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1 Introduction

Instrumental Variables (IV) refers to a set of methods developed in econometrics starting

in the 1920s to draw causal inferences in settings where the treatment of interest cannot

be credibly viewed as randomly assigned, even after conditioning on additional covari-

ates.1 In the last two decades these methods have attracted considerable attention in the

statistics literature. Although this recent statistics literature builds on the earlier econo-

metric literature, there are nevertheless important differences. First, the recent statistics

literature primarily focuses on the binary treatment case. Second, the recent literature

explicitly allows for treatment effect heterogeneity. Third, the recent instrumental vari-

ables literature explicitly uses the potential outcome framework used by Neyman for

randomized experiments and generalized to observational studies by Rubin (1974, 1978,

1990). Fourth, in the applications this literature has concentrated on, including random-

ized experiments with non-compliance, the intention-to-treat or reduced-form estimates

are often of greater interest than they are in the traditional econometric simultaneous

equations applications.

Partly the recent statistics literature has been motivated by the earlier econometric

literature on instrumental variables, starting with Wright (1928) (see the discussion on

the origins of instrumental variables in Stock and Trebbi, 2003). However, there are also

other antecedents, outside of the traditional econometric instrumental variables litera-

ture, notably the work by Zelen on encouragement designs (Zelen, 1979, 1990). Early pa-

pers in the recent statistics literature include Angrist, Imbens and Rubin (1996), Robins

(1989), and McClellan and Newhouse (1994). Recent reviews include Rosenbaum (2010),

Vansteelandt, Bowden, Babanezhad, and Goetghebeur (2011) and Hernán and Robins

(2006). Although these reviews include many references to the earlier economics litera-

ture, it might still be useful to discuss the econometric literature in more detail to provide

some background and perspective on the applicability of instrumental variables methods

in other fields. In this discussion I will do so.

Instrumental variables methods have been a central part of the econometrics canon

1There is another literature in econometrics using instrumental variables methods to deal with clas-
sical measurement error (where explanatory variables are measured with error that is independent of
the true values). My remarks in the current paper do not directly reflect on that literature. See Sargan
(1958) for a classical paper, and Hillier (1992) and Arellano (2002) for more recent discussions.
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since the first half of the twentieth century, and continue to be an integral part of most

graduate and undergraduate textbooks (e.g., Angrist and Pischke, 2008; Bowden and

Turkington, 1984; Greene, 2011; Hayashi, 2000; Manski, 1995; Stock and Watson, 2010;

Wooldridge, 2002, 2008). Like the statisticians Fisher and Neyman (Fisher, 1925; Ney-

man, 1923), early econometricians such as Wright (1928), Working (1927), Tinbergen

(1930) and Haavelmo (1943) were interested in drawing causal inferences, in their case

about the effect of economic policies on economic behavior. However, in sharp contrast to

the statistical literature on causal inference, the starting point for these econometricians

was not the randomized experiment. From the outset there was a recognition that in

the settings they studied, the causes, or treatments, were not assigned to passive units

(economic agents in their setting, such as individuals, households, firms, or countries).

Instead the economic agents actively influence, or even explicitly choose, the level of the

treatment they receive. Choice, rather than chance, was the starting point for think-

ing about the assignment mechanism in the econometrics literature. In this perspective,

units receiving the active treatment are different from those receiving the control treat-

ment not just because of the receipt of the treatment: they (choose to) receive the active

treatment because they are different to begin with. This makes the treatment potentially

endogenous, and creates what is sometimes in the econometrics literature referred to as

the selection problem (Heckman, 1979).

The early econometrics literature on instrumental variables did not have much of an

impact on thinking in the statistics community. Although some of the technical work on

large sample properties of various estimators did get published in statistics journals (e.g.,

the still influential Anderson and Rubin (1948) paper), applications by non-economists

were rare. It is not clear exactly what the reasons for this are. One possibility is the

fact that the early literature on instrumental variables was closely tied to substantive

economic questions (e.g., interventions in markets), using theoretical economic concepts

that may have appeared irrelevant or difficult to translate to other fields (e.g., supply and

demand). This may have suggested to non-economists that the instrumental variables

methods in general had limited applicability outside of economics. The use of economic

concepts was not entirely unavoidable, as the critical assumptions underlying instrumen-

tal variables methods are substantive and require subtle subject matter knowledge. A

second reason may be that although the early work by Tinbergen and Haavelmo used
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a notation that is very similar to what Rubin (1974) later called the potential outcome

notation, quickly the literature settled on a notation only involving realized or obseved

outcomes. See for a historial perspective Hendry and Morgan (1992) and Imbens (1997).

This realized-outcome notation that remains common in the econometric textbooks ob-

scures the connections between the Fisher and Neyman work on randomized experiments

and the instrumental variables literature. It is only in the 1990s that econometricians

returned to the potential outcome notation for causal questions (e.g., Heckman, 1990,

Manski, 1990; Imbens and Angrist, 1994), facilitating and initiating a dialogue with

statisticians on instrumental variable methods.

The main theme of the current paper is that the early work in econometrics is help-

ful in understanding the modern instrumental variables literature, and furthermore, is

potentially useful in improving applications of these methods and identifying potential

instruments. These methods may in fact be useful in many settings statisticians study.

Exposure to treatment is rarely solely a matter of chance or solely a matter of choice.

Both aspects are important and help to understand when causal inferences are credible

and when they are not. In order to make these points I will discuss some of the early

work and put it in a modern framework and notation. In doing so I will address some

of the concerns that have been raised about the applicability of instrumental variables

methods in statistics. I will also discuss some areas where the recent statistics literature

has extended and improved our understanding of instrumental variables methods. Fi-

nally I will review some of the econometric terminology and relate it to the statistical

literature to remove some of the semantic barriers that continue to separate the litera-

tures. I should emphasize that many of the topics discussed in this review continue to

be active research areas, about which there is considerable controversy both inside and

outside of econometrics.

The remainder of the paper is organized as follows. In Section 2 I will discuss the

distinction between the statistics literature on causality with its primary focus on chance,

arising from its origins in the experimental literature, and the econometrics or economics

literature with its emphasis on choice. The next two sections discuss in detail two classes

of examples. In Section 3 I discuss the canonical example of instrumental variables in

economics, the estimation of supply and demand functions. In Section 4 I discuss a

modern class of examples, randomized experiments with noncompliance. In Section 5 I
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discuss the substantive content of the critical assumptions, and in Section 6 I link the

current literature to the older textbook discussions. In Section 7 I discuss some of the

recent extensions of traditional instrumental variables methods. Section 8 concludes.

2 Choice versus Chance in Treatment Assignment

Although the objectives of causal analyses in statistics and econometrics are very similar,

or even identical, namely the estimation of, and inference for, causal effects, traditionally

statisticians and economists have approached these questions very differently. A key

difference in the approaches taken in the statistical and econometric literatures is the

focus on different assignment mechanisms, those with an emphasis on chance versus

those with an emphasis on choice. Although in practice in many observational studies

assignment mechanisms have elements of both chance and choice, the traditional starting

points in the two literatures are very different, and it is only recently that these literatures

have discovered how much they have in common.2

2.1 The Statistics Literature: The Focus on Chance

The starting point in the statistics literature, going back to Fisher (1925) and Neyman

(1923), is the randomized experiment, with both Fisher and Neyman motivated by agri-

cultural applications where the units of analysis are plots of land. To be specific, suppose

we are interested in the average causal effect of a binary treatment or intervention, say

fertilizer A or fertilizer B, on plot yields. In the modern notation and language origi-

nating with Rubin (1974), the unit (plot) level causal effect is a comparison between the

two potential outcomes, Yi(A) and Yi(B) (e.g., the difference τi = Yi(B)− Yi(A)), where

Yi(A) is the potential outcome given fertilizer A and Yi(B) is the potential outcome given

fertilizer B, both for plot i. In a completely randomized experiment with N plots we

select M (with M ∈ {1, . . . , N − 1}) plots at random to receive fertilizer B, with the

2In both literatures it is typically assumed that there is no interference between units. In the statistics
literature this is often referred to as the Stable Unit Treatment Value Assumption (SUTVA, Rubin, 1978).
In economics there are many cases where this is not a reasonable assumption because there are general

equilibrium effects. In an interesting recent experiment Crépon, Duflo, Gurgand, Rathelot, and Zamoray
(2012) varied the scale of experimental interventions (job training programs in their case) in different
labor markets and found that the scale substantially affected the average effects of the interventions.
There is also a growing literature on settings directly modelling interactions. In this discussion I will
largely ignore the complications arising from interference between units.
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remaining N−M plots assigned to fertilizer A. Thus, the treatment assignment, denoted

by Wi ∈ {A, B} for plot i, is by design independent of the potential outcomes. In this

specific setting the work by Fisher and Neyman shows how one can draw exact causal in-

ferences. Fisher focused on calculating exact p-values for sharp null hypotheses, typically

the null hypothesis of no effect whatsoever, Yi(A) = Yi(B) for all plots. Neyman focused

on developing unbiased estimators for the average treatment effect
∑

i(Yi(A)−Yi(B))/N

and the variance of those estimators.

The subsequent literature in statistics, much of it associated with the work by Rubin

and coauthors (Cochran, 1968; Cochran and Rubin, 1973; Rubin, 1974, 1990, 2006;

Rosenbaum and Rubin, 1983; 1984; Rubin and Thomas 1992; Rosenbaum, 2002, 2010;

Holland, 1986) has focused on extending and generalizing the Fisher and Neyman results

that were derived explicitly for randomized experiments to the more general setting

of observational studies. A large part of this literature focuses on the case where the

researcher has additional background information available about the units in the study.

The additional information is in the form of pretreatment variables or covariates not

affected by the treatment. Let Xi denote these covariates. A key assumption in this

literature is that conditional on these pretreatment variables the assignment to treatment

is independent of the treatment assignment. Formally,

Wi ⊥ Yi(A), Yi(B)
∣∣∣ Xi. (unconfoundedness)

Following Rubin (1990), I refer to this assumption as unconfoundedness given Xi, also

known as no unmeasured confounders. This assumption, in combination with the auxil-

iary assumption that for all values of the covariates the probability of being assigned to

each level of the treatment is strictly positive is referred to as strong ignorability (Rosen-

baum and Rubin, 1984). If we assume only that Wi ⊥ Yi(A)|Xi and Wi ⊥ Yi(B)|Xi

rather than jointly, the assumption is referred to as weak unconfoundedness (Imbens,

2000), and the combination as weak ignorability. Substantively it is not clear that there

are cases in the setting with binary treatments where the weak version of plausible but

not the strong version, although the difference between the two assumptions has some

content in the multivalued treatment case (Imbens, 2000). In the econometric literature

closely related assumptions are referred to as selection-on-observables (Barnow, Cain and

Goldberger (1980) or exogeneity.
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Under weak ignorability (and thus also under strong ignorability) it is possible to

estimate the average effect of the treatment in large samples, in other words, the average

effect of the treatment is identified. Various specific methods have been proposed, includ-

ing matching, subclassification, and regression. See Rosenbaum (2010), Rubin (2006),

Imbens (2004, 2014), Gelman and Hill (2006), and Angrist and Pischke (2009) for gen-

eral discussions and surveys. Robins and coauthors (Robins, 1986; Gill and Robins,

2001; Richardson, and Robins, 2013; Van der Laan and Robins, 2003), have extended

this approach to settings with sequential treatments.

2.2 The Econometrics Literature: The Focus on Choice

In contrast to the statistics literature whose point of departure was the randomized

experiment, the starting point in the economics and econometrics literatures for studying

causal effects emphasizes the choices that led to the treatment received. Unlike the

original applications in statistics where the units are passive, for example plots of land,

with no influence over their treatment exposure, units in economic analyses are typically

economic agents, for example, individuals, families, firms, or administrations. These are

agents with objectives and the ability to pursue these objectives within constraints. The

objectives are typically closely related to the outcomes under the various treatments.

The constraints may be legal, financial, or information-based.

The starting point of economic science is to model these agents as behaving optimally.

More specifically this implies that economists think of everyone of these agents as choosing

the level of the treatment to most efficiently pursue their objectives given the constraints

they face.3 In practice, of course, there is considerable evidence that not all agents behave

optimally. Nevertheless, the starting point is the presumption that optimal behavior is

a reasonable approximation to actual behavior, and the models economists take to the

data often reflect this.

2.3 Some Examples

Let us contrast the statistical and econometric approaches in a highly stylized example.

Roy (1951) studies the problem of occupational choice and the implications for the ob-

3In principle these objectives may include the effort it takes to find the optimal strategy, although it
is rare that these costs are taken into account.
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served distribution of earnings. He focuses on an example where individuals can choose

between two occupations, hunting and fishing. Each individual has a level of productivity

associated with each occupation, say, the total value of the catch per day. For individual

i, the two productivity levels are Yi(h) and Yi(f), for the productivity level if hunting

and fishing respectively.4 Suppose the researcher is interested in the average difference

in productivity in these two occupations, τ = E[Yi(f) − Yi(h)], where the averaging is

over the population of individuals.5 The researcher observes for all units in the sample

the occupation they choose (Wi, equal to h for hunters and f for fishermen) and the

productivity in their choosen occupation,

Y obs

i = Yi(Wi) =

{
Yi(h) if Wi = h,
Yi(f) if Wi = f.

In the Fisher-Neyman-Rubin statistics tradition, one might start by estimating τ by

comparing productivity levels by occupation:

τ̂ = Y
obs

f − Y
obs

h ,

where

Y
obs

f =
1

Nf

∑

i:Wi=f

Y obs

i , Y
obs

h =
1

Nh

∑

i:Wi=h

Y obs

i ,

Nf =
N∑

i=1

1Wi=f , and Nh = N − Nf .

If there is concern that these unadjusted differences are not credible as estimates of the

average causal effect, the next step in this approach would be to adjust for observed

individual characteristics such as education levels, or family background. This would be

justified if individuals can be thought of as choosing, at least within homogenous groups

defined by covariates, randomly which occupation to engage in.

Roy, in the economics tradition, starts from a very different place. Instead of assum-

ing that individuals choose their occupation (possibly after conditioning on covariates)

4In this example the no-interference (SUTVA) assumption that there are no effects of other individ-
ual’s choices, and therefore that the individual level potential outcomes are well-defined is tenuous—if
one hunter is successful that will reduce the number of animals available to other hunters—but I will
ignore these issues here.

