

Formal Methods for Safe and
�
Secure Computers Systems
�

BSI Study 875

Editor: Dr. Hubert Garavel
Experts: Dr. Hubert Garavel, Dr. Susanne Graf

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Phone: +49 22899 9582-5877
E-Mail: anastasia-maria.leventi-peetz@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2013

http:https://www.bsi.bund.de
mailto:anastasia-maria.leventi-peetz@bsi.bund.de

By order of:

Bundesamt für Sicherheit in der Informationstechnik (BSI)

Godesberger Allee 185189

53175 Bonn

Germany

http://www.bsi.bund.de

Project leader:

Dr. Anastasia-Maria Leventi-Peetz

E-mail: anastasia-maria.leventi-peetz@bsi.bund.de

Prepared by:

Altros

24, rue Lamartine

38320 Eybens

France

http://www.altros.fr

Editor:

Dr. Hubert Garavel

E-mail: hubert.garavel@formal-methods.org

Experts:

Dr. Hubert Garavel and Dr. Susanne Graf

Proofreader:

Dipl.-Inform. Marie-Luise Schneider

Federal Office for Information Security

mailto:anastasia-maria.leventi-peetz@bsi.bund.de
http://www.bsi.bund.de/
mailto:hubert.garavel@formal-methods.org
http://www.altros.fr/

Foreword

The present report is the result of a study initiated at the BSI (Bundesamt
für Sicherheit in der Informationstechnik), the German Federal Office for
Information Security. The main motivation behind the study was to obtain
a state-of-the-art account on formal methods used in academia, industry,
and governmental institutions in charge of certifying information technology
products, and to infer where and how formal methods can be deployed to
improve over current development practices.
A major challenge for this study is the huge amount of scientific publica
tions in the domain: search requests on “formal methods” return more than
100,000 citations on Google Scholar. Moreover, formal methods are math
ematically involved and their landscape is currently fragmented into very
diverse approaches. Scientific opinions are often diverging and attempts at
drawing general rules face multiple exceptions and counterexamples. Sur
veys on formal methods exist but focus on specific topics rather than pro
viding a global overview.
The present report aims at presenting a comprehensive picture of the situa
tion, in which the different approaches to formal methods are organized into
a systematic framework and compared with each other. Due to the limited
time frame allocated to the study, exhaustiveness was not feasible — this
would have required the double of time and twice as many pages.
Therefore, priority has been given to breadth-first rather than depth-first
exposition, not to duplicate existing books on specialized aspects of formal
methods. Also, the emphasis has been placed on methodological issues to
address the concerns of project managers in charge of safety- and security
critical projects.
As much as possible, the report tries to be clear, ordered, concise, neutral,
and avoids using mathematical symbols intensively, as being bound to for
mal definitions would have caused a loss of generality, selecting particular
approaches while excluding others. A specific effort was made to position
formal methods with respect to conventional methodologies used in industry.
The preparation of this report would have been much harder, if not impossi

3

ble, without the online services provided by three Web institutions: Google,
Wikipedia, and Michael Ley’s DBLP at the University of Trier.
In particular, the report cites many Wikipedia pages that, together with
other Web pages, deliver additional information on software engineering,
hardware design, and formal methods. Even if such pages are less detailed
and stable than the traditional, perennial sources of scientific information
(textbooks, scientific journals, and conference proceedings), their merit is to
provide valuable information that is synthetic, readily, and freely available.
This study greatly benefited from fruitful discussions with numerous scien
tists, among whom Cyrille Comar, Marie-Claude Gaudel, Patrice Godefroid,
Roland Groz, Holger Hermanns, Joost-Pieter Katoen, Gérard Ladier, Pas
cal Lafourcade, Flemming Nielson, and Reinhard Wilhelm. May they be
warmly thanked for their help.

Contents

1 Motivation 9

1.1 Introduction . 9

1.2 What are formal methods? 14

1.3 How are formal methods today? 16

1.3.1 A difficult problem . 16

1.3.2 A fragmented landscape 18

1.3.3 A broadening scope 19

1.3.4 A growing number of success stories 22

1.3.5 A limited industrial impact 34

1.4 Why this report? . 37

1.4.1 A favorable timing for formal methods 37

1.4.2 A crucial need for a synthesis 38

1.5 Who should read this report? 40

1.6 What is in this report? . 41

2 Scope and taxonomies 43

2.1 Introduction . 43

2.2 Taxonomy according to application domains 43

2.2.1 System design and engineering 43

2.2.2 Protocol design and engineering 45

2.2.3 Software design and engineering 46

2.2.4 Hardware design and engineering 47

2.2.5 Discussion . 50

2.3 Taxonomy according to environment assumptions 51

2.3.1 Environment and system boundary 51

2.3.2 Environment assumptions 52

2.3.3 Correctness and performance issues 53

2.3.4 Dependability and performability issues 55

2.3.5 Security issues . 59

2.3.6 Discussion . 62

3 Components, models, and properties 67

3.1 Introduction . 67

5

3.2 Components . 67

3.2.1 System components 67

3.2.2 Decomposition strategies 69

3.2.3 Composition means 70

3.2.4 Component environments 73

3.2.5 Component interactions 74

3.2.6 Component interfaces 75

3.3 Specifications . 77

3.3.1 Declarative vs operational specifications 77

3.3.2 Open vs closed specifications 78

3.4 Models . 80

3.4.1 Definition . 80

3.4.2 Programs vs models 82

3.4.3 Formal vs informal models 84

3.4.4 Executable vs non-executable models 86

3.4.5 Partial vs total models 88

3.4.6 Abstract vs concrete models 88

3.4.7 Unique vs multiple models 90

3.4.8 Deterministic vs nondeterministic models 92

3.4.9 System observability 96

3.5 Properties . 98

3.5.1 Definition . 98

3.5.2 Attributes and queries vs properties 101

3.5.3 Formal vs informal properties 103

3.5.4 Functional vs non-functional properties 105

3.5.5 Local vs global properties 108

3.5.6 Static vs dynamic properties 108

3.5.7 Generic vs specific properties 109

3.5.8 Abstract vs concrete properties 110

3.5.9 One-language vs two-language properties 111

3.5.10 Internal vs external properties 112

4 Design flows and methodologies 115

4.1 Introduction . 115

4.2 Quality issues . 116

4.2.1 Quality goals . 116

4.2.2 Obstacles to quality measurement 117

4.2.3 Product quality vs process quality 118

4.2.4 System quality vs component quality 120

4.3 Design flows . 121

4.3.1 Design artifacts . 121

4.3.2 Design steps . 122

4.3.3 Defective design steps 124

4.3.4 Quality steps . 125

4.3.5 Revision steps . 127

4.4 Methodological principles . 128

4.4.1 Seamless design flows 129

4.4.2 Disciplined design flows 129

4.4.3 Management of changes 130

4.4.4 Traceability of requirements 131

4.4.5 Early detection of errors 132

4.5 Quality by design principles 133

4.5.1 Simplicity . 133

4.5.2 Modularity and reusability 134

4.5.3 Separation of concerns 136

4.5.4 Testability and verifiability 137

4.5.5 Partitioning and containment 138

4.5.6 Redundancy and diversity 140

4.5.7 Fault tolerance and fail safety 142

4.6 Conventional design flows . 143

4.6.1 Organization of conventional design flows 143

4.6.2 Conventional design steps: requirements 146

4.6.3 Conventional design steps: models and programs . . . 149

4.6.4 Conventional design steps: manual steps 150

4.6.5 Conventional design steps: automatic steps 153

4.6.6 Conventional quality steps: requirements validation . 155

4.6.7 Conventional quality steps: reviews 158

4.6.8 Conventional quality steps: static analyses 161

4.6.9 Conventional quality steps: dynamic analyses 166

4.6.10 Conventional quality steps: more on simulation 176

4.6.11 Conventional quality steps: more on testing 181

4.6.12 Conventional quality steps: more on run-time and log

analyses . 190

4.6.13 Discussion . 191

4.7 Formal design flows . 192

4.7.1 Organization of formal design flows 192

4.7.2 Differentiate usage of formal methods 193

4.7.3 Gradual levels of rigor 194

4.7.4 Partially-formal design flows 196

4.7.5 Fully-formal design flows 198

4.8 Formal design steps . 203

4.8.1 Formalization of requirements 204

4.8.2 Refinement steps . 206

4.8.3 Abstraction steps . 208

4.9 Formal quality steps . 211

4.9.1 Correct-by-construction approaches 211

4.9.2 Correct-by-verification approaches 212

4.9.3 Panorama of formal quality steps 213

8

4.9.4 Static vs dynamic quality steps 215

4.9.5 Generic vs specific quality steps 216

4.9.6 Exact vs approximate quality steps 216

4.9.7 Manual vs automatic quality steps 218

4.9.8 Errors in formal quality steps 219

4.9.9 Diagnostics in formal quality steps 221

4.9.10 Iterations in formal quality steps 222

4.9.11 Impact on reviews . 225

4.9.12 Impact on simulation 226

4.9.13 Impact on testing . 235

5 Conclusion 251

Index 254

Bibliography 269

	

	

	

	

	

	

	

	

Chapter 1

Motivation

1.1 Introduction

Since the introduction of early commercial computers in the 50s, the part
of human activities that depend on computers has been increasing steadily.
From the final goods used in everyday life (watches, consumer electronics,
telephones, cars, etc.) to the largest national and international infrastruc
tures (energy, transportation, etc.), many functions that were previously
performed mechanically or electrically are now handled digitally. As a conse
quence, the number of microcontrollers and microprocessors now far exceeds
(and grows faster than) the total human population on the Earth.
This phenomenon was made possible by a combination of major advances
in all facets of computer science:

•	 Increase in computing power, as illustrated by Moore’s and Koomey’s
laws, which state that the computation power of a processor and the
number of operations that can computed with a given amount of en
ergy double every 18–24 months;

•	 Increase in data storage capabilities, as illustrated, e.g., by Kryder’s
law, which states that the number of bits that can be stored on mag
netic disks doubles every 12 or 18 months; similarly, Information Week
reports that the data base size of the largest warehouses has been grow
ing at an extraordinary pace since 1998;

•	 Increase in connectivity, as illustrated by the growth of telecommuni
cation bandwidth and mobile traffic;

•	 Increase in software productivity, which enabled the development of
large amounts of software, the growth of which is estimated to be
exponential, at least in the case of open source software.

9

	
	
	
	

	

	

	

	

	
	

	
	
	
	

	

	

	

	

	
	

10 Chapter 1. Motivation

Further reading:
▶	 Wikipedia: Moore’s law
▶	 Wikipedia: Koomey’s law
▶	 Wikipedia: Kryder’s law
▶	 Information Week Software – Scaling the Data Warehouse (2008) –

http://www.informationweek.com/software/information
management/scaling-the-data-warehouse/210900005

▶	 ITU. Mobile traffic forecasts 2010–2020 –
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa
U%3D&tabid=1497&mid=5129

▶	 Amit Deshpande and Dirk Riehle. The Total Growth of Open Source
– http://www.riehle.org/2008/03/14/the-total-growth-of-open-source/

In many cases, computer automation delivers more flexible and reliable de
vices and infrastructures by enabling repetitive tasks previously done by
humans, often in a sporadic manner, to be accomplished with precision and
regularity.
However, computer automation may also increase the risk of failures or
malfunctioning. This may have dramatic consequences, especially for two
classes of systems:

•	 Life-critical systems (also called safety-critical systems) are systems
that, if they fail or malfunction, may threaten human lives. Typical ex
amples of such systems can be found in transport (cars, trains, planes,
etc.), energy (nuclear plants, etc.), and medicine (assisted surgery,
medical devices, etc.).

•	 Mission-critical systems (also called business-critical systems) present
different risks than the former ones, as their failure or malfunction may
only generate financial losses. Such risks are increased for systems
having a long lifetime, deployed in large numbers, intensively used
by many people, and/or difficult or even impossible to repair while
operating. Typical examples are unmanned space ships, satellites,
banking applications, security systems, etc.

Further reading:
▶	 Wikipedia: Life-critical system
▶	 Wikipedia: Mission critical

The frontier between both classes is not always clear, due to the complex

dependencies in modern societies. For instance, huge financial losses or

http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Koomey's_law
http://en.wikipedia.org/wiki/Kryder's_law
http://www.informationweek.com/software/information-management/scaling-the-data-warehouse/210900005
http://www.informationweek.com/software/information-management/scaling-the-data-warehouse/210900005
http://www.informationweek.com/software/information-management/scaling-the-data-warehouse/210900005
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa-U%3D&tabid=1497&mid=5129
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa-U%3D&tabid=1497&mid=5129
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa-U%3D&tabid=1497&mid=5129
http://www.riehle.org/2008/03/14/the-total-growth-of-open-source/
http://www.riehle.org/2008/03/14/the-total-growth-of-open-source/
http://en.wikipedia.org/wiki/Life-critical_system
http://en.wikipedia.org/wiki/Mission_critical

	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	

	

	

11 1.1. Introduction

security breaches may negatively impact human health and well-being. Also,
for cost reasons, it is not uncommon that components developed for mission
critical purpose only (e.g., microprocessors, operating systems, compilers,
etc.) become eventually used in life-critical systems.
There are numerous examples of failures affecting computer-based systems.
Regarding hardware-specific failures, one can mention the Pentium floating
point division bug (1994) and the Cougar Point chipset flaw (2011), which
costed Intel 475 million and one billion dollars, respectively. Regarding
software-specific failures, the Therac 25 radiotherapy engine killed five per
sons in the 80s due to bad software design. Regarding large-scale infrastruc
tures, the failure of the Denver airport automated baggage system (1994)
delayed the airport’s opening for 16 months with a cost overrun larger than
250 million dollars. This list is by no means complete, as every week the
Risks Digest forum reports new examples of risks to the public caused by
computers and computer-based systems.

Further reading:
▶	 Wikipedia: Pentium FDIV bug
▶	 Wikipedia: Sandy Bridge#Cougar Point chipset flaw
▶	 Wikipedia: Therac-25
▶	 Wikipedia: Denver Airport#Automated baggage system
▶	 Wikipedia: List of software bugs
▶	 The Risks Digest – http://catless.ncl.ac.uk/risks
▶	 Safety Critical List – http://www.cs.york.ac.uk/hise/sc list arc.php

There are different reasons for failure or malfunctioning:

•	 Design errors prevent a system from achieving its intended function
ality. Such errors often occur during the early phases of system design
and may be caused by inappropriate capture of system requirements,
or inaccurate modeling of the actual environment in which the system
is supposed to function, or mathematical errors in complex control
equations, or errors in critical algorithms and data structures that the
system is relying upon, or unexpected interactions between several
functionalities that must be provided simultaneously, etc.

•	 Hardware faults encompass physical or logical issues in microproces
sors, microcontrollers, integrated circuits, sensors, actuators, etc. Cer
tain issues come from hardware obsolescence and cannot be prevented
from occurring; it is therefore mandatory that systems can detect,
cope with, and recover from hardware faults.

http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://en.wikipedia.org/wiki/Sandy_Bridge#Cougar_Point_chipset_flaw
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Denver_Airport#Automated_baggage_system
http://en.wikipedia.org/wiki/List_of_software_bugs
http://catless.ncl.ac.uk/risks
http://www.cs.york.ac.uk/hise/sc_list_arc.php

	

	

	

	
	

	

	

	

	

	
	

	

12 Chapter 1. Motivation

•	 Software bugs are logical mistakes when implementing the software
part of a system. There are many kinds of bugs (e.g., run-time er
rors, non-terminating loops, deadlocks, etc.) depending whether the
software is sequential, parallel, or distributed.

Further reading:
▶	 Wikipedia: Software bug

•	 Security issues occur when a system is not robust enough to resist
to malevolent users and/or intentional attackers. Nowadays, this has
become a critical topic as more and more systems run in an open world
connected to the internet.

Further reading:
▶	 Wikipedia: Security bug
▶	 Wikipedia: Vulnerability (computing)

•	 Performance issues occur when a system cannot deliver its expected,
quantitative performance, e.g., because it executes too slowly or be
cause it consumes too much energy or other resources. There are many
systems (e.g., image processing devices, broadcasting networks, con
sumer electronics, etc.) for which correct functionality is only moder
ately important, but whose added value and usability critically depend
on performance criteria.

In an ideally simple world, designing and implementing correct and robust
computer-based systems should not be a tremendous task. But there are
practical reasons that make this task more difficult than it should be. In
addition to the permanent needs for reducing costs and shortening time-to
market, five key factors contribute to make system design more complex1:

1. Certain problems in hardware, software, and system design are inher
ently difficult. This is the case of fault-tolerant systems, which have
to recover from physical or logical failures, and concurrent systems,
which rely on the co-operation and coordination of multiple agents
executing simultaneously.

2. Because of economical competition, new functionalities are constantly
added to systems in order to deliver better value to the customers.

1Of course, taking into account simultaneously several of these factors creates an ad
ditional complexity.

http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Security_bug
http://en.wikipedia.org/wiki/Vulnerability_(computing)

	
	
	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	
	
	

	

13 1.1. Introduction

This race to expanding functionality (feature creep) is a major cause
for the explosion of the software size (software bloat).

3. System complexity also derives from the existence of economical com
petition, as systems often must support or interact with multiple plat
forms (e.g., hardware architectures, processors, operating systems,
middleware, computer languages, etc.) and to handle legacy appli
cations.

4. The quest for performance drives system designers and implementers
into inventing optimized algorithms that deliver enhanced performance
at the expense of increased complexity.

5. Finally, the need for security, which comes along with the growing role
devoted to computers, forces system designers to introduce new fea
tures (e.g., authentication and authorization procedures) that increase
complexity and may raise new issues, such as privacy concerns.

Further reading:
▶	 Wikipedia: Error-tolerant design
▶	 Wikipedia: Fault-tolerant design
▶	 Wikipedia: Fault-tolerant system
▶	 Wikipedia: Fault-tolerant computer system
▶	 Wikipedia: Concurrency (computer science)
▶	 Wikipedia: Concurrent computing
▶	 Wikipedia: Distributed computing
▶	 Wikipedia: Feature creep
▶	 Wikipedia: Software bloat
▶	 Wikipedia: Overengineering
▶	 Wikipedia: Legacy system

Therefore, a crucial question is to ensure that computer-based systems func
tion according to their expectations. This problem has been identified for
long, at least since the end of the 60s. There are different approaches to this
problem; we may classify them into organizational ones and technical ones.

•	 Organizational approaches consider the problem as a particular in
stance of the more general product quality problem: how to build
computer-based systems with zero defects? Various methodologies
and standards have been proposed for quality enhancement, such as
ISO 9001 (Quality management systems – Requirements), CMMI (Ca
pability Maturity Model Integration), and ISO 15504 (Software Process
Improvement and Capability dEtermination).

http://en.wikipedia.org/wiki/Error-tolerant_design
http://en.wikipedia.org/wiki/Fault-tolerant_design
http://en.wikipedia.org/wiki/Fault-tolerant_system
http://en.wikipedia.org/wiki/Fault-tolerant_computer_system
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Feature_creep
http://en.wikipedia.org/wiki/Software_bloat
http://en.wikipedia.org/wiki/Overengineering
http://en.wikipedia.org/wiki/Legacy_system

	
	
	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	
	
	

	

	

14 Chapter 1. Motivation

Further reading:
▶	 Wikipedia: Zero defects
▶	 Wikipedia: Quality assurance
▶	 Wikipedia: Quality control
▶	 Wikipedia: Quality management
▶	 Wikipedia: Quality management system
▶	 Wikipedia: Software quality
▶	 Wikipedia: ISO 9000#Contents of ISO 9001
▶	 Wikipedia: Capability Maturity Model Integration
▶	 Software Engineering Institute (Carnegie Mellon): Overview of

CMMI – http://www.sei.cmu.edu/cmmi
▶	 Wikipedia: ISO/IEC 15504

•	 Technical approaches address the problem by putting the focus primar
ily on the system itself and on computer-science aspects. In particular,
much attention is granted to software aspects, often with careful exam
ination of source code. Many such techniques have been developed for
producing, testing, and validating computer-based systems. Many of
them (often the less costly and less disruptive ones) have been already
adopted by industry and integrated in product development method
ologies. These techniques (which will be reviewed in Chapter 4) enable
to prevent, or detect and eliminate a majority of mistakes in a given
product. However, certain mistakes still remain undetected, particu
larly in the case of complex systems. The existence of such residual
mistakes (sometimes called high-quality bugs) is a major concern for
life- or mission-critical systems. For this reason, alternative and/or
complementary techniques have to be investigated.

This report is about formal methods, which are considered to be the best
candidates for going beyond those techniques commonly adopted by indus
try, and which constitute a promising step towards zero-defect computer
based systems.

1.2 What are formal methods?

Formal methods can be seen as a scientist’s reaction against empirical ap
proaches, namely organizational approaches, which sometimes focus more
on the design process than on the product itself, and technical approaches
that rely heavily on testing to detect (certain but not all) design and pro
gramming mistakes.

http://en.wikipedia.org/wiki/Zero_defects
http://en.wikipedia.org/wiki/Quality_assurance
http://en.wikipedia.org/wiki/Quality_control
http://en.wikipedia.org/wiki/Quality_management
http://en.wikipedia.org/wiki/Quality_management_system
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/ISO_9000#Contents_of_ISO_9001
http://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
http://www.sei.cmu.edu/cmmi
http://www.sei.cmu.edu/cmmi
http://en.wikipedia.org/wiki/ISO/IEC_15504

	

	

	

	

	

	

15 1.2. What are formal methods?

As it will be shown in Section 1.3, formal methods are multiple and di
verse, so that it is difficult to give a unique definition that encloses and
characterizes formal methods uniquely. We propose here the following def
inition: Formal methods in a broad sense are mathematically well-founded
techniques designed to assist the development of complex computer-based sys
tems; in principle, formal methods aim at building zero-defect systems, or at
finding defects in existing systems, or at establishing that existing systems
are zero-defect.
To be more specific, we can mention three general traits common to most
formal methods:

•	 Languages: Formal methods are often associated with mathematical
notations or computer languages with a formal semantics that can
describe the properties expected from a system and/or the particular
ways in which the system is designed (e.g., architecture, algorithms,
etc.). Depending on the formal method considered, such descriptions
can concern various phases of system development, from requirements,
specification, and design to implementation and run-time execution.
Whatever the phase considered, a central idea of formal methods is to
consider systems, hardware, and/or software as mathematical objects
that can be described and analyzed rigorously.

•	 Tools: Formal methods often come with software tools that ensure that
the system under development will function as expected (obviously,
under certain assumptions). This can be done either by guiding and
assisting the development in such a way that the resulting system will
function properly (correct-by-construction approach) or by checking,
at various phases, that the resulting system does not diverge from its
initial expectations so as to detect, as soon as possible, any design
or implementation mistake (formal verification approach, which is a
branch of verification and validation).

An important difference between formal methods and traditional test
ing techniques is the emphasis of formal methods on analyzing (ideally)
all possible executions of the system, and not only a few ones. This is
essential if the proper functioning of the system has to be mathemat
ically demonstrated, and not only estimated with probabilities.

•	 Methodologies: To be effective, formal methods should be well
integrated within industrial practice. For this reason, most formal
methods are equipped with methodological guidelines for a proper use
in real-size system development.

16 Chapter 1. Motivation

Further reading:
▶ Wikipedia: Formal methods
▶ Wikipedia: Category:Formal methods
▶ Wikipedia: Computer language (dated 2008-10-09)
▶ Wikipedia: Semantics#Computer science
▶ Wikipedia: Semantics (computer science)
▶ Wikipedia: Correctness (computer science)
▶ Wikipedia: Formal semantics (logic)
▶ Wikipedia: Formal verification
▶ Wikipedia: Verification and validation
▶ Wikipedia: Verification and validation (software)

1.3 How are formal methods today?

In this section, we give our personal — thus, potentially subjective — vision
of the current status of formal methods.

1.3.1 A difficult problem

Being more ambitious than traditional approaches, formal methods are nat
urally more complex and their associated tools are also more difficult to
build. But there are deeper obstacles inherent to formal methods. These
obstacles arise from fundamental results of computational complexity theory,
which state that, by nature, most interesting verification problems are either
impossible or very difficult to solve automatically.
A major obstacle comes from undecidability results. In the general case,
there is no decision procedure (i.e., algorithm) that can decide whether
any given program P may terminate or not (this is known as the halting
problem). Similarly, there is no decision procedure that can decide whether
a given instruction of program P will be actually executed, nor whether
P will trigger a run-time error, nor if some given variable X of P will ever
become null, etc. All these problems are known to be undecidable. Naturally,
if a problem is undecidable, it is impossible to build a verification tool that
always solves this problem for any system.

Further reading:
▶ Wikipedia: Decision problem
▶ Wikipedia: Undecidable problem

http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Category:Formal_methods
http://en.wikipedia.org/wiki/w/index.php?title=Computer_language&oldid=244096708
http://en.wikipedia.org/wiki/Semantics#Computer_science
http://en.wikipedia.org/wiki/Semantics_(computer_science)
http://en.wikipedia.org/wiki/Correctness_(computer_science)
http://en.wikipedia.org/wiki/Formal_semantics_(logic)
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Verification_and_validation
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Undecidable_problem

	
	

	

	

	

	
	

	

	

	

17 1.3. How are formal methods today?

▶	 Wikipedia: Halting problem
▶	 Wikipedia: Rice’s theorem — sometimes rephrased as: “Everything

interesting about general programs is uncomputable”

To work around undecidability issues, one must reduce one’s initial expecta
tions and consider less ambitious goals. We classify the proposed strategies
in three categories, which are orthogonal and can be combined together:

•	 Expressiveness restrictions: Rather than considering any system, one
may identify classes of systems for which the verification problem is
decidable. For instance, if the system under verification is finite or can
be considered as such (this is often the case with hardware and with
telecommunication protocols), verification problems become solvable,
at least in principle (i.e., from a theoretical point of view).

•	 Accuracy restrictions: Rather than considering the verification prob
lem in its full generality, one may seek for weaker formulations of the
same problem that are both decidable and of practical interest. The
underlying idea is to compute approximations instead of exact solu
tions. For instance, if it is impossible to predict the exact value of
some variable X, one may wish instead to compute a domain, as small
as possible, to which the value of X belongs. Also, if it is impossible
to predict if the execution of a program P will trigger a particular run
time error, one may wish instead to identify certain classes of programs
P that will never trigger such an error, and reject all other programs,
whether correct or not.

•	 Automation restrictions: Rather than demanding fully automatic veri
fication, one may tolerate semi-automatic (or partially automatic) ver
ification, in which human intervention is required at certain points.
Also, one may accept semi-decision procedures, which may either ter
minate by giving the correct solution, or never terminate at all.

Even with the above restrictions, even if the problem has been made decid
able or semi-decidable, there are still obstacles. In many cases the computa
tional complexity remains high. For instance, many useful verification prob
lems (e.g., the Boolean satisfiability problem) are NP-complete and, thus,
require an exponential running time to be solved. Other useful problems
have an even higher theoretical complexity, such has decision in Presburger
arithmetic, whose worst-case resolution time is doubly exponential.
In practice, such a high complexity (often called combinatorial explosion or
complexity explosion) can be as limiting as undecidability. Even if combina
torial explosion does not systematically occur (as it is worst-case complexity

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Rice's_theorem

	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	

	

18 Chapter 1. Motivation

only), it nevertheless forbids the existence of verification tools that would
work for any system of any size. Avoiding combinatorial explosion requires
creativity and cleverness from both tool developers and tool users, and re
mains a real challenge for the analysis of large computer-based systems.

Further reading:
▶	 Wikipedia: Computational complexity theory
▶	 Wikipedia: List of complexity classes
▶	 Wikipedia: Category:Computational complexity theory
▶	 Wikipedia: Complete (complexity)
▶	 Wikipedia: NP-complete
▶	 Wikipedia: NP-hard
▶	 Wikipedia: List of NP-complete problems
▶	 Wikipedia: Boolean satisfiability problem
▶	 Wikipedia: Presburger arithmetic

1.3.2 A fragmented landscape

It is difficult to trace back the origins of formal methods; maybe one should
go back as far as the NATO-sponsored conference on software crisis that
took place in Garmisch Partenkirchen in 1969. Since then, formal methods
have evolved in many directions and it is difficult to give an exhaustive
overview of the situation today.
In October 2011, the Formal Methods Wiki set up by Jonathan Bowen listed
more than one hundred of different formal method languages; the DBLP
Computer Science Bibliography reported 1334 scientific articles the title of
which contains “formal method”; the Citeseer-beta and Google Scholar bib
liographic data bases reported respectively 12,036 and 223,000 publications
containing the “formal methods” keyword. It is therefore clear that the sci
entific production is large and diverse, even if it is not easy to measure its
exact volume.

Further reading:
▶	 Jonathan Bowen’s Formal Methods Wiki –

http://formalmethods.wikia.com/wiki/Formal methods

Why is the landscape of formal methods and related tools so fragmented?

