is to numerically evaluate, for different ratios of ∆x and ∆t, the
eigenvalues of Ak and decide whether their real parts are negative. Of course
this can only be performed for a finite number of Fourier modes k, however,
it gives an idea of what is to be expected.

We consider equation (3) with the usual equation of state for pressure p,

p = (γ − 1)(E − 1

2
ρu2), (90)

linearized around a state v0 := (ρ0, ρ0u0, E0). For the linearization matrix
f ′(v0), we consider two different splittings:

1. The first splitting is the characteristic splitting introduced in (12) using

diagonal matrices Λ̂ and Λ̃ as given in (19)-(20).
2. The second one is a splitting taken from literature [14]. This splitting is a

modification of Klein’s original splitting [12], and it is given by a splitting
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of the flux function f(v) into the sum of

f̂(v) :=
(
ρu, ρu2 + p, u(E +Π)

)T
, (91)

f̃(v) :=

(
0,

1− ε2

ε2
p, u(p−Π)

)
. (92)

Π is an auxiliary pressure function, and it is defined by

Π(x, t) := ε2p(x, t) + (1− ε2) inf
x
p(x, t). (93)

The splittings are linearized, and one obtains an admissible splitting of
f ′(v0).

We perform the following numerical experiment: For the values ρ0 = 1,

p0 = 1, and u0 =
√
γ

2 , we compute, for ∆x = 10−2, the largest ∆t such that the
eigenvalues of the matrix Ak have negative real part. The numerical viscosities
are chosen as the maximum eigenvalues of the corresponding matrices. Results
can be seen in Fig. 3. It can be clearly seen that, in order to be stable, the
splitting taken from literature [14] needs a time step that decreases with ε.
This is clearly not what one focuses on in asymptotic preserving schemes; it
has however been already numerically experienced by the authors, which is
why they include a stabilization term to render the scheme stable.

7 Conclusions and Outlook

We developed a technique to investigate the stability and the largest allowable
time steps for low-order IMEX schemes based on a general class of splittings
for linear hyperbolic conservation laws. Our analysis confirms the common
believe that the nonstiff CFL number plays a crucial role in the stability con-
dition. Indeed, it needs to be smaller than a constant multiple of the numerical
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viscosities, and in the examples we considered, it is independent of the small
parameter ε.

Furthermore, we introduced a new way of obtaining suitable splittings via
characteristic decomposition of the flux Jacobian. We demonstrated that the
splitting does influence the stability of the resulting method, and therefore,
one should put effort into designing suitable flux splittings.

The extension of this analysis to nonlinear systems of conservation laws is
not straightforward. However, considering the linearized equations, the anal-
ysis can be easily used as a guiding principle, similar as the von-Neumann
analysis. Furthermore, the extension of both the stability analysis and the
characteristic splittings to multiple dimensions is not straightforward, as mul-
tiple matrices do not necessarily commute. However, as the numerical flux only
acts on the flux function in normal direction, we believe that the construction
of a characteristic splitting is, nevertheless, possible.

The results presented in this paper do not include any statements about
the quality of the approximation of the IMEX scheme, but we obtain a pure
stability analysis. Future work will account for such issues in the context of
compressible flows.
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