5That is not actually the goal of Roy’s original study, but that is beside the point here.
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randomly, he assumes that each individual chooses her occupation optimally, that is, the

occupation that maximizes her productivity:

Wi =

{
f if Yi(f) ≥ Yi(h),
h otherwise.

There need not be a solution in all cases, especially if there is interference and thus there

are general equilibrium effects, but I will assume here that such a solution exists. If this

assumption were true, it would be difficult to learn much about τ from data on occu-

pations and earnings. In the spirit of research by Manski (1990, 1992, 2003, 2008) and

Robins (1989), one can derive bounds on τ , exploiting the fact that if Wi = f , then the

unobserved Yi(h) must satisfy Yi(h) ≤ Yi(f), with Yi(f) observed. For the Roy model

the specific calculations have been reported in Manski (1995, Section 2.6). Without ad-

ditional information or restrictions these bounds would be fairly wide, and one would not

learn much about τ . However, the original version of the Roy model, where individuals

know ex ante the exact value of the potential outcomes and choose the level of the treat-

ment corresponding to the maximum of those, is ultimately not plausible in practice. It is

likely that that individuals face uncertainty regarding their future productivity and thus

may not be able to choose the ex post optimal occupation. See for bounds under that

scenario Manski and Nagin (1998). Alternatively, and this is emphasized in Athey and

Stern (1998), individuals may have more complex objective functions taking into account

heterogenous costs or non-monetary benefits associated with each occupation. This cre-

ates a wedge between the outcomes that the researcher focuses on and the outcomes that

the agent optimizes over. What is key here in relation to the statistics literature is that

under the Roy model and its generalizations the very fact that two individuals have dif-

ferent occupations is seen as indicative that they have different potential outcomes, thus

fundamentally calling into question the unconfoundedness assumption that individuals

with similar pretreatment variables but different treatment levels are comparable. This

concern about differences between individuals with the same values for pretreatment

variables but different treatment levels underlies many econometric analyses of causal

effects, specifically in the literature on selection models. See Heckman and Robb (1985)

for a general discussion.

Let me discuss two additional examples. There is a large literature in economics

concerned with estimating the causal effect of educational achievement (measured as years
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of education) on earnings. See for general discussions Griliches (1977) and Card (2001).

One starting point, and in fact the basis of a large empirical literature, is to compare

earnings for individuals who look similar in terms of background characteristics, but who

differ in terms of educational achievement. The concern in an equally large literature is

that those individuals who choose to acquire higher levels of education did so precisely

because they expected their returns to additional years of education to be higher then

individuals who choose not to acquire higher levels of education expected their returns

to be. In the terminology of the returns-to-education literature, the individuals choosing

higher levels of education may have higher levels of ability, which lead to higher earnings

for given levels of education.

Another canonical example is that of voluntary job training programs. One approach

to estimate the causal effect of training programs on subsequent earnings would be to

compare earnings for those participating in the program with earnings for those who did

not. Again the concern would be that those who choose to participate did so because

they expected bigger benefits (financial or otherwise) from doing so than individuals who

choose not to participate.

These issues also arise in the missing data literature. The statistics literature (Ru-

bin, 1976, 1987; Little and Rubin, 1987) has primarily focused on models that assume

that units with item nonresponse are comparable to units with complete response, con-

ditional on covariates that are always observed. The econometrics literature (Heckman,

1976, 1979) has focused more heavily on models that interpret the nonresponse as the

result of systematic differences between units. Philipson (1997ab) takes this even further,

viewing survey response as a market transaction, where individuals not responding do

so because to the potential respondents the costs of responding outweights the benefits.

The Heckman-style selection models often assume strong parametric alternatives to the

Rubin and Little missing-at-random or ignorability condition. This has often in turn led

to estimators that are sensitive to small changes in the data generating process.

These issues of non-random selection are of course not special to economics. Out-

side of randomized experiments the exposure to treatment is typically also chosen to

achieve some objectives, rather than randomly within homogenous populations. For ex-

ample, physicians presumably choose treatments for their patients optimally, given their

knowledge and given other constraints (e.g., financial). Similarly, in economics and other
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social sciences one may view individuals as making optimal decisions, but these are typ-

ically made given incomplete information, leading to errors that may make the ultimate

decisions appear as good as random within homogenous subpopulations. What is impor-

tant is that the starting point is different in the two disciplines, and this has led to the

development of substantially different methods for causal inference.

2.4 Instrumental Variables

How do instrumental variables methods address the type of selection issues the Roy model

raises? At the core instrumental variables change the incentives for agents to choose a

particular level of the treatment, without affecting the potential outcomes associated with

these treatment levels. Consider a job training program example where the researcher

is interested in the average effect of the training program on earnings. Each individual

is characterized by two potential earnings outcomes, earnings given the training and

earnings in the absence of the training. Each individual chooses to participate or not

based on their perceived net benefits from doing so. As pointed out in Athey and Stern

(1998), it is important that these net benefits differ from the earnings. Thye do so by

the costs associated with participating in that regime. Suppose that there is variation

in the costs individuals incur with participation in the training program. The costs

are broadly defined, and may include travel time to the program facilities, or the effort

required to become informed about the program. Furthermore suppose that these costs

are independent of the potential outcomes. This is a strong assumption, often made

more plausible by conditioning on covariates. Measures of the participation cost may

then serve as instrument variables and aid in the identification of the causal effects of the

program. Ultimately we compare earnings for individuals with low costs of participation

in the program with those for individuals with high costs of participation and attribute

the difference in average earnings to the increased rate of participation in the program

among the two groups.

In almost all cases the assumption that there is no direct effect of the change in

incentives on the potential outcomes is controversial, and it needs to be assessed at a

case-by-case level. The second part of the assumption, that the costs are independent

of the potential outcomes, possibly after conditioning on covariates, is qualitatively very
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different. In some cases it is satisfied by design, e.g., if the incentives are randomized. In

observational studies it is a substantive, unconfoundedness-type, assumption, that may

be more plausible or at least approximately hold after conditioning on covariates. For

example, in a number of studies researchers have used physical distance to facilities as

instruments for exposure to treatments available at such facilities. Such studies include

McClellan and Newhouse (1994) and Baiocchi, Small, Lorch and Rosenbaum (2010) who

use distance to hospitals with particular capabilities as an instrument for treatments

associated with those capabilities, after conditioning on distance to the nearest medical

facility, and Card (1995), who uses distance to colleges as an instrument for attending

college.

3 The Classic Example: Supply and Demand

In this section I will discuss the classic example of instrumental variables methods in

econometrics, that is, simultaneous equations. Simultaneous equations models are both

at the core of the econometrics canon and at the core of the confusion concerning instru-

mental variables methods in the statistics literature. More precisely, in this section I will

look at supply and demand models that motivated the original research into instrumental

variables. Here the endogeneity, that is, the violation of unconfoundedness, arises from

an equilibrium condition. I will discuss the model in a very specific example to make the

issues clear, as I think that perhaps the level of abstraction used in the older econometric

text books has hampered communication with researchers in other fields.

3.1 Discussions in the Statistics Literature

To show the level of frustration and confusion in the statistics literature with these

models, let me present some quotes. In a comment on Pratt and Schlaifer (1984), Dawid

(1984) writes “I despair of ever understanding the logic of simultaneous equations well

enough to tackle them,”(1984, page 24). Cox (1992) writes in a discussion on causality

“it seems reasonable that models should be specified in a way that would allow direct

computer simulation of the data ..... This for example precludes the use of y2 as an

explanatory variable for y1 if at the same time y1 is an explanatory variable for y2”(page

294). This seems to directly contradict the first model Haavelmo considers, e.g., equations
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(1.1) and (1.2) (Haavelmo, 1943, p. 2):

Y = aX + ε1 X = bY + ε2.

In fact, the comment by Cox appears to rule out simultaneous equations models of the

type studied by economists. Holland (1988), in comment on structural equation methods

in econometrics, writes “why should [this disturbance] be independent of [the instrument]

... when the very definition of [this disturbance] involves [the instrument],”(page 460).

Freedman writes “Additionally, some variables are taken to be exogenous (independent

of the disturbance terms) and some endogenous (dependent on the disturbance terms).

The rationale is seldom clear, because–among other things–there is seldom any very clear

description of what the disturbance terms mean, or where they come from,” (Freedman,

2006, p. 699).

3.2 The Market for Fish

The specific example I will use in this section is the market for whiting (a particular

white fish, often used in fish sticks) traded at the Fulton fish market in New York City.

Whiting was sold at the Fulton fish market at the time by a small number of dealers

to a large number of buyers. Graddy collected data on quantities and prices of whiting

sold by a particular trader at the Fulton fish market on 111 days between December 2nd

1991 and May 8th 1992 (Graddy, 1995, 1996; Angrist, Graddy and Imbens, 2000). I will

take as the unit of analysis a day, and interchangeably refer to this as a market. Each

day, or market, during the period covered in this data set, indexed by t = 1, . . . , 111, a

number of pounds of whiting are sold by this particular trader, denoted by Qobs

t . Not

every transaction on the same day involves the same price, but to focus on the essentials

I will aggregate the total amount of whiting sold and the total amount of money it was

sold for, and calculate a price per pound (in cents) for each of the 111 days, denoted by

P obs

t . Figure 1 presents a scatterplot of the observed log price and log quantity data.

The average quantity sold was 6,335 pounds, with a standard deviation of 4,040 pounds,

for an average price of 88 cts per pound and a standard deviation of 34 cts. For example,

on the first day of this period 8,058 pounds were sold for an average of 65 cents, and the

next day 2,224 pounds were sold for an average of 100 cents. Table 1 presents averages

of log prices and log quantities for the fish data.
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Now suppose we are interested in predicting the effect of a tax in this market. To be

specific, suppose the government is considering imposing a 100 × r % tax (e.g., a 10%

tax) on all whiting sold, but before doing so it wishes to predict the average percentage

change in the quantity sold as a result of the tax. We may formalize that by looking

at the average effect on the logarithm of the quantity, τ = E[lnQt(r) − lnQt(0)], where

Qt(r) is the quantity traded in market/day t if the tax rate were set at r. The problem,

substantially worse than in the standard causal inference setting where for some units

we observe one of the two potential outcomes and for other units we observe the other

potential outcome, is that in all 111 markets we observe the quantity traded at tax rate

0, Qobs

t = Qt(0), and we never see the quantity traded at the tax rate contemplated by

the government, Qt(r). Because only E[lnQt(0)] is directly estimable from data on the

quantities we observe, the question is how to draw inferences about E[lnQt(r)].

A naive approach would be to assume that a tax increase by 10% would simply raise

prices by 10%. If one additionally is willing to make the unconfoundedness assumption

that prices can be viewed as set independently of market conditions on a particular day,

it follows that those markets after the introduction of the tax where the price net of taxes

is $1.00 would on average be like those markets prior to the introduction of the 10% tax

where the price was $1.10. Formally, this approach assumes that

E[lnQt(r)|P obs

t = p] = E[lnQt(0)|P obs

t = (1 + r) × p], (3.1)

implying that

E[lnQt(r)− lnQt(0)|P obs

t = p] = E[lnQobs

t |P obs

t = (1 + r)× p]−E[lnQobs

t |P obs

t = p].

≈ E[lnQobs

t | lnP obs

t = r + ln p] − E[lnQobs

t | lnP obs

t = ln p].

The last quantity is often estimated using linear regression methods. Typically the

regression function is assumed to be linear in logarithms with constant coefficients,

lnQobs

t = αls + β ls × lnP obs

t + εt. (3.2)

Ordinary least squares estimation with the Fulton fish market data collected by Graddy

leads to

̂lnQobs
t = 8.42 − 0.54 × lnP obs

t .
(0.08) (0.18)
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The estimated regression line is also plotted in Figure 1. Interestingly this is what Work-

ing (1927) calls the “statistical ‘demand curve’,”as opposed to the concept of a demand

curve in economic theory. This simple regression, in combination with the assumption

embodied in (3.1), suggests that the quantity traded would go down, on average, by 5.4%

in response to a 10% tax.

τ̂ = −0.054 (s.e. 0.018).

Why does this answer, or at least the method in which it was derived, not make any

sense to an economist? The answer assumes that prices can be viewed as independent

of the potential quantities traded, or, in other words, unconfounded. This assignment

mechanism is unrealistic. In reality, it is likely the markets/days, prior to the introduction

of the tax, when the price was $1.10 were systematically different from those where the

price was $1.00. From an economists’ perspective the fact that the price was $1.10 rather

than $1.00 implies that market conditions must have been different, and it is likely that

these differences are directly related to the quantities traded. For example, on days where

the price was high there may have been more buyers, or buyers may have been interested

in buying larger quantities, or there may have been less fish brought ashore. In order

to predict the effect of the tax we need to think about the responses of both buyers

and sellers to changes in prices, and about the determination of prices. This is where

economic theory comes in.

3.3 The Supply of and Demand for Fish

So, how do economists go about analyzing questions such as this one if not by regressing

quantities on prices? The starting point for economists is to think of an economic model

for the determination of prices (the treatment assignment mechanism in Rubin’s potential

outcome terminology). The first part of the most simple model an economist would

consider for this type of setting is a pair of functions, the demand and supply functions.