First, this is by no means specific to formal methods: the same diversity

was already observed for programming languages and compilers. Second,

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/List_of_complexity_classes
http://en.wikipedia.org/wiki/Category:Computational_complexity_theory
http://en.wikipedia.org/wiki/Complete_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/List_of_NP-complete_problems
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Presburger_arithmetic
http://formalmethods.wikia.com/wiki/Formal_methods
http://formalmethods.wikia.com/wiki/Formal_methods

	

	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	

19 1.3. How are formal methods today?

one cannot underestimate the contingencies of academic careers and the un
desirable effects of “publish or perish” policies: it is often easier to publish
about one’s own invention than to benchmark oneself against many com
petitors on a common formalism.
However, in the case of formal methods, there are also good reasons for such
a multiplicity of approaches. Due to the aforementioned complexity issues,
one must make compromises when designing formal methods languages and
verification algorithms. In many cases, there is no unique solution that
would be dictated by scientific considerations; instead, many design choices
have to be made as subjective human decisions, and different scientists come
up with different solutions.
Concerning the three orthogonal tradeoffs (restrictions to expressiveness,
accuracy, and/or automation) that can be made to avoid undecidability
issues, it was unavoidable — and even desirable — that scientists would
explore all possibilities, by trying different restrictions and studying thor
oughly each particular subclass of problems. In addition, formal methods
can be specialized for a particular application domain (e.g., hardware, soft
ware, telecommunications, etc.) and this is a fourth dimension in which
formal methods may differ.

1.3.3 A broadening scope

Since the inception of formal methods, their scope has been in constant
expansion2:

•	 Initially, research was mainly targeting sequential programs, focusing
on program semantics and the use of mathematical logic to prove pro
gram correctness formally.

Further reading:
▶	 Wikipedia: Algorithm
▶	 Wikipedia: Lambda calculus
▶	 Wikipedia: Guarded Command Language
▶	 Wikipedia: Abstract data type
▶	 Wikipedia: Algebraic data type
▶	 Wikipedia: Type system
▶	 Wikipedia: Type theory
▷	 Wikipedia: Semantics (computer science)

2To make ideas more precise, in the “Further reading” framed paragraphs of this section,
we give references that anticipate on the next chapters of this report; the reader in a hurry
may safely skip these references.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Guarded_Command_Language
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Type_theory
http://en.wikipedia.org/wiki/Semantics_(computer_science)

	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

20 Chapter 1. Motivation

▶	 Wikipedia: Denotational semantics
▶	 Wikipedia: Operational semantics
▶	 Wikipedia: Algebraic semantics
▶	 Wikipedia: Axiomatic semantics
▶	 Wikipedia: Hoare logic
▶	 Wikipedia: Predicate transformer semantics
▶	 Wikipedia: Dynamic logic (modal logic)
▶	 Wikipedia: Separation logic
▶	 Wikipedia: Abstract interpretation

•	 At the same time — and possibly before, in fact as soon as the defini
tion of Petri nets in 1962 — efforts were undertaken to formalize con
current systems as well. Various parallel programming paradigms were
investigated, especially shared-memory and message-passing models.
Then, these studies further expanded to communication protocols, dis
tributed and mobile systems, gradually leading to concurrency theory
as we know it today.

Further reading:
▷	 Wikipedia: Concurrency (computer science)
▷	 Wikipedia: Concurrent computing
▶	 Wikipedia: Discrete event dynamic system
▶	 Wikipedia: Parallel computing
▶	 Wikipedia: Distributed algorithm
▶	 Wikipedia: Parallel algorithm
▶	 Wikipedia: Parallel programming model
▶	 Wikipedia: Shared memory
▶	 Wikipedia: Message passing
▶	 Wikipedia: Communications protocol
▶	 Wikipedia: Asynchronous system
▶	 Wikipedia: Distributed system
▶	 Wikipedia: Automata theory
▶	 Wikipedia: Finite-state machine
▶	 Wikipedia: Petri net
▶	 Wikipedia: Process calculus
▶	 Wikipedia: Pi-calculus
▶	 Wikipedia: Ambient calculus
▶	 Wikipedia: Temporal logic

• Formal methods also expanded to hardware and software systems for
which response time is critical. Various mathematical models and

http://en.wikipedia.org/wiki/Denotational_semantics
http://en.wikipedia.org/wiki/Operational_semantics
http://en.wikipedia.org/wiki/Algebraic_semantics
http://en.wikipedia.org/wiki/Axiomatic_semantics
http://en.wikipedia.org/wiki/Hoare_logic
http://en.wikipedia.org/wiki/Predicate_transformer_semantics
http://en.wikipedia.org/wiki/Dynamic_logic_(modal_logic)
http://en.wikipedia.org/wiki/Separation_logic
http://en.wikipedia.org/wiki/Abstract_interpretation
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Discrete_event_dynamic_system
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Distributed_algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Parallel_programming_model
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Asynchronous_system
http://en.wikipedia.org/wiki/Distributed_system
http://en.wikipedia.org/wiki/Automata_theory
http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/Process_calculus
http://en.wikipedia.org/wiki/Pi-calculus
http://en.wikipedia.org/wiki/Ambient_calculus
http://en.wikipedia.org/wiki/Temporal_logic

	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	
	

	

21 1.3. How are formal methods today?

verification algorithms have been proposed for reactive systems, in
which time is handled discretely (i.e., as clock ticks) and for hard real
time systems, in which time is handled continuously (i.e., as rational
or real numbers).

Further reading:
▶	 Wikipedia: Reactive programming
▶	 Wikipedia: Synchronous system
▶	 Wikipedia: Synchronous circuit
▶	 Wikipedia: Synchronous programming language
▶	 Wikipedia: Real-time computing — see hard real time
▶	 Wikipedia: Worst-case execution time
▶	 Wikipedia: Timed automaton

•	 Formal methods have then evolved to address quality of service and
performance evaluation issues. This was an important paradigm
change, with a shift from exact to approximate models, which enabled
to handle concepts such as soft real-time systems, in which response
time is not critical but still important to performance, probabilistic
systems, the transitions of which obey probability laws, and stochastic
systems, the behavior (e.g., response time) of which is nondeterministic
but can be predicted by probability distributions.

Further reading:
▶	 Wikipedia: Quality of service
▶	 Wikipedia: Computer performance
▶	 Wikipedia: Real-time computing — see soft real time
▶	 Wikipedia: Category:Probabilistic models
▶	 Wikipedia: Probabilistic automaton
▶	 Wikipedia: Markov chain
▶	 Wikipedia: Markov model
▶	 Wikipedia: Markov process
▶	 Wikipedia: Stochastic process
▶	 Wikipedia: Continuous time Markov chain

•	 In the last two decades, formal methods have expanded further to
new application domains, among which computer security, but also
control theory/hybrid systems/cyberphysics, multi-agent systems, and
bioinformatics to name only a few.

http://en.wikipedia.org/wiki/Reactive_programming
http://en.wikipedia.org/wiki/Synchronous_system
http://en.wikipedia.org/wiki/Synchronous_circuit
http://en.wikipedia.org/wiki/Synchronous_programming_language
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Worst-case_execution_time
http://en.wikipedia.org/wiki/Timed_automaton
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_performance
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Category:Probabilistic_models
http://en.wikipedia.org/wiki/Probabilistic_automaton
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_model
http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Continuous_time_Markov_chain

22 Chapter 1. Motivation

Further reading:
▶ Wikipedia: Computer security
▶ Wikipedia: Cryptographic protocol
▶ Wikipedia: Dolev-Yao model

In parallel to such a broadening scope, the level of abstraction is also chang
ing. Initially, formal methods were about very simple, often idealized algo
rithmic languages (e.g., Dijkstra’s guarded commands) or high-level, very
abstract system models (e.g., Petri nets). As time passes, formal methods
get increasingly closer to the lower-level details and intricacies of actual sys
tems. Recent approaches even go as down as assembly code, C code with
involved features such as pointers and threads, and realistic modeling of
platform characteristics (hardware, operating system, middleware, etc.).

1.3.4 A growing number of success stories

To justify the need for formal methods, certain authors recall major indus
trial disasters with computer systems, often with the underlying conclusion
that formal methods, if properly used, would have avoided such disasters.
However, this conclusion should not be taken for granted, as projects may
fail for other reasons (e.g., lack of budget, lack of time, incompetent people,
or management turnover) than the absence of formal methods.
Therefore, we find it more convincing to consider situations where formal
methods have been successfully applied to real-life problems. There ex-
ist studies in the scientific literature that present such applications of for
mal methods, e.g. [CGR92, CGR93a, CGR93b, GCR93, GCR94b, CGR95],
[CW96], [BH97, HB99], [WLBF09], and [Hax10].
However, the cumulative list of applications reported in all these studies is,
we believe, not entirely satisfactory. On the one hand, certain formal meth
ods are clearly over-represented while others are not mentioned at all; on the
other hand, the essential role of verification tools is not always acknowledged
as strongly as it should be.
We therefore present hereafter our own selection of successful applications
of formal methods. To ensure a broader coverage of the diversity of for
mal methods, we have selected a comprehensive set of thirty case-studies,
while prior studies often limited themselves to a dozen. These case-studies
are distributed regularly over the thirty years of the past three decades,
from 1982 (included) to 2011 (included). This choice is consistent with the
generally accepted idea that formal methods “really” took off around 1980–
1981; this idea was stated, for instance, at the occasion of the tenth Pro

http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Cryptographic_protocol
http://en.wikipedia.org/wiki/Dolev-Yao_model

	

	

23 1.3. How are formal methods today?

tocol Specification, Testing, and Verification symposium (PSTV’90), which
had four invited lectures on the theme “The first ten years, the next ten
years”, and confirmed five years later during the Formal Techniques confer
ence (FORTE’95), which held a panel discussion3 entitled “Formal methods
after fifteen years” [CDH+96]; also, 1981 is the birth year of model check
ing [Cla08]; notice however that certain branches of formal methods (namely,
protocol engineering, Petri nets, and static analysis) started earlier in the
mid or late 70s, but they are represented in our selection of case-studies; no
tice finally that the first steps of automated theorem proving can be traced
back to 1960 (see e.g. [Lov84]), but it took theorem provers two decades to
obtain striking applications, which are duly mentioned in our selection.
Of course, exhaustivity is impossible as the number and diversity of applica
tions of formal methods cannot be reduced to a collection of thirty samples.
It is also impossible to claim in any way that our selection represents the
truly “best” case studies ever published — let us simply claim that they
correspond to pioneering and inspiring work, which does not exclude the
existence of other valuable work.
In our selection, we focused on practical applications of formal methods
rather than theoretical results alone. Contrary to some other surveys, we
gave priority to repeatable experiments, meaning that we privileged ap
proaches supported by software tools rather than “heroic” approaches re
lying on pen-and-paper manipulation of mathematical symbols. We tried
however to give a balanced panorama of formal methods, by featuring dif
ferent formal approaches (mathematical notations, theorem proving, model
checking, static analysis, etc.), different models of computations (sequential,
synchronous, asynchronous, timed, probabilistic, hybrid, etc.), and differ
ent application domains (hardware, software, telecommunication, embedded
systems, operating systems, compilers, etc.).
To assign to each case-study a unique year in the range 1982–2011, we have
adopted the following principles: as a given case-study can extend itself over
several years, we usually retain the date of the first conference (or journal)
publication, rather than the starting date or ending date of the work; we
have also tried to group together works of the same nature done at the same
period; in some cases, there were too many relevant candidates for the same
year, and we had either to exclude certain candidates or to shift them to
the next year.
Finally, the thirty case-studies selected are the following:

•	 1982 [Boc82, FTM83, CM83, MC85, BCD86, BCDM86]: For
mal specification, using temporal logic, of asynchronous circuits and
sequential circuits, and verification of these circuits using state-space

3See http://www.csi.uottawa.ca/~luigi/JointPaper/ll.html

http://www.csi.uottawa.ca/~luigi/JointPaper/ll.html

	
	
	

	

	
	

	

	
	
	
	
	
	

	
	
	

	

	
	

	

	
	
	
	
	
	

24 Chapter 1. Motivation

exploration and/or model checking. Most notably, the EMC model
checker [CES83, CES86] revealed an error in a FIFO queue circuit
element published in a popular textbook on VLSI design.

Further reading:
▷	 Wikipedia: Temporal logic
▶	 Wikipedia: Sequential logic
▶	 Wikipedia: Asynchronous circuit

• 1983 [Bil83, BWB84a, BWB84b, BWB85, CAA84, JV84]:
Three formal specifications, using extended Petri nets, of the OSI
(Open System Interconnection) transport layer protocol, and formal
verification of these specifications using the PROTEAN [WWBG85,
BWWH88] and OGIVE/OVIDE [MGL+83] analysis tools for Petri
nets. Various general and specific properties have been checked, and
no harmful error was found.

Further reading:
▶	 Wikipedia: OSI model
▶ Wikipedia: OSI protocols
▶	 Wikipedia: Transport layer
▷	 Wikipedia: Petri net

•	 1984 [BM84a, BM84b, Sha86, Sha88a, Sha94]: Automated
proof checking [Sha85] using the NQTHM (Boyer-Moore) theorem
prover [BM84c, BKM95] of fundamental theorems of computer sci
ence — such as the unsolvability of the halting problem, Gödel’s first
incompleteness theorem, and the Church-Rosser theorem of λ-calculus
— as well as other theorems of practical value — such as the correct
ness and invertibility of the RSA public key encryption algorithm.

Further reading:
▷	 Wikipedia: Halting problem
▶	 Wikipedia: RSA (algorithm)
▶	 Wikipedia: Godel’s incompleteness theorems
▶	 Wikipedia: Church-Rosser theorem
▶	 Wikipedia: Nqthm
▶	 The Boyer-Moore Theorem Prover –

http://www.cs.utexas.edu/users/moore/best-ideas/nqthm

http://en.wikipedia.org/wiki/Temporal_logic
http://en.wikipedia.org/wiki/Sequential_logic
http://en.wikipedia.org/wiki/Asynchronous_circuit
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_protocols
http://en.wikipedia.org/wiki/Transport_layer
http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/RSA_(algorithm)
http://en.wikipedia.org/wiki/Godel's_incompleteness_theorems
http://en.wikipedia.org/wiki/Church-Rosser_theorem
http://en.wikipedia.org/wiki/Nqthm
http://www.cs.utexas.edu/users/moore/best-ideas/nqthm
http://www.cs.utexas.edu/users/moore/best-ideas/nqthm

	

	

	

	

	

	

	
	
	
	

	

	

	

	

	

	

	
	
	
	

25 1.3. How are formal methods today?

•	 1985 [Hun85, Hun89, Hun94]: Formal verification of the 16-bit
FM8501 microprocessor using the NQTHM theorem prover. This was
the first verified microprocessor, and this achievement has been fol
lowed by many others, of increasing complexities and difficulties.

Further reading:
▶	 The FM8501 Microprocessor –

ftp://ftp.cs.utexas.edu/pub/boyer/fm9001/fm8501.html
▶	 The FM9001 Microprocessor –

ftp://ftp.cs.utexas.edu/pub/boyer/fm9001/fm9001.html

•	 1986 [Wes86]: Formal analysis of — a slightly simplified version
of — the OSI (Open System Interconnection) session layer protocol,
which was described using finite state machines communicating by
bounded FIFO queues and verified using automated protocol vali
dation techniques based on state-space exploration [Wes78, RWZ78,
Sun78, ZWR+82, Saj84, Rud86, Rud92, BRW10]. Various errors have
been found, which were reported to standardization bodies and cor
rected in subsequent versions of the session layer.

Further reading:
▷	 Wikipedia: OSI model
▷ Wikipedia: OSI protocols
▶ Wikipedia: Session layer

•	 1987 [RRSV87a, GRRV90, BGR+91]: Specification in Estelle/R
(a rendezvous-based variant of the protocol description language Es
telle [ISO89a]) of a generic sliding window protocol — which will be
later intensively studied by the computer-aided verification commu
nity under the name “bounded retransmission protocol” — and of an
atomic multicast protocol for the DELTA-4 distributed dependable
architecture [KAB+91]. These two protocols were verified using the
Xesar model checker [RRSV87b], which is cited in [Hol92] as “one of
the oldest and most inspiring systems”.

Further reading:
▶	 Wikipedia: Sliding window protocol
▶	 Wikipedia: Multicast
▶	 Wikipedia: Broadcasting (computing)
▶	 Wikipedia: Atomic broadcast

ftp://ftp.cs.utexas.edu/pub/boyer/fm9001/fm8501.html
ftp://ftp.cs.utexas.edu/pub/boyer/fm9001/fm8501.html
ftp://ftp.cs.utexas.edu/pub/boyer/fm9001/fm9001.html
ftp://ftp.cs.utexas.edu/pub/boyer/fm9001/fm9001.html
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_protocols
http://en.wikipedia.org/wiki/Session_layer
http://en.wikipedia.org/wiki/Sliding_window_protocol
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Broadcasting_(computing)
http://en.wikipedia.org/wiki/Atomic_broadcast

	

	
	
	
	

	

	
	

	

	

	

	
	
	
	

	

	
	

	

	

26 Chapter 1. Motivation

•	 1988 [SAC88, ISO89d, ISO89c, BK84, LS88, ISO92a, ISO92b,
Tur89, Fer89, FA88, ISO95b, ISO95a, SW90, WH93]: In
the context of the OSI (Open System Interconnection) standardiza
tion initiative, formal methods (at that time called “formal descrip
tion techniques”) have been promoted as a means to define com
munication standards in a concise, unambiguous, implementation
neutral way [VS87, Boc89, Peh89]. In particular, the LOTOS lan
guage [ISO89b, BB88] has been used intensively to specify the service
and protocol of the session layer, the service and protocol of the trans
port layer, the service and protocol of the network layer, and, at the
application layer, the ROSE (Remote Operations Service Element) ser
vice, the CCR (Commitment, Concurrency and Recovery) service and
protocol, and the DTP (Distributed Transaction Processing) protocol
— thus demonstrating that formal techniques such as algebraic data
types and process calculi could handle large, complex specifications.

Further reading:
▶	 Wikipedia: Open Systems Interconnection
▷	 Wikipedia: OSI model
▷	 Wikipedia: OSI protocols
▶	 Wikipedia: Remote Operations Service Element protocol

•	 1989 [Stå89a, Stå89b, SS90, Säf94, GKv94, GKv95, Fok96,
Bor97, Bor98, SB98, Eis99, SS00]: Formal verification, using a
novel algorithm for efficiently proving large theorems of propositional
logic, of safety-critical applications such as reverse flushing control in
a nuclear plant’s emergency cooling system, landing gear control for
a military aircraft, and railway signaling systems — with a notable
emphasis on railway interlocking verification.

Further reading:
▶	 Wikipedia: Propositional calculus
▶	 Prover Technology company (founded in 1989 under the name

Logikkonsult) – http://www.prover.com
▶	 Case studies in railway signaling systems –

http://www.prover.com/company/casestudies

•	 1990 [GH90, GCR94a]: Formal specification using the B lan
guage [ALN+91, CDDM92] and correctness proofs using Hoare-like
logic — in addition to traditional code inspection and testing ap
proaches — of SACEM [HG93], a fault-tolerant railway signaling sys
tem that controls train speed, signals drivers, and activates emergency

http://en.wikipedia.org/wiki/Open_Systems_Interconnection
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_protocols
http://en.wikipedia.org/wiki/Remote_Operations_Service_Element_protocol
http://en.wikipedia.org/wiki/Propositional_calculus
http://www.prover.com
http://www.prover.com
http://www.prover.com/company/casestudies
http://www.prover.com/company/casestudies

	
	
	

	

	

	
	

	

	
	
	

	

	

	
	

	

27 1.3. How are formal methods today?

brakes. SACEM was the first safety-critical software system certified
by the French railway authority; it is used in Paris (800,000 passengers
carried per day) and other cities in the world.

Further reading:
▶	 Wikipedia: RER A
▶	 Wikipedia: Paris Metro Line 14
▶	 French Wikipedia: Sacem (infrastructure ferroviaire)

•	 1991 [HK91]: Use of Z [Spi92] in two large projects at IBM, to for
mally specify a major new release IBM’s CICS (Customer Information
Control System) on-line transaction processing system, and to specify
the API (Application Programming Interface) of CICS. Very few tools
were used (only syntax and type checkers), but the authors report that
the use of Z reduced the number of errors by a factor of 2.5 and saved
9% of the total development cost — although the significance of these
conclusions was questioned later [FF96].

Further reading:
▶ Wikipedia: CICS

•	 1992 [PF92, Pat93, Pat94, DFHP94, PM94, FF95, Mar95,
PSL95, FBK+96, MRJ97, Dix02]: Formalization, using the LO
TOS language and the ACTL action-based temporal logic [NV90],
of the concept of “interactor”, a software architectural model used to
build complex user interface software. This approach has been applied
to various systems, e.g., MATIS, a multimodal interactive system en
abling users to get information about flight schedules using speech,
mouse and keyboard, or a combination of them.

Further reading:
▶	 Wikipedia: Human-computer interaction
▶	 Alan Dix’s page on formal methods in human-computer

interaction – http://www.comp.lancs.ac.uk/~dixa/topics/formal

•	 1993 [CGH+93, CGH+95]: Formal specification and verification of
the cache coherence protocol of IEEE standard 896.1-1991 “Future
bus+” using the SMV symbolic model checker [McM92], which found
several design errors previously undetected. According to the authors,

http://en.wikipedia.org/wiki/RER_A
http://en.wikipedia.org/wiki/Paris_Metro_Line_14
http://fr.wikipedia.org/wiki/Sacem_(infrastructure_ferroviaire)
http://en.wikipedia.org/wiki/CICS
http://en.wikipedia.org/wiki/Human-computer_interaction
http://www.comp.lancs.ac.uk/~dixa/topics/formal
http://www.comp.lancs.ac.uk/~dixa/topics/formal

	
	

	

	

	
	
	
	
	
	
	
	

	

	
	
	

	
	

	

	

	
	
	
	
	
	
	
	

	

	
	
	

28 Chapter 1. Motivation

this was the first time that a formal verification tool was used to find
errors in an IEEE standard.

Further reading:
▶	 Wikipedia: Futurebus
▶	 The SMV model checker –

http://www.cs.cmu.edu/~modelcheck/smv.html
▶	 Wikipedia: Model checking#Symbolic model checking

•	 1994 [And94, Deu94, Deu95, EGHT94, Eva96]: Early applica
tions of the abstract interpretation [CC77] theory to build static an
alyzers for C programs, such as the LCLint annotation-assisted static
checker — which was later extended to check dynamic memory allo
cation and buffer overflow vulnerabilities, and renamed into Splint —
and the IABC static analysis tool for pointer manipulation and alias
ing, which later went to marked under the name Polyspace Verifier.

Further reading:
▶	 Wikipedia: Static program analysis
▷	 Wikipedia: Abstract interpretation
▶	 Wikipedia: Pointer analysis
▶	 Wikipedia: Shape analysis (program analysis)
▶	 Wikipedia: Aliasing (computing)
▶	 Wikipedia: Splint (programming tool)
▶	 Secure Programming Lint – http://www.splint.org
▶	 Wikipedia: Polyspace

•	 1995 [Low95, Low96a, Low96b]: Discovery, using CSP [Hoa85]
and the FDR model checker, of an unknown, subtle “man-in-the
middle” attack in the classical Needham-Schroeder public-key proto
col [NS78, NS87], which forms the basis of Kerberos authentication.
This result has fueled a lot of research on formal methods and tools
for the analysis of security protocols.

Further reading:
▶	 Wikipedia: Needham-Schroeder protocol
▶	 Wikipedia: Kerberos (protocol)
▶	 Formal analysis of security protocols –

http://www.cs.ox.ac.uk/people/gavin.lowe/Security

http://en.wikipedia.org/wiki/Futurebus
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.cs.cmu.edu/~modelcheck/smv.html
http://en.wikipedia.org/wiki/Model_checking#Symbolic_model_checking
http://en.wikipedia.org/wiki/Static_program_analysis
http://en.wikipedia.org/wiki/Abstract_interpretation
http://en.wikipedia.org/wiki/Pointer_analysis
http://en.wikipedia.org/wiki/Shape_analysis_(program_analysis)
http://en.wikipedia.org/wiki/Aliasing_(computing)
http://en.wikipedia.org/wiki/Splint_(programming_tool)
http://www.splint.org
http://en.wikipedia.org/wiki/Polyspace
http://en.wikipedia.org/wiki/Needham-Schroeder_protocol
http://en.wikipedia.org/wiki/Kerberos_(protocol)
http://www.cs.ox.ac.uk/people/gavin.lowe/Security
http://www.cs.ox.ac.uk/people/gavin.lowe/Security

	

	
	

	

	
	

	
	
	
	

	

	

	

	

	
	

	

	
	

	
	
	
	

	

	

	

29 1.3. How are formal methods today?

•	 1996 [Kar96, Kar97, CTW99, TWC01, MSE10]: Specification
using Z and Promela, and model checking using SPIN [Hol91, Hol03]
of the software controlling the storm surge barrier that protects Rot
terdam from flooding, a life-critical application certified at the highest
safety integrity level (SIL4).

Further reading:
▶	 Wikipedia: Maeslantkering
▶	 Wikipedia: SPIN model checker
▶ SPIN web site – http://spinroot.com

•	 1997 [KHR97, Lut97, SM97, SM98]: Specification and analy
sis, using various formal methods, of the asynchronous mode of the
Link Layer protocol of the IEEE Standard 1394 “Firewire” high
speed serial bus. Two problems were identified: a missing handling
of pending requests — discovered independently by [KHR97] using
PVS [COR+95, ORSS96] and by [Lut97] using µCRL [GP94] — and a
deadlock — discovered using LOTOS [ISO89b] and the CADP model
checker [FGK+96, GLMS11, GLMS13] in only one person.month with
out prior knowledge of the protocol [SM97, SM98]. Following these
achievements, other protocols of IEEE 1394 (root contention, tree
identity, leader election, etc.) have been intensely scrutinized by the
formal methods community during the next decade.

Further reading:
▶	 Wikipedia: IEEE 1394
▶	 IEEE 1394 Standard for a High Performance Serial Bus –

http://standards.ieee.org/findstds/standard/1394-1995.html
▶	 Wikipedia: Prototype Verification System
▶	 PVS Web site – http://pvs.csl.sri.com
▶	 µCRL Web site – http://homepages.cwi.nl/~mcrl
▶	 VASY reports a deadlock in the IEEE 1394 “Firewire”

standard – http://vasy.inria.fr/Press/firewire.html
▶	 Wikipedia:

Construction and Analysis of Distributed Processes
▶	 CADP Web site – http://cadp.inria.fr

•	 1998 [BFK+98, BFM98, LPY98, LPY01, TY98]: Automated
verification, using the Kronos [DOTY95, Yov97, BDM+98] and Up
paal [BLL+95, BDL+11] model checkers, of several protocols in which
real time plays a crucial role.

http://en.wikipedia.org/wiki/Maeslantkering
http://en.wikipedia.org/wiki/SPIN_model_checker
http://spinroot.com
http://en.wikipedia.org/wiki/IEEE_1394
http://standards.ieee.org/findstds/standard/1394-1995.html
http://standards.ieee.org/findstds/standard/1394-1995.html
http://en.wikipedia.org/wiki/Prototype_Verification_System
http://pvs.csl.sri.com
http://homepages.cwi.nl/~mcrl
http://vasy.inria.fr/Press/firewire.html
http://vasy.inria.fr/Press/firewire.html
http://en.wikipedia.org/wiki/Construction_and_Analysis_of_Distributed_Processes
http://en.wikipedia.org/wiki/Construction_and_Analysis_of_Distributed_Processes
http://cadp.inria.fr

	
	

	

	
	

	

	

	
	

	

	
	

	
	

	

	
	

	

	

	
	

	

	
	

30 Chapter 1. Motivation

Further reading:
▶	 Wikipedia: Uppaal Model Checker
▶	 Uppaal web site – http://www.uppaal.org

•	 1999 [PSH99, Rus99, Pfe00, Rus02, PH04, SRSP04]: Formal
verification using the PVS theorem prover [COR+95, ORSS96] of sev
eral key protocols of the Time-Triggered Architecture (TTA) [KG94,
Kop95, KBE+95, KB03], a communication bus infrastructure guar
anteeing dependability, predictability, and real-time requirements.
TTA and similar architectures [Rus01] are used for distributed-control
safety-critical applications in automotive, aerospace, railways, indus
trial automation and process control, medical systems, etc.

Further reading:
▶	 Wikipedia: Time-Triggered Protocol
▶	 Time-Triggered Architecture –

http://www.ercim.eu/publication/Ercim News/enw52/kopetz.html
▶	 Wikipedia: TTTech

•	 2000 [KNP00, KNS01]: Automated validation of several ran
domized distributed algorithms (taken from the literature) using the
PRISM probabilistic model checker [KNP02, KNP11], which has been
used in the next decade to analyze a wide range of case studies in
many different application domains — see, e.g. [KNP05].