Think of the buyers coming to the Fulton fishmarket on a given market/day (say, day t)

with a demand function Qd
t (p). This function tells us, for that particular morning, how

much fish all buyers combined would be willing to buy if the price on that day were p,

for any value of p. This function is conceptually exactly like the potential outcomes set

up commonly used in causal inference in the modern literature. It is more complicated
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than the binary treatment case with two potential outcomes, because there is a potential

outcome for each value of the price, with more or less a continuum of possible price

values, but it is in line with continuous treatment extensions such as those in Gill and

Robins (2001). Common sense, and economic theory, suggests that this demand function

is a downward sloping function: buyers would likely be willing to buy more pounds of

whiting if it were cheaper. Traditionally the demand function is specified parametrically,

for example linear in logarithms:

lnQd
t (p) = αd + βd × ln p + εd

t , (3.3)

where βd is the price elasticity of demand. This equation is not a regression function

like (3.2). It is interpreted as a structural equation or behavioral equation, and, in the

treatment effect literature terminology, it is a model for the potential outcomes. Part of

the confusion between the model for the potential outcomes in (3.3) and the regression

function in (3.2) may stem from the traditional notation in the econometrics literature

where the same symbol (e.g., Qt) would be used for the observed outcomes (Qobs

t in our

notation) and the potential outcome function (Qd
t (p) in our notation), and the same sym-

bol (e.g., Pt) would be used for the observed value of the treatment (P obs

t in our notation)

and the argument in the potential outcome function (p in our notation). Interestingly

the pioneers in this literature, Tinbergen (1928) and Haavelmo (1943), did distinguish

between these concepts in their notation, but the subsequent literature on simultaneous

equations dropped that distinction and adopted a notation that did not distinguish be-

tween observed and potential outcomes. My view is that dropping this distinction was

merely incidental, and that implicitly the interpretation of the simultaneous equations

models remained that in terms of potential outcomes.6

Implicit (by the lack of a subscript on the coefficients) in the specification of the

demand function in (3.3) is the strong assumption that the effect of a unit change in

the logarithm of the price (equal to βd) is the same for all values of the price, and that

the effect is the same in all markets. This is clearly a very strong assumption, and the

6As a reviewer pointed out, once one views simultaneous equations in terms of potential outcomes,
there is a natural normalization of the equations. This suggests that perhaps the discussions of issues
concerning normalizations of equations in simultaneous equations models ((e.g., Basmann (1963ab,
1965, Hillier, 1990) implicitly rely on a different interpretation, for example thinking of the endogeneity
arising from measurement error. Throughout this discussion I will interpret simultaneous equations in
terms of potential outcomes, viewing the realized outcome notation simply as obscuring that.
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modern literature on simultaneous equations (see Matzkin (2007) for an overview) has de-

veloped less restrictive specifications allowing for nonlinear and nonadditive effects while

maintaining identification. The unobserved component in the demand function, denoted

by εd
t , represents unobserved determinants of the demand on any given day/market: a

particular buyer may be sick on a particular day and not go to the market, or may be

expecting a client wanting to purchase a large quantity of whiting. We can normalize

this unobserved component to have expectation zero, where the expectation is taken over

all markets or days:

E
[
lnQd

t (p)
]

= αd + βd × ln p.

The interpretation of this expectation is subtle, and again it is part of the confusion that

sometimes arises. Consider the expected demand at p = 1, E
[
lnQd

t (1)
]
, under the linear

specification in (3.3) equal to αd + βd · ln(1) = αd. This αd is the average of all demand

functions, evaluated at price equal to $1.00, irrespective of what the actual price in the

market is, where the expectation is taken over all markets. It is not, and this is key,

the conditional expectation of the observed quantity in markets where the price is equal

to $1.00 (or which is the same the demand function at 1 in those markets), which is

E[lnQobs

t |P obs

t = 1] = E[lnQd
t (1)|P obs

t = 1], for example, under a linear specification as in

(3.2), equal to αls + β ls · ln(1) = αls. Here the original Tinbergen and Haavelmo notation

and the modern potential outcome version is much clearer than the sixties econometrics

textbook notation.7

Similar to the demand function, the supply function Qs
t(p) represents the quantity

of whiting the sellers collectively are willing to sell at any given price p, on day t. Here

common sense would suggest that this function is sloping upward: the higher the price,

the more the sellers are willing to sell. As with the demand function the supply function

is typically specified parametrically with constant coefficients:

lnQs
t(p) = αs + βs × ln p + εs

t , (3.4)

7Other notations have been recently been proposed to stress the difference between the conditional
expectation of the observed outcome and the expectation of the potential outcome. Pearl (2000) writes
the expected demand when the price is set to $1.00 as E

[
lnQd

t |do(Pt = 1)
]
, rather than conditional on

the price being observed to be $1.00. Hernán and Robins (2006) write this average potential outcome as
E
[
lnQd

t (Pt = 1)
]
, whereas Lauritzen and Richardson (2002) write it as E[lnQobs

t ||P obs
t = 1] where the

double || implies conditioning by intervention.



Instrumental Variables [17]

where βs is the price elasticity of supply. Again we can normalize the expectation of εs
t

to zero (where the expectation is taken over markets), and write

E [lnQs
t(p)] = αs + βs × ln p.

Note that the εd
t and εs

t are not assumed to be independent in general, although in some

applications that may be a reasonable assumption.

3.4 Market Equilibrium

Now comes the second part of the simple economic model, the determination of the price,

or, in the terminology of the treatment effect literature, the assignment mechanism. The

conventional assumption in this type of market is that the price that is observed, that

is the price at which the fish is traded in market/day t, is the (unique) market clearing

price at which demand and supply are equal. In other words, this is the price at which

the market is in equilibrium, denoted by P obs

t . This equilibrium price solves:

Qd
t (P

obs

t ) = Qs
t(P

obs

t ). (3.5)

The observed quantity on that day, that is the quantity actually traded, denoted by Qobs

t ,

is then equal to the demand function at the equilibrium price (or, equivalently, because

of the equilibrium assumption, the supply function at that price):

Qobs

t = Qd
t (P

obs

t ) = Qs
t(P

obs

t ). (3.6)

Assuming that the demand function does slope downward and the supply function does

slope upward, and both are linear in logarithms, the equilibrium price exists and is

unique, and we can solve for the observed price and quantities in terms of the parameters

of the model and the unobserved components:

lnP obs

t =
αd − αs

βs − βd
+

εd
t − εs

t

βs − βd
, and lnQobs

t =
βs · αd − βd · αs

βs − βd
+

βs · εd
t − βd · εs

t

βs − βd
.

For economists this is a more plausible model for the determination of realized prices

and quantities than the model that assumes prices are independent of market conditions.

It is not without its problems though. Chief among these from our perspective is the

complication that, just as in the Roy model, we cannot necessarily infer the values of the

unknown parameters in this model even if we have data on many markets.
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Another issue is how buyers and sellers arrive at the equilibrium price. There is a

theoretical economic literature addressing this question. Often the idea is that there

is a sequential process of buyers making bids, and suppliers responding with offers of

quantities at those prices, with this process repeating itself until it arrives at a price at

which supply and demand are equal. In practice economists often refrain from specifying

the details of this process and simply assume that the market is in equilibrium. If the

process is fast enough, it may be reasonable to ignore the fact the specifics of the process

and analyze the data as if equilibrium was instantaneous.8 A related issue is whether

this model with an equilibrium prices that equates supply and demand is a reasonable

approximation to the actual process that determines prices and quantities. In fact,

Graddy’s data contains information showing that the seller would trade at different prices

on the same day, so strictly speaking this model does not hold. There is a long tradition

in economics, however, of using such models as approximations to price determination

and we will do so here.

Finally, let me connect this to the textbook discussion of supply and demand models.

In many textbooks the demand and supply equations would be written directly in terms

of the observed (equilibrium) quantities and prices as

Qobs

t = αs + βs × lnP obs

t + εs
t , (3.7)

Qobs

t = αd + βd × lnP obs

t + εd
t . (3.8)

This representation leaves out much of the structure that gives the demand and supply

function their meaning, that is, the demand equation (3.3), the supply equation (3.4), and

the equilibrium condition (3.5). As Strotz and Wold (1960) write “Those who write such

systems [(3.8) and (3.8)] do not, however, really mean what they write, but introduce an

ellipsis which is familiar to economists” (p. 425), with the ellipsis referring to the market

equilibrium condition that is left out.

3.5 The Statistical Demand Curve

Given this set up, let me discuss two issues. First, let us explore, under this model, the

interpretation of what Working (1927) called the “statistical demand curve.” The covari-

8See Shapley and Shubik (1977) and Giraud (2003), and for some experimental evidence, Plott and
Smith, (1978) and Smith (1982).
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ance between observed (equilibrium) log quantities and log prices is Cov
(
lnQobs

t , lnP obs

t

)
=

(βs · σ2

d + βd · σ2

s − ρ · σd · σs · (βd + βs))/(
(
βs − βd

)2
), where σd and σs are the standard

deviations of εd
t and εs

t respectively, and ρ is their correlation. Because the variance of

lnP obs

t is (σ2

s + σ2

d − 2 · ρ · σd · σs)/(β
s − βd)2, it follows that the regression coefficient in

the regression of log quantities on log prices is

cov
(
lnQobs

t , lnP obs

t

)

var
(
lnP obs

t

) =
βs · σ2

d + βd · σ2

s − ρ · σd · σs · (βd + βs)

σ2
s + σ2

d − 2 · ρ · σd · σs

.

Working focuses on the interpretation of this relation between equilibrium quantities and

prices. Suppose that the correlation between εd
t and εs

t , denoted by ρ, is zero. Then the

regression coefficient is a weighted average of the two slope coefficients of the supply and

demand function, weighted by the variances of the residuals:

cov
(
lnQobs

t , lnP obs

t

)

var
(
lnP obs

t

) = βs · σ2

d

σ2
s + σ2

d

+ βd · σ2

s

σ2
s + σ2

d

.

If σ2

d is small relative to σ2

s , then we estimate something close to the slope of the demand

function, and if σ2

s is small relative to σ2

d, then we estimate something close to the slope

of the supply function. In general, however, as Working stresses, the “statistical demand

curve” is not informative about the demand function (or about the supply function). See

also Leamer (1981).

3.6 The Effect of a Tax Increase

The second question is how this model with supply and demand functions and a market

clearing price helps us answer the substantive question of interest. The specific question

considered is the effect of the tax increase on the average quantity traded. In a given

market, let p be the price sellers receive per pound of whiting, and let p̃ = p× (1+ r) the

price buyers pay after the tax has been imposed. The key assumption is that the only

way buyers and sellers respond to the tax is through the effect of the tax on prices: they

do not change how much they would be willing to buy or sell at any given price, and the

process that determines the equilibrium price does not change. The technical econometric

term for this is that the demand and supply functions are structural or invariant in the

sense that they are not affected by changes in the treatment, taxes in this case. This

may not be a perfect assumption, but certainly in many cases it is reasonable: if I have
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to pay $1.10 per pound of whiting, I probably do not care whether 10cts of that goes

to the government and $1 to the seller, or all of it goes to the seller. If we are willing

to make that assumption, we can solve for the new equilibrium price and quantity. Let

Pt(r) be the new equilibrium price (net of taxes, that is, the price sellers receive), given

a tax rate r, with in our example r = 0.1. This price solves

Qd
t (Pt(r) × (1 + r)) = Qs

t(Pt(r)).

Given the linear specification for the demand and supply functions, this leads to

lnQt(r) =
αd − αs

βs − (1 + r) × βd
+

εd
t − εs

t

βs − (1 + r) × βd
.

The result of the tax is that the average price that sellers receive with a positive tax rate

r is less than what they would have received in the absence of the tax rate:

E [lnPt(r)] =
αd − αs

βs − (1 + r) × βd
≤ αd − αs

βs − βd
= E [lnPt(0)] .

(Note that βd < 0.) On the other hand, the buyers will pay more on average:

E [lnPt(r)] =
αd − αs

βs − βd
≤ (1 + r) × αd − αs

βs − (1 + r) × βd
= (1 + r) × E [lnPt(0)] .

The quantity traded after the tax increase is

lnQt(r) =
βs · αd − (1 + r) · βd · αs

βs − (1 + r) · βd
+

βs · εd
t − (1 + r) · βd · εs

t

βs − (1 + r) · βd
,

which is less than the quantity that would be traded in the absence of the tax increase.

The market-level causal effect is

lnQt(r) − lnQt(0) =
βs · αd − (1 + r) · βd · αs

βs − (1 + r) · βd
+

βs · εd
t − 1.1 · βd · εs

t

βs − (1 + r) · βd

−βs · αd − βd · αs

βs − βd
− βs · εd

t − βd · εs
t

βs − βd
,

with the average causal effect of the 100 × r% tax increase equal to

τ = E[lnQt(r) − lnQt(0)] =
r · βd · βs · (αd − αs)

(βs − βd) × (βs − (1 + r) · βd)
< 0.

What should we take away from this discussion? There are three points. First, the

regression coefficient in the regression of log quantity on log prices does not tell us much
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about the effect of new tax. The sign of this regression coefficient is ambiguous, depending

on the variances and covariance of the unobserved determinants of supply and demand.

Second, in order to predict the magnitude of the effect of a new tax we need to learn

about the demand and supply functions separately, or in the econometrics terminology,

identify the supply and demand function. Third, observations on equilibrium prices and

quantities by themselves do not identify these functions.

3.7 Identification with Instrumental Variables

Given this identification problem, how do we identify the demand and supply functions?

This is where instrumental variables enter the discussion. To identify the demand func-

tion we look for determinants of the supply of whiting that do not affect the demand for

whiting, and, similarly, to identify the supply function we look for determinants of the

demand for whiting that do not affect the supply. In this specific case Graddy (1995,

1996) assumes that weather conditions at sea on the days prior to market t, denoted

by Zt, affect supply but do not affect demand. Certainly it appears reasonable to think

that weather is a direct determinant of supply: having high waves and strong winds

makes it harder to catch fish. On the other hand, there does not seem to be any reason

why demand on day t, at a given price p, would be correlated with wave height or wind

speed on previous days. This assumption may be made more plausible by conditioning

on covariates. For example, if one is concerned that weather conditions on land affect

demand, one may wish to condition on those, and only look at variation in weather con-

ditions at sea given similar weather conditions on land as an instrument. Formally, the

key assumptions are that

Qd
t (p) ⊥ Zt, and Qs

t(p) 6⊥ Zt,

possibly conditional on covariates. If both these conditions hold we can use weather

conditions as an instrument.

How do we exploit these assumptions? The traditional approach is to generalize the

functional form of the supply function to explicitly incorporate the effect of the instrument

on the supply of whiting. In our notation,

lnQs
t(p, z) = αs + βs × lnp + γs × z + εs

t .
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The demand function remains unchanged, capturing the fact that demand is not affected

by the instrument:

lnQd
t (p, z) = αd + βd × ln p + εd

t .

We assume that the unobserved components of supply and demand are independent of

(or at least uncorrelated with) the weather conditions:

(
εd

t , ε
s
t

)
⊥ Zt.

The equilibrium price P obs

t is the solution for p in the equation

Qd(p, Zt) = Qs
t(p, Zt),

leading to:

lnP obs

t =
αd − αs

βs − βd
+

εd
t − εs

t

βs − βd
− γs · Zt

βs − βd
,

and

lnQobs

t =
βs · αd − βd · αs

βs − βd
+

βs · εd
t − βd · εs

t

βs − βd
− γs · βd · Zt

βs − βd
.

Now consider the expected value of the equilibrium price and quantity given the

weather conditions:

E
[
lnQobs

t

∣∣Zt = z
]

=
βs · αd − βd · αs

βs − βd
− γs · βd

βs − βd
· z, (3.9)

and

E
[
lnP obs

t

∣∣Zt = z
]

=
αd − αs

βs − βd
− γs

βs − βd
· z. (3.10)

Equations (3.9) and (3.10) are what is called in econometrics the reduced form of the

simultaneous equations model. It expresses the endogenous variables (those whose values

are determined inside the model, price and quantity in this example) in terms of the

exogenous variables (those whose values are not determined within the model, weather

conditions in this example). The slope coefficients on the instrument in these reduced

form equations are what in randomized experiments with noncompliance would be called

the intention-to-treat effects. One can estimate the coefficients in the reduced form by
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least squares methods. The key insight is that the ratio of the coefficients on the weather

conditions in the two regression functions, γs · βd/(βs − βd) in the quantity regression

and γs/(βs − βd) in the price regression, is equal to the slope coefficient in the demand

function.

For some purposes the reduced-form or intention-to-treat effects may be of substantive

interest. In the Fulton fish market example people attempting to predict prices and

quantities under the current regime may find these estimates of interest. They are of less

interest to policy makers contemplating the introduction of a new tax. In simultaneous

equations settings the demand and supply functions are viewed as structural in the sense

that they are not affected by interventions in the market such as new taxes. As such they,

and not the reduced-form regression functions, are the key components of predictions of

market outcomes under new regimes. This is somewhat different in many of the recent

applications of instrumental variables methods in the statistics literature in the context

of randomized experiments with noncompliance where the intention-to-treat effects are

traditionally of primary interest.

Let me illustrate this with the Fulton Fish Market data collected by Graddy. For ease

of illustration let me simplify the instrument to a binary one: the weather conditions

are good for catching fish (Zt = 0, fair weather, corresponding to low wind speed and

low wave height) or stormy (Zt = 1, corresponding to relatively strong winds and high

waves).9 The price is the average daily price in cents for one dealer, and the quantity is

the daily quantity in pounds. The two estimated reduced forms are

l̂nQ
obs

t = 8.63 − 0.36 × Zt.
(0.08) (0.15)

and

l̂nP
obs

t = − 0.29 + 0.34 × Zt.
(0.04) (0.07)

Hence the instrumental variables estimate of the slope of the demand function is

β̂d =
−0.36

0.34
= −1.08 (s.e. 0.46).

9The formal definition I use, following Angrist, Graddy and Imbens (2000) is that stormy is defined
as wind speed greater than 18knots and wave height more than 4.5ft, and fair weather is anything else.
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Another, perhaps more intuitive way of looking at these estimates is to consider the loca-

tion of the average log quantity and average log price separately by weather conditions.

Figure 2 presents the scatter plot of log quantity and log prices, with the stars indicating

stormy days and the plus signs indicating calm days. On fair weather days the average

log price is -0.29, and the average log quantity is 8.6. On stormy days the average log

price is 0.04, and the average log quantity is 8.3. These two loci are marked by by circles

in Figure 2. On stormy days the price is higher and the quantity traded is lower than on

fair weather days. This is used to estimate the slope of the demand function. The figure

also includes the estimated demand function based on using the indicator for stormy days

as an instrument for the price.

With the data collected by Graddy it is more difficult to point identify the supply

curve. The traditional route towards identifying the supply curve would rely on finding

an instrument that shifts demand without directly affecting supply. Without such an

instrument we cannot point identify the effect of the introduction of the tax on quantity

and prices. It is possible under weaker assumptions to find bounds on these estimands

(e.g., Leamer, 1981; Manski 2003), but we do not pursue this here.

3.8 Recent Research on Simultaneous Equations Models

The traditional econometric literature on simultaneous equations models is surveyed in

Hausman (1983). Compared to the discussion in the preceeding sections, this literature

focuses on a more general case, allowing for multiple endogenous variables and multiple

instruments. The modern econometric literature, starting in the 1980s, has relaxed the

linearity and additivity assumptions in specification (3.3) substantially. Key references

to this literature are Brown (1983), Roehrig (1988), Newey and Powell (2001), Benkard

and Berry (2006), Matzkin (2003, 2007), Altonji and Matzkin (2005), Imbens and Newey

(2009), Hoderlein and Mammen (2007), Horowitz (2011), and Horowitz and Lee (2007).

Matzkin (2007) provides a recent survey of this technically demanding literature. This

literature has continued to use the observed outcome notation, making it more difficult

to connect to the statistical literature. Here I briefly review some of this literature. The

starting point is a structural equation, in the potential outcome notation,

Yi(x) = α + β · x + εi,
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and an instrument Zi that satisfies

Zi ⊥ εi, and Zi 6⊥ Xi.

The traditional econometric literature would formulate this in the observed outcome

notation as

Yi = α + β · Xi + εi, Zi ⊥ εi, and Zi 6⊥ Xi.

There are a number of generalizations considered in the modern literature. First, instead

of assuming independence of the unobserved component and the instrument, part of the

current literature assumes only that the conditional mean of the unobserved component

given the instrument is free of dependence on the instrument, allowing the variance and

other distributional aspects to depend on the value of the instrument. See Horowitz

(2011). Another generalization of the linear model allows for general nonlinear function

forms of the type

Yi = g(Xi) + εi, Zi ⊥ εi, and Zi 6⊥ Xi,

where the focus is on nonparametric identification and estimation of g(x). See Brown

(1983), Roehrig (1988), Benkard and Berry (2006). Allowing for even more generality

researchers have studied non-additive versions of these models with

Yi = g(Xi, εi), Zi ⊥ εi, and Zi 6⊥ Xi,

with g(x, ε) strictly monotone in a scalar unobserved component ε. In these settings

point identification often requires strong assumptions on the support of the instrument

and its relation to the endogenous regressor, and therefore researchers have also explored

bounds. See Matzkin (2003, 2007, 2008).

4 A Modern Example: Randomized Experiments with

Noncompliance and Heterogenous Treatment Ef-

fects

In this section I will discuss part of the modern literature on instrumental variables

methods that has evolved simultaneously in the statistics and econometrics literature. I
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will do so in the context of a second example. On the one hand concern arose in the

econometric literature about the restrictiveness of the functional form assumptions in the

traditional instrumental variables methods and in particular with the constant treatment

effect assumption that were commonly used in the so-called selection models (Heckman,

1979; Heckman and Robb, 1985). The initial results in this literature demonstrated the

difficulties in establishing point identification (Heckman, 1990; Manski, 1990), leading

to the bounds approach developed by Manski (1995; 2003). At the same time statisti-

cians analyzed the complications arising from noncompliance in randomized experiments

(Robins, 1989) and the merits of encouragement designs (Zelen, 1979; 1990). By adopt-

ing a common framework and notation, these literatures have become closely connected

and influenced each other substantially.

4.1 The McDonald and Tierney (1992) Data

The canonical example in this literature is that of a randomized experiment with non-

compliance. I will use here the application in Hirano, Imbens, Rubin and Zhou (2000)

to illustrate the issues. Hirano, Imbens, Rubin and Zhou re-analyze data previously an-

alyzed by McDonald and Tierney (1992). McDonald and Tierney (1992) carried out a

randomized experiment to evaluate the effect of an influenza vaccination on flu-related

hospital visits. Instead of randomly assigning individuals to receive the vaccination, the

researchers randomly assigned physicians to receive letters reminding them of the up-

coming flu season and encouraging them to vaccinate their patients. This is what Zelen

(1979, 1990) refers to as an encouragement design. I discuss this using the potential out-

come notation used for this particular set up in Angrist, Imbens and Rubin (1996), and in

general sometimes referred to as the Rubin Causal Model (Holland, 1986), although there

are important antecedents in Neyman (1923, 1990). I consider two distinct treatments:

the first the receipt of the letter, and second the receipt of the influenza vaccination.

Let Zi ∈ {0, 1} be the indicator for the receipt of the letter, and let Xi ∈ {0, 1} be the

indicator for the receipt of the vaccination. We start by postulating the existence of four

potential outcomes. Let Yi(z, x) be the potential outcome corresponding to the receipt

of letter equal to Zi = z, and the receipt of vaccination equal to Xi = x, for z = 0, 1 and

x = 0, 1. In addition we postulate the existence of two potential outcomes corresponding
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to the receipt of the vaccination as a function of the receipt of the letter, Xi(z), for

z = 0, 1. We observe for each unit in a population of size N = 2861 the value of the as-

signment, Zi, the treatment actually received, Xobs

i = Xi(Zi) and the potential outcome

corresponding to the assignment and treatment received, Y obs

i = Yi(Zi, Xi(Zi)). Table 2

presents the number of individuals for each of the eight values of the triple (Zi, X
obs

i , Y obs

i )

in the McDonald and Tierney data set. It should be noted that the randomization in this

experiment is at the physician level. I do not have physician indicators, and therefore

ignore the clustering. This will tend to lead to under-estimation of the standard errors.

4.2 Instrumental Variables Assumptions

There are four key of assumptions underlying instrumental variables methods beyond the

no-interference assumption or SUTVA, with different versions for some of them. I will

introduce these assumptions in this section, and in Section 5 discuss their substantive

content in the context of some examples. The first assumption concerns the assignment

to the instrument Zi, in the flu example the receipt of the letter by the physician. The

assumption requires that the instrument is as good as randomly assigned:

Zi ⊥
(
Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Xi(0), Xi(1)

)
(random assignment). (4.1)

This assumption is often satisfied by design: if the assignment is physically randomized,

as the letter in the flu example and as in many of the applications in the statistics

literature (e.g., see the discussion in Robins, 1989), it is automatically satisfied. In

other applications with observational data, common in the econometrics literature, this

assumption is more controversial. It can in those cases be relaxed by requiring it to

hold only within subpopulations defined by covariates, assuming the assignment of the

instrument is unconfounded:

Zi ⊥
(
Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Xi(0), Xi(1)

) ∣∣∣ Xi (unconfounded assignment given Xi).

This is identical to the generalization from random assignment to unconfounded assign-

ment in observational studies. Either version of this assumption justifies the causal

interpretation of Intention-To-Treat (ITT) effects, the comparison of outcomes by as-

signment to the treatment. In many cases these ITT effects are only of limited interest,

however, and this motivates the consideration of additional assumptions that do allow
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the researcher to make statements about the causal effects of the treatment of inter-

est. It should be stressed however, that in order to draw inferences beyond ITT effects,

additional assumptions will be used. Whether the resulting inferences are credible will

depend on the credibility of these assumptions.

The second class of assumptions limits or rules out completely direct effects of the as-

signment (the receipt of the letter in the flu example) on the outcome, other than through

the effect of the assignment on the receipt of the treatment of interest (the receipt of the

vaccine). This is the most critical, and typically most controversial assumption under-

lying instrumental variables methods, sometimes viewed as the defining characteristic of

instruments. One way of formulating this assumption is as

Yi(0, x) = Yi(1, x) for x = 0, 1, for all i. (exclusion restriction)

Robins (1989) formulates this assumption as the requirement that the instrument is “not

an independent causal risk factor,” (Robins, 1989, p. 119). Under this assumption we

can drop the z argument of the potential outcomes and write the potential outcomes

without ambiguity as Yi(x). This assumption is typically a substantive one. In the flu

example, one might be concerned that the physician, in response to the receipt of the

letter, takes actions that affect the likelihood of the patient getting infected with the

flu other than simply administering the flu vaccine. In randomized experiments with

noncompliance the exclusion restriction is sometimes made implicitly by indexing the

potential outcomes only by the treatment x and not the instrument z (e.g., Zelen, 1990).

There are other, weaker versions of this assumption. Hirano, Imbens, Rubin and

Zhou (2000) use a stochastic version of the exclusion restriction that only requires that

the distribution of Yi(0, x) is the same as the distribution of Yi(1, x). Manski (1990)

uses a weaker restriction that he calls a level set restriction, which requires that the

average value of Yi(0, x) is equal to the average value of Yi(1, x). In another approach

Manski and Pepper (2004) consider monotonicity assumptions that restrict the sign of

Yi(1, x) − Yi(0, x) across individuals without requiring that the effects are completely

absent.

Imbens and Angrist (1994) combine the random assignment assumption and the ex-

clusion restriction by postulating the existence of a pair of potential outcomes Yi(x), for
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x = 0, 1, and directly assuming that

Zi ⊥
(
Yi(0), Yi(1)

)
.

A disadvantage of this formulation is that it becomes less clear exactly what role ran-

domization of the instrument plays. Another version of this combination of the exclusion

restriction and random assignment assumption does not require full independence, but

assumes that the conditional mean of Yi(0) and Yi(1) given the instrument is free of

dependence on the instrument. A concern with such assumptions is that they are func-

tional form dependent: if they hold in levels, they do not hold in logarithms unless full

independence holds.

A third assumption that is often used, labelled monotonicity by Imbens and Angrist

(1994), requires that

Xi(1) ≥ Xi(0), for all i, (monotonicity),

for all units. This assumption rules out the presence of units who always do the opposite

of their assignment (units with Xi(0) = 1 and Xi(1) = 0), and is therefore also referred to

as the no-defiance assumption (Balke and Pearl, 1995). It is implicit in the latent index

models often used in econometric evaluation models (e.g., Heckman and Robb, 1984). In

the randomized experiments such as the flu example this assumption is often plausible.

There it requires that in response to the receipt of the letter by their physician, no patient

is less likely to get the vaccine. Robins (1989) makes this assumption in the context of a

randomized trial for the effect of AZT on Aids, and describes the assumption as “often,

but not always, reasonable,” (Robins, 1989, p. 122).

Finally, we need the instrument to be correlated with the treatment, or the instrument

to be relevant in the terminology of Staiger and Stock (1997):

Xi 6⊥ Zi.

In practice we need the correlation to be substantial in order to draw precise inferences.