Further reading:
▶	 Wikipedia: PRISM (model checker)
▶	 PRISM model checker – http://www.prismmodelchecker.org

•	 2001 [BCR01, BBKL10, BBL+10, BLR11]: Development of a
verification platform (based on static analysis and symbolic model
checking) for analyzing the source code of Microsoft Windows drivers
— and more generally any source code written in the C language — so
as to check whether the invocations of API (Application Programming
Interfaces) primitives obey rules for proper use.

Further reading:
▶	 Wikipedia: SLAM project
▶	 Wikipedia: Device driver synthesis and verification

http://en.wikipedia.org/wiki/Uppaal_Model_Checker
http://www.uppaal.org
http://en.wikipedia.org/wiki/Time-Triggered_Protocol
http://www.ercim.eu/publication/Ercim_News/enw52/kopetz.html
http://www.ercim.eu/publication/Ercim_News/enw52/kopetz.html
http://en.wikipedia.org/wiki/TTTech
http://en.wikipedia.org/wiki/PRISM_(model_checker)
http://www.prismmodelchecker.org
http://en.wikipedia.org/wiki/SLAM_project
http://en.wikipedia.org/wiki/Device_driver_synthesis_and_verification

	

	

	

	

	

	

	
	

	

	
	

	

	

	

	

	

	

	
	

	

	
	

31 1.3. How are formal methods today?

▶	 Microsoft’s SLAM project –
http://research.microsoft.com/en-us/projects/slam

▶	 Static Driver Verifier –
http://msdn.microsoft.com/en-us/windows/hardware/gg487498

•	 2002 [CGP02, God05]: Automated analysis of Lucent’s CDMA
base station call-processing software library (100,000’s lines of C/C++
code) using the VeriSoft tool [God97, GHJ98] for systematic state
space exploration, enabling the detection of several critical bugs.

Further reading:
▶	 Bell Labs (Lucent) VeriSoft project –

http://cm.bell-labs.com/who/god/verisoft/
▶	 Wikipedia: Code division multiple access

•	 2003 [GWV03, GRW04, GWV05, HSY06]: Formal proof using
the ACL2 theorem prover that the microcode of the Rockwell Collins
AAMP7 microprocessor respects a security policy corresponding to a
static separation kernel; following this work, the microprocessor re
ceived a MILS Certificate from NSA to concurrently process infor
mation ranging from Unclassified to Top Secret [Mil08] [Kle09, Sec
tion 4.2] [WLBF09, Section 4.4].

Further reading:
▶	 Wikipedia: Multiple Independent Levels of Security
▶	 Wikipedia: Separation kernel

•	 2004 [Mau04]: Proof, using the Astrée static analyzer [BCC+02,
BCC+03] based on abstract interpretation, of the absence of any run
time error in several safety-critical C programs of Airbus, namely the
primary flight-control software for the A340 fly-by-wire system and,
later, the electric flight-control codes for the A380 series [Cou07, DS07,
SD07].

Further reading:
▷	 Wikipedia: Abstract interpretation
▶	 Astrée analyzer (academic site) – http://www.astree.ens.fr
▶ Astrée analyzer (industrial site) – http://www.absint.de/astree

http://research.microsoft.com/en-us/projects/slam
http://research.microsoft.com/en-us/projects/slam
http://msdn.microsoft.com/en-us/windows/hardware/gg487498
http://msdn.microsoft.com/en-us/windows/hardware/gg487498
http://cm.bell-labs.com/who/god/verisoft/
http://cm.bell-labs.com/who/god/verisoft/
http://en.wikipedia.org/wiki/Code_division_multiple_access
http://en.wikipedia.org/wiki/Multiple_Independent_Levels_of_Security
http://en.wikipedia.org/wiki/Separation_kernel
http://en.wikipedia.org/wiki/Abstract_interpretation
http://www.astree.ens.fr
http://www.absint.de/astree

	

	
	

	

	
	

	

	
	

	

	

	

	
	

	

	
	

	

	
	

	

	

32 Chapter 1. Motivation

•	 2005 [Gon05, Gon08]: Computer-checked proof, using the Coq
proof assistant [BC04], of the “four color theorem”, the second most
famous unsolved problem in mathematics.

Further reading:
▶	 Wikipedia: Four color theorem
▶	 Last doubts removed about the proof of the Four Color

Theorem – http://www.maa.org/devlin/devlin 01 05.html

•	 2006 [BDL06, Ler06, BFL+11]: Formal verification using
Coq [BC04] of the CompCert C compiler (front-end and back-end
parts) that handles a realistic subset of the C language for critical
embedded software.

Further reading:
▶	 Wikipedia: CompCert
▶	 CompCert C compiler – http://compcert.inria.fr/compcert-C.html

•	 2007 [Ber07a]: Design, validation, and implementation of avionics,
automotive, railway, and other safety-critical applications using the
SCADE tools for the synchronous language Lustre [HCRP91, Hal93,
Hal05].

Further reading:
▶	 Wikipedia: Lustre (programming language)
▶	 Synchronous design and verification of critical embedded

systems using SCADE and Esterel – http://www.artist
embedded.org/docs/Events/2007/CAV ToolPlatforms/13-Berry-
ArtistCAV+FMICS.pdf

▶	 Esterel Technologies – http://www.esterel-technologies.com

•	 2008 [Coc06, KMC+06, Kin07, KCT07, DYJ08]: Formal ver
ification of the vote-tallying part of the KOA open source software,
which was formerly used for remote voting in Dutch public elections.
The source code of the software was annotated with JML (Java Mod
eling Language) and analyzed using the ESC/Java2 [FLL+02] and the
Forge checkers, which led to the discovery of specification errors and
programming bugs undetected so far.

http://en.wikipedia.org/wiki/Four_color_theorem
http://www.maa.org/devlin/devlin_01_05.html
http://www.maa.org/devlin/devlin_01_05.html
http://en.wikipedia.org/wiki/CompCert
http://compcert.inria.fr/compcert-C.html
http://en.wikipedia.org/wiki/Lustre_(programming_language)
http://www.artist-embedded.org/docs/Events/2007/CAV_ToolPlatforms/13-Berry-ArtistCAV+FMICS.pdf
http://www.artist-embedded.org/docs/Events/2007/CAV_ToolPlatforms/13-Berry-ArtistCAV+FMICS.pdf
http://www.artist-embedded.org/docs/Events/2007/CAV_ToolPlatforms/13-Berry-ArtistCAV+FMICS.pdf
http://www.artist-embedded.org/docs/Events/2007/CAV_ToolPlatforms/13-Berry-ArtistCAV+FMICS.pdf
http://www.esterel-technologies.com

	
	

	
	
	

	

	
	

	

	

	

	
	

	

	

	
	

	
	
	

	

	
	

	

	

	

	
	

	

	

33 1.3. How are formal methods today?

Further reading:
▶	 Wikipedia: Electronic voting
▶	 KOA platform for e-voting –

http://kindsoftware.com/products/opensource/KOA
▶	 Wikipedia: Java Modeling Language
▶	 Java Modeling Language – http://www.jmlspecs.org
▶	 FORGE verification software – http://sdg.csail.mit.edu/forge

•	 2009 [PC09b, Got09]: Formal verification of curved flight collision
avoidance maneuvers using the KeYmaera verification tool for hybrid
systems [PQ08, PC09a] and detection of an error in a traffic alert and
collision avoidance system using the Euclide verification tool.

Further reading:
▶	 Wikipedia: Traffic collision avoidance system
▶	 KeYmaera: A hybrid theorem prover for hybrid systems –

http://symbolaris.com/info/KeYmaera.html
▶	 Euclide: A constraint-based testing tool for safety-critical C

programs – http://euclide.gforge.inria.fr
▶	 TCAS software verification using constraint programming –

http://www.irisa.fr/lande/gotlieb/CT ATM gotlieb.pdf

•	 2010 [KAE+10, APST10]: Formal verification of two operating sys
tem microkernels: the seL4 general-purpose commercial microkernel
and a German academic microkernel, both verifications being tackled
using the Isabelle/HOL theorem prover [NPW02].

Further reading:
▶	 Wikipedia: L4 microkernel family
▶	 The secure microkernel project –

http://ertos.nicta.com.au/research/sel4
▶	 The L4.verified project –

http://ertos.nicta.com.au/research/l4.verified

•	 2011 [RP11]: Formal modeling of the EMV (Europay-MasterCard-
Visa) protocol suite in the F# language, and automated analysis of
these protocols by joint use of the FS2PV translator [BFGT06] and
the ProVerif verification tool [Bla04].

http://en.wikipedia.org/wiki/Electronic_voting
http://kindsoftware.com/products/opensource/KOA
http://kindsoftware.com/products/opensource/KOA
http://en.wikipedia.org/wiki/Java_Modeling_Language
http://www.jmlspecs.org
http://sdg.csail.mit.edu/forge
http://en.wikipedia.org/wiki/Traffic_collision_avoidance_system
http://symbolaris.com/info/KeYmaera.html
http://symbolaris.com/info/KeYmaera.html
http://euclide.gforge.inria.fr
http://euclide.gforge.inria.fr
http://www.irisa.fr/lande/gotlieb/CT_ATM_gotlieb.pdf
http://www.irisa.fr/lande/gotlieb/CT_ATM_gotlieb.pdf
http://en.wikipedia.org/wiki/L4_microkernel_family
http://ertos.nicta.com.au/research/sel4
http://ertos.nicta.com.au/research/sel4
http://ertos.nicta.com.au/research/l4.verified
http://ertos.nicta.com.au/research/l4.verified

	
	
	

	

	

	
	

	

	

	
	

	
	
	

	

	

	
	

	

	

	
	

34 Chapter 1. Motivation

Further reading:
▶	 Wikipedia: EMV
▶	 Wikipedia: ProVerif
▶	 ProVerif cryptographic protocol verifier –

http://prosecco.gforge.inria.fr/personal/bblanche/proverif

1.3.5 A limited industrial impact

Despite these successes, formal methods are not routinely used in industry
(nor in academia!), with the notable exception of two classes of application
domains, in which formal methods play a significant role:

•	 Those mission-critical systems for which mistakes are particularly
costly, and difficult or impossible to correct after the system is re
leased: this is the case of hardware circuits and architectures, to which
the technique of software patches is generally not applicable. Major
hardware design companies hire formal methods experts and use for
mal verification tools (e.g., model checkers and/or theorem provers)
as part of their industrial processes.

•	 Those life-critical systems for which formal methods are legally re
quired by technical standards or certification authorities: this is the
case of civil avionics, railways, and nuclear energy, for instance.

Further reading:
▶	 Wikipedia: IEC 61508 (functional safety for all kinds of systems)
▶	 Wikipedia: Safety Integrity Level — recommends or highly

recommends formal methods
▶	 Wikipedia: DO-178B (airborne systems and equipment) — former

standard, without formal methods
▶	 Wikipedia: DO-178C (airborne systems and equipment) — recent

standard, with formal methods
▶	 Wikipedia: ISO 26262 (road vehicles) — recommends formal methods
▶	 Formal methods in industrial standards –

http://www.fm4industry.org/index.php?title=ExFac-HM-1

The same observation about the success of formal methods in critical systems
and hardware design also appears in a recent report [KTVW11].
Between 1985 and 1995, formal methods were also used intensively for the
specification of OSI (Open System Interconnection) protocols and services,

http://en.wikipedia.org/wiki/EMV
http://en.wikipedia.org/wiki/ProVerif
http://prosecco.gforge.inria.fr/personal/bblanche/proverif
http://prosecco.gforge.inria.fr/personal/bblanche/proverif
http://en.wikipedia.org/wiki/IEC_61508
http://en.wikipedia.org/wiki/Safety_Integrity_Level
http://en.wikipedia.org/wiki/DO-178B
http://en.wikipedia.org/wiki/DO-178C
http://en.wikipedia.org/wiki/ISO_26262
http://www.fm4industry.org/index.php?title=ExFac-HM-1
http://www.fm4industry.org/index.php?title=ExFac-HM-1

	

	

	

	
	
	

	

	

	

	

	
	
	

	

35 1.3. How are formal methods today?

but this usage declined when OSI standards were abandoned in favor of
TCP/IP, which does not require formal methods but simply the existence
of two different protocol implementations.
High-security information systems, even if not always life-critical, are also
subject to strict certification constraints, such as the ISO 15408 standard
(Common Criteria for Information Technology Security Evaluation) and its
Evaluation Assurance Levels [MSUV07].

Further reading:
▶	 Wikipedia: ITSEC (secure information systems) — prescribes

formal models of security policies
▶	 Wikipedia: Common Criteria (secure information systems) —

prescribes formal methods
▶	 Wikipedia: Evaluation Assurance Level — level EAL7 involves

formal methods
▶	 Common criteria portal – http://www.commoncriteriaportal.org
▶	 Wikipedia: ISO/IEC 27001
▶	 Wikipedia: Cyber security standards

However, although Common Criteria require formal methods at the highest
certification levels (EAL7 and EAL7+), such levels of security are rarely
reached in practice. Official statistics indicate that, between 1998 and 2011,
only 4 out of 1599 certified products reached the highest levels (2 products
certified EAL7 and 2 products certified EAL7+).

Further reading:
▶	 Certified Products List Statistics (retrieved October 2011) –

http://www.commoncriteriaportal.org/products/stats/

Globally, the use of formal methods in industrial projects remains punc
tual, mostly intended to solving particular issues. Such a use comes rather
from individual initiatives (“heroic efforts”, in the CMMI terminology) than
from established methodologies. In fact, there is no general consensus on
which formal method(s) should be used, nor for which part of development
activities formal methods should be introduced.
This limited industrial impact is also reflected by the current situation of
software tools for formal methods. Such tools are expensive to develop and to
adapt to particular application domains. At present, the tools that sell best
(e.g., Simulink and UML) are not formal. The market for “really formal”
methods is currently very much a niche and suffers from the well-known

http://en.wikipedia.org/wiki/ITSEC
http://en.wikipedia.org/wiki/Common_Criteria
http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
http://www.commoncriteriaportal.org
http://en.wikipedia.org/wiki/ISO/IEC_27001
http://en.wikipedia.org/wiki/Cyber_security_standards
http://www.commoncriteriaportal.org/products/stats/
http://www.commoncriteriaportal.org/products/stats/

	

	

	
	

	

	
	
	

	

	

	
	

	

	
	
	

36 Chapter 1. Motivation

“negative feedback loop” effect: software vendors hesitate to invest in tools
because the market is too small and, as long there are no industrial-strength
tools, the user demand for formal methods remains low.
In certain cases, the situation is worse, as commercial tools disappear from
the market without being replaced by equivalent tools. From our close
experience, we can mention three such cases of technologically advanced
tools that are no longer available, although they were actually used both in
large industrial projects and for student training in university lectures:

•	 QNAP2 (Queueing Network Analysis Package 2) was a software envi
ronment providing a language for modeling queueing networks, and a
collection of algorithms for discrete-event simulation and exact solu
tion of these models. Initially developed by INRIA and Bull [VP84],
QNAP2 was then distributed and enhanced by Simulog, but disap
peared after Simulog was bought by Astek in 2003.

•	 ObjectGEODE was a software environment for the SDL language
[ITU02]. It incorporated advanced verification features already de
signed for the Estelle language [ACD+93]. The company developing
ObjectGEODE was named Verilog; it was bought by Telelogic in 1999,
itself acquired by IBM in 2007. The ObjectGEODE tool is no longer
commercialized and, as far as we know, its verification features have
not been retained in any other IBM product.

Further reading:
▶	 Wikipedia: Specification and Description Language
▶	 Wikipedia: Telelogic

•	 Esterel [Ber05] is a computer language for the formal description of
reactive systems and synchronous hardware circuits, which can be de
scribed in Esterel at a high abstraction level enabling both formal
verification and efficient circuit synthesis. Based on research initially
carried out at INRIA, a software environment named Esterel Studio
was developed by Esterel Technologies, then transferred to Synfora in
2009, itself acquired by Synopsis in 2010. At present, Esterel Studio
is no longer available despite its high technical relevance.

Further reading:
▶	 Wikipedia: Esterel
▶	 Wikipedia: Esterel Studio
▶	 Wikipedia: Esterel Technologies

http://en.wikipedia.org/wiki/Specification_and_Description_Language
http://en.wikipedia.org/wiki/Telelogic
http://en.wikipedia.org/wiki/Esterel
http://en.wikipedia.org/wiki/Esterel_Studio
http://en.wikipedia.org/wiki/Esterel_Technologies

37 1.4. Why this report?

It is unfortunate that economic conditions destroy valuable scientific and
technological results, thus preventing a further dissemination of formal
methods from places where they were already adopted.
However, in spite of the economic difficulties of commercial tool vendors,
the technical impact of formal methods remains highly positive. In most
projects, formal methods have shown to improve the quality of products,
by a better formalization of initial requirements and a decrease in design
and programming errors. Formal methods also reduce the time to market
by enabling an earlier detection of mistakes, thus addressing a major cause
of unforeseeable delays in large industrial projects. Finally, formal meth
ods are likely to reduce costs, although one often lacks numbers about the
development of a same product with and without formal methods.
Such findings are confirmed by a British study [WLBF09], which presents
itself as “the most comprehensive survey ever published” on the industrial
use of formal methods. According to the data collected by this study, the
benefits of formal methods can be quantified as follows:

• Impact on quality: 92% improvement, 8% no effect
• Impact on time: 35% improvement, 53% no effect, 12% worsening
• Impact on cost: 37% improvement, 56% no effect, 7% worsening

Most interestingly, an extremely large majority of the study’s respondents
agreed that the use of formal methods was successful (strongly agree: 61%,
agree: 34%, mixed opinion: 5%).

1.4 Why this report?

1.4.1 A favorable timing for formal methods

Formal methods are a long-term, collective enterprise undertaken sev
eral decades ago. Because the problem is intrinsically complex (see Sec
tion 1.3.1), genuine progress has been difficult, and fruitless directions have
been explored as well — for instance, a large part of the scientific community
promoting for a long time formal methods as purely mathematical notations,
with little attention paid to software tools for supporting these notations.
Too often also did formal method proponents overpromise and underdeliver,
turning enthusiasm and expectations into disillusion, frustration, skepticism,
and bitter criticism.
Yet, as time passed, the constant efforts of the formal method community
succeeded in designing better languages, which take into account the back
ground and needs of their intended users, better tools, which provide analy
sis capabilities beyond the limits of human brains, and better methodologies,
which integrate more easily within existing industrial practice.

38 Chapter 1. Motivation

As mentioned above, formal methods are now well-accepted for critical sys
tems and hardware design, and their use is often recommended or even
mandated by technical standards (see Section 1.3.5). But the results of
research in formal methods are also employed, in a more hidden way, in
modern compilers with code checking features, which are now part of the
everyday life of designers and programmers.
Globally, the industrial relevance of formal methods is growing rapidly, as
quality and security are increasingly differentiating factors for computer
based systems. This leaves room for a large expansion of formal methods in
the design and construction of complex systems, for which formal methods
have to become standard practice just as in any other engineering science.

1.4.2 A crucial need for a synthesis

Getting a clear vision of formal methods is all but easy. As mentioned above
(see Section 1.3.2), the landscape of formal methods is vast and fragmented.
The situation is the same for software tools, which are either meant to
solve a very specific problem or, if of general purpose, are dedicated to
a particular input language. Additionally (see Section 1.3.3), the list of
problems to which formal methods can be applied is expanding. Also, certain
approaches present themselves as formal methods, which they are not, while
other approaches do not claim to be formal, although they are. Thus, anyone
who wants to learn formal methods is likely to get confused, if not lost, in
the multitude of incompatible approaches and contradictory definitions.
The scientific literature on formal methods suffers from the same condi
tion. There are thousands of conference papers and journal articles, most of
which usually focus on particular topics, but only a few papers about formal
methods in general.
Among the latter, we can recommend two past surveys that are still largely
relevant today: [CW96] and [BC00, BCK+00], as well as two recent sur
veys: [WLBF09] and [KTVW11]. One can also mention a classical tutorial
[Jac06a] published in a widespread scientific journal, and two well-known
series of papers: the seven myths papers [Hal90, BH95] and the ten com
mandments papers [BH94, BH06]. Retrospective and prospective views on
the evolution and achievements of specific branches of formal methods can
be found in, e.g., [CDH+96] and [BRW10] for protocol engineering, [CC01]
for abstract interpretation, [Cla08] for model checking, and [Bon10] for pro
gram verification using theorem proving.
There are also a number of books, which we can classify into three main
categories:

• Books about particular formal methods, together with associated

	
	
	
	
	
	
	
	

	
	
	
	
	
	

	

	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	

	

	
	
	

39 1.4. Why this report?

methodologies to develop correct systems or to prove correct sys
tems that already exist. Examples of such books are Abstract
State Machines [BS03], Alloy [Jac06b], B [Abr96] and Event-
B [Abr10], CASL [Mos04, BM04], RAISE/RSL [Bjø06a, Bjø06b,
Bjø06c], VDM [BJ78, Jon86, ISO96], and Z [Spi92, ISO02]. Regarding
concurrent systems specifically, there are many books on Petri nets,
e.g., [Pet81, Rei85], and books on process calculi such as CSP [Hoa85],
CCS [Mil80, Mil89], FSP [MK06], LOTOS [Tur93, ISO89b], and
Promela/SPIN [Hol03]. One can also mention the large literature on
UML [BRJ99, ISO05] which, although not a formal method, borrows
ideas from formal methods.

Further reading:
▶	 Wikipedia: Abstract state machines
▶	 Wikipedia: Alloy (specification language)
▶	 Wikipedia: B-Method
▶	 Wikipedia: Common Algebraic Specification Language
▶	 Wikipedia: RAISE Specification Language
▶	 Wikipedia: Vienna Development Method
▶	 Wikipedia: Z notation
▷	 Wikipedia: Petri net4

▶	 Wikipedia: Communicating Sequential Processes
▶	 Wikipedia: Calculus of communicating systems
▶	 Wikipedia: Language Of Temporal Ordering Specification
▶	 Wikipedia: Promela
▷	 Wikipedia: SPIN model checker
▶	 Wikipedia: Unified Modeling Language

•	 Books about particular verification techniques, such as overviews
on model checking [CGP00, BK08, GV08] and deductive verifica
tion [MP91, MP95, MH03, HR04, BM07]. There are also books
about mainstream theorem provers, e.g., ACL2 [KMM00b, KMM00a],
Coq [BC04], Isabelle [NPW02], and PVS [COR+95].

Further reading:
▶	 Wikipedia: Model checking
▶	 Wikipedia: Automated theorem proving
▶	 Wikipedia: ACL2

4The use of a white (rather than black) triangle in a “Further reading” list indicates
that the corresponding Wikipedia page has already been cited above in the present report.

http://en.wikipedia.org/wiki/Abstract_state_machines
http://en.wikipedia.org/wiki/Alloy_(specification_language)
http://en.wikipedia.org/wiki/B-Method
http://en.wikipedia.org/wiki/Common_Algebraic_Specification_Language
http://en.wikipedia.org/wiki/RAISE_Specification_Language
http://en.wikipedia.org/wiki/Vienna_Development_Method
http://en.wikipedia.org/wiki/Z_notation
http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/Communicating_Sequential_Processes
http://en.wikipedia.org/wiki/Calculus_of_communicating_systems
http://en.wikipedia.org/wiki/Language_Of_Temporal_Ordering_Specification
http://en.wikipedia.org/wiki/Promela
http://en.wikipedia.org/wiki/SPIN_model_checker
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Model_checking
http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/ACL2

	
	

	

	

	

	

	

	

	

	
	

	

	

	

	

	

	

	

40 Chapter 1. Motivation

▶	 Wikipedia: Coq
▶	 Wikipedia: Isabelle (theorem prover)
▷ Wikipedia: Prototype Verification System

•	 Books about applications of formal methods to a particular domain.
Among the various domains mentioned in Section 1.3.3, the emerging
area of computer security deserves a special attention, as only a few
books [Sch98, Bis02, Jür04, LST05, Goe07, CKOS09, MC11] address
this domain.

To the best of our knowledge, no existing book covers formal methods in all
their diversity. Because of the growing importance of formal methods, there
is a crucial need for a comprehensive, yet coherent overview of the situation:
the present report tries to provide such a synthesis.

1.5 Who should read this report?

Formal methods are progressively becoming a reality, which professionals
cannot afford to ignore. The expected audience for this report is large and
diverse. Should read this report:

•	 Managers who assign, sub-contract, and/or supervise complex
computer-based projects, to the success of which formal methods could
contribute.

•	 Developers who design complex hardware, software, or systems, espe
cially if these systems are life-critical or mission-critical. This includes
the case of products submitted to certification, such as high-security
products.

•	 Companies planning to introduce or further deploy formal methods for
their in-house product developments or relations with contractors.

•	 Persons who evaluate products according to standardized criteria, and
thus have to perform product analyses and development audits based
on formal methods.

•	 Formal method tool builders seeking to get their particular tools inte
grated in development methodologies and certification procedures.

•	 Academic lecturers and scientists, who will find in this report a modern
and comprehensive classification of formal methods and tools.

http://en.wikipedia.org/wiki/Coq
http://en.wikipedia.org/wiki/Isabelle_(theorem_prover)
http://en.wikipedia.org/wiki/Prototype_Verification_System

	

 	

	

 	

41 1.6. What is in this report?

•	 University students looking for a clear scientific survey on formal meth
ods, which will hopefully draw their attention to valuable academic
results produced during the past decades.

More generally, to enhance the quality and security of complex products,
it is essential that sufficiently many people understand formal methods and
know how to apply them efficiently and profitably. We expect that this
report will contribute to strengthen the worldwide scientific community in
formal methods.

1.6 What is in this report?

The scientific literature on formal methods is already vast and diverse. In
such a rich context, why should one read also the present report? This ques
tion has been partly answered in Section 1.4. In addition, we can mention
four key objectives for the present report:

1. It aims at providing a comprehensive and unbiased description of the
state of the art today in formal methods, languages, tools, and method
ologies.

2. It aims at giving a unified vision of formal methods by defining a
conceptual framework in which all major approaches proposed so far
can be situated and compared with each other.

3. It aims	 at providing an accurate evaluation of formal methods’
strengths and limitations: although formal methods have significant
benefits for certain projects, they are by no means a “silver bullet” for
all types of complex products. In this respect, this report will explain
clearly what can be done and what should not be attempted using the
various kinds of existing formal methods.

4. It aims at setting methodological guidelines for the deployment and
effective use of formal methods in real-size projects. In particular,
much attention will be given to the insertion of formal methods in
industrial design flows, together with recommendations on how and
where formal methods should be used, so as to avoid mistakes and
pitfalls often observed when deploying formal methods for the first
time on non-trivial projects.

42 Chapter 1. Motivation

The present report is organized as follows.
Chapter 2 (“Scope and Taxonomies”) provides a comprehensive overview of
formal methods through two orthogonal taxonomies covering all the scien
tific branches and application domains for which formal methods have been
developed. This chapter also defines the perimeter of this report by list
ing those aspects considered to be out of scope, together with the reasons
justifying this choice.
Chapter 3 (“Components, models, and properties”) is entirely devoted to
specification issues. It first presents key ideas about components, which
are the standard way of composing and decomposing systems. It then in
troduces the two main approaches for describing systems and components:
operational specifications (namely, models and programs) and declarative
specifications (namely, properties). Both approaches are detailed by giving
a list of attributes that can be used to classify existing formal methods.
Chapter 4 (“Methodologies”) addresses the crucial question of how and where
formal methods can be profitably inserted in the design cycle of complex soft
ware, hardware, or systems. After introducing the concepts of design flows
and steps related to design, quality, and revisions, this chapter discusses the
various (not necessarily exclusive) means to quality control and assurance,
ranging from conventional methodologies and best practices for system de
sign to advanced approaches based on formal methods, formal verification,
and “correct by construction” design.
Finally, Chapter 5 gives some concluding remarks.

Chapter 2

Scope and taxonomies

2.1 Introduction

As mentioned in Chapter 1, the landscape of formal methods is vast and di
verse. The main purpose of the present chapter is to provide complementary
viewpoints on this landscape and to situate formal methods with respect to
other branches of computer science.
We first review the main application domains for which formal methods have
been developed, and then propose a classification of existing formal meth
ods in terms of environment assumptions. Both such taxonomies of formal
methods (according to application domains and according to environment
assumptions) are orthogonal, so that they virtually define a matrix in which
each particular usage of formal methods may find its logical place.
Finally, we set the limits of the study by indicating those aspects of formal
methods that are considered to be out of scope for this report.

2.2 Taxonomy according to application domains

Application domains provide a first dimension along which formal methods
can be categorized. These domains define classes of products and equipments
for the design and/or verification of which formal methods can be used.