A recent literature on weak instruments is concerned with credible inference in settings

where this correlation between the instrument and the treatment is weak. See Staiger

and Stock (1997).
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The random assignment assumption and the exclusion restriction are conveniently

captured by the graphical model below, although the monotonicity assumption does not

fit in as easily. The unobserved component U has a direct effect on both the treatment

X and the outcome Y (captured by arrows from U to X and to Y ). The instrument Z is

not related to the unobserved component U (captured by the absence of a link between

U and Z), and is only related to the outcome Y through the treatment X (as captured

by the arrow from Z to X and an arrow from X to Y , and the absence of an arrow

between Z and Y ).

Z X Y

U

I will primarily focus on the case with all four assumptions maintained, random

assignment, the exclusion restriction, monotonicity, and instrument relevance, without

additional covariates, because this case has been the focus of, or a special case of the

focus of, many studies, allowing me to compare different approaches. Methodological

studies considering essentially this set of assumptions, sometimes without explicitly stat-

ing instrument relevance, and sometimes adding additional assumptions, include Robins

(1989), Heckman (1990), Manski (1990), Imbens and Angrist (1994), Angrist, Imbens

and Rubin (1996), Robins and Greenland (1996), Balke and Pearl (1995, 1997), Green-

land (2000), Hernán and Robins (2006), Robins (1994), Robins and Rotnitzky (2004),

Vansteelandt and Goetghebeur (2003), Vansteelandt, Bowden, Babanezhad, and Ghoet-

ghebeur (2011), Hirano, Imbens, Rubin and Zhou (2000), Tan (2006, 2010) and others.

Many more studies make the same assumptions in combination with a constant treatment

effect assumption.

The modern literature analyzed this setting from a number of different approaches.

Initially the literature focused on the inability, under these four assumptions, to identify

the average effect of the treatment. Some researchers, including prominently Manski

(1990), Balke and Pearl (1995), and Robins (1989), showed that although one could not

point-identify the average effect under these assumptions, there was information about

the average effect in the data under these assumptions and they derived bounds for it.

Another strand of the literature, starting with Imbens and Angrist (1994) and Angrist,
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Imbens and Rubin (1996) abandoned the effort to do inference for the overall average

effect, and focused on subpopulations for which the average effect could be identified, the

so-called compliers. We discuss the bounds approach in the next section (Section 4.3)

and the local average treatment effect approach in Sections 4.4-4.6.

4.3 Point Identification versus Bounds

In a number of studies the primary estimand is the average effect of the treatment, or

the average effect for the treated:

τ = E [Yi(1) − Yi(0)] , and τt = E [Yi(1) − Yi(0)|Xi = 1] (4.2)

With only the four assumptions, random assignment, the exclusion restriction, mono-

tonicity, and instrument relevance Robins (1989), Manski (1990) and Balke and Pearl

(1995) established that the average treatment effect can often not be consistently esti-

mated even in large samples, in other words, that it is often not point-identified.

Following this result a number of different approaches have been taken. Heckman

(1990) showed that if the instrument takes on values such that the probability of treat-

ment given the instrument can be arbitrarily close to zero and one, then the average

effect is identified. This is sometimes referred to as identification at infinity. Robins

(1989) also formulates assumptions that allow for point identification, focusing on the

average effect for the treated, τt. These assumptions restrict the average value of the

potential outcomes when not observed in terms of average outcomes that are observed.

For example, Robins formulates the condition that

E [Yi(1) − Yi(0)|Zi = 1, Xi = 1] = E [Yi(1) − Yi(0)|Zi = 0, Xi = 1] ,

which, in combination with the random assigment and the exclusion restriction, this al-

lows for point identification of the average effect for the treated. Robins also formulates

two other assumptions, including one where the effects are proportional to survival rates

E[Yi(1)|Zi = 1, Xi = 1] and E[Yi(1)|Zi = 0, Xi = 1] respectively, that also point-identifies

the average effect for the treated. However, Robsin questions the applicability of these

results by commenting that “it would be hard to imagine that there is sufficient under-

standing of the biological mechanism ... to have strong beliefs that any of the three

conditions ... is more likely to hold than either of the other two” (Robins, 1989, p. 122).
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As an alternative to adding assumptions, Robins (1989), Manski (1990), and Balke

and Pearl (1995), focused on the question what can be learned about τ or τt given these

four assumptions that do not allow for point identification. Here I focus on the case

where the three assumptions, random assignment, the exclusion restriction, and mono-

tonicity, are maintained (without necessarily instrument relevance holding), although

Robins (1989) and Manski (1990) also consider other combinations of assumptions. For

ease of exposition I focus on the bounds for the average treatment effect τ under these

assumptions, in the case where Yi(0) and Yi(1) are binary. Then:

E[Yi(1) − Yi(0)] ∈
[
−(1 − E[Xi|Zi = 1]) · E[Yi|Zi = 1, Xi = 0] + E[Yi|Zi = 1] − E[Yi|Zi = 0]

+E[Xi|Zi = 0] · (E[Yi|Zi = 0, Xi = 1] − 1),

(1−E[Xi|Zi = 1]) · (1−E[Yi|Zi = 1, Xi = 0])+E[Yi|Zi = 1]−E[Yi|Zi = 0]

+E[Xi|Zi = 0] · E[Yi|Zi = 0, Xi = 1]
]
,

which are known at the natural bounds. In this simple setting this is a straightforward

calculation. Work by Manski (1995, 2003, 2005, 2008), Robins (1989) and Hernán and

Robins (2006) extends the partial identification approach to substantially more complex

settings.

For the MacDonald-Tierney flu data the estimated identified set for the population

average treatment effect is

E[Yi(1) − Yi(0)] ∈
[
−0.24, 0.64,

]
.

There is obviously also uncertainty associated with these bounds. There is a growing

literature developing methods for establishing confidence intervals for parameters in set-

tings with partial identification. See Imbens and Manski (2004) and Chernozhukov, Hong

and Tamer (2007).

4.4 Compliance Types

Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) take a different ap-

proach. Rather than focusing on the average effect for the population that is not identified
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under the three assumptions given in Section 4.2, they focus on different average causal

effects. A first key step in the Angrist-Imbens-Rubin set up is that we can think of four

different compliance types defined by the pair of values of (Xi(0), Xi(1)), that is, defined

by how individuals would respond to different assignments in terms of receipt of the

treatment:10

Ti =





n (never− taker) if Xi(0) = Xi(1) = 0
c (complier) if Xi(0) = 0, Xi(1) = 1,
d (defier) if Xi(0) = 1, Xi(1) = 0
a (always− taker) if Xi(0) = Xi(1) = 1

Given the existence of deterministic potential outcomes this partitioning of the population

into four subpopulations is simply a definition.11 It clarifies immediately that it will be

difficult to identify the average effect of the primary treatment (the receipt of the vaccine)

for the entire population: never-takers and always-takers can only be observed exposed

to a single level of the treatment of interest, and thus for these groups any point estimates

of the causal effect of the treatment must be based on extrapolation.

We cannot infer without additional assumptions the compliance type of any unit:

for each unit we observe Xi(Zi), but the data contain no information about the value

of Xi(1 − Zi). For each unit there are therefore two compliance types consistent with

the observed behavior. We can also not identify the proportion of individuals of each

compliance type without additional restrictions. The monotonicity assumption implies

that there are no defiers. This, in combination with random assignment, implies that

we can identify the population shares of the remaining three compliance types. The

proportion of always-takers and never-takers are

πa = pr(Ti = a) = pr(Xi = 1|Zi = 0), and πn = pr(Ti = n) = pr(Xi = 0|Zi = 1),

respectively, and the proportion of compliers is the remainder:

πc = pr(Ti = c) = 1 − πa − πn.

For the McDonald-Tierney data these shares are estimated to be

π̂a = 0.189, π̂n = 0.692, π̂c = 0.119,

10Frangakis and Rubin (2002) generalize this notion of subpopulations whose membership is not
completely observed into their principal stratification approach. See also Section 7.2.

11Outside of this framework the existence of these four subpopulations would be an assumption.
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although, as I discuss in section 5.2, these shares may not be consistent with the exclusion

restriction.

4.5 Local Average Treatment Effects

If we also assume that the exclusion restriction holds, Imbens and Angrist (1994) and

Angrist, Imbens and Rubin (1996) show that the local average treatment effect or complier

average causal effect is identified:

τlate = E [Yi(1) − Yi(0)| Ti = complier] =
E [Yi|Zi = 1] − E [Yi|Zi = 0]

E [Xi|Zi = 1] − E [Xi|Zi = 0]
. (4.3)

The components of the righthand side of this expression can be estimated consistently

from a random sample (Zi, Xi, Yi)
N
i=1

. For the McDonald-Tierney data this leads to

τ̂late = −0.125 (s.e 0.090)

Note that just as in the supply and demand example, the causal estimand is the ratio

of the intention-to-treat effects of the letter on hospitalization and of the letter on the

receipt of the vaccine. These intention-to-treat effects are

ÎTTY = −0.015 (s.e. 0.011) ÎTTX = π̂c = 0.119 (s.e. 0.016),

with the latter equal to the estimated proportion of compliers in the population.

Without the monotonicity assumption, but maintaining the random assignment as-

sumption and the exclusion restriction, the ratio of ITT effects still has a clear inter-

pretation. In that case it is equal to a linear combination average of the effect of the

treatment for compliers and defiers:

E [Yi|Zi = 1] − E [Yi|Zi = 0]

E [Xi|Zi = 1] − E [Xi|Zi = 0]
(4.4)

=
Pr(Ti = complier)

Pr(Ti = complier) − Pr(Ti = defier)
E [Yi(1) − Yi(0)|Ti = complier]

− Pr(Ti = defier)

Pr(Ti = complier) − Pr(Ti = defier)
E [Yi(1) − Yi(0)|Ti = defier] .

This estimand has a clear interpretation if the treatment effect is constant across all

units, but if there is heterogeneity in the treatment effects it is a weighted average with

some weights negative. This representation shows that if the monotonicity assumption

is violated, but the proportion of defiers is small relative to that of compliers, the inter-

pretation of the instrumental variables estimand is not severely impacted.
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4.6 Do We Care About the Local Average Treatment Effect?

The local average treatment effect is an unusual estimand. It is an average effect of the

treatment for a subpopulation that cannot be identified in the sense that there are no

units whom we know to belong to this subpopulation, although there are some units

whom we know do not belong to it. A more typical approach is to start an analysis

by clearly articulating the object of interest, say the average effect of a treatment for a

well-defined population. There may be challenges in obtaining credible estimates of this

object of interest, and along the way one may make more or less credible assumptions,

but typically the focus remains squarely on the originally specified object of interest.

Here the approach appears to be quite different. We started off by defining unit-level

treatment effects for all units. We did not articulate explicitly what the target estimand

was. In the MacDonald-Tierney influenza-vaccine application a natural estimand might

be the population average effect of the vaccine. Then, apparently more or less by accident,

the definition of the compliance types led us to focus on the average effects for compliers.

In this example the compliers were defined by the response in terms of the receipt of the

vaccine to the receipt of the letter. It appears difficult to argue that this is a substantially

interesting group, and in fact no attempt was made to do so.

This type of example has led distinguised researchers both in economics and in statis-

tics to wonder whether and why one should care about the local average treatment effect.

Deaton writes “I find it hard to make any sense of the LATE [local average treatment

effect],” (Deaton, 2010, p 430). Pearl similarly wonders “Realizing that the population

averaged treatment effect (ATE) is not identifiable in experiments marred by noncompli-

ance, they have shifted attention to a specific response type (i.e., compliers) for which the

causal effect was identifiable, and presented the latter [the local average treatment effect]

as an approximation for ATE. ... However, most authors in this category do not state

explicitly whether their focus on a specific stratum is motivated by mathematical con-

venience, mathematical necessity (to achieve identification) or a genuine interest in the

stratum under analysis,” (Pearl, 2011, p 3). Freedman writes “In many circumstances,

the instrumental-variables estimator turns out to be estimating some data-dependent

average of structural parameters, whose meaning would have to be elucidated,” (Freed-

man, 2006, p 700-701). Let me attempt to clear up this confusion. An instrumental
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variables analysis is an analysis in a second-best setting. It would have been preferable

if one had been able to carry out a well-designed randomized experiment. However, such

an experiment was not carried out, and we have noncompliance. As a result we cannot

answer all the questions we might have wanted to ask. Specifically, if the noncompliance

is substantial, we are limited in the questions we can answer credibly and precisely. More

precisely, there is only one subpopulation we can credibly (point-)identify the average

effect of the treatment for, namely the compliers.

It may be useful to draw an analogy. Suppose a researcher is interested in evaluat-

ing a medical treatment and suppose a randomized experiment had been carried out to

estimate the average effect of this new treatment. However, the population of the ran-

domized experiment included only men, and the researcher is interested in the average

effect for the entire population, including both men and women. What should the re-

searcher do? I would argue that the researcher should report the results for the men, and

acknowledge the limitation of the results for the original question of interest. Similarly

in the instrumental variables I see the limitation of the results to the compliers as one

that was unintended, but driven by the lack of identification for other subpopulations

given the design of the study. This limitation should be acknowledged, but one should

not drop the analysis simply because the original estimand cannot be identified. Note

that our case with instrumental variables is slightly worse than in the gender example,

because we cannot actually identify all individuals with certainty as compliers.

There are alternatives to this view. One approach is to focus solely or primarily on

intention-to-treat effects. The strongest argument for that is in the context of randomized

experiments with noncompliance. The causal interpretation of intention-to-treat effects

is justified by the randomization. As Freedman writes, “Experimental data should there-

fore be analyzed first by comparing rates or averages, following the intention-to-treat

principle. Such comparisons are justified because the treatment and control groups are

balanced, within the limits of chance variation, by randomization,” (Freedman, 2006,

p.701). Even in that case one may wish to also report estimates of the local average

treatment effects because they may correspond more closely to the object of ultimate

interest. The argument for focusing on intention-to-treat or reduced-form estimates is

weaker in other settings. For example, in the Fulton Fish Market demand and supply

application the intention-to-treat effects are the effects of weather conditions on prices
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and quantities. These effects may be of little substantive interest to policy makers inter-

ested in tax policy. The substantive interest for these policy makers is almost exclusively

in the structural effects of price changes on demand and supply, and reduced form effects

are only of interest in sofar as they are informative about those structural effects. Of

course one should bear in mind that the reduced form or intention-to-treat effects rely

on fewer assumptions.

A second alternative is associated with the partial identification approach by Manski

(1990, 1992, 2003, 2008). See also Robins (1989) and Leamer (1981) for antecedents. In

this setting that suggests maintaining the focus on the original estimand, say the overall

average effect. We cannot estimate that accurately because we cannot estimate the

average value of Yi(0) for always-takers or the average value of Yi(1) for nevertakers, but

we can bound the average effect of interest because we know a priori that the average value

of Yi(0) for always-takers and the average value of Yi(0) for nevertakers is restricted to lie

in the unit interval. Manski’s is a principled and coherent approach. One concern with the

approach is that it has often focused on reporting solely these bounds, leading researchers

to miss relevant information that is available given the maintained assumptions. Two

different data sets may lead to the same bounds even though in one case we may know

that the average effect for one subpopulation (the compliers) is positive and statistically

significantly different from zero whereas in the other case there need not be any evidence

of a non-zero effect for any subpopulation. It would appear to be useful to distinguish

between such cases by reporting both the local average treatment effect and the bounds.

5 The Substantive Content of the Instrumental Vari-

ables Assumptions

In this section I will discuss the substantive content of the three key assumptions, random

assignment, the exclusion restriction, and the monotonicity assumption. I will not discuss

here the fourth assumption, instrument relevance. In practice the main issue with that

assumption concerns the quality of inferences when the assumption is close to being

violated. See Section 7.5 for more discussion, and Staiger and Stock (1997) for a detailed

study.



Instrumental Variables [38]

5.1 Unconfoundedness of the Instrument

First, consider the random assignment or unconfoundedness assumption. In a slightly

different setting this is a very familiar assumption. Matching methods often rely on

random assignment, either unconditionally or conditionally, for their justification.

In some of the leading applications of instrumental variables methods this assumption

is satisfied by design, when the instrument is physically randomized. For example, in the

draft lottery example (Angrist, 1989), draft priority is used as an instrument for veteran

status in an evaluation of the causal effect of veteran status on mortality and earnings.

In that case the instrument, the draft priority number was assigned by randomization.

Similarly, in the flu example (Hirano, Imbens, Rubin and Zhou, 2001), the instrument

for influenza vaccinations, the letter to the physician, was randomly assigned.

In other cases the conditional version of this assumption is more plausible. In the

McClellan and Newhouse (1994) study proximity of an individual to a hospital with

particular facilities is used as an instrument for the receipt of intensive treatment of

acute myocardial infarction. This proximity measure is not randomly assigned, and

McClellan and Newhouse use covariates to make the unconfoundedness assumption more

plausible. For example, they worry about differences between individuals living in rural

versus urban areas. To adjust for such differences they use as one of the covariates the

distance to the nearest hospital (regardless of the facilities at the nearest hospital).

A key issue is that although on its own this random assignment or unconfoundedness

assumption justifies a causal interpretation of the intention-to-treat effects, it is not

sufficient for a causal interpretation of the instrumental variables estimand, the ratio of

the ITT effects for outcome and treatment.

5.2 The Exclusion Restriction

Second, consider the exclusion restriction. This is the most critical and typically most

controversial assumption underlying instrumental variables methods.

First of all, it has some testable implications. See Balke and Pearl (1997), and the

recent discussions in Kitagawa (2009) and Ramsahai and Lauritzen (2011). This can

be seen most easily in a binary outcome setting. Under the three assumptions, random

assignment, the exclusion restriction, and monotonicity, the intention-to-treatment effect
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of the assignment on the outcome is the product of two causal effects. First, the average

effect of the assignment on the outcome for compliers, and second, the intention-to-treat

effect of the assignment on receipt of the treatment, which is equal to the population

proportion of compliers. If the outcome is binary, the first factor is between -1 and 1.

Hence the intention-to-treat effect of the assignment on the outcome has to be bounded

in absolute value by the intention-to-treat effect of the assignment on the receipt of the

treatment. This is a testable restriction. If the outcomes are multivalued, there is in fact

a range of restrictions implied by the assumptions. However, there exist no consistent

tests that will reject the null hypothesis with probability going to one as the sample size

increases in all scenarios where the null hypothesis is wrong.

Let us assess these restrictions in the flu example. Because

pr(Yi = 1, Xi = 0|Zi = 1) = pr(Yi = 1|nevertaker) · pr(nevertaker),

and

pr(Yi = 1, Xi = 0|Zi = 0) = pr(Yi = 1|nevertaker or complier)·pr(nevertaker or complier)

= pr(Yi = 1|nevertaker) · pr(nevertaker)

pr(nevertaker or complier)

+pr(Yi = 1|complier) · pr(complier)

pr(nevertaker or complier)
.

it follows that

pr(Yi = 1, Xi = 0|Zi = 1) ≤ pr(Yi = 1, Xi = 0|Zi = 0). (5.1)

There are three more restrictions in this setting with a binary outcome, binary treatment

and binary instrument. See Balke and Pearl (1997) and Richardson, Evans and Robins

(2011) for details. For the flu data, the simple frequency estimator for the left hand side

of (5.1) is 30/1389 = 0.0216, and the right hand side is 31/72 = 0.0211, leading to a

slight violation as pointed out in Richardson, Evans and Robins (2011) and Imbens and

Rubin (2014). Although not statistically significant, it shows that these restrictions can

be important in practice.

To assess the plausibility of the exclusion restriction it is often helpful to do so sepa-

rately in subpopulations defined by compliance status. Let us first consider the exclusion
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restriction for always-takers, who would receive the influenza vaccine irrespective of the

receipt of the letter by their physician. Presumably such patients are generally at higher

risk for the flu. Why would such patients be affected by a letter warning their physi-

cians about the upcoming flu season when they will get innoculated irrespective of this

warning? It may be that the letter led the physician to take other actions beyond giving

the flu vaccine, such as encouraging the patient to avoid exposure. These other actions

may affect health outcomes, in which case the exclusion restriction would be violated.

The exclusion restriction for never-takers has different content. These patients would

not receive the vaccine in any case. If their physicians did not regard the risk of flu

as sufficiently high to encourage their patients to have the vaccination, presumably the

physician would not take other actions either. For these patients the exclusion restriction

may therefore be reasonable.

Consider the draft lottery example. In that case the always-takers are individuals who

volunteer for military service irrespective of their draft priority number. It seems plausible

that the draft priority number has no causal effect on their outcomes. never-takers are

individuals who do not serve in the military irrespective of their draft priority number. If

this is for medical reason, or more generally reasons that make them ineligible to servce

this seems plausible. If, on the other hand these are individuals fit but unwilling to serve

they may have had to take actions to stay out of the military that could have affected

their subsequent civilian labor market careers. Such actions may include extending their

educational career, or temporarily leaving the country. Note that these issues are not

addressed by the random assignment of the instrument.

In general, the concern is that the instrument creates incentives not only to receive

the treatment, but also to take additional actions that may affect the outcome of interest.

The nature of these actions may well differ by compliance type. Most important is to

keep in mind that this assumption is typically a substantive assumption, not satisfied by

design outside of double-blind, single-dose placebo control randomized experiments with

non-compliance.
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5.3 Monotonicity

Finally consider the monotonicity or no-defiers assumption. Even though this assumption

is often the least controversial of the three instrumental variables assumptions, it is still

sometimes viewed with suspicion. For example, whereas Robins views the assumption as

“often, but not always reasonable,” (Robins, 1989, p. 122), Freedman (2006) wonders:

“The identifying restriction for the instrumental-variables estimator is troublesome: just

why are there no defiers?”(Freedman, 2006, p. 700). In many applications it is perfectly

clear why there should be no or at most few defiers. The instrument plays the role of

an incentive for the individual to choose the active treatment by either making it more

attractive to take the active treatment or less attractive to take the control treatment. As

long as individuals do not respond perversely to this incentive, monotonicity is plausible

with either no or a neglible proportion of defiers in the population. The term incentive is

used broadly here: it may be a financial incentive, or the provision of information, or an

imperfectly monitored legal requirement, but in all cases something that makes it more

likely, at the individual level, that the individual participates in the treatment.

Let us consider some examples. If non-compliance is one-sided, and those assigned to

the control group are effectively embargoed from receiving the treatment, monotonicity

is automatically satisified. In that case Xi(0) = 0, and there are no always-takers or

defiers. The example discussed in Sommer and Zeger (1991), Imbens and Rubin (1997),

and Greenland (2000) fits this set up.

In the flu application introduced in Section 4, the letter to the physician creates an

additional incentive for the physician to provide the flu vaccine to a patient, something

beyond any incentives the physician may have had already to provide the vaccine. Some

individuals may already be committed to the vaccine, irrespective of the letter (the

always-takers), and some may not be swayed by the receipt of the letter (the never-

takers), and that is consistent with this assumption. Monotonicity only requires that

there is no patient, who, if their physician receives the letter, would not take the vaccine,

whereas they would have taken the vaccine in the absence of the letter.

Consider a second example, the influential draft lottery application by Angrist (1990)

(see also Hearst, Newman, and Hulley, 1986). Angrist is interested in evaluating the effect

of military service on subsequent civilian earnings, using the draft priority established by
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the draft lottery as an instrument. Monotonicity requires that assigning an individual

priority for the draft rather than not, may induce them to serve in the military, or may

not affect them, but cannot induce them to switch from serving to not serving in the

military. Again that seems plausible. Having high priority for the draft increases the cost

of staying out of the military: that may not be enough to change behavior, but it would

be unusual if the increased cost of staying out of the military induced an individual to

switch from serving in the military to not serving.

As a third example, consider the Permutt and Hebel (1989) study of the effect of

smoking on birthweight. Permutt and Hebel use the random assignment to a smoking-

cessation program as an instrument for the amount of smoking. In this case the mono-

tonicity assumption requires that there are no individuals who as a causal effect of the

assignment to the smoking-cessation program end up smoking more. There may be in-

dividuals who continue to smoke as much under either assignment and individuals who

reduce smoking as a result of the assignment, but the assumption is that there is no-

body who increases their smoking as a result of the smoking-cessation program. In all

these examples monotonicity requires individuals not to respond perversely to changes

in incentives. Systematic and major violations in such settings seem unlikely.

In other settings the assumption is less attractive. Suppose a program has eligibility

criteria that are checked by two administrators. Individuals applying for entry to the

program are assigned randomly to one of the two administrators. The eligibility criteria

may be interpreted slightly differently by the two administrators, with on average ad-

ministrator A being more strict than administrator B. Monotonicity requires that anyone

admitted by administrator A would also be admitted by administrator B, or vice-versa.

In this type of setting monotonicity does not appear to be as plausible as it is in the

settings where the instrument can be viewed as creating an incentive to participate in

the treatment.

The discussion in this section focuses primarily on the case with a binary treatment

and a binary instrument. In cases with multivalued treatments the monotonicity can

be generalized in two different ways. In both cases it may be less plausible than in the

binary case. Let Xi(z) be the potential treatment level associated with the assignment

z. One can generalize the monotonicity assumption for the binary instrument case to
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this case as

Xi(z) is non − decreasing in z, for all i (monotonicity in instrument).

This generalization is used in Angrist and Imbens (1995). It is consistent with the view

of the instrument as changing the incentive to participate in the treatment: increasing

the incentive cannot decrease the level of the treatment received. Angrist and Imbens

show that this assumption has testable implications.

An alternative generalization is

if Xi(z) > Xj(z), then Xi(z
′) ≥ Xj(z

′) for all z, z′, i, j (monotonicity in unobservables).

This assumption, referred to as rank preservation in Robins (1986), implicitly ranks all

units in terms of some unobservables (Imbens, 2006). It assumes this ranking is invariant

to the level of the instrument. It implies that if Xi(z) > Xj(z), then it cannot be that

Xj(z
′) > Xi(z

′). It is equivalent to the “continuous prescribing preference” in Hernán

and Robins (2006).

In both cases the special case with a binary treatment is identical to the previously

stated monotonicity. In settings with multivalued treatments these assumptions are

more restrictive than in the binary treatment case. In the demand and supply example

in Section 3with linear supply and demand functions, both the monotonicity in the

instrument and monotonicity in the unobservables conditions are satisfied.

6 The Link to the Textbook Discussions of Instru-

mental Variables

Most textbook discussions of instrumental variables use a framework that is quite dif-

ferent at first sight from the potential outcome set up used in Sections 4 and 5. These

textbook discussions (graduate texts include Wooldridge (2002), Angrist and Pischke

(2009), Greene (2011), and Hayashi (2000), and introductory undergraduate textbooks

include Wooldridge (2008) and Stock and Watson (2010)) are often closer to the simul-

taneous equations example from Section 3. An exception is Manski (2007) who uses the

potential outcome set up used in this discussion. In this section I will discuss the standard

textbook set up and relate it to the potential outcome framework and the simultaneous

equations set up.
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The textbook version of instrumental variables does not explicitly define the potential

outcomes. Instead the starting point is a linear regression function describing the relation

between the realized (observed) outcome Yi, the endogenous regressor of interest Xi and

other regressors Vi:

Y obs

i = β0 + β1Xi + β ′
2
Vi + εi. (6.1)

These other regressors a well as the instruments are often referred to in the econometric

literature as exogenous variables. Although this term does not have a well-defined mean-

ing, informally it includes variables that Cox (1992) called attributes, as well as potential

causes that whose assignment is unconfounded. This set up covers both the demand

function setting and the randomized experiment example. Although this equation looks

like a standard regression function, that similarity is misleading. Equation (6.1) is not

an ordinary regression function in the sense that the first part does not represent the

conditional expectation of the outcome Yi given the right hand side variables Xi and

Vi. Instead it is what is sometimes called a structural equation representing the causal

response to changes in the input Xi.

The key assumption in this formulation is that the unobserved component εi in this

regression function is independent of the exogenous regressors Vi and the instruments Zi,

or, formally

εi ⊥
(
Zi, Vi

)
. (6.2)

The unobserved component is not independent of the endogenous regressor Xi though.

The value of the regressor Xi may be partly chosen by individual i to optimize some

objection function as in the noncompliance example, or the result of an equilibrium

condition as in the supply and demand model. The precise relation between Xi and εi is

often not fully specified.

How does this set up relate to the earlier discussion involving potential outcomes?

Implicitly there is in the background of this set up a causal, unit-level response function.