2.2.1 System design and engineering

In principle, every product or equipment to which formal methods can be
applied can be called a system. The derived expressions system under study,
system under verification, system under test, system-level design, system
level verification, etc., are commonly found in the scientific literature.

43

	
	
	
	

	

	

	
	
	
	

	

	

44 Chapter 2. Scope and taxonomies

Reciprocally, not all kinds of systems are compatible with formal methods.
In this report, we only consider the case of computer-based systems, which
contain a part of software and/or hardware — possibly together with other
non-computing elements, such as physical devices, human users, etc. To
give examples, such systems can be of all sizes, ranging from the smallest
ones (e.g., an artificial pacemaker) to the largest one (e.g., an airport with
its buildings, planes, and passengers, or a telecommunication system with
its satellites, base stations, and mobile devices).
System engineering, the engineering approach to system design, is an estab
lished, well-codified discipline.

Further reading:
▶	 Wikipedia: System
▶	 Wikipedia: System design
▶	 Wikipedia: System engineering
▶	 NASA Systems Engineering Handbook (NASA/SP-2007-6105 Rev1,

December 2007) – http://hdl.handle.net/2060/20080008301
▶	 IEEE Transactions on Software Engineering –

http://www.computer.org/portal/web/tse/home/
▶	 Formal Methods in System Design – An International Journal –

http://www.informatik.uni-trier.de/~ley/db/journals/fmsd/

Formal methods and the software tools supporting them are increasingly
used for system design, most often to model, verify, and/or predict the per
formance of a system before it is actually built. The acceptance of formal
methods has been a slow, gradual progress because the discipline of sys
tem engineering is necessarily conservative by nature and, as it encompasses
many other scientific disciplines than computer science, cannot evolve as
quickly as computer science alone. For instance, the NASA Systems En
gineering Handbook cited above does mention neither formal methods nor
computer-aided verification nor model checking, to name only a few, al
though it is well-known that NASA uses these techniques successfully for its
mission-critical systems.
However, because of the combinatorial explosion issue (see Section 1.3.1), ac
tual systems are often too complex to be analyzed entirely in full detail. For
this reason, the application of formal methods usually requires restrictions
(only one or several part(s) of the system are considered) or abstractions
(the entire system is considered, but its description is simplified). Restric
tions and abstractions can be mild or drastic, depending on the size and
complexity of the actual system.

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/System_design
http://en.wikipedia.org/wiki/System_engineering
http://hdl.handle.net/2060/20080008301
http://hdl.handle.net/2060/20080008301
http://www.computer.org/portal/web/tse/home/
http://www.computer.org/portal/web/tse/home/
http://www.informatik.uni-trier.de/~ley/db/journals/fmsd/
http://www.informatik.uni-trier.de/~ley/db/journals/fmsd/

	

	

	

	

	

	

	

	

45 2.2. Taxonomy according to application domains

In the remainder of this section, we review three particular instances of
system design, in which only certain particular aspects of systems are con
sidered, and for which formal methods can be applied successfully.

2.2.2 Protocol design and engineering

When designing a system, ensuring proper communications between the var
ious parts of the system is a frequent issue. In many cases, it is feasible to
address this issue in isolation from the rest of the system, by focusing on
communications primarily and abstracting away all other aspects of the sys
tem. Using such an abstraction, the system is usually reduced to a set of
agents interconnected with some communication network; these agents are
running concurrently and using one or several protocols to perform commu
nication, synchronization, and/or co-operation towards common goals.

Further reading:
▷	 Wikipedia: Communications protocol

In the particular case of cryptographic protocols, the system is abstracted
to consider only certain aspects of communication related to information
security, e.g., exchange of keys, transmission of encrypted data, etc.

Further reading:
▷	 Wikipedia: Cryptographic protocol

Protocol engineering is the scientific methodology supporting protocol de
sign. There has been a long-standing common history between formal meth
ods and protocol design [BRW10]. From the beginning, formal methods have
been a core part of protocol engineering, and protocols have been a key ap
plication target for formal methods. This convergence of interests enabled
major advances in theory and practice, a cross-fertilization that appears in
several books, e.g. [Hol92, Sha08], in which protocol and formal aspects are
intertwined.

Further reading:
▶	 Protocol Specification, Testing and Verification conference series

(1981–2001) – http://www.informatik.uni-trier.de/~ley/db/conf/pstv/
▶	 Formal Description Techniques conference series (1988–now) –

http://www.informatik.uni-trier.de/~ley/db/conf/forte/

http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Cryptographic_protocol
http://www.informatik.uni-trier.de/~ley/db/conf/pstv/
http://www.informatik.uni-trier.de/~ley/db/conf/pstv/
http://www.informatik.uni-trier.de/~ley/db/conf/forte/
http://www.informatik.uni-trier.de/~ley/db/conf/forte/

	
	
	
	
	

	
	

	
	
	
	
	

	
	

46 Chapter 2. Scope and taxonomies

Nowadays, even if certain languages designed specifically for protocols (e.g.,
ESTELLE [ISO89a] or SDL [ITU02]) are no longer used (they have been re
placed by more general languages that can describe larger classes of systems),
it has become standard practice to use formal description and verification
techniques when designing new protocols; the same holds for cryptographic
protocols too.

2.2.3 Software design and engineering

We now examine the particular case where the system under design is mostly
or entirely a software system, or where a real system is abstracted in such
a way that only its software aspects are considered. This corresponds to
a well-defined branch of engineering called software engineering, whose ori
gins can be traced back to the NATO scientific conference held in Garmisch-
Partenkirchen (Germany) in 1969. The goal of this conference was to address
the so-called software crisis, namely the difficulty of writing correct, under
standable, and verifiable computer programs. This conference invented the
concept of software engineering, defined as “the application of a systematic
disciplined quantifiable approach to the development, operation, and main
tenance of software”.

Further reading:
▶	 Wikipedia: Software design
▶	 Wikipedia: Software engineering
▶	 Wikipedia: Software development
▶	 Wikipedia: Software crisis
▶	 Wikipedia: Outline of software engineering
▶ Wikipedia: History of software engineering

Formal methods are an important and growing part of software engineering,
to which they provide theoretical foundations as well as analysis tools. Cer
tain branches of software engineering, such as software architectures [SG96],
are directly inspired from formal methods. There is an overwhelming
amount of books on software engineering; some of them barely mention for
mal methods or mention them as a minor topic, but recent literature reflects
the importance of formal methods in ambitious software developments.

Further reading:
▶	 Wikipedia: Software Engineering Body of Knowledge
▶	 IEEE’s Guide to the Software Engineering Body of Knowledge

(SWEBOK) – http://www.computer.org/portal/web/swebok

http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_crisis
http://en.wikipedia.org/wiki/Outline_of_software_engineering
http://en.wikipedia.org/wiki/History_of_software_engineering
http://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge
http://www.computer.org/portal/web/swebok
http://www.computer.org/portal/web/swebok

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

47 2.2. Taxonomy according to application domains

▶	 Encyclopedia of Software Engineering –
http://onlinelibrary.wiley.com/book/10.1002/0471028959

▶	 Wikipedia: Software architecture

Retrospectively, the development of formal methods targeting software has
been favored by the fact that software is a human artifact, flexible enough to
evolve and support mathematical approaches. Also, the diversity of software
applications and programming styles clearly contributed to the variety of
formal methods.

2.2.4 Hardware design and engineering

There is also the particular case of computer hardware systems, in which
the system under design is a computer architecture, an integrated circuit,
or a part of these. This case covers a large class of problems ranging from
microcontrollers to supercomputers.

Further reading:
▶	 Wikipedia: Computer hardware
▶	 Wikipedia: Computer architecture
▶	 Wikipedia: Integrated circuit
▶	 Wikipedia: Application-specific integrated circuit
▶	 Wikipedia: Very-large-scale integration
▶	 Wikipedia: Microarchitecture
▶	 Wikipedia: Microcontroller
▶	 Wikipedia: Microprocessor
▶	 Wikipedia: Central processing unit
▶	 Wikipedia: Graphics processing unit
▶	 Wikipedia: Memory controller
▶	 Wikipedia: Host adapter
▶	 Wikipedia: Embedded system

Guaranteeing absence of errors is of paramount importance in hardware de
sign, because all software applications are written under the assumption that
the underlying hardware will execute them correctly, and because hardware
mistakes are much more difficult and expensive to repair than software ones,
for which software patches are possible. Beyond the aforementioned flaws of
the Pentium division and Sandy Bridge chipset with their extreme financial
consequences (see Section 1.1), the high costs of circuit manufacturing make
design error expensive, even for simpler integrated circuits.

http://onlinelibrary.wiley.com/book/10.1002/0471028959
http://onlinelibrary.wiley.com/book/10.1002/0471028959
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Very-large-scale_integration
http://en.wikipedia.org/wiki/Microarchitecture
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Memory_controller
http://en.wikipedia.org/wiki/Host_adapter
http://en.wikipedia.org/wiki/Embedded_system

48 Chapter 2. Scope and taxonomies

To avoid producing and releasing defective circuits, the crude “trial-and
error” approaches too often used in software design are not an option:
stricter and more demanding approaches are needed. Therefore, sophisti
cated methodologies have been elaborated and continuously improved since
the early days of hardware design.

Further reading:
▶ Wikipedia: Integrated circuit design
▶ Wikipedia: CPU design
▶ Wikipedia: Computer engineering
▶ Wikipedia: Electronic design automation
▶ Wikipedia: List of EDA companies

Formal methods are integral part of these methodologies. Today, hardware
design companies routinely use formal verification tools provided by EDA
companies, often as part of larger software environments for integrated cir
cuit design. Major global corporations, such as IBM or Intel, even have their
own research laboratories to develop in-house formal verification tools.
Notice that terminology slightly differs between hardware and software de
sign. In hardware design, the term verification denotes a large set of tech
niques (including emulation, simulation, rapid prototyping, and testing) to
detect design mistakes; these techniques are not necessarily formal, and one
must use the term formal verification when referring to mathematically
based techniques (e.g., model checking and equivalence checking). Similarly,
the term testing has a specific meaning in hardware design, where it denotes
those checks performed during and after the circuit manufacturing process.

Further reading:
▶ EDA Consortium Glossary – http://www.edac.org/industry glossary.jsp
▶ Wikipedia: Category:Electronic circuit verification

Hardware design, as an application domain, has contributed significantly
to the development of formal methods by bringing many challenging prob
lems (e.g., combinational logic, sequential logic, synchronous circuits, asyn
chronous circuits, system on chip, and network on chip) with all related
issues of correctness and efficiency and, more recently, new issues about
energy consumption.

Further reading:
▶ Wikipedia: Combinational logic

http://en.wikipedia.org/wiki/Integrated_circuit_design
http://en.wikipedia.org/wiki/CPU_design
http://en.wikipedia.org/wiki/Computer_engineering
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/List_of_EDA_companies
http://www.edac.org/industry_glossary.jsp
http://en.wikipedia.org/wiki/Category:Electronic_circuit_verification
http://en.wikipedia.org/wiki/Combinational_logic

49 2.2. Taxonomy according to application domains

▷ Wikipedia: Sequential logic
▷ Wikipedia: Synchronous circuit
▷ Wikipedia: Asynchronous circuit
▶ Wikipedia: System on chip
▶ Wikipedia: Network on chip

The usual hardware description languages, such as VHDL or Verilog, in
corporate certain concepts of electronics (e.g., logic gates or signal edges)
as well as certain conventions specific to hardware design methodologies.
These languages are thus significantly different from mainstream program
ming languages for software and, for this reason, formal methods and tools
developed for hardware design are not, in general, directly applicable to
software.

Further reading:
▶ Wikipedia: Hardware description language
▶ Wikipedia: VHDL
▶ Wikipedia: Verilog
▶ Wikipedia: Logic gate
▶ Wikipedia: Signal edge

Moreover, many hardware verification concepts (e.g., cycle accuracy, data
path, instruction set, pipeline, circuit retiming, etc.) have no direct corre
spondence in software verification.

Further reading:
▶ Wikipedia: Instruction set
▶ Wikipedia: Instruction pipeline
▶ Wikipedia: Retiming

However, the separation between hardware and software is neither total
nor permanent. As hardware architectures increasingly incorporate mas
sive parallelism and decentralized interconnection topologies, they face the
same problems as distributed software applications. These problems can be
addressed using formal techniques (e.g., asynchronous and synchronous pro
cess calculi, symbolic model checking, SAT solving, etc.) that are equally
relevant to software verification.
Also, because of the ever-increasing complexity of circuits made possible by
technology and silicon integration advances, the design and verification of

http://en.wikipedia.org/wiki/Sequential_logic
http://en.wikipedia.org/wiki/Synchronous_circuit
http://en.wikipedia.org/wiki/Asynchronous_circuit
http://en.wikipedia.org/wiki/System_on_chip
http://en.wikipedia.org/wiki/Network_on_chip
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Signal_edge
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Instruction_pipeline
http://en.wikipedia.org/wiki/Retiming

	
	
	

	

	

	

	

	
	
	

	

	

	

	

50 Chapter 2. Scope and taxonomies

complex circuits must be done at a higher level of abstraction than before.
Higher-level languages such as SystemC and SystemVerilog as have been
proposed for this purpose. These languages borrow many features from
software programming languages such as C, C++, or Java. This gradually
attenuates the distinction between high-level hardware design and software
design, thus opening the way for common formal methods.

Further reading:
▶	 Wikipedia: Hardware verification language
▶	 Wikipedia: SystemC
▶	 Wikipedia: SystemVerilog

2.2.5 Discussion

Besides the four aforementioned application domains, there are at least two
other domains in which formal methods can be used successfully:

•	 Pure mathematics: Formal methods, especially theorem provers, are
remarkably successful at formalizing mathematical theories and check
ing proofs rigorously. Most notably, theorem provers are better than
humans in tackling complex proofs that require thousands of particu
lar cases to be examined individually. Besides theorem provers, there
are also computer algebra systems, the description languages of which
can be rightfully considered as formal methods.

Further reading:
▶	 Wikipedia: Automated reasoning
▶ Wikipedia: Computer algebra system

•	 Systems biology: An emerging field of bioinformatics — tentatively
named formal system biology — promotes formal methods (e.g., pro
cess calculi and model checking) for modeling certain aspects of bio
logical processes (regulation networks, pathways of interactions, etc.).

Further reading:
▶	 Wikipedia: Bioinformatics
▶ Wikipedia: Systems biology

http://en.wikipedia.org/wiki/Hardware_verification_language
http://en.wikipedia.org/wiki/SystemC
http://en.wikipedia.org/wiki/SystemVerilog
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Computer_algebra_system
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Systems_biology

	

	

	

	

2.3. Taxonomy according to environment assumptions 51

No matter how fascinating these two application domains may be, we will
not further investigate them in the present report, whose scope only covers
engineering approaches to the construction of computer systems.
In the sequel, we will use the term system in the acception of computer
system, which encompasses the particular cases of protocol, hardware, and
software systems, or combinations of these — as the various applications
domains are not always strictly separated, which sometimes requires to
consider simultaneously several aspects of the system under study (e.g.,
hardware-software co-design, rather than separate design of hardware and
software).

2.3	 Taxonomy according to environment assump
tions

We now propose a second taxonomy of formal methods that is orthogo
nal to the first taxonomy based on application domains. Some preliminary
definitions are needed first.

2.3.1	 Environment and system boundary

To each computer system under study, there is an associated environment,
which corresponds to the “rest of the universe” with which the system in
teracts. Depending on which kind of system is considered, an environment
can be, for instance:

• one or several human users of the system,
• a natural/physical/biological process controlled by the system,
• lower and higher layers with which a protocol is exchanging data,
• other hardware elements to which a hardware circuit is connected,
• other software components with which a software program is executing,
• etc.

The frontier where the interactions (i.e., the inputs and outputs) between a
system and its environment take place is usually named system boundary.

Further reading:
▶ Wikipedia: Environment (systems)

http://en.wikipedia.org/wiki/Environment_(systems)

	

	

	
	

	

	

	

	
	

	

52 Chapter 2. Scope and taxonomies

2.3.2 Environment assumptions

Although the environment is external to the system — and, in many cases,
actually pre-exists to the system — it must be specified formally too. Spec
ifying the environment correctly is as essential as specifying the system cor
rectly. Our second taxonomy is based on the notion of environment assump
tions (also domain assumptions or, simply, assumptions), i.e., the formal
ization by the system designer of what the environment can and cannot do.
We distinguish between three kinds of environments:

•	 A nominal environment is well-understood and predictable. It guar
antees certain requirements known in advance, for the respect of which
the system will be able to trust its environment. A nominal environ
ment is often an abstraction itself, i.e., an idealized simplification of
the real-life environment with which the system is interacting.

•	 A faulty environment is mostly understood and largely predictable,
but its behavior can be altered by faults, i.e., abnormal events affecting
the system, such as hardware malfunctioning or degradation as time
passes. For instance, a memory or disk storage may get corrupted, a
communication link may lose a fraction of the transmitted packets, a
computer in a network may stop working and not respond any more,
etc. Faults may occur randomly or systematically, intermittently or
permanently from a certain point on. Certain faults are easy to detect
and diagnose, whereas others are more involved. Fault models are used
to describe the available knowledge about faults, and to predict fault
occurrences and characteristics.

Further reading:
▶	 Wikipedia: Fault (technology)
▶	 Wikipedia: Fault model

•	 A hostile environment is neither totally understood nor predictable;
its behavior cannot be trusted because of the potential presence of a
number of adversaries (or attackers or intruders) who can take control
of the environment (at least, in part) and modify its expected behav
ior. The adversaries may be arbitrarily clever and their possible ac
tions are largely unforeseeable; they can observe the system to acquire
knowledge for future attacks; they can perturbate the environment
by intercepting communications or by forging deceptive messages; in
some cases, they can even get unauthorized access to the system or
exploit side channels to obtain information not normally disclosed by
the system.

http://en.wikipedia.org/wiki/Fault_(technology)
http://en.wikipedia.org/wiki/Fault_model

53 2.3. Taxonomy according to environment assumptions

Further reading:
▶ Wikipedia: Adversary (cryptography)
▶ Wikipedia: Attack (computing)
▶ Wikipedia: Side channel attack
▶ Wikipedia: Covert channel

The three kinds of environments have been presented above in increasing
complexity order — or, to express it in a different yet equivalent way, in
decreasing order of assumption strength. It is indeed clearly that faulty
environments include nominal environments as particular cases where no
fault occurs, and that hostile environments generalize faulty environments
by introducing the possibility of attacks, of which faults are a particular
case (the difference being that attacks can trigger a clever, coordinated,
low-probability sequence of events that cannot be described using classical
fault models).
Environment assumptions determine a taxonomy of formal methods ap
proaches. From a common problem statement (“Does the system work as
expected?”), three approaches can be distinguished depending on the kind
of environment considered. These approaches largely differ with respect
to formal models, design approaches, and verification algorithms that are
needed to cope with the various environment assumptions. Moreover, each
of these three approaches corresponds to a well-identified branch of com
puter science, with dedicated scientific conferences and journals. A similar
taxonomy was sketched in [Sch11].

2.3.3 Correctness and performance issues

The first branch of our second taxonomy studies systems operating in nomi
nal environments. For formal methods, this is the traditional and privileged
area, in which considerable progress has been made, from basic research to
industrial applications.
Along this branch, the main class of issues addressed by formal methods
can be referred to using the generic name of correctness. The goal is either
to establish that the system, when executing in a nominal environment,
behaves according to its specifications or, conversely, to detect and remove
unintentional human design mistakes.
There are various forms of correctness. A very general one is functional
correctness, which scrutinizes the inputs and outputs of the system. But
particular forms also exist — e.g., for sequential programs, there are specific
notions such as total correctness, partial correctness, and termination.

http://en.wikipedia.org/wiki/Adversary_(cryptography)
http://en.wikipedia.org/wiki/Attack_(computing)
http://en.wikipedia.org/wiki/Side_channel_attack
http://en.wikipedia.org/wiki/Covert_channel

	

	
	
	
	

	

	
	
	
	
	
	
	
	
	
	
	
	

	

	

	
	
	
	

	

	
	
	
	
	
	
	
	
	
	
	
	

	

54 Chapter 2. Scope and taxonomies

Further reading:
▷	 Wikipedia: Correctness (computer science)

Correctness questions usually call for a Boolean answer: is the system correct
or not? However, there are other useful questions that one may wish to ask
about a system, a communication protocol, a hardware circuit, or a software
program. Quite often, these are quantitative questions about resource usage:

•	 How long will this program will take to execute?
•	 What are the response time and latency of this system?
•	 What are the throughput and round-trip delay time of this protocol?
•	 How much memory will use this program? (This is an essential issue

for critical systems).
•	 How much energy will consume this system? (This is a key question

for embedded devices).

Further reading:
▶	 Wikipedia: Resource (computer science)
▶	 Wikipedia: Non-functional requirement
▷	 Wikipedia: Real-time computing
▶	 Wikipedia: Best, worst and average case
▷	 Wikipedia: Worst-case execution time
▶	 Wikipedia: Worst-case complexity
▶	 Wikipedia: Average-case complexity
▶	 Wikipedia: Throughput
▶	 Wikipedia: Round-trip delay time
▶	 Wikipedia: Response time (technology)
▶	 Wikipedia: Latency (engineering)
▷	 Wikipedia: Quality of service

All these questions are usually grouped under the generic term of perfor
mance issues, and there exist formal techniques specifically designed to an
swer these questions. Although certain of these techniques are not tradition
ally considered to be part of formal methods, there is no logical reason for
excluding them and, indeed, current trends in academic community gradu
ally extend the scope of formal methods to include performance issues.

Further reading:
▷	 Wikipedia: Computer performance
▶ Wikipedia: Performance prediction

http://en.wikipedia.org/wiki/Correctness_(computer_science)
http://en.wikipedia.org/wiki/Resource_(computer_science)
http://en.wikipedia.org/wiki/Non-functional_requirement
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Worst-case_execution_time
http://en.wikipedia.org/wiki/Worst-case_complexity
http://en.wikipedia.org/wiki/Average-case_complexity
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Round-trip_delay_time
http://en.wikipedia.org/wiki/Response_time_(technology)
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_performance
http://en.wikipedia.org/wiki/Performance_prediction

	

	

55 2.3. Taxonomy according to environment assumptions

The frontier between correctness and performance is not always clear, and
this is why we present both notions together. For instance, quantitative
questions such as “How long does the system need to react?” or “How much
memory does the system use?” logically belong to performance, whereas
Boolean queries such as “Does the system react in less than 10 milliseconds?”
or “Does the program fit in the physical limit of 4 gigabytes?” belong to
correctness. Similarly, we consider that hard real-time issues (focusing on
strict deadlines and worst-case execution time) belong to correctness (pre
cisely, to a class of correctness issues usually named time correctness or
timeliness), whereas soft real-time issues (dealing with average-case execu
tion time) belong to performance. Such fine terminology distinctions may
generate lengthy, inconclusive discussions between experts; fortunately, ter
minology is not so essential when using formal methods in practice.

2.3.4 Dependability and performability issues

The second branch of our second taxonomy studies systems operating in
faulty environments. Not all methods developed for designing and analyzing
such systems are formal, and those of these methods that are formal are not
necessarily called “formal methods”. Nevertheless, we believe that this area
of research, to a large extent, belongs to formal methods, at least in its
aspects most closely related to computing.
The reader should be warned that this area of research makes intensive use
of vocabulary in order to define the qualities of systems. Unfortunately,
definitions are multiple and often differ from one source to another. The
reader should therefore be prepared to face terminology confusions, which
are frequent and unavoidable. To minimize such problems, we will try using
in this report a reduced number of concepts.

Further reading:
▶	 Software and Systems Engineering Vocabulary –

http://pascal.computer.org/sev display/index.action

Following the elaborate terminology of [ALRL04], we distinguish between
faults and failures, faults being causes and failures being consequences, i.e.
the perturbations of a system when faults arise. But we do not follow
[ALRL04] in their subtle distinction between “fault” and “error”, the latter
being somewhat the observable consequence of a fault, yet not necessarily
as severe as a system failure. Instead, we reserve the term “fault” for hard
ware or environmental perturbations, while we use “bug”, “defect”, “error”,
and “mistake” as synonyms to designate flaws having a human cause. We
therefore do not consider design mistakes (which relate to correctness) and

http://pascal.computer.org/sev_display/index.action
http://pascal.computer.org/sev_display/index.action

	
	

	

	
	

	

	

	
	

	

	
	

	

	

56 Chapter 2. Scope and taxonomies

attacks (which relate to security) to be faults, contrary to the broader def
inition of [ALRL04, Section 3.2.1] that encompasses all possible causes of
faults: human and natural, software and hardware, malicious, deliberate,
accidental, etc.

Further reading:
▶	 Wikipedia: Failure
▶	 Wikipedia: Failure causes
▶ Wikipedia: Cascading failure

To name this area of research, we will use two main terms, which express
for faulty environments the same concepts as correctness and performance
for nominal environments:

•	 According to [ALRL04], dependability is “the ability [of a system] to
avoid service failures that are more frequent and more severe than is
acceptable”. Dependability can also be defined as the “trustworthiness
of a computer system such that reliance can be justifiably placed on
the service it delivers” [IEE06] or as a “measure of the degree to which
[a system] is operable and capable of performing its required function
at any (random) time during a specified mission profile” [ISO10].

Further reading:
▶	 Wikipedia: Dependability
▶	 Dependability (ResiliNets, University of Kansas) –

https://wiki.ittc.ku.edu/resilinets/Dependability

•	 According to [Mey80, Mey92, Mey95], performability assesses “the sys
tem’s ability to perform when performance degrades as a consequence
of faults”. Performability can also be defined to measure “how well
[the] system performs in the presence of faults over a specified pe
riod of time. [...] Such measures can thus account for degraded lev
els of performance that, according to failure criteria, remain satisfac
tory” [MS01].

Further reading:
▶	 Performability (ResiliNets, University of Kansas) –

https://wiki.ittc.ku.edu/resilinets/Performability

http://en.wikipedia.org/wiki/Failure
http://en.wikipedia.org/wiki/Failure_causes
http://en.wikipedia.org/wiki/Cascading_failure
http://en.wikipedia.org/wiki/Dependability
https://wiki.ittc.ku.edu/resilinets/Dependability
https://wiki.ittc.ku.edu/resilinets/Dependability
https://wiki.ittc.ku.edu/resilinets/Performability
https://wiki.ittc.ku.edu/resilinets/Performability

	

	
	

	

	

	

	

	

	

	
	

	

	

	

	

	

57 2.3. Taxonomy according to environment assumptions

Notice, although the difference is not essential, that certain authors view
dependability and performability as distinct topics, while other authors (e.g.,
[Mis08]) consider that performability encompasses dependability (together
with other concerns).
Following the terminology of [ALRL04], dependability is an integrated con
cept defined by the conjunction of five attributes:

1.	 Availability, which is “the degree to which a system or component is
operational and accessible when required for use” [ISO10]. Availability
is often expressed as the percentage of the execution time during which
the system will run without failures.

Further reading:
▶	 Wikipedia: Availability
▶	 Wikipedia: High availability
▶ Wikipedia: Unavailability

2.	 Integrity, which is “the degree to which a system or component pre
vents unauthorized access to, or modification of, computer programs
or data” [ISO10]. [ALRL04] goes beyond with a broader definition of
integrity: “absence of improper system alteration” — replacing “unau
thorized” by “improper” also covers accidental corruption of data.

Further reading:
▶	 Wikipedia: System integrity

3.	 Maintainability, which is both “the ease with which a software system
or component can be modified to change or add capabilities, correct
faults or defects, improve performance or other attributes, or adapt to
a changed environment” and “the ease with which a hardware system
or component can be retained in, or restored to, a state in which it
can perform its required functions” [ISO10].

Further reading:
▶	 Wikipedia: Maintainability

4.	 Reliability, which is “the ability of a system or component to perform
its required functions under stated conditions for a specified period of
time” [ISO10]. Reliability is often expressed as the probability that
the system will function without failure in a certain time interval.

http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/High_availability
http://en.wikipedia.org/wiki/Unavailability
http://en.wikipedia.org/wiki/System_integrity
http://en.wikipedia.org/wiki/Maintainability

	
	

	

	
	
	
	

	

	
	

	

	
	
	
	

	

58 Chapter 2. Scope and taxonomies

Further reading:
▶	 Wikipedia: Reliability engineering
▶	 Wikipedia: Reliability theory

5.	 Safety, which is “the expectation that a system does not, under defined
conditions, lead to a state in which human life, health, property, or the
environment is endangered” [ISO98]. Safety is often expressed as the
probability that the system, during its lifetime, will not have certain
failures considered as catastrophic. Safety should not be confused with
the notion of safety property that is used (often in connection with
temporal logic) to characterize the dynamic executions of a system,
and thus belongs to correctness issues.