In the potential outcome notation, let Yi(x) denote this causal response function for unit

i, describing for each value of x the potential outcome corresponding to that level of

the treatment for that unit. Suppose the conditional expectation of this causal response
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function is linear in x and some exogenous covariates:

E[Yi(x)|Vi] = β0 + β1 · x + β ′
xVi. (6.3)

Moreover let us make the (strong) assumption that the difference between the response

function Yi(x) and its conditional expectation does not depend on x, so we can define

the residual unambiguously as

εi = Yi(x) − (β0 + β1 · x + β ′
xVi) ,

with the equality holding for all x. The residual εi is now uncorrelated with Vi by

definition. We will assume that it is in fact independent of Vi. Now suppose we have an

instrument Zi such that

Yi(x) ⊥ Zi

∣∣∣ Vi.

This assumption is, given the linear representation for Yi(x), equivalent to

εi ⊥ Zi

∣∣∣ Vi.

In combination with the assumption that εi ⊥ Vi, this gives us the textbook version of

the assumption given in (6.2). We observe Vi, Xi, the instrument Zi, and the realized

outcome

Y obs

i = Yi(Xi) = β0 + β1Xi + β ′
2
Vi + εi,

which is the starting point in the econometric textbook discussion (6.1).

This set up is more restrictive than it needs to be. For example, the assumption that

the difference between the response function Yi(x) and its conditional expectation does

not depend on x can be relaxed to allow for variation in the slope coefficient,

Yi(x) − Yi(0) = β1 · x + ηi · x,

as long as the ηi satisfies conditions similar to those on εi. The modern literature (e.g.,

Matzkin, 2007) discusses such models in more detail.

One key feature of the textbook version is that there is no separate role for the

monotonicity assumption. Because the linear model implicitly assumes that the per-

unit causal effect is constant across units and levels of the treatment, violations of the
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monotonicity assumption do not affect the interpretation of the estimand. A second

feature of the textbook version is that the exclusion restriction and the random assigment

assumption are combined in (6.2). Implicitly, the exclusion restriction is captured by the

absence of Zi in the equation (6.1), and the (conditional) random assignment is captured

by (6.2).

7 Extensions and Generalizations

In this section I will briefly review some of other approaches taken in the instrumental

variables literature. Some of these originate in the statistics literature, some in the

econometrics literature. They reflect different concerns with the traditional instrumental

variables methods, sometimes because of different applications, sometimes because of

different traditions in econometrics and statistics. This discussion is not exhaustive. I

will focus on highlighting the most interesting developments and provide some references

to the relevant literature.

7.1 Model-based Approaches to Estimation and Inference

Traditionally instrumental variables analyses relied on linear regression methods. Ad-

ditional explanatory variables are incorporated linearly in the regression function. The

recent work in the statistics literature has explored more flexible approaches to including

covariates. These approaches often involve modelling the conditional distribution of the

endogenous regressor given the instruments and the exogenous variables. This is in con-

trast to the traditional econometric literature which has focused on settings and methods

that do not rely on such models.

Robins (1989, 1994), Hernán and Robins (2006), Greenland (2000), Robins and

Rotznitzky (2004), and Tan (2010) developed an approach that allow for identification

of average treatment effect by adding parametric modelling assumptions. This approach

starts with the specification of the structural mean, the expectation of Yi(x). Structural

is used here in the same meaning as in the econometric literature. This structural mean

can be the conditional mean given covariates, or the marginal mean, labeled the marginal

structural mean. The specification for this expectation is typically parametric. Then esti-

mating equations for the parameters of these models are developed. In the simple setting
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considered here this would typically lead to the same estimators considered already. An

important virtue of the method is that it has been extended to much more general set-

tings, in particular with time-varying covariates and dynamic treatment regimes in a

series of papers. In other settings it has also led to the development of doubly robust

estimators (Robins and Rotnitzky, 2004). A key feature of the models is that the models

are robust in a particular sense. Specifically, the estimators for the average treatment

effects are consistent irrespective of the misspecification of the model, in the absence of

intention-to-treat effects (what they call the conditional ITT null).

Imbens and Rubin (1997a) and Hirano, Imbens, Rubin and Zhou (2000) propose

building a parametric model for the compliance status in terms of additional covari-

ates, combined with models for the potential outcomes conditional on compliance status

and covariates. Given the monotonicity assumption there are three compliance types,

never-takers, always-takers and compliers. A natural model for compliance status given

individual characteristics Vi is therefore a trinomial logit model:

pr(Ti = n|Vi = v) =
exp(v′γn)

1 + exp(v′γn) + exp(v′γn)
,

pr(Ti = a|Vi = v) =
exp(v′γa)

1 + exp(v′γn) + exp(v′γn)
,

and

pr(Ti = c|Vi = v) =
1

1 + exp(v′γn) + exp(v′γn)
.

With continuous outcomes the conditional outcome distributions given compliance status

and covariates may be normal:

Yi(x)|Ti = t, Vi = v ∼ N (β ′
txv, σ2

tx),

for (t, x) = (n, 0), (a, 1), (c, 0), (c, 1). With binary outcomes one may wish to use logistic

regression models here. This specification defines the likelihood function. Hirano, Im-

bens, Rubin and Zhou (2000) apply this to the flu data discussed before. Simulations in

Richard, Evans and Robins (2011) suggest that the modelling of the compliance status

here is key. Specifically they point out that even in the absence of ITT effects there can

be biases if the model of the compliance status is misspecified.
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Like Hirano, Imbens, Rubin and Zhou (2000), Richardson, Evans and Robins (2011)

build parametric model only for the identified distributions. They use them to estimate

the bounds, so that the parametric assumptions do not contain identifying information.

Little and Yau (2001) similarly model the conditional expectation of the outcome

given compliance status and covariates. In their application there are no always-takers,

only never-takers and compliers. Their specification specifies parametric forms for the

conditional means given the compliance types and the treatment status:

E[Yi(0)|Ti = n, Vi = v] = βn0 + β ′
n1

v,

E[Yi(0)|Ti = c, Vi = v] = βc00 + β ′
c01

v,

and

E[Yi(1)|Ti = c, Vi = v] = βc00 + β ′
c11

v.

7.2 Principal Stratification

Frangakis and Rubin (2002) generalize the latent compliance type approach to instru-

mental variables in an important way. Their focus is on the causal effect of a binary

treatment on some outcome. However, it is not the average effect of the treatment they

are interested in, but the average within a subpopulation. It is the way this subpopula-

tion is defined that creates the complications as well as the connection to instrumental

variables. There is a post-treatment variable that may be affected by the treatment.

Frangakis and Rubin postulate the existence of a pair of potential outcomes for this

post-treatment variable. The subpopulation of interest is then defined by the values for

the pair of potential outcomes for this post-treatment variables.

Let us consider two examples. First the randomized experiment with non-compliance.

The treatment here is the random assignment. The post-treatment variable is the actual

receipt of the treatment. The pair of potential outcomes for this post-treatment variable

capture the compliance status. The subpopulation of interest is the subpopulation of

compliers.

The second example shows how principal stratification generalizes the instrumental

variables set up to other cases. Examples of this type are considered in Zhang, Rubin, and

Mealli (2009), Frumento, Mealli, Pacini, and Rubin (2011), and Robins (1986). Suppose
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we have a randomized experiment with perfect compliance. The primary outcome is

survival after one year. For patients who survive a quality of life measure is observed.

We may be interested in the effect of the treatment on quality of life. This is only defined

for patients who survive up to one year. The principal stratification approach suggests

focusing on the subpopulation or principal stratum of patients who survive irrespective of

the treatment assignment. Membership in this stratum is not observed, and so we cannot

directly estimate the average effect of the treatment on quality of life for individuals in

this stratum, but the data are generally still informative about such effects, particularly

under monotonicity assumptions.

7.3 Randomization Inference with Instrumental Variables

Most of the work on inference in instrumental variables settings is model-based. After

specifying a model relating the treatment to the outcome, the conditional distribution

or conditional mean of outcomes given instruments is derived. The resulting inferences

are conditional on the values of the instruments. A very different approach is taken in

Rosenbaum (1996) and Imbens and Rosenbaum (2004).

Rosenbaum focuses on the distribution for statistics generated by the random assign-

ment of the instruments. In the spirit of the work by Fisher (1925) confidence intervals

for the parameter of interest, β1 in equation (6.3) based on this randomization distribu-

tion. Similar to confidence intervals for treatment effects based on inverting conventional

Fisher p-values these intervals have exact coverage under the stated assumptions. How-

ever, these results rely on arguably restrictive constant treatment effect assumptions.

7.4 Matching and Instrumental Variables

In many observational studies using instrumental variables approaches the instruments

are not randomly assigned. In that case adjustment for additional pretreatment vari-

ables can sometimes make causal inferences more credible. Even if the instrument is

randomly assigned, such adjustments can make the inferences more precise. Tradition-

ally in econometrics these adjustments are based on regression methods. Recently in the

statistics literature matching methods have been proposed as a way to do the adjustment

for pretreatment variables (Baiocchi, Small, Lorch, and Rosenbaum, 2010).
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7.5 Weak Instruments

One concern that has arisen in the econometrics literature is about weak instruments.

For an instrument to be helpful in estimating the effect of the treatment it not only needs

to have no direct effect on the outcome, it also needs to be correlated with the treatment.

Suppose this correlation is very close to zero. In the simple case the IV estimator is the

ratio of covariances,

β̂1,iv =
Ĉov(Yi, Zi)

Ĉov(Xi, Zi)
=

1

N

∑N

i=1
(Yi − Y )(Zi − Z)

1

N

∑N

i=1
(Xi − X)(Zi − Z)

.

The distribution of this ratio can be approximated by a normal distribution in large

samples, as long as the covariance in the denominator is non-zero in the population. If

the population value of the covariance in the denominator is exactly zero the distribution

of the ratio β̂1,iv is Cauchy in large samples, rather than normal. The weak instrument

literature is concerned with the construction of confidence intervals in the case the co-

variance is close to zero. Interest in this problem rose sharply after a study by Angrist

and Krueger (1991), which remains the primary empirical motivation for this literature.

Angrist and Krueger were interested in estimating the causal effect of years of education

on earnings. They exploited variation in educational achievement by quarter of birth

attributed to differences in compulsory schooling laws. These differences in average years

of education by quarter of birth were small, and they attempted to improve precision

of their estimators by including interactions of the basic instruments, the three quarter

of birth dummies, with indicators for year and state of birth. Bound, Jaeger and Baker

(1995) showed that the estimates using the interactions as additional instruments were

potentially severely affected by the weakness of the instruments. In one striking analysis

they re-estimated the Angrist-Krueger regressions using randomly generated quarter of

birth data (uncorrelated with earnings or years of education). One might have expected,

and hoped, that in that case one would find an imprecisely estimated effect. Surpris-

ingly, Bound, Jaeger and Baker (1995) found that the confidence intervals constructed

by Angrist and Krueger suggested precisely estimated effects for the effect of years of

education on earnings. It was subsequently found that with weak instruments the TSLS

estimator, especially with many instruments, was biased, and that the standard variance

estimator led to confidence intervals with substantial undercoverage (Bound, Jaeger and
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Baker, 1995; Staiger and Stock, 1997; Chamberlain and Imbens, 2004).

Motivated by the Bound-Jaeger-Baker findings the weak and many instruments lit-

erature focused on point and interval estimators with better properties in settings with

weak instruments. Starting with Staiger and Stock (1997) a literature developed to con-

struct confidence intervals for the instrumental variables estimand that remained valid

irrespective of the strength of the instruments. A key insight was that confidence in-

tervals based on the inversion of Anderson-Rubin (1948) statistics have good properties

in settings with weak instruments. See also Moreira (2003), Andrews and Stock (2007),

Kleibergen (2002), and Andrews, Moreira and Stock (2006).

Let us look at the simplest case case with a single endogenous regressor, a single

instrument, and no additional regressors, and normally distributed residuals:

Yi(x) = β0 + β1 · x + εi, with εi|Zi ∼ N
(
0, σ2

ε

)
.

The Anderson-Rubin statistic is, for a given value of b

AR(b) =

(
1√
N

N∑

i=1

(Zi − Z) · (Yi − b ·Xi)

)2/(
1

N

N∑

i=1

(Zi − Z)2 · σ̂2

ε

)
,

where Z =
∑N

i=1
Zi/N , and for some estimate of the residual variance σ2

ε . At the true

value b = β1 the AR statistic has in large samples a chi-squared distribution with one

degree of freedom. Staiger and Stock (1997) propose constructing a confidence interval

by inverting this test statistic:

CI0.95(β1) = {b|AR(b) ≤ 3.84} .

The subsequent literature has extended this by allowing for multiple instruments and de-

veloped various alternatives, all with the focus on methods that remain valid irrespective

of the strength of the instruments. See Andrews and Stock (2007) for an overview of this

literature.

7.6 Many Instruments

Another strand of the literature motivated by the Angrist-Krueger study focused on

settings with many weak instruments. The concern centered on the Bound-Jaeger-Baker

(1995) finding that in a setting similar to the Angrist-Krueger setting using TSLS with
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many randomly generated instruments led to confidence intervals that had very low

coverage rates.

To analyze this setting Bekker (1995) considered the behavior of various estimators

under an asymptotic sequence where the number of instruments increases with the sample

size. Asymptotic approximations to sampling distributions based on this sequence turned

out to be much more accurate than those based on conventional asymptotic approxima-

tions. A key finding in Bekker (1995) is that under such sequences one of the leading

estimators, Two-Stage-Least-Squares (TSLS, See the appendix for details) estimator is no

longer consistent, whereas another estimator, Limited Information Maximum Likelihood

(LIML, again see the appendix for details) estimator remains consistent although the

variance under this asymptotic sequence differs from that under the standard sequence.

See also Kunitomo (1980), Morimune (1983), Bekker and VanderPloeg (2005) Cham-

berlain and Imbens (2004), Chao and Swanson (2005), Hahn (2002), Hansen, Hausman

and Newey (2008) Kolesár, Chetty, Friedman, Glaeser and Imbens (2011), Van Hasselt

(2010).

7.7 Proxies for Instruments

Hernán and Robins (2006) and Chalak (2011) explores settings where the instrument

is not directly observed. Instead a proxy variable Z∗
i is observed. This proxy variable

is correlated with the underlying instrument Zi, but not perfectly so. The potential

outcomes Yi(z, x) are still defined in terms of the underlying, unobserved instrument Zi.