Further reading:
▶	 Wikipedia: Safety engineering
▶	 Wikipedia: Functional safety
▶	 Wikipedia: System safety
▷	 Wikipedia: Safety Integrity Level

It is worth noticing that the five attributes characterizing dependability
may be conflicting when considered together. For instance, availability may
suggest to pursue operation as long as possible, whereas safety may require
to stop operation as soon as possible. Particular tradeoffs have to be made
for each dependable system under design.
There is a large scientific corpus on dependability and performability issues,
with two major goals:

•	 Quantify the impact of faults: the goal is study (an abstraction of)
the system to compute estimations about failure probabilities, rates,
or severity. These estimations may concern dependability attributes
— notice that it is usually easier to compute numbers for availability,
reliability, and safety than for integrity and maintainability — as well
as performability — in which case one measures the degradation of
performance (or quality of service) caused by faults. One may also
analyze causal dependencies (e.g., which faults cause which system
failures) and critical paths (e.g., which faults contribute most to sys
tem failures). Many of these approaches are used in industry for the
assessment of complex systems: a system is often said to be dependable
if its probability of failure per operating hour is less than 10−6, and
ultradependable if this same probability is less than 10−9.

http://en.wikipedia.org/wiki/Reliability_engineering
http://en.wikipedia.org/wiki/Reliability_theory
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Functional_safety
http://en.wikipedia.org/wiki/System_safety
http://en.wikipedia.org/wiki/Safety_Integrity_Level

	

	

59 2.3. Taxonomy according to environment assumptions

•	 Avoid or mitigate the impact of faults: the goal is to recover or handle
faults in the best possible way, hopefully using the estimations of fault
impact as a guidance for optimization. Various techniques can be used
to achieve this goal. When dealing with a system that already exists,
one can use fault prevention, monitoring, maintenance, etc.

Another point to be mentioned is that dependability/performability ap
proaches that rely on sound mathematical bases can truly be considered
as formal methods. Thus, the frontier between correctness and dependabil
ity issues is not always clear. This is due to the fact that scientists belonging
to different communities have addressed the same problems using different
formal approaches. Quite often, the mathematical nature of the considered
fault models determines whether correctness or dependability is involved,
with the underlying idea that correctness is more about Boolean models
while dependability deals more with probabilistic and stochastic models.
For instance, verification of communication protocols tolerant to message
losses is usually considered to be part of correctness when message losses
are modeled using nondeterministic choice, whereas it rather belongs to
dependability/performability when message losses are modeled using proba
bilistic choice. At present, unification between correctness and dependability
is taking place progressively, as the correctness community is increasingly
considering numerical models and algorithms, while the dependability com
munity starts using specification languages and verification techniques (e.g.,
model checking) initially developed for correctness purpose.

2.3.5 Security issues

The third branch of our second taxonomy studies systems operating in hos
tile environments. This is the domain of information-technology security,
whose goal is to study whether a computer system can resist to intentional
attacks perpetrated by humans or malicious computer programs. There are
several possible definitions of security. According to [ISO10], security is
about “the protection of a system from malicious or accidental access, use,
modification, destruction, or disclosure”. More specific definitions exist; ac
cording to [ISO08], security concerns “all aspects related to defining, achiev
ing, and maintaining confidentiality, integrity, availability, non-repudiation,
accountability, authenticity, and reliability of a system”. Other sources men
tion additional properties, such as anonymity, auditability, and privacy, for
instance. Typical applications are access control systems, banking systems,
smart cards, firewalls, operating systems, cryptographic protocols, voting
machines, etc.

	

	

	

	

	

	

60 Chapter 2. Scope and taxonomies

Further reading:
▷	 Wikipedia: Computer security
▶ Wikipedia: Computer insecurity
▶ Wikipedia: Information security

The contributions of formal methods to security are positively fruitful (see,
e.g., the historical survey of [Win98]). General-purpose formal techniques
have been applied successfully to security issues; for instance, model checking
tools enabled to find unknown attacks in security protocols, e.g., [Low95] for
the Needham-Schroeder public-key authentication protocol [NS87] or [LG00]
for the subscription and registration protocols of the Equicrypt conditional
access and copyright protection system.
Additionally, dedicated formal methods have been developed to target secu
rity issues. Such methods include security-oriented formal notations, logics,
and process calculi, as well as software tools for the automated analysis
of secure protocols and systems; such tools take into account the particu
lar characteristics of security problems to fight combinatorial explosion, for
instance by joint use of theorem proving and model checking.
The multiple relations between security, on the one hand, and correctness
and dependability, on the other hand, can be summarized as follows:

•	 For modern, real-life systems, it becomes increasingly difficult to sep
arate correctness and dependability from security. This might have
been the case in the past, when most systems were not interconnected
or had only limited connectivity provided by proprietary networks:
this way, one could assume the absence (or very low probability) of
attacks. Nowadays, such a “closed world” assumption is no longer
possible for systems that are connected to public networks such as the
Internet. For those systems, security concerns are unavoidable and
should be addressed from the early design steps as they may have a
strong impact on design choices.

•	 Regarding security and correctness: although these two issues are re
lated (they share a common theoretical background, as well as a com
mon goal — checking whether some system works properly in a nom
inal or hostile environment), they are increasingly considered to be
distinct and studied in different academic communities. Classical for
mal methods for correctness still provide theoretical foundations, but
formal methods for security tend to evolve by their own and increas
ingly specialize to reflect the specific characteristics of secure systems.

http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_insecurity
http://en.wikipedia.org/wiki/Information_security

	

	

	

	

	

	

	

	

61 2.3. Taxonomy according to environment assumptions

•	 Regarding security and dependability: in theory, any attack on a sys
tem can always be seen as a particular case of Byzantine fault (i.e.,
arbitrary fault — the most general fault model), meaning that security
issues are a subset of dependability issues. This is in line with certain
authors [Som10, PL07] who, contrary to [ALRL04], define depend
ability to contain security — an evolution that we will not follow in
this report. In practice, however, security attacks are very different in
nature from the non-malicious faults considered by the dependability
community; attackers can acquire information by observing silently the
system and perturbate its behavior by injecting and/or intercepting
information; to the contrary, standard fault models are either memo
ryless (e.g., discrete- or continuous-time Markov chains) or are simple
functions of the elapsed time (e.g., when modeling fatigue or obso
lescence of a physical component); even when Byzantine faults are
considered, there are theoretical restrictions (e.g., maximal number of
faulty processes) that an attacker may choose to ignore.

•	 In practice, it is not possible to ensure security without addressing
correctness and dependability issues as well. Formal methods for se
curity, if taken alone, are not sufficient; one also needs formal methods
for correctness and dependability. Indeed, a complex system is like a
chain: its security is that of its weakest link. Design mistakes that
have not been discovered, or hardware faults that are not handled
properly may create security vulnerabilities exploited by malicious ad
versaries. For instance, cryptographic devices that are not protected
against physical data corruption are vulnerable to fault attacks.

Further reading:
▶	 Wikipedia: Fault attack

•	 Finally, it is worth noticing that dependability and security sometimes
lay conflicting requirements. A well-known civil engineering example
illustrates this paradox: when an emergency alarm rings in a building,
should the doors remain open (fail-safe design) or closed (fail-secure
design)? Similar paradoxes may occur in information technology: if a
trusted storage unit notices an abnormal event, should it quickly put
the data in a consistent state (e.g., flushing memory caches to disk) so
that data can be recovered easily (fail-safe policy) or should it erase all
data to prevent information leakage to attackers (fail-secure policy)?

Formal methods can only address certain aspects of security, those related
to logics, mathematics, computer science, and system design. Other aspects
of security unrelated to formal methods (e.g., computer hacking, tampering,

http://en.wikipedia.org/wiki/Fault_attack

62 Chapter 2. Scope and taxonomies

social engineering, etc.) are out of the scope of this report and will not be
covered — see classical textbooks on computer security for this. Also, this
report will not discuss the mathematical aspects of cryptography (which,
from the formal methods point of view, is a basic technology for building
secure systems), but will consider higher-level applications relying on cryp
tography, among which cryptographic protocols.

2.3.6 Discussion

One may wonder whether, beyond the three environments (nominal, faulty,
and hostile) presented in Section 2.3.2, there exist other kinds of environ
ments with their associated formal methods. One can perhaps mention a
growing scientific interest in evolving systems, the behavior of which has to
adapt itself to frequently changing environments. However, the application
of this idea to computing is still very fresh, and the connections with formal
methods are unclear. For this reason, we consider evolving systems to be
out of the scope of this report.

Further reading:
▶ Wikipedia: Adaptability
▶ Wikipedia: Adaptation (computer science)
▶ Wikipedia: Evolving intelligent system
▶ Wikipedia: Software evolution

Because the three environments are of increasing complexity (nominal
< faulty < hostile) in terms of the situations they authorize, one can easily
infer that correctness and performance issues are easier than dependability
and performability issues, themselves being easier than security issues. In
deed, excluding the possibility of faults and attacks makes analysis simpler;
also, introducing redundancy (for dependability) or defensive measures (for
security), or specifying system internals that may enable side-channel at
tacks increases the overall system complexity. However, for large systems,
one must also take into account limitations inherent to combinatorial explo
sion: if the environment gets more complex, the system must get simpler
(i.e., specified in a more abstract way), so that the total complexity (system
plus environment) remains within the bounds of state-of-the-art verification
capabilities. So doing, the complexities of the various issues are no longer
easily comparable, because the system and environment vary to cope with
complexity limitations.
A crucial question concerns the most adequate way of ensuring software qual
ity; this question also concerns all hardware components that are designed

http://en.wikipedia.org/wiki/Adaptability
http://en.wikipedia.org/wiki/Adaptation_(computer_science)
http://en.wikipedia.org/wiki/Evolving_intelligent_system
http://en.wikipedia.org/wiki/Software_evolution

	

	

	

	

	

	

	

	

63 2.3. Taxonomy according to environment assumptions

in the same way as software (i.e., using computer languages and synthe
sis tools): should software quality be proven (using a correctness approach
leading to a yes/no verdict) or should it be estimated (using a dependability
approach leading to a probabilistic verdict, such as 99.999%)? This is an
important debate, with many pro and cons. In favor of the dependability
approach, one can mention four arguments:

•	 In most cases, software is only a part of a larger system. For end-users,
the correctness of software certainly matters, but not as much as the
dependability of the whole system [Rus07].

•	 The established methodologies for quantifying system dependability
assign probabilities (availability, reliability, safety, etc.) to each com
ponent of the system. Those methodologies naturally push for doing
the same for software — under the implicit assumption that software
can be treated like any other component of the system. For instance,
a system-level requirement in aviation is the absence of catastrophic
failure in the lifetime of an airplane; this global requirement is then
propagated to subsystems, including software-intensive components,
leading to reliability constraints of the form “for safety-critical soft
ware, the probability of failure per hour must be less than 10−9”.

•	 Correctness proofs are not always feasible, either for theoretical or
practical (limited resources) reasons. And even when software is
proven correct, it is always under the assumption that the underly
ing hardware (or, more generally, execution platform) works properly.
In practice, it is impossible to guarantee that hardware will perform
100% reliably; there is always a non-null fault probability (e.g., man
ufacturing defect, overheating, circuit aging, power fault, cosmic rays,
etc.). Fault-tolerant approaches to protect software against hardware
faults are a difficult task, as random faults may have unpredictable
effects. Even when soundly done, fault tolerance provides a reliability
measure that is rather a probability than a Boolean value.

•	 The probabilistic approach is supported by certain standards. For
instance, [ISO10] introduces the concept of software reliability, which
is explicitly defined as “the probability that software will not cause the
failure of a system for a specified time under specified conditions; the
probability is a function of the inputs to, and use of, the system as well
as a function of the existence of faults in the software; the inputs to
the system determine whether existing faults, if any, are encountered”.

	

	

	

	

	

	

	

	

	

	

	

	

64 Chapter 2. Scope and taxonomies

However, there are opposite arguments in favor of the correctness approach:

•	 Probabilistic models developed for hardware may be unsound if ap
plied to software, which is of a different nature than the other system
components. The essential difference is stated in [ISO01]: “wear or
aging does not occur in software; limitations in reliability are due to
faults in requirements, design, and implementation; failures due to
these faults depend on the way the software product is used and the
program options selected rather than on elapsed time”.

•	 Even when specifically targeted at software, statistical and probabilis
tic models of reliability remain controversial. Even proponents of soft
ware reliability (see, e.g., [LS93, WV00]) acknowledge the difficulty of
the task, question the significance of existing approaches, and call for
better scientific foundations.

•	 Moreover, it is mathematically difficult to predict the impact of a
software bug on the whole system — such failure predictions are often
possible for physical faults, but not for faults arising from software.
In the case of a bug recently found in the SSH implementation of
Erlang/OTP, one single incorrect line (in nearly 70 megabytes of source
code) compromised the security of thousands of servers in the world.

Further reading:
▶	 CERT vulnerability note on Erlang/OTP SSH library

(2011-04-22) – http://www.kb.cert.org/vuls/id/178990
▶	 The Erlang SSH story: from bug to key recovery –

http://nakedsecurity.sophos.com/2011/11/07/randomness-in
cryptography-the-devils-in-the-details/

•	 For these reasons, certain standards and recommendations for safety
critical software explicitly reject software reliability estimations.
[FAA88, paragraph 7.i] states that “it is not feasible to assess the
number or kinds of software errors, if any, that may remain after the
completion of system design, development, and test”. This position is
confirmed in [RTC92, Section 2.2.3]: “Development of software to a
software level does not imply the assignment of a failure rate for the
software. Thus, software levels or software reliability rates based on
software levels cannot be used by the system safety assessment pro
cess as can hardware failure rates” and in [RTC92, Section 12.3.4]:
“During the preparation of this document, methods for estimating the
post-verification probabilities of software errors were examined. The
goal was to develop numerical requirements for such probabilities for

http://www.kb.cert.org/vuls/id/178990
http://www.kb.cert.org/vuls/id/178990
http://nakedsecurity.sophos.com/2011/11/07/randomness-in-cryptography-the-devils-in-the-details/
http://nakedsecurity.sophos.com/2011/11/07/randomness-in-cryptography-the-devils-in-the-details/
http://nakedsecurity.sophos.com/2011/11/07/randomness-in-cryptography-the-devils-in-the-details/

65 2.3. Taxonomy according to environment assumptions

software in computer-based airborne systems or equipment. The con
clusion reached, however, was that currently available methods do not
provide results in which confidence can be placed to the level required
for this purpose”.

In this debate, we incline towards the correctness approach, especially for
life- and mission-critical software. We believe that, because software is a
logical object, it has the potential to be free from defects, at least when oper
ating in an environment that satisfies the design assumptions. We somehow
fear that, if time or budget are lacking, system designers could be tempted
to replace correctness proofs with (supposedly less-demanding) probabilistic
estimations. If software correctness is not proven formally, it seems impos
sible to soundly compute dependability-related probabilities for the system
containing this software. This is the approach followed so far in aerospace
and nuclear systems, with the positive consequence that software must be
kept simple enough to be proven correct.
Finally, we mention scientific contributions [BS98, Lit00, Rus09] that draw
a bridge between Boolean correctness and probabilistic dependability by
introducing the probability of software perfection, i.e., the probability that
the software will never encounter circumstances that activate a bug causing
a system failure.

 66 Chapter 2. Scope and taxonomies

Chapter 3

Components, models, and
properties

3.1 Introduction

In Chapter 2, the general concepts of system, environment, and system
boundary have been introduced. In the present chapter, we elaborate on the
architecture of systems and their modular organization in terms of hardware
and/or software components.
We then introduce the two main types of specifications, namely operational
and declarative specifications. For each of them, we review their essen
tial characteristics, which we illustrate by means of examples taken from
widespread formal methods and tools.

3.2 Components

In this section, we present the essential concepts needed for describing and
reasoning about system architectures formally.

3.2.1 System components

Except in very particular cases where the system under study is simple
enough to fit into one single piece (e.g., a software program to sort an array of
numbers, or a hardware circuit implementing a majority vote), it is suitable
to decompose this system into smaller pieces, usually called components (or
subsystems, or modules).
Being interested in formal methods, we naturally focus on components that
can be described formally using computer languages. There are many differ

67

	

	

	
	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	
	

68 Chapter 3. Components, models, and properties

ent language features that support the concept of components. In their most
intuitive form, components correspond to identifiable fragments of hardware
or software. Examples of hardware components are motherboards, proces
sors, memories, etc., as well as coherent parts of integrated circuits (e.g.,
logic units and logic blocks). Examples of software components are: proce
dures and functions in sequential programming languages; methods, objects,
and classes in object-oriented programming languages; threads, processes,
tasks, or Web services in concurrent programming languages, etc. Also,
modules or code libraries are typical examples of components in most pro
gramming environments. These examples and more involved forms of com
ponents will be further detailed in Section 3.2.3.
The systematic usage of components (known as modularity) plays a crucial
role in formal methods, as most design methodologies, most specification
languages, and many verification techniques rely on components or, at least,
support them. It is widely admitted that modularity increases the quality
of systems by making them easier to design, implement, verify, maintain,
and evolve. Component-based design methodologies usually combine two
complementary principles:

•	 The decomposition principle (also called divide and conquer or, some
times, analysis) suggests to design a complex system by dividing it into
simpler subsystems to be designed afterwards. Decomposition is the
principle underlying top-down or hierarchical design methodologies.

•	 The composition principle recommends to build a complex system by
assembling simpler subsystems, notably by reusing subsystems that
already exist in libraries (thus avoiding or, at least, reducing code du
plication problems). Composition is the driving principle for bottom-up
design methodologies.

Further reading:
▶	 Wikipedia: Analysis
▶	 Wikipedia: Decomposition (computer science)
▶	 Wikipedia: Process architecture
▶	 Wikipedia: System integration
▶	 Wikipedia: Code reuse
▶	 Wikipedia: Duplicate code
▶	 Wikipedia: Top-down and bottom-up design
▶	 Wikipedia: Component-based software engineering

The decomposition and composition principles are not identical and may

inspire different technical and methodological solutions. For instance, the

http://en.wikipedia.org/wiki/Analysis
http://en.wikipedia.org/wiki/Decomposition_(computer_science)
http://en.wikipedia.org/wiki/Process_architecture
http://en.wikipedia.org/wiki/System_integration
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Duplicate_code
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Component-based_software_engineering

	

	

	

	

	

	

69 3.2. Components

decomposition principle naturally leads to hierarchies of nested components
(i.e., components syntactically contained within other components), as each
system can be decomposed into several subsystems, and so on recursively.
This idea is supported by computer languages allowing nested procedures
(e.g., Pascal and Ada), nested blocks (e.g., VHDL and Verilog), nested pro
cesses (e.g. LOTOS and statecharts), nested components (e.g., UML), or
even nested modules (e.g., Standard ML and Ruby). On the contrary, the
composition principle tends to reject nested components because it is usu
ally difficult, if not impossible, to reuse a nested component outside of its
enclosing component(s). For this reason, recent computer languages do not
support nesting of entities (procedures, blocks, processes, etc.) that can be
given a name and reused; for this reason, nested modules are forbidden by
most computer languages.
We now review the most salient features of decomposition and composition.

3.2.2 Decomposition strategies

To decompose a given system into components, there is generally no unique
solution. Various strategies can be used, leading to different results. We can
mention at least four main strategies:

•	 Information-based strategies tend to organize components around data
structures. Usually, a component encapsulates a piece of data, to
gether with the primitives for consulting and modifying such data.
Typical examples are objects and classes in object-oriented languages,
and monitors and processes in concurrent programming.

•	 Locality-based strategies tend to group elements that are close to each
other according to topology or geographical distance. For instance,
in a communication protocol between two entities, each entity will be
considered as a component; in a distributed system gathering remote
servers, each server will be a component.

Notice that information-based and locality-based strategies often coin
cide when each data is stored in one unique place. However, in the case
of distributed systems containing data fragments spread or replicated
in several places, both strategies may lead to different decompositions.

•	 Chronology-based strategies tend to assign to separate components ac
tivities that execute either sequentially or concurrently. For instance,
in a flight control system, there can be distinct components for takeoff
and landing phases; in a circuit implementing pipelined computations,
there can be distinct components for each step of the pipeline.

	

	
	
	

	
	
	

	

	
	
	

	
	
	

70 Chapter 3. Components, models, and properties

•	 Functionality-based strategies tend to organize components to reflect
the essential functions of the system. For instance, in a life-critical sys
tem, the components related to safety have to be clearly separated from
other components; in a micro-kernel operating system, there are dis
tinct components for device drivers, file systems, and protocol stacks.
Functionality-based strategies encompass the separation of concerns
design principle that will be examined in Section 4.5.3.
Notice that chronology-based and functionality-based strategies may
coincide, especially for activities taking place in sequence (successive
activities often address different functionalities) but not always (con
current activities may collaborate to provide one single functionality).
Also, locality- and functionality-based strategies may lead to orthog
onal decompositions. For instance, in a telecommunication protocol,
locality produces “vertical” components (i.e., protocol stacks on each
site) whereas functionality produces “horizontal” components (i.e.,
protocol layers across remote sites).

When developing a system, one is not forced to choose a unique decom
position strategy. Several strategies can be used in different phases of the
development or for different purposes. For example, a decomposition suit
able during the early design steps is not necessarily optimal for verification.

3.2.3 Composition means

There are many kinds of components, and multiple ways of composing them.
In hardware, at the lowest level, logic cells are connected by wires, using
clock signals in synchronous logic or handshake protocols in asynchronous
logic. At a higher level, circuit fragments are organized around commu
nication facilities such as hardware buses, crossbars switches, or networks
on chip. Finally, computers themselves can be connected by computer and
telecommunication networks.

Further reading:
▷	 Wikipedia: Synchronous circuit
▶	 Wikipedia: Clock signal
▷	 Wikipedia: Asynchronous circuit
▷ Wikipedia: Asynchronous system
▶	 Wikipedia: Bus (computing)
▶	 Wikipedia: Crossbar switch
▷	 Wikipedia: Network on chip
▶ Wikipedia: Computer network

http://en.wikipedia.org/wiki/Synchronous_circuit
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Asynchronous_circuit
http://en.wikipedia.org/wiki/Asynchronous_system
http://en.wikipedia.org/wiki/Bus_(computing)
http://en.wikipedia.org/wiki/Crossbar_switch
http://en.wikipedia.org/wiki/Network_on_chip
http://en.wikipedia.org/wiki/Computer_network

	

	
	
	
	

	

	
	
	
	
	
	

	

	

	
	
	
	

	

	
	
	
	
	
	

	

71 3.2. Components

In software, the number and diversity of composition mechanisms for com
ponents, at compile time or at run time, is even greater. We can mention
the following ones:

•	 Link editing takes object files and libraries generated by a compiler
and combines them to produce an executable program.

Further reading:
▶	 Wikipedia: Link time
▶	 Wikipedia: Linker (computing)
▶	 Wikipedia: Object file
▶	 Wikipedia: Library (computing)

•	 Sequential composition takes components containing program frag
ments (namely subroutines, such as procedures, functions, or methods)
and executes them in sequence or, more generally, combines them us
ing (hopefully, structured) imperative programming constructs such as
“if-then-else” and “while” statements. The execution flow is sequential
in the sense that there is only a single execution thread; subroutines
are only active when they are called and until they return.

Further reading:
▶	 Wikipedia: Subroutine
▶	 Wikipedia: Control flow
▶	 Wikipedia: Imperative programming
▶	 Wikipedia: Procedural programming
▶	 Wikipedia: Structured programming
▶	 Wikipedia: Function composition (computer science)

•	 Quasi-parallel composition (or pseudo-parallel composition) takes com
ponents containing program fragments with an internal program state
(e.g., coroutines, fibers, objects, or tasks in a time-sharing system)
and executes them altogether. There is one single execution thread
(same as for sequential execution), but each component, even when it
is not active, retains its current state (i.e., data and program counter
location). The execution can be co-operative, if each component volun
tarily suspends itself by yielding the execution thread (e.g., coroutines
and object methods), or preemptive, if some scheduler can interrupt
the execution of the active component to give the thread to another
component (e.g., time-sharing tasks).

http://en.wikipedia.org/wiki/Link_time
http://en.wikipedia.org/wiki/Linker_(computing)
http://en.wikipedia.org/wiki/Object_file
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Function_composition_(computer_science)

	
	

	
	

	

	
	
	

	

	
	
	
	
	
	
	
	

	
	

	
	

	

	
	
	

	

	
	
	
	
	
	
	
	

72 Chapter 3. Components, models, and properties

Further reading:
▶	 Wikipedia: Coroutine
▶	 Wikipedia: Fiber (computer science)
▶ Wikipedia: Object (computer science)
▶ Wikipedia: State (computer science)
▶	 Wikipedia: Scheduling (computing)
▶	 Wikipedia: Time-sharing

•	 Synchronous parallel composition takes components written in a syn
chronous programming language (e.g., Esterel modules, Lustre nodes,
etc.) and executes them altogether. There are several execution
threads, one for each component, but all components must evolve syn
chronously following the logical ticks delivered by a scheduling clock.

Further reading:
▷	 Wikipedia: Synchronous programming language
▷	 Wikipedia: Esterel
▷	 Wikipedia: Lustre (programming language)
▶ Wikipedia: SIGNAL (programming language)

•	 Asynchronous parallel composition takes components (e.g., threads,
processes, tasks, Web services, etc.) written in one or several asyn
chronous programming language(s) and executes them altogether.
There are as many execution threads as components; each compo
nent evolves independently from the other ones, but can synchronize
and/or communicate with them using shared variables, semaphores,
critical sections, monitors, messages, rendezvous, queues (bounded or
not, with or without priorities, with or without timeouts, etc.), or
higher-level communication protocols (UDP, TCP, HTTP, etc.).

Further reading:
▶	 Wikipedia: Thread (computing)
▶	 Wikipedia: Process (computing)
▶	 Wikipedia: Web service
▷	 Wikipedia: Concurrency (computer science)
▶	 Wikipedia: Synchronization (computer science)
▶	 Wikipedia: Inter-process communication
▶	 Wikipedia: Asynchronous communication mechanism
▷	 Wikipedia: Shared memory

http://en.wikipedia.org/wiki/Coroutine
http://en.wikipedia.org/wiki/Fiber_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/State_(computer_science)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Time-sharing
http://en.wikipedia.org/wiki/Synchronous_programming_language
http://en.wikipedia.org/wiki/Esterel
http://en.wikipedia.org/wiki/Lustre_(programming_language)
http://en.wikipedia.org/wiki/SIGNAL_(programming_language)
http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Asynchronous_communication_mechanism
http://en.wikipedia.org/wiki/Shared_memory

73 3.2. Components

▷ Wikipedia: Message passing
▶ Wikipedia: Mutual exclusion
▶ Wikipedia: Critical section
▶ Wikipedia: Semaphore (programming)
▶ Wikipedia: Lock (computer science)
▶ Wikipedia: Monitor (synchronization)
▶ Wikipedia: Barrier (computer science)
▶ Wikipedia: Kahn process networks
▷ Wikipedia: Process calculus
▶ Wikipedia: Service choreography

For both hardware and software systems, composition can be speci
fied either textually, using ad hoc command-line or computer language
constructs, or graphically, using so-called component diagrams (see
Section 3.2.5 below).

Further reading:
▶ Wikipedia: Component diagram

Composition can be flat (i.e., assembly of components directly produce
the system) or hierarchical (i.e., assembly of components produce a
component and so on, recursively, up to the top-level component that
features the system). Hybrid solutions also exist, e.g., in the Unix link
editor, which introduces an intermediate level (library files) between
component level (object files) and system level (executable files).
Notice that hierarchical composition introduces compound components
obtained by assembling other components. Compound components
should not be confused with the nested components evoked in Sec
tion 3.2.1.

3.2.4 Component environments

In Section 2.3.1, the concept of environment for the system under design has
been presented. In the same way this system has a (global) environment,
each of its components has a (local) environment, which can be defined as
the set of other components and the part of the (global) system to which
this component is connected.
For instance, let us consider a component-based system with a layered ar
chitecture resulting from a decomposition strategy based on functionality.
The environment of a typical component C of this system will be threefold:

http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Mutual_exclusion
http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Semaphore_(programming)
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Monitor_(synchronization)
http://en.wikipedia.org/wiki/Barrier_(computer_science)
http://en.wikipedia.org/wiki/Kahn_process_networks
http://en.wikipedia.org/wiki/Process_calculus
http://en.wikipedia.org/wiki/Service_choreography
http://en.wikipedia.org/wiki/Component_diagram

	

	

	

	

	

	

	

	

	

	

74 Chapter 3. Components, models, and properties

•	 The upper layer (which may be the global environment) from which
C receives requests and to which C sends results;

•	 The other components in the same layer as C, with which C possibly
collaborates to perform its tasks; and

•	 The lower layer (which may be the global environment) on which C
relies for its execution; this lower layer can be a computing (or execu
tion) platform that provides C with computing resources (processor,
memory, network, etc.); it can be implemented in hardware and/or
software.

Further reading:
▶	 Wikipedia: Computing platform

The frontier between components and environments is sometimes fuzzy. In
certain cases, a (local or global) environment can be represented by one or
several components. This will be discussed in Section 3.3.2.

3.2.5 Component interactions

Each component may co-operate and exchange information with other com
ponents and/or its local environment. Depending on the way components
are implemented (see Section 3.2.3), there are various forms of component
interactions, such as calling of a sub-routine or method provided by an
other component, sending a message to another component, or accessing a
variable or memory space shared between several components. Notice that
component interactions may differ from the hierarchical or group relation
ships that the decomposition and composition principles induce among the
components of a given system.
In Section 3.2.3, we mentioned component diagrams, which are often used
to describe a system as a graph or an hypergraph, the nodes of the (hyper-)
graph representing components, and the arcs or edges between nodes repre
senting component interactions.
Component diagrams are useful by providing an architectural vision of the
system and by making explicit the dependencies that interactions create
between components. However, for realistic systems, such diagrams face
practical and theoretical limitations:

•	 When there are too many components or interactions, component di
agrams become too large to be readable. This problem is often ad
dressed by adding a hierarchical structure to component diagrams, i.e.,
by allowing diagrams nested in diagrams.

http://en.wikipedia.org/wiki/Computing_platform

	

	

	
	

	
	

	

	

	
	

	
	

75 3.2. Components

•	 Determining the precise interactions between a set of components is
difficult. One often distinguishes between dynamic and static inter
actions. Dynamic interactions are all interactions that will actually
occur at run-time; in most cases, unfortunately, they cannot be com
puted exactly, as it is generally undecidable to predict whether two
components will interact at run-time (this problem is related to the
halting problem). Static interactions are a superset (formally, an over
approximation) of dynamic interactions, meaning that all dynamic in
teractions (but also, seemingly possible interactions) are contained in
static interactions; this superset can be computed (with more or less
accuracy) from the description of the system and components (e.g.,
by considering calls to subroutines or methods, shared variables, or
communication channels between components).

•	 The set of components may remain unchanged during the execution of
the system (e.g., an executable program consisting of a fixed set of stat
ically linked object files and libraries), but it may also vary at run-time
(e.g., objects dynamically created and destroyed, processes or threads
dynamically started and halted, etc.). Also, interactions may change
during the execution (e.g., components may dynamically discover new
components and establish interactions with them). Component dia
grams are too static to represent such evolving and mobile systems,
and must be replaced with more dynamic mathematical models, such
as graph grammars or bigraphs.

Further reading:
▶	 Wikipedia: Graph rewriting
▶	 Wikipedia: Bigraph

3.2.6 Component interfaces

In order to keep the complexity of the system manageable, components
should not expose all their internal details but should instead hide them
as much as possible, only revealing their most essential features that are
needed for a global understanding of the system. This general principle of
computer science is known as encapsulation, or information hiding.

Further reading:
▶	 Wikipedia: Encapsulation (computer science)
▶	 Wikipedia: Information hiding

http://en.wikipedia.org/wiki/Graph_rewriting
http://en.wikipedia.org/wiki/Bigraph
http://en.wikipedia.org/wiki/Encapsulation_(computer_science)
http://en.wikipedia.org/wiki/Information_hiding

	

	

	

	

	

	

76 Chapter 3. Components, models, and properties

The concept of interface serves to capture and describe the essential features
of a component. There are several possible definitions for this concept, from
simple to elaborate ones:

•	 The interface of some component C can be seen as a description of
all static interactions that C may have with its local environment
and other components. All exchanges between C and the rest of the
system must exclusively take place through this interface. This way,
the interface plays the same role for the component as the system
boundary for the entire system.

For instance, the interface of a Unix object file is the list of variables
and functions exported by this file; at the source code level, the inter
face of an object or code module is generally richer, as it associates
type information to exported variables and functions.

In this approach, a component usually consists of two parts: an inter
face part and an implementation part, i.e., a fragment of (hardware or
software) code that supplies the features described in the interface.

•	 A more general definition is the following: the interface of a component
C is a summarized description (formally, an abstraction) of C as can
be observed by the rest of the system, especially the services that C
can provide to other components. The underlying motivation for this
definition is to enable the replacement of C by another component

′ C possessing the same essential features (i.e., having the same or a
compatible interface) as C, without disrupting the proper functioning
of the system.

For instance, algebraic data types are components exporting types and
functions, and their interfaces contain algebraic equations giving the
semantics of these types and functions; there also exist proposals for
richer behavioral interfaces for specifying the chronology and precise
timing of permitted interactions (this is done using contracts, temporal
logic formulas, automata-based notations, etc.).

In this approach, a component may have several interfaces, each ex
pressing a distinct viewpoint on the component.

Further reading:
▶	 Wikipedia: Interface (computing)
▷ Wikipedia: Abstract data type

http://en.wikipedia.org/wiki/Interface_(computing)
http://en.wikipedia.org/wiki/Abstract_data_type

	
	
	
	

	

	

	

	
	
	
	

	

	

	

77 3.3. Specifications

3.3 Specifications

Specifications are means to describe a system, its components, and/or their
global and local environments. In this report, we are primarily interested in
formal specifications (also called formal descriptions), i.e., those specifica
tions the meaning of which can be defined mathematically. We will also use
the term requirements to refer to the specifications produced for a system
or component during the early steps of its design.

Further reading:
▶	 Wikipedia: Specification (technical standard)
▶	 Wikipedia: Functional specification
▶	 Wikipedia: Formal specification
▶	 Wikipedia: Requirement

3.3.1 Declarative vs operational specifications

Classically, one distinguishes between two kinds of specifications:

•	 Declarative specifications define what a system or component should
do, but not how it should do it. Usually, they express objectives and
constraints that any correct implementation of the system or compo
nent should satisfy, but they are non-constructive, in the sense that it
would be impossible (or, at least, very difficult) to automatically de
rive from these constraints an efficient implementation of the system
or component.

•	 Operational specifications possibly define what a system or component
should do, and definitely define (at least, partly) how it should do it.
Such specifications are constructive, meaning that one can use them to
generate automatically an implementation of the system or component
(or, at least, a skeleton of such implementation).

The difference between these both concepts can be illustrated as follows:

•	 Example 1: Let us consider a program for sorting an array of integer
numbers. A declarative specification will state that the program ter
minates and that, after its termination, the array is well sorted. An
operational specification will provide a sorting algorithm or a class of
sorting algorithms.

http://en.wikipedia.org/wiki/Specification_(technical_standard)
http://en.wikipedia.org/wiki/Functional_specification
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Requirement

	

	
	
	

	

	

	

	
	
	

	

	

78 Chapter 3. Components, models, and properties

•	 Example 2: Let us consider a communication protocol over an unreli
able link. A declarative specification will state that the protocol cor
rectly transmits each message. An operational specification will detail
how the protocol detects message losses and performs retransmissions
when needed.

As often in computer science, the border is not totally strict between declar
ative and operational specifications. Continuous trends towards higher-level
formalisms and progress in compiling techniques enable certain declarative
approaches to become operational; this is the case with constraint program
ming and declarative programming.

Further reading:
▶	 Wikipedia: Constraint programming
▶	 Wikipedia: Constraint logic programming
▶	 Wikipedia: Declarative programming

Formal methods, in their broad acception, cover both declarative and oper
ational specifications. Certain verification approaches, such as model check
ing and program verification, precisely work by comparing operational spec
ifications against declarative ones.
In the sequel, we will consider the two main classes of specifications used in
formal methods: models and properties, which are respectively presented in
Sections 3.4 and 3.5.

3.3.2 Open vs closed specifications

When specifying a system formally, there are usually two options:

•	 In an open specification (or open system), one only describes the system
under study, but not its environment.

•	 In a closed specification (or closed system), one describes both the sys
tem and its environment. Incorporating the environment into the spec
ification enables to precisely describe what the system expects from its
environment (namely, what the environment can do, and what it can
not do) and, in particular, to formalize the environment assumptions
mentioned in Section 2.3.2.

There is a methodological tradeoff between both options. An open system
is more general than a closed one, in the sense that it can cope with any
possible environment. Yet, in many cases, one cannot do relevant verification

http://en.wikipedia.org/wiki/Constraint_programming
http://en.wikipedia.org/wiki/Constraint_logic_programming
http://en.wikipedia.org/wiki/Declarative_programming

	

	

	

	

	

	

	

	

	

	

79 3.3. Specifications

if the system is too general: more assumptions are needed to restrict the
environment, thus leading to a closed (or, at least, less open) specification.
In a closed specification, the environment can be described in various ways:

•	 Declarative specifications can be used. Following this approach, the
environment is described by means of constraints attached to the in
terfaces of the system. For instance, there can be mathematical asser
tions on the input values that the system receives from its environment;
there can be also constraints on the chronology or timing of events that
may be triggered by the environment. Notice that this approach —
which generalizes to formal specifications the idea of defensive pro
gramming that exists for programs — can be used for the system itself
as well as for each of its components.

Further reading:
▶	 Wikipedia: Defensive programming

•	 Operational specifications can also be used. Following this approach,
the environment is described in the same way as the system, i.e., by
adding to the specification one or several extra components represent
ing the environment and interacting with the system components. No
tice that this approach explains the meaning of the expression “closed
system”: after adding the extra component(s), the specification no
longer needs to communicate with the external world, and its inter
face thus becomes empty.

•	 Finally, the environment can be (at least, in part) specified implic
itly by the semantics (sometimes called the model of computation)
of the formal method used for describing the system. For instance,
when using a synchronous language, one implicitly assumes that the
environment will deliver its inputs and accept its outputs at specified
moments (e.g., using sampling according to a system clock); similarly,
when formalizing a cryptographic protocol using a security protocol
notation, one implicitly excludes certain attacks (e.g., direct intrusion
in protocol agents to examine their internal memories) from the uni
verse of possibilities.

Further reading:
▶	 Wikipedia: Model of computation
▶ Wikipedia: Security protocol notation

http://en.wikipedia.org/wiki/Defensive_programming
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Security_protocol_notation

	

	

	

	

	

	

	

	

	

	

80 Chapter 3. Components, models, and properties

3.4 Models

3.4.1 Definition

Operational specifications for systems and their hardware and/or software
components are, in the standard approach, expressed as models written in
some modeling language. Usually, models describe the individual behavior
of each component as well as the composition of all components to form a
system.

Further reading:
▶	 Wikipedia: Modeling language
▶ Wikipedia: Specification language
▷ Wikipedia: Formal specification

Models can be produced in two different ways:

•	 They can be developed a priori, to describe a system that is under
construction. Such models are useful to experiment with a system
that does not exist already, to get user feedback about it, to detect
its potential design mistakes at soon as possible, and to predict its
performance before it is built actually.

•	 They can be developed or generated a posteriori, to describe a system
that already exists. Such models are helpful to better understand
legacy systems, and to study in advance the impact of modifications
or enhancements, without stopping nor perturbating running systems.

The term model is often used with different meanings in mathematics and
computer science. To avoid confusion, it should be noted that the models
used in formal methods are distinct from three other notions of models:

•	 They are distinct from mathematical logic models, which are interpre
tations that assign the value true to a logic formula. The models used
in formal methods are more general and exist by themselves, without
reference to any logic formula. However, when verification is formu
lated in terms of property satisfaction (see Section 3.5.1 below), both
notions of models coincide.

Further reading:
▶	 Wikipedia: Model theory

http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Model_theory

	
	
	

	

	
	

	

	
	
	
	
	

	

	

	
	
	

	

	
	

	

	
	
	
	
	

	

	

81 3.4. Models

▶	 Wikipedia: Interpretation (logic)
▶	 Wikipedia: Structure (mathematical logic)
▷	 Wikipedia: Model checking

•	 They are also distinct from data models, which are used in software
engineering and information systems to specify the structure, meaning,
and handling of data. However, certain modeling languages borrow
ideas from data models to formally describe data aspects in systems
and components.

Further reading:
▶	 Wikipedia: Data model
▶	 Wikipedia: Semantic data model

•	 They are richer and more general than the models and metamod
els used in the so-called model-driven approaches promoted by the
OMG (namely model-driven architecture, model-driven engineering,
etc.). Such latter models are merely abstract syntax trees, sometimes
decorated with static semantics information. They may provide a syn
tactic basis for the models used in formal methods, but nothing more,
as the concept of dynamic semantics, so essential in formal methods,
is not addressed.

Further reading:
▶	 Wikipedia: Model-driven architecture
▶	 Wikipedia: Model-driven engineering
▶	 Wikipedia: Metamodeling
▶	 Wikipedia: Object Management Group
▶	 Wikipedia: Abstract syntax tree

In the context of formal methods, the term model has two distinct meanings:

•	 High-level models are mainly intended to humans for the purpose of de
scribing systems. They aim at conciseness, expressiveness, readability,
reusability, user-friendliness, etc.

•	 Low-level models are used for theoretical and computational purposes,
in particular to specify the semantics of high-level models, — which
are often defined by translation to lower-level models — and to be used

http://en.wikipedia.org/wiki/Interpretation_(logic)
http://en.wikipedia.org/wiki/Structure_(mathematical_logic)
http://en.wikipedia.org/wiki/Model_checking
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Semantic_data_model
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Metamodeling
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Abstract_syntax_tree

82 Chapter 3. Components, models, and properties

as data structures by verification algorithms. They aim at expressive
ness, mathematical elegance, minimality, simplicity, etc. Therefore, in
principle, low-level models should not be directly used by humans to
specify real-life systems, because this quickly gets too verbose.
Examples of low-level models are automata and all derived forms of
state-transition models (traces, trees, etc.), binary decision diagrams,
Boolean equation systems, term algebras, etc.

Further reading:
▶ Wikipedia: Binary decision diagram
▶ Wikipedia: Term algebra

Notice that the distinction between low- and high-level is evolving because
of the continuous trend toward higher-level specification languages. Certain
formalisms initially used as high-level models are now considered to be low
level; we can mention, for instance, algebraic data types and Petri nets.

Further reading:
▷ Wikipedia: Algebraic data type
▷ Wikipedia: Petri net

In the remainder of Section 3.4, the models we refer to are, unless stated
otherwise, high-level ones.

3.4.2 Programs vs models

Rather than using models, it is also possible to describe systems and com
ponents using programs (i.e., executable descriptions written in some pro
gramming language or in pseudocode). We give here the term “programs” a
broader meaning than “software programs”, as it also encompasses hardware
descriptions from which circuits can be synthesized.

Further reading:
▶ Wikipedia: Programming language
▶ Wikipedia: Pseudocode

It is generally admitted that programs and models are two distinct concepts.
We can mention two essential differences between programs and models:

http://en.wikipedia.org/wiki/Binary_decision_diagram
http://en.wikipedia.org/wiki/Term_algebra
http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Pseudocode

	

	

	

	

	

	

	

	

	

	

83 3.4. Models

•	 Models are, in general, more abstract than programs (see Section 3.4.6
below) with the consequence that, for a given model, there may exist
several alternative programs that (correctly) implement this model.

•	 Conversely, there may exist several models that, eventually, will be
implemented by a single program, each model describing a particular
aspect of the program. For instance, there may be different models,
written in different modeling languages, to express the functional and
non-functional properties of a system (see Section 3.5.4 below).

•	 Models may express realities that will never be described in programs.
For instance, a model of a distributed system may include communi
cation channels that can lose messages and computing nodes that can
crash, although no implementation of such channels and nodes will
contain explicit program code intended to cause losses or crashes.

In a few particular cases, however, the notions of models and programs
coincide. The differences and similarities between programs and models
with respect to various criteria (such as formality, executability, etc.) will
be precisely studied in the next sections. For the moment, let us assume
the coexistence of programs and models as a fact of life: programs have
been there since the first age of computers, and certain forms of models
are now well-established in industry (e.g., with UML and the model-driven
architecture/model-driven engineering approaches).
Formal methods at large can operate either on models or programs, but the
algorithms and methodologies for dealing with models and programs are not
the same.
One may wonder whether models are really needed, and whether verification
could not be performed directly on programs — with the obvious advantage
that programs are closer than models to real systems. This is indeed a
tempting approach, but there are also strong arguments supporting the use
of models:

•	 Programs (contrary to higher-level models) are often a “flattened” set
of individual components and do not ambition to represent the entire
system, its architecture, and its environment. By focusing on programs
only, one may lack a global view of design issues.

•	 Programs are usually more detailed than models (see Section 3.4.6
below) and thus may be too complex for verification to be tractable.
Moreover, verifying programs may require to consider low-level mech
anisms specific to hardware (e.g., semantics of shared variables and
locks) or operating system (e.g., synchronization and communication

	

	

	
	
	
	
	

	

	

	

	
	
	
	
	

	

84 Chapter 3. Components, models, and properties

primitives), which increases the overall verification complexity. Fur
thermore, the frequent absence of architectural/environmental infor
mation in programs makes it difficult for verification to exploit the
compositional structure of the system.

•	 Programs are only available during the last steps of system develop
ment, whereas models can be produced during the early steps and
thus can be used to detect design mistakes as soon as possible. Such
mistakes can be extremely costly when discovered lately (e.g., during
integration testing or, even worse, after field deployment). Detecting
and avoiding such mistakes is a central goal of development method
ologies in general, and formal methods in particular. This will be
further detailed in Section 4.4.5.

We now review various criteria according to which models and programs can
be classified and compared.

3.4.3 Formal vs informal models

The first criterion for assessing models is formality:

•	 A model is formal if it is written in a language that has a precisely
defined syntax and a formal (i.e., mathematical, self-contained, un
ambiguous) semantics. There are many formal modeling languages,
e.g., algebraic data types, synchronous languages, process calculi, in
put/output automata, etc.

Further reading:
▷	 Wikipedia: Abstract data type
▷	 Wikipedia: Algebraic data type
▷	 Wikipedia: Synchronous programming language
▷	 Wikipedia: Process calculus
▶	 Wikipedia: I/O Automaton

•	 A model is semi-formal if it is written in a modeling language that
has a precisely-defined syntax, conveys some intuitive meaning, but
has no formal semantics. This is the case when the constructs of the
modeling language are defined using natural language only.
There are many semi-formal languages, based on various computing
concepts: class diagrams, data flow diagrams, decision tables, deci
sion trees, entity relationship models, function models, object models,
pseudocode, state diagrams, etc.

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Synchronous_programming_language
http://en.wikipedia.org/wiki/Process_calculus
http://en.wikipedia.org/wiki/I/O_Automaton

	
	
	
	
	
	
	
	
	
	

	
	

	
	

	

	
	
	
	
	
	
	
	
	
	

	
	

	
	

	

85 3.4. Models

Further reading:
▶	 Wikipedia: Class diagram
▶	 Wikipedia: Data flow diagram
▶	 Wikipedia: Decision table
▶	 Wikipedia: Decision tree
▶	 Wikipedia: Entity-relationship model
▶	 Wikipedia: Function model
▶	 Wikipedia: Object model
▷	 Wikipedia: Pseudocode
▷	 Wikipedia: Finite-state machine
▶	 Wikipedia: State diagram

Absence of formal semantics usually causes diverging interpretations
in the software tools (simulators, code generators, analyzers, etc.) that
try to implement a semi-formal language. Typical examples are state
charts and UML, which lack an authoritative formal semantics, and
for which multiple incompatible semantics have been proposed and
implemented.

Further reading:
▷	 Wikipedia: State diagram#Harel statechart
▷	 Wikipedia: Unified Modeling Language

In certain cases, a unique reference software implementation exists,
which ultimately states how language constructs should be interpreted.
An example is the Promela language, the exact meaning of which can
be apprehended using the SPIN model checker. However, a readable
and concise formal semantics is always helpful in establishing a mod
eling language as a vehicle of thought.

Further reading:
▷	 Wikipedia: Promela
▷	 Wikipedia: SPIN model checker

•	 A model is informal if it is expressed using natural language or loose di
agrams, charts, tables, etc. Informal models are particularly risk-prone
because they are genuinely ambiguous, they heavily rely on human in
tuition, and because no software tool can analyze them objectively.

http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Data_flow_diagram
http://en.wikipedia.org/wiki/Decision_table
http://en.wikipedia.org/wiki/Decision_tree
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Function_model
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/State_diagram#Harel_statechart
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Promela
http://en.wikipedia.org/wiki/SPIN_model_checker

	
	
	

	

	
	

	

	
	
	

	

	
	

	

86 Chapter 3. Components, models, and properties

From a formal methods point of view, there is no significant difference be
tween informal and semi-formal models, the latter being more codified but
conveying a misleading impression of rigor.
Contrary to models, many of which are formal, programs are usually semi
formal, except when they are written in one of the few programming lan
guages having a formal semantics (e.g., Standard ML or CAML).

Further reading:
▶	 Wikipedia: ML (programming language)
▶	 Wikipedia: Standard ML
▶	 Wikipedia: Caml

3.4.4 Executable vs non-executable models

The second criterion for assessing models is executability. A model is said
to be executable:

•	 if it can be directly executed by some language interpreter or simulated
by some abstract machine (e.g., a term rewriting engine, a symbolic
inference engine, etc.),

Further reading:
▶	 Wikipedia: Rewriting
▶	 Wikipedia: Inference engine

•	 or if it can be translated automatically into a program which, by def
inition, is executable (this program can be written in object code, in
byte code, or in a higher-level programming language itself executable
by translation).

One may distinguish between two kinds of translations: compiling, which
uses algorithms of “reasonable” (i.e., linear or quadratic) complexity and
thus can scale up to models of any size, and synthesis, which uses more in
volved algorithms of higher complexity and thus might fail when applied to
large models. For instance, assembly code generation belongs to the com
piling side, whereas controller synthesis, scheduler synthesis, and constraint
solving belong to the synthesis side.

http://en.wikipedia.org/wiki/ML_(programming_language)
http://en.wikipedia.org/wiki/Standard_ML
http://en.wikipedia.org/wiki/Caml
http://en.wikipedia.org/wiki/Rewriting
http://en.wikipedia.org/wiki/Inference_engine

87 3.4. Models

Further reading:
▶ Wikipedia: Controller (control theory)
▷ Wikipedia: Scheduling (computing)
▷ Wikipedia: Constraint programming

A model is considered to be executable even if the implementations that
can be automatically generated from this model are not sufficiently efficient
(in terms of speed, memory usage, energy consumption, etc.) for on-site
deployment and real use. Even with insufficient performance, such prototype
implementations can be used to simulate the system “in silico”, obtain user
feedback, and detect design mistakes.
In principle, it is possible to have operational specifications that are not
executable (usually, because they rely on mathematical notations that are far
from being executable algorithmically). Typical examples of non-executable
modeling languages are VDM and Z.

Further reading:
▷ Wikipedia: Vienna Development Method
▷ Wikipedia: Z notation

In practice, such languages are gradually vanishing because, contrary to exe
cutable modeling languages, they cannot be supported by software tools for
simulation, verification, test case generation, etc. Indeed, the effort needed
to produce operational specifications using a non-executable modeling lan
guage is not economically justified, due to the lack of automated tools.
For these reasons, it is reasonable to consider that non-executable specifica
tions are declarative (see Section 3.5) rather than operational.
Notice that the difference between executable and non-executable languages
is not always obvious, as it depends on the compiling or synthesis algo
rithms available to date. For instance, term rewriting specifications can be
considered as executable because they can be interpreted by term rewriting
engines, whereas equational specifications (which are close to term rewriting
specifications, but more general) are normally considered as non-executable.
However, the distinction is not fixed forever, but may change when pro
gresses in algorithms make it possible to execute specifications so far con
sidered as non-executable.

http://en.wikipedia.org/wiki/Controller_(control_theory)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Constraint_programming
http://en.wikipedia.org/wiki/Vienna_Development_Method
http://en.wikipedia.org/wiki/Z_notation

	

	

	

	

	

	

88 Chapter 3. Components, models, and properties

3.4.5 Partial vs total models

A main difference between models and programs is that models can describe
systems globally. Firstly, most modeling languages enable to describe the ar
chitectures of systems, namely, the components, their composition, and their
interactions — notice that architectural descriptions are also supported by
concurrent programming languages, but such languages are much less used
than sequential programming languages. Secondly, models can describe not
only systems, but also their environments, either nominal, faulty, or hostile,
while mainstream programming languages do not support the description of
environmental, non-functional, and security aspects.
As mentioned in Section 2.2.1, when a system is too large, one may apply re
strictions to avoid complexity issues by modeling only one or several part(s)
of the system. In such case, the model is said to be partial (opposite: total
or complete). These are common examples of restrictions leading to partial
models:

•	 Certain functionalities of the system can be omitted (for instance, by
modeling only the most “difficult” parts of the system, those deserving
verification).

•	 Certain components of the system can be omitted (for instance, when
the system has many identical components, by representing only a few
of them).

•	 The environment can be modeled in a simpler way than the actual
environment (for instance, by choosing stronger environment assump
tions).

Obviously, restrictions should be introduced very carefully, and one should
make sure that they preserve the salient features of the system under study.

3.4.6 Abstract vs concrete models

As mentioned in Section 2.2.1, when a system is too complex, one may ap
ply abstractions to simplify the specification. Abstraction is a fundamental
concept of formal methods. It consists in replacing a concrete model by
an abstract model: both models describe the same system or component,
but the abstract model is less detailed and hides (namely, abstracts away) a
part of the complexity of the concrete model. The underlying motivation for
abstraction is that verification may become possible on the abstract model
even if it was intractable on the concrete model.

	
	

	

	

	

	
	

	

	

	

89 3.4. Models

Notice that the notion of abstraction in formal methods is related to the clas
sical notion of abstraction in computer science, although it is more specific
and also carries an idea of approximation with information loss.

Further reading:
▶	 Wikipedia: Abstraction (computer science)
▶	 Wikipedia: Abstraction layer

The concept of abstraction is not reserved to models, and also applies to
programs: a concrete program can be replaced by an abstract model or
program. Actually, there is a continuum from abstract to concrete models,
programs usually being the final, most concrete step in system development.
In practice, abstractions can be applied to both a priori and a posteriori
models (see Section 3.4.1). A priori models are abstract because certain
design decisions have not been taken yet and will be provided later as the
system development will progress. A posteriori models are abstract because
one wants to focus on the key features of an existing system by forgetting
about unessential details.
There are many possible abstractions that can be applied to an existing
model. These are four commonly used examples:

•	 Behavioral abstraction: One may hide certain actions performed by a
model if these actions are not of interest. For instance, one may wish
to observe only the inputs and outputs of a model by hiding all other
events, such as internal communications between the components of
the system.

•	 Data abstraction: One may replace certain data types by simpler, ap
proximated ones. For instance, the numerical value returned by a
motion sensor may be replaced by a single bit value (mobile or immo
bile); a FIFO queue of messages may be replaced by a simple integer
giving the number of messages in the queue; etc.

The particular case where a variable is replaced by a predicate on its
value is known as Boolean abstraction. Notice that “data abstraction”
is also used with a different meaning related to the definition of types
that encapsulate data implementation details.

•	 Variable abstraction: One may consider, in a (fragment of) model
or program, only certain variables of interest, by erasing all other
variables. This approach is known as slicing. One may go even further
by erasing all variables to focus on the control structure only.

http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Abstraction_layer

	

	

	

	
	
	
	
	

	

	

	

	
	
	
	
	

90 Chapter 3. Components, models, and properties

Further reading:
▶	 Wikipedia: Program slicing

•	 Time abstraction: One may remove from a model all aspects related to
real time, leading to an untimed model that may be easier to analyze.

Abstraction is a major means to fight combinatorial explosion, but abstrac
tions must be carefully chosen to ensure that abstract models preserve cer
tain aspects of interest (e.g., presence or absence of design errors) that exist
in concrete models; otherwise, the verification results may just be incorrect.
In practice, skilled experts are needed for this task, as small changes in
the chosen abstractions may have large impact on verification (too concrete
models lead to combinatorial explosion, whereas too abstract models lead
to inconclusive verification results).

3.4.7 Unique vs multiple models

One may wonder whether a system should be represented by one or several
models. Having a unique model would certainly be the best option but, in
practice, multiple models are often used, due to several reasons:

•	 Domain heterogeneity: Many systems have multidisciplinary dimen
sions that require combining several scientific fields into a single prod
uct. Typical examples are embedded systems, which integrate com
puter hardware and software, and all kinds of computer-based sys
tems operating in the field of physics (with, e.g., acoustic, electric,
electronic, hydraulic, mechanical, optical, pneumatic, or thermal fea
tures), chemistry, biology, medicine, social sciences, etc.