The unobserved instrument Zi satisfies the instrumental variables assumptions, random

assignment, the exclusion restriction, and the monotonicity assumption. In addition, the

observed proxy Z∗
i satisfies

Z∗
i ⊥ Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Xi(0), Xi(1)|Zi.

Chalak shows that the ratio of covariances (now no longer the ratio of intention-to-treat

effects) still has an interpretion of an average causal effect.

7.8 Regression Discontinuity Designs

Regression Discontinuity (RD) designs attempt to estimate causal effects of a binary

treatment in settings where the assignment mechanism is a deterministic function of a
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pretreatment variable. In the sharp version of the RD design the assigment mechanism

takes the form

Xi = 1Vi≥c,

for some fixed threshold c: all units with a value for the covariate Vi exceeding c receive

the treatment and all units with a value for Vi less than c are in the control group. Under

smoothness assumptions it is possible in such settings to estimate the average effect of

the treatment for units with a value for the pretreatment variable equal to Vi ≈ c:

E[Yi(1) − Yi(0)|Vi = c] = lim
w↑c

E[Yi|Vi = w] − lim
w↓c

E[Yi|Vi = w].

These designs were introduced by Thistlewaite and Campbell (1960), and have been used

in psychology, sociology, political science, and economics. For example, many educational

programs have eligibility criteria that allow for the application of RD methods. See Cook

(2008) for a recent historical perspective and Imbens and Wooldridge (2009) for a recent

review.

A generalization of the sharp RD design is the Fuzzy Regression Discontinuity or FRD

design. In this case the probability of receipt of the treatment increases discontinuously

at the threshold, but not necessarily from zero to one:

lim
w↓c

pr(Xi = 1|Vi = w) 6= lim
w↑c

pr(Xi = 1|Vi = w).

In that case it is no longer possible to consistently estimate the average effect of the treat-

ment for all units at the threshold. Hahn, Todd, and Van der Klaauw (2000) demonstrate

that there is a close link to the instrumental variables set up. Specifically Hahn, Todd

and VanderKlaauw show that one can estimate a local average treatment effect at the

threshold. To be precise, one can identify the average effect of the treatment for those

who are on the margin of getting the treatment:

E

[
Yi(1) − Yi(0)

∣∣∣∣Vi = c, lim
w↑c

Xi(w) = 0, lim
w↓c

Xi(w) = 1

]
=

limw↑c E[Yi|Vi = w] − limw↓c E[Yi|Vi = w]

limw↑c E[Xi|Vi = w] − limw↓c E[Xi|Vi = w]
.

This estimand can be estimated as the ratio of an estimator for the discontinuity in

the regression function for the outcome and an estimator for the discontinuity in the

regression function for the treatment of interest.
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8 Conclusion

In this paper I review the connection between the recent statistics literature on instrumen-

tal variables and the older econometrics literature. Although the econometric literature

on instrumental variables goes back to the 1920s, until recently it had not made much

of an impact on the statistics literature. The recent statistics literature has combined

some of the older insights from the econometrics instrumental variables literature with

the separate literature on causality, enriching both in the process.
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Appendix: Estimation and Inference,

Two-Stage-Least-Squares and other Traditional Methods

A.1 Set Up

In this section I will discuss the traditional econometric approaches to estimation and in-

ference in instrumental variables settings. Part of the aim of this section is to provide easier
access to the econometric literature and terminology on instrumental variables, and to provide
a perspective and context for the recent advances.

The textbook setting is the one discussed in the previous section, where a scalar outcome
Yi is linearly related to a scalar covariate of interest Xi. In addition there may be additional

exogenous covariates Vi. The traditional model is

Yi = β0 + β1Xi + β′
2Vi + εi. (8.1)

In addition we have a vector of instrumental variables Zi, with dimension K.

An important distinction in the traditional econometric literature is between the case with
a single instrument (K = 1), and the case with more than one instrument K > 1). More
generally, with more than one endogenous regressor, the distinction is between the case with

the number of instruments equal to the number of endogenous regressors and the case with
the number of instruments larger than the number of endogenous regressors. In the empirical

literature there are few credible examples with more than one endogenous regressor, so I focus
here on the case with a single endogenous regressor. The first case, with a single instrument,

is referred to as the just-identified case, and the second, with multiple instruments and a single
endogenous regressor, as the over-identified case. In the textbook setting with a linear model

and constant coefficients this distinction has motivated different estimators and specification
tests. In the modern literature, with its explicit allowance for heterogeneity in the treatment

effects, these tests, and the distinction between the various estimators, are of less interest. In
the recent statistics literature little attention has been paid to the over-identified case with
multiple instruments. An exception is Small (2007).

Obviously it is often difficult in applications to find even a single variable that satisfies the
conditions for it to be a valid instrument. This raises the question how relevant the literature

focusing on methods to deal with multiple instruments is for empirical practice. There are two
classes of applications where multiple instruments could credible arise. First, suppose one has

a single continous (or multivalued) instrument that satisfies the instrumental variables assump-
tions, monotonicity, random assignment and the exclusion restriction. Then any monotone

function of the instruments also satisfies these assumptions, and one can use multiple mono-
tone functions of the original instrument as instruments. Second, if one has a single instrument

in combination with exogenous covariates, then one can use interactions of the instrument and
the covariates to generate additional instruments.

Consider for example the Fulton fish market study by Graddy (1995, 1996). Graddy uses

weather conditions as an instrument that affects supply but not demand. Specifically she
measures wind speed and wave height, giving her two basic instruments. She also constructs

functions of these basic instruments, such as indicators that the wind speed or wave height
exceeds some threshold.

A.2 The Just-Identified Case with no Additional Covariates
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The traditional approach to estimation in this case is to use what is known in the economet-

rics literature as the instrumental variables estimator. In the case without additional exogenous
covariates the most widely used estimator is simply the ratio of two covariances:

β̂1,iv =
Ĉov(Yi, Zi)

Ĉov(Xi, Zi)
=

1

N

∑N
i=1

(Yi − Y )(Zi − Z)
1

N

∑N
i=1

(Xi − X)(Zi − Z)
,

where Y , Z, and X denote sample averages. If the instrument Zi is binary, this is also known
as the Wald estimator:

β̂1,iv =
Y 1 − Y 0

X1 − X0

,

where for z = 0, 1

Y z =
1

Nz

∑

i:Zi=z

Yi, Xz =
1

Nz

∑

i:Zi=z

Xi,

and N1 =
∑N

i=1
Zi and N0 =

∑N
i=1

(1 − Zi).
One can interpret this estimator in two different ways. These interpretations are useful for

motivating extensions to settings with multiple instruments and additional exogenous regres-

sors. First, the indirect least squares interpretation. This relies on first estimating separately
the two reduced form regressions, the regressions of the outcome on the instrument:

Yi = π10 + π11 · Zi + ε1i,

and the regression of the endogenous regressor on the instrument:

Xi = π20 + π21 · Zi + ε2i.

The indirect least squares estimator is the ratio of the least squares estimates of π11 and π21, or
β̂1,ils = π̂11/π̂21. Note that in the randomized experiment example where Xi and Zi are binary,

the π11 and π12 are the intention-to-treat effects, with π̂11 = Y 1 − Y 0 and π̂12 = X1 − X0.
Second, I discuss the two-stage-least-squares interpretation of the instrumental variables

estimator. First estimate the reduced form regression of the treatment on the instruments and
the exogenous covariates. Calculate the predicted value for the endogenous regressor from this

regression:

X̂i = π̂20 + π̂21 · Zi.

The estimate the regression of the outcome on the predicted endogenous regressor and the
additional covariates,

Yi = β0 + β1X̂i + ηi,

by least squares to get the TSLS estimator β̂tsls. In this just-identified setting the three esti-
mators for β1 are numerically identical: β̂1,iv = β̂1,ils = β̂1,tsls.

A.3 The Just-Identified Case with Additional Covariates

In most econometric applications the instrument is not physically randomized. There is

in those cases no guarantee that the instrument is independent of the potential outcomes.
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Often researchers use covariates to weaken the requirement on the instrument to conditional

independence given the exogenous covariates. In addition the additional exogenous covariates
can serve to increase precision. In that case with additional covariates the estimation strategy

changes slightly. The two reduced form regressions now take the form

Yi = π10 + π11 · Zi + π′
12Vi + ε1i,

and the regression of the endogenous regressor on the instrument:

Xi = π20 + π21 · Zi + π′
22Vi + ε2i.

The indirect least squares estimator is again the ratio of the least squares estimates of π11 and
π21, or β̂1,ils = π̂11/π̂21.

For the two-stage-least-squares estimator we again first estimate the regression of the en-
dogenous regressor on the instrument, now also including the exogenous regressors. The next

step is to predict the endogenous covariate:

X̂i = π̂20 + π̂21 · Zi + π̂′
22Vi.

Finally the outcome is regressed on the predicted value of the endogenous regressor and the
actual values of the exogenous variables:

Yi = β0 + β1X̂i + β′
2Vi + ηi.

The TSLS estimator is again identical to the ILS estimator.
For inference the traditional approach is to assume homoskedasticity of the residuals Yi −

β0 − β1Xi − β′
2
Vi with variance σ2

ε . In large samples the distribution of the estimator β̂iv is
approximately normal, centered around the true value β1. Typically the variance is estimated

as

V̂ = σ̂2

ε ·







1

X̂i

Vi






1

X̂i

Vi




′



−1

.

See the textbook discussion in Wooldridge (2002).
A.4 The Over-Identified Case

The second case of interest is the overidentified case. The main equation remains

Yi = β0 + β1Xi + β′
2
Vi + εi,

but now the instrument Zi has dimension K > 1. We continue to assume that the residuals εi

are independent of the instruments with mean zero and variance σ2
ε . This case is the subject

of a large literature, and many estimators have been proposed. I will briefly discuss two. For a

more detailed discussion see Wooldridge (2002).
A.5 Two-Stage-Least-Squares

The TSLS approach extends naturally to the setting with multiple instruments. First
estimate the reduced form regression of the endogenous variable Xi on the instruments Zi and

the exogenous variables Vi,

Xi = π20 + π′
21Zi + π′

22Vi + ε2i,
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by least squares. Next calculate the predicted value,

X̂i = π̂20 + π̂′
21Zi + π̂′

22Vi.

Finally, regress the outcome on the predicted value from this regression:

Yi = β0 + β1X̂i + β′
2Vi + ηi.

The fact that the dimension of the instrument Zi is greater than one does not affect the
mechanics of the procedure.

To illustrate this, consider the Graddy Fulton Fish Market data. Instead of simply using
the binary indicator stormy/not-stormy as the instrument, we can use the tri-valued weather

indicator, stormy/mixed/fair to generate two instruments. This leads to TSLS estimates equal
to

β̂1,tsls = −1.014 (s.e. 0.384).

A.6 Limited-Information-Maximum-Likelihood

The second most popular estimator in this over-identified setting is the limited-information-
maximum-likelihood (LIML) estimator, originally proposed by Anderson and Rubin (1948) in
the statistics literature. The likelihood is based on joint normality of the joint endogenous

variables, (Yi, Xi)
′, given the instruments and exogenous variables (Zi, Vi):

(
Yi

Xi

)∣∣∣∣Zi, Vi ∼ N
((

π10 + β1π
′
21

Zi + π′
12

Vi

π20 + π′
21

Zi + π′
22

Vi

)
, Ω

)
.

The LIML estimator can be expressed in terms of some eigen value calculations, so that it

is computationally fairly simple, though more complicated than the TSLS estimator which
only requires matrix inversion. Although motivated by a normal-distribution-based likelihood

function, the LIML estimator is consistent under much weaker conditions, as long as (ε1i, ε2i)
′

are independent of (Zi, Vi) and the model (8.1) is correct with εi independent of (Zi, Vi).

Both the TSLS and LIML estimators are consistent and asymptotically normally distributed
with the same variance. In the just-identified case the two estimators are numerically identical.
The variance can be estimated as in the just-identified case as

V̂ = σ̂2

ε ·







1

X̂i

Vi






1

X̂i

Vi




′



−1

.

In practice there can be substantial differences between the TSLS and LIML estimators when
the instruments are weak (see Section 7.5) or when there are many instruments (see Section

7.6), that is, when the degree of overidentification is high.
For the fish data the LIML estimates are

β̂1,liml = −1.016 (s.e. 0.384).

A.6 Testing the Over-Indentifying Restrictions

The indirect least squares procedure does not work well in the case with multiple instru-
ments. The two reduced form regressions are

Xi = π20 + π′
21Zi + π′

22Vi + ε2i,
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and

Yi = π10 + π′
11Zi + π′

12Vi + ε1i.

If the model is correctly specified, the K-component vector π11 should be equal to β1 · π21.
However, there is nothing in the reduced form estimates that imposes proportionality of the

estimates. In principle we can use any element of the K-component vector or ratios π̂21/π11 as
an estimator for β1. If the assumption that ε1i is independent of Zi is true for each component
of the instrument, all estimators will estimate the same object, and differences between them

should be due to sampling variation. Comparisons of these K estimators can therefore be used
to test the assumptions that all instruments are valid.

Although such tests have been popular in the econometrics literature, they are also sensitive
to the other maintained assumptions in the model, notably linearity in the endogenous regressor

and the constant effect assumption. In the local-average-treatment-effect set up from Section
4.5, differences in estimators based on different instruments can simply be due to the fact that

the different instruments correspond to different populations of compliers.
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Table 1: Fulton Fish Market Data (N = 111)

number of logarithm of price logarithm of quantity
observations average standard deviation average standard deviation

all 111 -0.19 (0.38) 8.52 (0.74)

stormy 32 0.04 (0.35) 8.27 (0.71)
not-stormy 79 -0.29 (0.35) 8.63 (0.73)

stormy 32 0.04 (0.35) 8.27 (0.71)
mixed 34 -0.16 (0.35) 8.51 (0.77)
fair 45 -0.39 (0.37) 8.71 (0.69)

Table 2: Influenza Data (N = 2861)

Hospitalized for Influenza Vaccine Letter Number of Individuals
Flu-Related Reasons

Y obs

i Xobs

i Zi

No No No 1027
No No Yes 935
No Yes No 233
No Yes Yes 422
Yes No No 99
Yes No Yes 84
Yes Yes No 30
Yes Yes Yes 31
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Figure 1: Scatterplot of log prices and log quantities
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Figure 2: Scatterplot of log prices and log quantities by weather conditions
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