Further reading:
▷	 Wikipedia: Embedded system
▶	 Wikipedia: Mechatronics
▶	 Wikipedia: Mixed-signal integrated circuit
▶	 Wikipedia: Robotics
▷	 Wikipedia: System on chip

For such systems, one can develop two kinds of models: homogeneous

models, which are unidisciplinary and serve to study in isolation certain

aspects of the design, and heterogeneous models (or co-models, or mixed

http://en.wikipedia.org/wiki/Program_slicing
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Mechatronics
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/System_on_chip

	
	
	
	
	
	

	

	

	

	
	
	
	
	
	

	

	

	

91 3.4. Models

models), which are multidisciplinary and enable to reason about global
properties of the system under construction.
Having a unique language covering all domains at any level of abstrac
tion is generally impossible, given the large number of possible domain
combinations. One must often combine different modeling languages
and develop multiple models related to different domains, which is a
major scientific challenge in system design nowadays.
In particular cases, however, unification is possible between a few do
mains. For instance, timed and hybrid systems have been proposed
as formal, multidisciplinary models consisting of two parts: a discrete
one and a continuous one. The discrete part describes computer soft
ware using classical models of computation such as automata, Petri
nets, guarded commands, etc. The continuous part represents aspects
of the physical world, e.g., quantitative time constraints, differential
equations defining signal filters or dynamic systems, etc.

Further reading:
▶	 Wikipedia: Linear system
▶	 Wikipedia: Nonlinear system
▶	 Wikipedia: Dynamical system
▶	 Wikipedia: Dynamical system (definition)
▶	 Wikipedia: Dynamical systems theory
▶	 Wikipedia: Hybrid system

•	 Language heterogeneity: Ideally, for a homogeneous system, it would
desirable to have a universal modeling language sufficiently expressive
to express all concerns at any abstraction level. Unfortunately, in
current practice, several models are produced using different modeling
languages and formalizations. There are various reasons for this:

–	 Multiple concerns: For a complex system, different concerns must
be expressed: correctness, performance, dependability, performa
bility, and/or security. Quite often, multiple languages are used
to model and study each concern precisely.

–	 Division of work: Complex systems are developed in collabora
tion by several teams, each specialized in a particular domain and
in charge of certain components. These teams may wish to use
different languages and tools for the same design, based on each
team’s expertise and opinion about the most appropriate manner
to accomplish each specific task. For this reason, multiple mod
els of computation with different semantics (e.g., discrete-event

http://en.wikipedia.org/wiki/Linear_system
http://en.wikipedia.org/wiki/Nonlinear_system
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Dynamical_system_(definition)
http://en.wikipedia.org/wiki/Dynamical_systems_theory
http://en.wikipedia.org/wiki/Hybrid_system

	

	

	

	

	

	

92 Chapter 3. Components, models, and properties

systems, synchronous modules, data flow networks, etc.) can be
mixed in the same system.

–	 Reuse: When a system is built from existing components, such as
code libraries in software design or foreign IP (Intellectual Prop
erty) in hardware design, system designers often have to work
with the models available for these components, as it would be
too costly (or even impossible if the source code is unavailable
or obfuscated to hide technical details) to redevelop new models
using a different modeling language.

–	 Abstractions and restrictions: Even when a system can be ade
quately represented by a unique model, abstractions and restric
tions must often be applied (at various levels) to this model in
order to keep its complexity under reasonable bounds, again lead
ing to different models. To avoid inconsistencies between multiple
models, it is suitable to maintain reference models from which the
restricted and/or abstracted models can be produced, in the most
automated way that is possible.

So far, attempts at designing a universal modeling language have not been
entirely successful. For instance, UML (and its derivatives) gathers differ
ent modeling features (e.g. use case diagrams, class diagrams, statecharts
diagram, sequence diagrams, etc.) in the same language, but without clear
semantic integration between these features; consequently, a system can be
described with multiple views that, although expressed in the same “unified”
language, are actually different models based on different concepts.
The main issue with multiple models or views is to ensure coherence between
them, and to preserve carefully this coherence throughout the entire life cycle
of the system, from early design to maintenance steps.

3.4.8 Deterministic vs nondeterministic models

The question of nondeterminism is central in formal methods. However, this
term has two meanings that one should distinguish clearly:

•	 The first meaning of nondeterminism is related to modeling and pro
gramming languages that lack a formal semantics. Consequently, cer
tain models or programs written in these languages can be interpreted
in different ways. Such nondeterminism is introduced either implicitly
(at places where the language definition remains silent) or explicitly
(when the language definition states that evaluating a certain expres
sion gives an “undefined” result or executing a certain instruction pro
duces an “unspecified” effect).

	

	

	

	

93 3.4. Models

A typical example of such nondeterminism is the evaluation order of
sub-expressions in languages that permit expressions to have side ef
fects. For instance, in the C language, this evaluation order is un
specified, so that an expression such as (x = 0) + (x = 1) returns
1, but assigns either 0 or 1 to variable x, at the compiler’s discretion.
Although such nondeterminism may allow a C compiler to perform
certain optimizations (e.g., better register allocation), it seems that
the same optimizations could be achieved in a less permissive lan
guage with a formal semantics (i.e., by fixing an evaluation order from
left to right, and by forbidding side effects in expressions or detecting
automatically sub-expressions that have disjoint side effects).
There are other examples of such nondeterminism. For instance, in
many programming languages (including C), the evaluation of an
uninitialized variable, or of an array element out of bounds, returns
an undefined value. Yet, such nondeterminism can easily be avoided
in properly designed languages. Regarding uninitialized variables, one
can either initialize all variables to default values (as Eiffel does) or
reject all programs for which the compiler cannot guarantee — us
ing sufficient conditions — that variables are assigned before used (as
Java does). Regarding accesses to out-of-bounds array elements, they
should normally trigger an exception (as Ada does) and an optimizing
compiler can use static analysis to avoid inserting bound range checks
where they are not needed.
We believe that this first form of nondeterminism has few advantages
and many drawbacks, that it is archaic and unsuitable for formal meth
ods. Notice however that formal methods (namely, static analysis) can
help detecting errors in programs written in such informal languages.

•	 The second meaning of nondeterminism applies to modeling and pro
gramming languages that have a formal semantics. A model or pro
gram written in these languages is said to be deterministic if its execu
tions are reproducible, i.e., the same inputs produces the same outputs.
On the contrary, a model or program is said to be nondeterministic
if its executions are unpredictable even when performed in identical
conditions, i.e., the same inputs may produce different outputs.

Further reading:
▶	 Wikipedia: Deterministic algorithm
▶ Wikipedia: Nondeterministic algorithm

Basically, nondeterminism means that, at certain points of its execu
tion, a model or program will have several possible futures, whereas
determinism means that there is always a unique future.

http://en.wikipedia.org/wiki/Deterministic_algorithm
http://en.wikipedia.org/wiki/Nondeterministic_algorithm

	

	

	

	

	

	

	

	

	

	

94 Chapter 3. Components, models, and properties

There is no doubt that deterministic languages are simpler to use and
to implement than nondeterministic ones. For this reason, certain for
mal approaches have tried to remain in a strictly deterministic frame
work. This is the case, for instance, of the synchronous languages
Esterel and Lustre.
However, there are strong arguments for having nondeterminism.
First, nondeterminism is needed to adequately describe large classes
of systems (this will be justified below). Second, even if determin
ism is simpler, there exist mathematically elegant semantics to handle
nondeterminism; in this respect, it is worth emphasizing that nonde
terminism and formal semantics are not at all incompatible notions.

In the remainder of this section, we elaborate on the second form of nonde
terminism, which is the relevant one for formal methods.
We mentioned that nondeterminism is unavoidable for describing systems
adequately. These are several situations where nondeterminism arises in
models or programs:

•	 In closed specifications (see Section 3.3.2), the environment is incor
porated into the specification. By nature, an environment is often
nondeterministic (for instance, the reactions of a human user of the
system cannot be predicted with certainty), so the specification be
comes nondeterministic.

•	 In systems using asynchronous parallelism (see Section 3.2.3), one can
not predict the respective execution speeds of the parallel components:
accurate predictions would require a global knowledge of many factors,
most of which are either unknown or not observable simultaneously
when computations are distributed. This situation is reflected by the
introduction of nondeterminism (precisely, the so-called interleaving
semantics) in formal models supporting asynchronous parallelism.

•	 There exists a class of algorithms (called randomized algorithms) that
specifically rely on nondeterminism, which is implemented using ran
dom choices performed while executing the algorithms.

Further reading:
▶	 Wikipedia: Randomized algorithm

•	 In a priori models, nondeterminism can be present because certain
implementation choices are deferred until subsequent design phases. In
models with a formal semantics, nondeterminism is the most natural

http://en.wikipedia.org/wiki/Randomized_algorithm

	

	

	

	

	

	

	

	

	

	

95 3.4. Models

manner to represent choices left temporarily open, and it expresses
that various implementations will be acceptable in such context.

•	 In a posteriori models, nondeterminism can occur because of abstrac
tions (see Section 3.4.6), which replace deterministic model (or pro
gram) fragments by approximate ones. For instance, if Boolean ab
straction is used to represent integers as sign bits (either < 0 or ≥ 0),
then the sum of two integers having different signs must return a non
deterministic result.

A common principle underlying several of the above uses of nondetermin
ism is the following: even if a system is actually deterministic, it may be
perceived as nondeterministic if the observer cannot (or does not want to)
understand the functioning rules of the system in full detail.
To express nondeterminism properly in modeling or programming languages,
one needs specific language constructs. Unfortunately, such constructs are
missing from most programming languages, which provide nothing more for
nondeterminism than a random number generation function. Many mod
eling languages, however, have built-in support for nondeterminism, which
can take several forms:

•	 Nondeterministic selection of values is permitted by language con
structs for choosing a value in the domain of a type (e.g., choose some
Boolean), or in a set defined in extension by the list of its elements
(e.g., choose some color among black, red, and yellow), or in a set de
fined in comprehension by a predicate (e.g., choose some integer that
is odd).

•	 Nondeterministic selection of branches is permitted by language con
structs for choosing between several instructions (e.g., execute either
this instruction or that instruction). Such constructs are called se
lection in guarded commands and nondeterministic choice in process
calculi. Certain languages or formalisms dedicated to performance, de
pendability, and performability issues also provide probabilistic choice,
which extends nondeterministic choice by attaching to each branch its
probability of being selected.

•	 Nondeterministic selection of interactions is permitted by language
constructs for choosing between several concurrent processes ready
to communicate (e.g., accept a service request emitted by any client
connected to the network).

•	 Nondeterministic selection of delays is permitted by language con
structs for waiting during an unspecified amount of time (e.g., wait
between one and five seconds before servicing the next request).

	

	

	

	
	
	
	

	

	

	

	
	
	
	

96 Chapter 3. Components, models, and properties

How to implement nondeterminism? In a nutshell, when a model or pro
gram has several possible futures, one can either select automatically one of
these futures (using a random number generator, for instance), or offer the
choice between these futures and let the environment or a human user in
teractively decide between them. Notice that nondeterminism and random
choice are different, the latter being an implementation technique for the
former. Certain implementations also support backtracking, which enables
to come back and revert past decisions.

Further reading:
▶	 Wikipedia: Nondeterministic programming

3.4.9 System observability

A crucial question for verification (but also for simulation, testing, etc.) is
to specify which system information is observable, i.e., at which degree of
abstraction the system can be examined.
A first approach to this question derives from the concept of interface. One
distinguishes between:

•	 Black-box observability: only the information made available through
system interfaces can be observed.

•	 White-box observability: all system information can be observed, pos
sibly overriding interfaces, which requires code instrumentation and
probe mechanisms to access system internals.

Further reading:
▶	 Wikipedia: Black box
▶	 Wikipedia: Black-box testing
▶	 Wikipedia: White box (software engineering)
▶	 Wikipedia: White-box testing

Black-box observability is sometimes too restrictive, especially when study
ing dependability (most interfaces do not export the required non-functional
information) and security (side-channel attacks are precisely designed to by-
pass interfaces).
Conversely, white-box observability is difficult to achieve: accessing all in
ternal details is often expensive (if not infeasible), and excessive instrumen
tation or probing perturbates the behavior of the system under study.

http://en.wikipedia.org/wiki/Nondeterministic_programming
http://en.wikipedia.org/wiki/Black_box
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/White_box_(software_engineering)
http://en.wikipedia.org/wiki/White-box_testing

	

	

	

	

	

	

	

	

97 3.4. Models

Therefore, one may need intermediate solutions (sometimes called grey-box)
between the black-box and white-box extremes, where the information avail
able through interfaces is complemented with internal information (e.g., sys
tem components, algorithms, and/or data structures being made visible).
A second approach to the observability question is applicable to systems
whose dynamic behavior can be described in terms of states and transitions,
i.e., using low-level models such as automata, execution sequences (traces),
execution trees, etc. For such systems, it is both natural and relevant to
define observability in terms of states and/or transitions, namely by making
visible or by hiding information associated with states and/or transitions:

•	 The distinction between visible and hidden state information corre
sponds to real-life situations: for instance, one can directly observe
the display of a computer, but not the bits in its memory; one can
easily inspect the files of a filesystem, but not the corresponding sec
tors on hard disk; etc.

•	 Similarly, the difference between visible and hidden transition informa
tion matches concrete experience: by example, one can watch the in
teractions of someone communicating with a computer using keyboard,
mouse, and monitor, but one cannot directly see the interactions tak
ing place inside the computer between the hardware components and
the operating system; one can simply exchange with a Web site using
a browser, without necessarily observing the exact contents of protocol
frames exchanged with this site; etc.

Depending on the modeling or programming language, the information at
tached to states may include: program counter locations or local states for
each system component, values of local or global variables, buffers of mes
sages sent and not delivered yet, etc. The information attached to transitions
may include: calls to subroutines, event names, channel or port names, pa
rameters associated to subroutines or events, message contents, etc. States
and/or transitions may also carry non-functional information about the sys
tem, e.g., time, constant delays, stochastic delays, probabilities, etc.
Hiding or revealing information contained in states and/or transition is a
fundamental design decision for low-level models, as it strongly impacts the
languages, tools, and methodologies built upon these models:

•	 Certain models (such as Kripke structures) have all information in
states and no information on transitions. Such models are said to be
state-based.

•	 Conversely, other models (such as labeled transition systems, in
put/output automata, or Markov chains) have all information on tran

	

	

98 Chapter 3. Components, models, and properties

sitions and no information in states — except the possibility to dis
tinguish one (or several) initial state(s) among the set of states. Such
models are said to be action-based (or sometimes event-based).

•	 There are also models (such as Kripke transition systems) that com
bine the two approaches by attaching information to both states and
transitions.

3.5 Properties

3.5.1 Definition

In Section 3.3.1, we introduced the concepts of declarative and operational
specifications, and in Section 3.4, we presented models, which are the stan
dard approach to operational specifications. In the present section, we con
sider properties, which are the standard approach to declarative specifica
tions.
We define a property of a system (respectively, component, interface, model,
program, or environment) to be a Boolean statement about this system. In
general, a property states how the system should be designed and which
features it should provide. We then define a satisfaction relation between
a system and a property as a mathematical binary relation that is true if
and only if the property holds for the system, i.e., if the system correctly
implements the property. Formally, the meaning of a property can be seen as
the set of all possible systems satisfying the property. Verification produces a
Boolean answer to the question: “Does a given system satisfy a property?”
and, possibly, diagnostics that answer the related question: “Why is this
property not satisfied by this system?”.
Besides stating positive properties (or good properties), which specify what
the system should do, one can also formulate negative properties (or bad
properties), which specify what the system should not do. When verifying
negative properties that happen to be true, one obtains valuable diagnostics
(e.g., examples of possible security attacks) that help to correct the system.
Mathematically, it makes no difference if a system is described using a unique
property or using multiple properties, because several properties can always
be merged into a single one using Boolean conjunction. However, from a
methodological point of view, it is preferable to have several simple prop
erties rather than a single complex one. For this reason, the declarative
specification of a system usually consists in a collection of properties. In
practice, for large industrial systems, there can be thousands of properties;
in such case, an appropriate infrastructure (e.g., data base) is needed for
handling these properties.

99 3.5. Properties

Many terms related to properties can be found in the formal methods lit
erature: assertions, constraints, invariants, etc. We will use these terms as
synonyms for property (which is the most general term for declarative spec
ifications), noticing that each of these terms expresses a particular usage of
a property.
Also, in this report, we tend to equate the following terms:

model = operational specification = executable

and:
property = declarative specification = non executable

thus creating between models and properties a distinction that we believe
to exist in most approaches based on formal methods. In some cases how
ever, the border between models and properties is unclear; we mentioned
in Section 3.4.4 that certain models are not executable; conversely, certain
properties can be considered as executable. For instance, the following prop
erty (∀x ∀y f(x, y) = x + y) is executable — because it defines function f
algorithmically — while the property (∀x ∀y f(x, y) ̸= x + y) is not. How
ever, despite the existence of a few exceptions to the rule, we maintain that,
in general, properties are not executable, in the sense that one cannot derive
automatically from them an implementation of the system. This is especially
the case with negative properties that specify what a system cannot do.
Like models, properties can be developed a priori, during the first steps
of system design, to specify requirements for a system that does not exist
yet, or a posteriori to check an existing system. There exist intermediate
grades between a priori and a posteriori approaches, as properties may be
produced during the development of components (e.g., assertions inserted
in program code).
Methodologies based on declarative specifications are usually well-accepted
because they enable to consider one by one the numerous features required
for a system under design. This is easier using declarative specifications
than operational ones, because features can be specified separately using
properties whereas they have to be combined and intertwined when devel
oping models and programs. Also, properties are often more concise than
the models or programs they characterize. For instance, the result of a
sorting algorithm can be specified by a one-line property, while the sorting
algorithm itself will require at least half a page of code.
However, declarative specifications are not free from drawbacks. First, prop
erties for simple algorithms may be few and concise but, for real systems,
many non-trivial properties are usually needed. Moreover, producing high
quality declarative specifications is difficult and expensive, as one must care
fully avoid the seven sins of the specifier [Mey85], which may affect not only
specifications in natural language but, for a part, formal specifications as

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

100 Chapter 3. Components, models, and properties

well. We recall these seven sins below and briefly comment their meaning
in terms of properties:

1.	 Noise: “The presence in the text of an element that does not carry
information relevant to any feature of the problem” — Irrelevant prop
erties.

2.	 Silence: “The existence of a feature of the problem that is not cov
ered by any element of the text” — Missing properties, thus allowing
certain “invalid” implementations to be accepted (mathematically, the
specification is said to be incomplete).

3.	 Overspecification: “The presence in the text or an element that cor
responds not to a feature of the problem but to features of a possible
solution” — Superfluous properties, thus prohibiting certain “valid”
implementations.

4.	 Contradiction: “The presence in the text of two or more elements that
define a feature of the system in an incompatible way” — Unsatisfiable
properties, for which no “valid” implementation can exist (mathemat
ically, the specification is said to be inconsistent).

5.	 Ambiguity: “The presence in the text of an element that makes it pos
sible to interpret a feature of the problem in at least two different ways”
— Imprecise properties, thus allowing divergent implementations.

6.	 Forward reference: “The presence in the text of an element that uses
features of the problem not defined until later in the text” — Properties
that depend on each other; in absence of circular dependencies, forward
references can always be eliminated by proper reordering of properties
using topological sort; the presence of circular dependencies between
properties is often a mistake, but can be appropriate in certain cases.

7.	 Wishful thinking: “The presence in the text of an element that defines
a feature of the problem in such a way that a candidate solution cannot
realistically be validated with respect to this feature” — Unreasonable
properties that cannot be realistically implemented.

There exist alternative lists of mistakes to be avoided when producing declar
ative specifications. From a mathematical point of view, when considering
a set of properties P = {p1, ..., pn}, the most important issues are:

1.	 Completeness: is P sufficiently large to characterize only the “accept
able” system implementations that one expects? If not, which missing
properties should be added to P ?

	

	

	

	

	

	

	

	

	

	

101 3.5. Properties

2.	 Consistency: are the properties of P free from self-contradiction (i.e.,
is it sure that p1 ∧ ... ∧ pn ̸= false)? If not, which properties of P are
causing contradiction?

3.	 Minimality: are all the properties of P really “useful”? Or is it possible
to remove certain properties from P without consequence (meaning
that these properties can be logically deduced from the ones remaining
in P)?

3.5.2 Attributes and queries vs properties

There are two concepts close to properties, but different enough so that one
should distinguish them carefully from properties:

•	 Attributes (also called system attributes, qualities, or quality attributes)
denote qualitative and/or quantitative characteristics of a system (re
spectively, component, interface, model, program, or environment).
The list of relevant attributes for a given system can be long. Some at
tributes have been mentioned in Chapter 2 (correctness, performance,
dependability, performability, security, etc.) but many other attributes
can be of interest, e.g., extensibility, portability, scalability, testability,
usability, etc.

Further reading:
▶	 Wikipedia: List of system quality attributes (dated

2012-02-15)
▷	 Wikipedia: Software quality

Certain attributes are defined in terms of other attributes: they are
called derived attributes. For instance, dependability is a derived at
tribute defined using five other attributes (availability, integrity, main
tainability, reliability, and safety).
Although a few standards for system engineering vocabulary define
attributes to be properties, we consider attributes to be distinct from
properties, because the meaning of a property is always Boolean,
whereas the meaning of an attribute is not necessarily Boolean. For in
stance, availability denotes a percentage of time; reliability and safety
denote probabilities; etc. Consequently, a non-Boolean attribute can
never be a specification, whereas a property is always a specification.
However, Boolean attributes may be considered as properties if they
are sufficiently well-defined and precise.

http://en.wikipedia.org/wiki/w/index.php?title=List_of_system_quality_attributes&oldid=477038537
http://en.wikipedia.org/wiki/w/index.php?title=List_of_system_quality_attributes&oldid=477038537
http://en.wikipedia.org/wiki/Software_quality

	

	
	
	
	

	

	

	

	
	
	
	

	

	

102 Chapter 3. Components, models, and properties

•	 Queries are a generalization of attributes. Like attributes, queries en
able to assess the qualitative or quantitative characteristics of a system
(respectively, component, interface, model, program, or environment).
Compared to attributes, which are general characteristics relevant to
many systems (so that technical vocabulary was created to name at
tributes), queries can be more precise and more specific to a given
system (thus, there is not necessarily a technical word assigned to
each query).
Queries may reference the observable elements of a system and they
may return a Boolean or non-Boolean result (e.g., a number, a proba
bility, the value of a system variable, a set of system states, a sequence
of input or output events, etc.). A query that returns a numerical
value is also called a measure.
Queries are often used in performance evaluation and performability
studies. They are especially helpful for dimensioning systems and
allocating resources properly. Examples of queries have already been
given in Section 2.3.3; these are additional examples:

– What are the minimal, average, maximal execution times?
–	 How frequently can the best throughput be obtained?
–	 How often does the latency remain below a certain threshold?
–	 How many users can be served at the same time?
–	 What can be the maximum number of requests in a queue?

Like attributes, queries are distinct from properties because queries
may return non-Boolean results and because non-Boolean queries, un
like properties, are not specifications. For instance, “What is the
worst-case execution time?” is a query, whereas “Is the worst-case
execution time less than one second?” is a property. In a nutshell,
properties ask closed-end, qualitative questions about a system, while
queries may ask open-end, quantitative questions.
The concept of query is not widely acknowledged in formal methods,
but we want to stress its relevance by making two remarks:

–	 In model-checking verification, each temporal logic formula is
used both as a property (the model checker returns true or false
when evaluating the formula on a model) and as a query (the
model checker can produce a diagnostics, i.e., a fragment of the
model explaining why the formula is true or false).

–	 It is sometimes possible to obtain quantitative information from
tools that only deliver qualitative answers: given an attribute
A(S) on some system S, certain tools (e.g., probabilistic or
stochastic model checkers) do not directly provide the value A(S),
but can instead evaluate properties such as (A(S) = v), or

103 3.5. Properties

(A(S) ∈ V), where v is a value and V a set of values; from
this, the value of A(S) can be guessed (up to a certain precision)
by asking a well-chosen series of Boolean questions to the tool.
For instance, if the tool can only evaluate properties of the form
(A(S) ≤ v), one can use dichotomic search on v to guess the
(exact or approximate) value of A(S).
Therefore, queries are useful, even if they can sometimes be mim
icked by properties. Regarding user friendliness, asking a query
is much easier than constructing a clever sequence of properties
leading to the desired result. Regarding algorithmic efficiency,
computing qualitative results for properties is often more efficient
than computing quantitative results for queries, but invoking sev
eral times a qualitative algorithm to approximate a quantitative
result may seriously degrade the performance, even if quantita
tive questions are optimally formulated.

Finally, in a unifying vision, Boolean queries and properties can be
considered as identical, meaning that properties can be seen as par
ticular queries. In the remainder of this section, we mainly elaborate
on properties, but many of the points are also valid for (Boolean and
non-Boolean) queries as well.

3.5.3 Formal vs informal properties

Like models (see Section 3.4.3), properties have several degrees of formality:

• A property is formal if it is written using a mathematical notation or
a computer language with a precise syntax and semantics.
Formal properties may be specified using algebraic equations and/or
logic formulas (i.e., predicate logic, first-order logic, higher-order logic,
modal logics, temporal logics, etc.).

Further reading:
▶ Wikipedia: Predicate logic
▶ Wikipedia: First-order logic
▶ Wikipedia: Higher-order logic
▶ Wikipedia: Modal logic
▷ Wikipedia: Temporal logic
▶ Wikipedia: Burrows-Abadi-Needham logic

Formal properties can also be expressed using mathematical relations

(equivalences, preorders, etc.) to compare a model under study against

http://en.wikipedia.org/wiki/Predicate_logic
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/Higher-order_logic
http://en.wikipedia.org/wiki/Modal_logic
http://en.wikipedia.org/wiki/Temporal_logic
http://en.wikipedia.org/wiki/Burrows-Abadi-Needham_logic

	

	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	

	

104 Chapter 3. Components, models, and properties

another model that is known to be correct (or incorrect). In particular,
behavioral equivalences and behavioral preorders perform comparison
of trace-based or automata-based models.

By specifying properties formally, one avoids the aforementioned is
sues of ambiguity and wishful thinking. The issue of contradiction can
be addressed by automated tools that check whether the Boolean con
junction of all properties (or of a subset of them) is logically equivalent
to false. However, formality is not a silver bullet and does not by itself
address other issues such as noise, silence, and overspecification.

•	 A property is semi-formal if it is written in a computer language with
a defined syntax but no formal semantics. Such a language can be
textual (e.g., mathematical or logic notations mixed with statements
in natural language) or graphical. For instance, simple behavioral
properties can be specified as collections of execution traces describ
ing successful and erroneous interactions between the system and its
environment. Such traces are often expressed using semi-formally us
ing notations such as message sequence charts, observers, problem
diagrams, scenarios, use cases, etc.

Further reading:
▶	 Wikipedia: Message sequence chart
▶	 Wikipedia: Problem frames approach
▶	 Wikipedia: State observer
▶	 Wikipedia: Scenario (computing)
▶	 Wikipedia: Sequence diagram
▶	 Wikipedia: Use case
▶	 Wikipedia: Use Case Diagram

Several of these semi-formal notations are supported in modeling lan
guages such as SysML or UML, whose diagrams have names, types,
attributes, textual definitions, and convey some intuitive meaning but
lack a precise semantics.

Further reading:
▶	 Wikipedia: Systems Modeling Language
▷ Wikipedia: Unified Modeling Language

• A property is informal is it is expressed using natural language possibly
augmented with loose diagrams, charts, tables, etc.

http://en.wikipedia.org/wiki/Message_sequence_chart
http://en.wikipedia.org/wiki/Problem_frames_approach
http://en.wikipedia.org/wiki/State_observer
http://en.wikipedia.org/wiki/Scenario_(computing)
http://en.wikipedia.org/wiki/Sequence_diagram
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_Case_Diagram
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language

	

	

	

	

105 3.5. Properties

In practice, one often uses restricted subsets of natural language in
order to increase precision. Such approaches are known under different
names, e.g., structured English [YZ80] [FMR00] [KC05], precise natural
language [DBK03] [Hei09], or structured natural language [CI02]. A
survey of these approaches can be found in [DDK01].

Further reading:
▶	 Wikipedia: Structured English

The main advantage of informal properties is that they can be exam
ined and discussed by persons of different backgrounds and expertises
— especially, by persons who are not computer scientists. Another ad-
vantage is that they force implementation decisions to be postponed,
thus avoiding overspecification issues, which often occur when mixing
specification and implementation concerns.
Yet, informal properties have major drawbacks, as they pave the way
for (at least) three of the seven sins mentioned in Section 3.5.1: am
biguity [Ber08], contradiction, and wishful thinking. It is therefore
difficult, if not impossible, to reason precisely about informal proper
ties, even when using restricted natural language subsets.
In Section 3.5.2, we mentioned various attributes such as security,
extensibility, portability, etc., to name only a few. Such attributes are
useful to state general quality goals, but they are informal and cannot
be directly used to assess a given system: they must be refined into
a collection of more precise, possibly formal, properties that take into
account the particular characteristics of the system under study.

3.5.4 Functional vs non-functional properties

One often distinguishes between two kinds of properties:

•	 According to the classical definition, functional properties describe
what a system should accomplish, its required behavior and/or re
sults, and its observable interactions with its environment (i.e., the
inputs and outputs).
Following an alternative definition, properties of a system are said to
be functional if they can be expressed using the elements provided by
the computer language used to model or program the system.
Correctness properties (such as termination, absence of deadlock, re
lations between inputs and outputs, etc.) are examples of functional
properties.

http://en.wikipedia.org/wiki/Structured_English

	

	

	

	

	

	

	

	

	

	

	

	

	

	

106 Chapter 3. Components, models, and properties

Further reading:
▷	 Wikipedia: Functional specification
▶ Wikipedia: Functional requirement

•	 Classically, non-functional properties describe the overall qualities of
a system, i.e., those aspects that are externally observable and are not
directly related to functional behavior.
It is worth noticing that the exact meaning of “non-functional” is often
confuse. A recent standard [ISO10] states that non-functional require
ments characterize “not what the software will do but how the software
will do it”, a definition that, we believe, would be more appropriate
for operational specifications than declarative ones. In general, non
functional requirements are mostly defined by long lists of attributes
given as examples.
According to the aforementioned alternative definition, properties are
said to be non-functional if they refer to elements that cannot be
accessed or modified using the computer language used to model or
program the system.
In the literature, there are plenty of non-functional attributes and
various ways to classify them. We can mention the following examples:

–	 Physical requirements: electro-magnetic emissions, lifetime, pack
aging, power consumption, size, thermal behavior, weight, etc.

–	 Logical requirements: adaptivity, autonomy, availability, capac
ity, disposability, efficiency, extendibility performance, quality,
reliability, resilience, safety, security, tailorability, usability, etc.

–	 Development requirements: budget, costs, delivery, documenta
tion, flexibility, interoperability, methodology, maintainability,
portability, reusability, schedule, technology, testability, etc.

–	 External requirements: economic, legal, standards, etc.

Non-functional properties are often subjective and difficult to express
formally, although some of them (e.g., availability and performance)
can be quantified and evaluated objectively. Also, non-functional prop
erties tend to contradict and conflict with each other (for instance,
pairs of requirements such as extendibility and safety, or efficiency
and security, are often antagonistic). However, there are two classes
of non-functional properties that fit well with formal methods:

–	 Properties related to software code structure and metrics: num
ber of components, size of components in lines of code, number
of functions, of variables per component, etc.

http://en.wikipedia.org/wiki/Functional_specification
http://en.wikipedia.org/wiki/Functional_requirement

	

	

	

	

	

	

	

	

	

	

	

	

	

	

107 3.5. Properties

–	 Properties related to performance, dependability, performability
and security (see Sections 2.3.3, 2.3.4, and 2.3.5): response time,
latency, throughput, energy consumption, memory usage, non
interference, hidden channels, etc.

Further reading:
▷	 Wikipedia: Non-functional requirement

Although the functional/non-functional terminology is standard, the distinc
tion between functional and non-functional is often unclear, thus questioning
the significance of this terminology.
For instance, absence of memory overflow is functional, whereas memory
consumption is non-functional; response time is functional in a hard real
time system, whereas it is non-functional in a soft real time system; security
is usually considered as non-functional, but the specification of interactions
(e.g., authentication, authorization, etc.) between a secure system and its
candidate users is certainly functional. More generally, the distinction be
tween functional and non-functional depends on several factors:

•	 The level of detail of the specifications (the more detailed a property
is, the more functional it can be considered);

•	 The expressiveness of the modeling or programming language used
(features that can be described in this language become functional);

•	 The capabilities of the analysis tools used (static analysis tools, given a
program and a microprocessor description, can predict non-functional
information such as stack usage or execution time).

Further reading:
▶	 The AbsInt analysis tools – http://www.absint.de

Even for the most widely used properties, there is no consensus whether
they are functional or not; in particular, the FURPS approach classifies
usability, reliability, and performance as non-functional requirements. We
therefore believe that the relevance of the functional/non-functional termi
nology should not be overemphasized.

Further reading:
▶	 Wikipedia: FURPS

http://en.wikipedia.org/wiki/Non-functional_requirement
http://www.absint.de
http://en.wikipedia.org/wiki/FURPS

	

	

	

	

	

	

	

	

	

	

108 Chapter 3. Components, models, and properties

3.5.5 Local vs global properties

There is yet another orthogonal way of classifying properties:

•	 Local properties concern single components of a system and their mean
ing can be obtained by considering these components individually.
Examples of local properties are assertions on the variables of a com
ponent (e.g., some variable should always remain positive) or temporal
logic formulas relating the inputs and outputs of a component (e.g.,
any request must be answered within ten milliseconds).

•	 Global properties concern the entire system (or a large part of it) and
cannot be given a meaning by only considering individual components.
In practice, global properties are often more complex than a simple
Boolean conjunction of local properties.
For example, in sequential systems, invariants on the values of global
variables (i.e., variables used and/or modified in several components)
are global properties. In concurrent systems, properties related to
synchronization (e.g., absence of deadlocks) or performance (e.g., real
time constraints) are, in most cases, global properties.
Global properties are often related to cross-cutting concerns, i.e., pro
gramming features that cannot be encapsulated within a single com
ponent but affect many components instead.

Further reading:
▶	 Wikipedia: Cross-cutting concern

3.5.6 Static vs dynamic properties

One may distinguish between two classes of properties:

•	 Static properties can be “easily” verified on the source code of the mod
els or programs, namely at compile-time, using algorithms of linear or
weakly polynomial complexity. Examples of static properties are: ab
sence of type-checking errors, absence of dead code (if detectable at
compile-time), guarantee that each variable is initialized before used,
etc.

•	 Dynamic properties are more involved properties that can either be
verified at compile time using expensive algorithms, or at run-time
(i.e., by executing the model or program). A typical dynamic proper
ties is the absence during execution of run-time errors, i.e., the absence

http://en.wikipedia.org/wiki/Cross-cutting_concern

	

	

	

	

	

	

109 3.5. Properties

of arithmetic overflow, division by zero, memory access violation, stack
overflow, violation of user-defined assertions, call to partial functions
returning undefined results or raising exceptions, deadlocks, etc.

Further reading:
▶	 Wikipedia: Run time (program lifecycle phase)

In general, the concept of run-time error is often associated to se
quential programs; however, it can be easily extended to parallel and
concurrent programs (in which occurrences of deadlocks, livelocks, or
unexpected message receptions can be considered as run-time errors)
and to models as well (in which run-time errors can be defined as the
errors that arise during the execution or simulation of the model).
More generally, in parallel and concurrent systems, dynamic proper
ties may express arbitrarily complex statements about system states
(control locations and variables), transitions between states, sequences
of transitions, messages sent or received, etc.

3.5.7 Generic vs specific properties

Properties can also be divided into two other classes:

•	 Specific (or applicative) properties inherently depend on the particular
system under design or verification, meaning that such properties can
not be directly reused for another system. Specific properties have to
be written explicitly and require a particular knowledge of the system.
Examples of specific properties are numerous and diverse. For in
stance: some designated variable X should never get negative; some
particular event E should never occur twice; a given message M should
always be followed by some other message M ′; etc.

•	 Generic properties may apply to all systems or, at least, to large classes
of systems. In principle, such properties do not need to be written
explicitly: formal methods users can verify these properties without
any prior effort to express them in a formal language, just by selecting
them in existing lists of generic properties, or by slightly adapting
them from predefined property templates.
There exist various kinds of generic properties. Regarding static prop
erties (see Section 3.5.6), collections of generic properties have been
defined, leading to the concept of software metric. Regarding dynamic
properties (see Section 3.5.6), the absence or presence of (all or cer
tain classes of) run-time errors is clearly a generic property; other

http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)

	

	

	

	

	

	

110 Chapter 3. Components, models, and properties

dynamic properties, such as termination and security properties, are
often generic.

Further reading:
▶	 Wikipedia: Software metric

In practice, for a given system, one needs both generic and specific proper
ties. Because they can be predefined, generic properties are easier to use (no
formal specification required) and can be handled more efficiently by ded
icated algorithms. Specific properties bring additional flexibility (they can
precisely describe the particular characteristics of the system under design)
at the expense of higher complexity (formal methods users must be provided
with a language to express specific properties, and general algorithms must
be designed to handle properties in this language).

3.5.8 Abstract vs concrete properties

The distinction between generic and specific properties is mostly relevant
when diverse systems or classes of systems are considered. However, when
a single system is under study, one can make a finer distinction between
properties:

•	 Abstract properties are related to the system itself, seen as a black
box, rather than to a particular implementation of it. So doing, they
do not prohibit alternative valid implementations of the system, thus
avoiding the overspecification issue mentioned in Section 3.5.1.
Algebraic or temporal relations between the inputs and outputs of a
system are typical examples of abstract properties.

•	 Concrete properties focus on a particular implementation of the sys
tem, seen as a white or grey box, and thus cannot be reused for a
different implementation of the same system.
Assertions binding the variables of a particular program are concrete
properties, because another program written by a different person to
solve the same problem would probably not define the same set of
variables — at least not the same variable names — and would have a
different control flow, leading to different assertions at different places.

Obviously, the difference between abstract and concrete properties depends
on what is considered to be observable in the system, i.e., on the exact
definition of system interfaces.

http://en.wikipedia.org/wiki/Software_metric

	

	

	

	

111 3.5. Properties

3.5.9 One-language vs two-language properties

In some formal methods approaches (e.g., static analysis), certain properties
(for instance, the absence of run-time errors) do not have to be formulated
explicitly because they are generic (see Section 3.5.7). We define such ap
proaches to be zero-language because formal methods users are not provided
with a language for expressing properties.
When properties have to be written explicitly, one must decide whether
these properties can be expressed in the same language as for models or pro
grams (one-language approaches), or in a different language (two-language
approaches):

•	 Two-language approaches reflect the difference in nature between prop
erties, which are declarative, and models or programs, which are op
erational. A practical drawback of such approaches is that formal
methods users have to learn and master two different languages.
With such approaches, verifying whether a model or program satis
fies a given property consists in checking a satisfaction relation (see
Section 3.5.1), namely that:

model or program |= property

where “|=” denotes the satisfaction relation.
Model checking (in the case of models) and software model checking (in
the case of programs) are typical examples of two-language approaches.

•	 One-language approaches attempt at unification by using the same
language for properties as for models or programs, typically by us
ing partial and/or abstract models as properties. Because there is
a unique formalism, such approaches are usually easier to grasp by
formal methods users.
With such approaches, the aforementioned satisfaction relation:

model or program |= property

gets a different form. In particular, for algebraical or logical specifica
tions, satisfaction is replaced by standard deduction:

model or program =⇒ property

For behavioral (i.e., trace-based or automata-based) specifications, sat
isfaction is replaced by comparison relations between models. One can
use behavioral equivalences (such as bisimulations) to express that the
model or program is, in a certain sense, equivalent to the property:

model or program ≈ property

One can also use behavioral preorders (such as trace inclusion or sim
ulation preorders) to express that the model or program can only per
form those executions described by the property (any other execution

	
	
	

	

	
	

	

	
	
	

	

	
	

	

112 Chapter 3. Components, models, and properties

being forbidden — one often says that the model or program refines
the property):

model or program ⊑ property

or that the model or program must at least perform all those executions
described by the property:

model or program ⊒ property

Program refinement, theorem proving (for algebraical and logical prop
erties) and equivalence checking (for behavioral properties) are typical
examples of one-language approaches.

Further reading:
▶	 Wikipedia: Bisimulation
▶	 Wikipedia: Formal equivalence checking
▶	 Wikipedia: Conformance checking

3.5.10 Internal vs external properties

When properties are formulated explicitly, one needs to associate them to
their corresponding models or programs. In practice, there are two main
ways of establishing such a correspondence:

•	 Internal properties are located within models or programs, the source
code of which they are part of.
Examples of internal properties are assertions and invariants present
in models or programs, preconditions and postconditions associated
with subroutines (procedures, functions, methods, etc.), constraints
attached to input/output channels to specify the acceptable values of
messages that can be received or sent, temporal logic formulas (e.g.,
in the PSL logic) inserted in hardware descriptions, etc.

Further reading:
▶	 Wikipedia: Assertion (computing)
▶	 Wikipedia: Property Specification Language

•	 External properties are kept disjoint from the source code of models
or programs. Such properties are abstract (see Section 3.5.8) if they
only refer to those system features made observable by the interfaces,
or concrete if they bypass the interfaces to address system internals
directly.

http://en.wikipedia.org/wiki/Bisimulation
http://en.wikipedia.org/wiki/Formal_equivalence_checking
http://en.wikipedia.org/wiki/Conformance_checking
http://en.wikipedia.org/wiki/Assertion_(computing)
http://en.wikipedia.org/wiki/Property_Specification_Language

113 3.5. Properties

The requirements produced during the initial design steps of a system
are necessarily external properties because the system does not already
exist; they can be later turned into internal properties by being refor
mulated and inserted into the models and programs developed for this
system.
To use external properties on a large scale, one needs a database or
a computer language capable of organizing and sorting collections of
properties. For instance, specification languages based on algebraic
data types enable to organize equations in modules, and provide means
to import and reuse the equations contained in existing modules.

Notice that the distinction between internal and external properties is or
thogonal to the distinction between one-language and two-language prop
erties. In particular, internal properties can be expressed using a different
language than the models or programs in which they are inserted. This is
the case, for instance, with PSL temporal logic formulas present in Verilog
and VHDL descriptions.

 114 Chapter 3. Components, models, and properties

Chapter 4

Design flows and
methodologies

4.1 Introduction

In the present chapter, we review methodologies for enhancing, or even
guaranteeing, the quality (namely: correctness, dependability, and security)
of computer-based systems. We adopt an engineering, rather than strictly
scientific, point of view, in the sense that we integrate human factors and
established practices. In particular, our approach is pragmatic as it aims at
smoothly inserting formal methods in existing design environments rather
than overturning conventional methods, which are there to remain, even
with formal improvements.
Clearly, software occupies a central place in the discussion, given the cost
and complexity of software design. According to [BB01, Laws 2 and 3], “cur
rent software projects spend about 40% to 50% of their effort on avoidable
rework” and “about 80% of avoidable rework comes from 20% of the de
fects”, where “such rework consists of effort spent fixing software difficulties
that could have been discovered earlier and fixed less expensively or avoided
altogether”. However, most of the discussion is also valid for hardware as
well, because the design of modern ASICs gets increasingly closer to software
design and therefore faces similar challenges and issues.
The discussion is primarily oriented towards large safe and/or secure systems
designed by one or many team(s) of professionals — in particular, scalabil
ity of proposed methodologies is a permanent concern. Yet, parts of the
discussion may be applicable to smaller or less critical systems and perhaps
to amateur-designed systems, although the latter often have severe design
issues as stated in [BB01, Law 10] : “About 40% to 50% of user programs
contain nontrivial defects”.

115

	

	
	
	

	

	

	

	
	
	

	

	

116 Chapter 4. Design flows and methodologies

This chapter first states the essential goals of quality control and quality
assurance, and discusses the framework for these. It then introduces the
main design life cycle concepts: design flow, design artifacts, design steps,
quality steps, revision steps, etc. After presenting methodological and de
sign principles to be taken into account, it successively reviews conventional
methodologies, which do not rely on formal methods, and formal method
ologies, making explicit the originality and added value of formal methods.

4.2 Quality issues

Ensuring quality is one of the major concerns behind system design method
ologies. This is all the more true with life- and mission-critical systems, for
which there often exist independent certification authorities in charge of
quality assessment. In this section, we discuss open issues about quality
and their impact on methodologies.

4.2.1 Quality goals

When building a new system, or when modifying an existing one, there are
two main objectives with respect to quality:

•	 Quality control: The goal is to produce a system with a low number
(possibly zero) of defects, or to detect and remove defects already
present in a system.

Further reading:
▷	 Wikipedia: Quality control
▷	 Wikipedia: Software quality
▶	 Wikipedia: Software quality management

•	 Quality assurance: The goal is to demonstrate to an independent ob
server (e.g., a certification auditor) that all defects have been elimi
nated or, even if a few defects remain, that they have an extremely
low probability of causing failures.

Further reading:
▷	 Wikipedia: Quality assurance
▶ Wikipedia: Systems assurance
▶ Wikipedia: Software assurance

http://en.wikipedia.org/wiki/Quality_control
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_quality_management
http://en.wikipedia.org/wiki/Quality_assurance
http://en.wikipedia.org/wiki/Systems_assurance
http://en.wikipedia.org/wiki/Software_assurance

117 4.2. Quality issues

▶ Wikipedia: Software quality assurance
▶ Wikipedia: Software security assurance

Although these two goals share a common motivation, they are not identical.
To use a metaphor, the difference between them is similar to the difference,
for an accountant, between honesty and accountability.
Both goals must also cope with the usual constraints of system development,
namely the need to work as efficiently as possible, and to complete projects
within time and budget.

4.2.2 Obstacles to quality measurement

With computer-based systems, unfortunately, there are major problems that
render quality control and quality assurance difficult, if not impossible.
A first difficulty comes from the fact that experimental validation — which
is standard practice in many engineering domains — is not always feasible
for computer systems. In the case of life- or mission-critical systems, it is
rarely possible to experiment with a system in its actual environment; such
systems are expected to behave correctly from the moment they are deployed
and must not be perturbated by validation activities after deployment. In
the case of high-security systems, validation is also difficult. Certain exper
imental approaches are possible (e.g., vulnerability scanning, penetration
testing, contests and rewards for finding successful attacks, etc.) but there
is little certainty in their results. Notice, however, that it is often feasible to
monitor systems while they are running in their actual environment and to
collect information about their observable defects, which is a less ambitious
form of experimental validation.
A second difficulty is related to the intrinsic nature of software. As men
tioned in Section 1.3.1, many software verification problems are undecidable.
Therefore, it is impossible to discover automatically all defects present in
each software program — or in each hardware circuit designed using a high
level description language. Consequently, one cannot quantify exactly and
objectively the number of defects, present or remaining. Such impossibil
ity makes quality measurement problematic, and leaves only two options:
either one demonstrates the total absence of defects, or one tries to give
some estimation (e.g., an upper bound) of the number of defects. This leads
to the classical controversy on (Boolean) software correctness vs (proba
bilistic) software dependability (or reliability), an issue already addressed in
Section 2.3.6.

http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Software_security_assurance

	

	

	

	

	

	

	

	

	

	

	

	

118 Chapter 4. Design flows and methodologies

Both difficulties question the theoretical foundations and the practical fea
sibility of quality measurement. However, at the same time, it is generally
admitted that the quality of systems can be substantially increased by using
appropriate methodologies, and this is what the present chapter is about.

4.2.3 Product quality vs process quality

There have been long-standing debates on which objects should form the
basis of studies for quality control and quality assurance.
A first school of thought considers that the focus should be mainly on the
final product, namely the system itself, with a particular emphasis on the
system’s software, which should be intensively scrutinized to establish its
correctness. This approach has two merits:

•	 It focuses on the final result of the development and, in this sense,
gives the best guarantees on the actual system and software that will
be deployed on field.

•	 There exists well-known methods for checking the “superficial” quality
of software (e.g., respect of coding standards) as well as its “deep”
correctness, considering software as either a black box (e.g., functional
testing) or a white box (e.g., static analysis).

However, this approach also faces a number of practical limitations:

•	 For systems and software of large complexity, it is difficult — and
often impossible — to prove the absence of errors. Moreover, the
quality of the product (e.g., the number of remaining defects) cannot
be quantified precisely (see Section 4.2.2 above).

•	 Focusing on the source code of the final product software may enable to
verify certain functional properties, but is often insufficient to address
non-functional properties.

•	 Undertaking quality studies at the last moment (i.e., delaying them
until the final product is ready and available for inspection) is unsuit
able: many defects result from early design mistakes and are more
costly to correct if detected late.

•	 Quality studies focusing exclusively on the final product may have
difficulties to follow product evolutions: minor changes to a product
may require such studies to be restarted from scratch.

	

	

	

	

	

	

	

	

119 4.2. Quality issues

A second school of thought examines, instead of the final product, the de
velopment process, i.e., the methodology, steps, and care taken to build this
product. This approach has several advantages:

•	 It does not restrict itself to the final product; in particular, the qual
ity of software documentation and design documents is of paramount
importance for maintenance, evolution, and design of future products.

•	 It can take into account important factors of quality (e.g., maturity
of technologies, individual qualifications of developers, collective capa
bilities of organizations, etc.).

Yet, this approach also has drawbacks:

•	 It gives no absolute guarantee on the final product, because the initial
goal (ensuring the quality of the final product) is replaced with an eas
ier, related but different goal (ensuring the quality of the development
process). This shift is well summarized in [Rus93]: since we cannot
measure “how well we’ve done” we instead look at “how hard we tried”.

•	 This approach can develop “conservative” mentalities, in which the
scrupulous respect of formal rules acquires more importance than the
actual quality of the final product, and even bars innovative, disruptive
approaches that could enhance quality.

In academia, the “product quality vs process quality” debate is not recent
(see, e.g., [Rus93, Section 2.4.3 and Section 3.1 pages 115 and 117]) but is
still intense (see, e.g. [Sha10] vs [BMLW11]).
In industry, most guidelines and standards for evaluating and certifying qual
ity of products and organizations follow the second approach by primarily
scrutinizing the development processes (see [SWDD09, Section 5.1] for a dis
cussion regarding the DO-178B framework for avionics software [RTC92]).
We believe that both approaches are complementary, and should be com
bined rather than being brought into conflict. As pointed out in [Rus93],
“certification of quality ultimately rests on informed engineering judgment
and experience”. As such, it must consider multiple sources of evidence:

1. The final product to be evaluated, including the source code of its
software, but also its documentation and all documents and models
developed while designing and building the product.

2. The various analyses applied to the product during its development
and after its deployment on field: verification results, test results, risk
analyses, usage reports, performance measurements, etc.

120 Chapter 4. Design flows and methodologies

3. The evaluation of the development processes used for the product, as
well as the qualification of organization(s) and persons who designed
and built the product.

Regarding future evolutions, we agree with the recommendation of [Rus11]
that “software certification should become more focused on (tool-based) ex
amination of the actual software products (i.e., requirements, specifications,
and code), and less on the processes of their development”.

Further reading:
▷ Wikipedia: Software quality assurance

4.2.4 System quality vs component quality

As discussed in Chapter 3, a system is usually made up of components.
Design reuse consists in building a new system, partially or entirely, using
existing components (e.g., hardware or software libraries). A key question is
therefore to relate the quality of a system with the quality of its individual
components.
For safety-critical systems, the emphasis is often put on the system itself:
certification applies to entire systems (e.g., airplanes), not to their com
ponents considered in isolation. At first sight, this approach is reasonable
because it enforces a global, system-wide vision of quality.
However, this approach may very well tolerate the existence of defective
components, provided that their defects have no impact on the system’s
behavior. This is a worrying possibility, even if it is restricted in practice
by additional certification constraints (such as the obligation to test compo
nents over the range of their input parameters or to ensure full code coverage,
which forbids the existence of dead code, etc.).
Given the growing importance of “off-the-shelf” components (such as net
work equipments, protocol stacks, operating systems, graphical libraries,
etc.) it would be desirable to certify reusable components. Some steps have
been made in this direction (e.g., [FAA04]) but the problem remains difficult.
Ensuring quality at both component and system level using a compositional
(i.e., bottom-up) approach is still an open issue: assembling components that
have been certified in isolation gives no guarantee on their composition, and
components that worked properly for a given system may fail when reused in
a different system. This will be further discussed in Sections 4.5.2 and 4.9.1.

http://en.wikipedia.org/wiki/Software_quality_assurance

121 4.3. Design flows

4.3 Design flows

To go further in the study of methodologies, we introduce the concept of de
sign flow, a term borrowed from the hardware design vocabulary, but we give
this term a more general meaning encompassing all kinds of computer-based
systems, not only hardware ones. This concept of flow appears — possibly
under different names — in all system design methodologies, whether they
use formal methods or not.

Further reading:
▶ Wikipedia: Product lifecycle management
▶ Wikipedia: Systems development life-cycle
▶ Wikipedia: Systems engineering process (dated 2012-09-20)
▶ Wikipedia: Design flow (EDA)
▶ Wikipedia: Software development process
▶ Wikipedia: Software development methodology
▶ Wikipedia: List of software development philosophies

A design flow for a given system gives a partial, synthetic and possibly ide
alized view of this system’s life cycle, focusing primarily on the development
process. It expresses the various steps needed to build the system, from the
initial expression of requirements to the final product, as well as the chrono
logical evolution between these steps. It also gathers all the documents,
models, programs, and properties produced during the system development.
Finally, a design flow also keeps track of the efforts made (possibly in a
certification context) to achieve quality goals for the system.
In a first approximation, a design flow can be represented as a directed
graph; we believe however that it is more appropriate to represent it as a
Petri net (a directed graph being a particular case of Petri net in which each
transition has a single input place and a single output place). We call design
artifacts and design steps, respectively, the places and transitions of such a
Petri net (or the vertices and arcs of such a graph).

4.3.1 Design artifacts

By design artifact, we refer to any document or software object elaborated
while developing a system. Design artifacts are not necessarily formal. Typ
ical examples of design artifacts are:

• requirements about the system,
• assumptions about the environment,
• descriptions of the system architecture,

http://en.wikipedia.org/wiki/Product_lifecycle_management
http://en.wikipedia.org/wiki/Systems_development_life-cycle
http://en.wikipedia.org/wiki/w/index.php?title=Systems_engineering_process&oldid=513620731
http://en.wikipedia.org/wiki/Design_flow_(EDA)
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/List_of_software_development_philosophies

122 Chapter 4. Design flows and methodologies

• descriptions of the system components and interfaces,
• expected properties for the system and its components,
• models and prototypes of the system and of its components,
• software programs, in source and executable code forms,
• test plans, test cases, test procedures, and test results,
• inputs and outputs of validation and verification activities,
• documentation of all kinds produced for this system.

In most design flows, the artifacts developed first are more abstract and less
precise than those developed later. In particular, models are more likely to
be produced during the early steps, while programs are usually built during
the late steps.

Further reading:
▶ Wikipedia: Specification tree

For complex systems, design artifacts are generally expressed using mul
tiple computer languages. Indeed, it is often convenient to have different
languages reflecting the difference between properties and models, between
different abstraction levels, or adapted to persons playing different roles
in system development. Even for programs, several languages are often
used simultaneously, some of which are used explicitly by system designers,
others being automatically generated intermediate forms. Using multiple
languages has practical advantages but it may affect quality by increasing
design complexity and raising semantic issues at the borders between differ
ent languages.

4.3.2 Design steps

By design steps, we denote the actions performed during the development of
a system to incrementally advance this development. Each design step takes
as input one or several existing design artifacts and produces as output one
or several new design artifacts. In principle, each design step can only be
undertaken when its inputs are available.
The following list gives typical examples of design steps used when develop
ing a system with or without formal methods. These examples are highly
simplified and, depending on the accuracy of the considered methodology,
each design step can be divided into smaller steps. The list is ordered
chronologically, meaning that the first elements in the list correspond to
the early design steps, while the last elements correspond to the late design
steps (i.e., those close to the actual implementation of the system); notice,
however, that these steps can be applied recursively to each subsystem of
the system:

http://en.wikipedia.org/wiki/Specification_tree

	

	

	

	

	

	

	

	

	

	

	

	

123 4.3. Design flows

•	 Initial steps: The design of a system usually starts with the elabo
ration of its top-level specifications (also called initial specifications).
These include requirements (also, top-level requirements or initial re
quirements), which express goals and needs about the functionality,
performance, dependability and/or security of the system. Assump
tions about the environment are also collected and, if necessary, models
of the environment are developed. Such initial steps, which are crucial
for the success of the project, will be detailed in Section 4.6.2 below.

•	 Specification steps: The architecture of the system is designed and
decomposition strategies (see Section 3.2.2) are used to divide the sys
tem (or parts of it) into components. The interfaces and expected
properties of components are described, e.g., using property-oriented
languages (see Section 3.5.3). Components that can be reused from
existing systems are identified. New components are described, e.g.,
using model-oriented languages (see Section 3.4.3). This is an incre
mental process where the system gets progressively more detailed.

•	 Implementation steps: The components are developed using program
ming languages (for software components) and/or hardware descrip
tion languages (for hardware components).

•	 Integration (or composition) steps: The components developed sep
arately so far are assembled together (see Section 3.2.3) to form the
complete system. The word “integration” is used when nothing (or not
much) can be anticipated about the semantic properties (or even the
well-definedness) of the assembly. The word “composition” is preferred
when the assembly is well-defined and preserves certain properties of
interest.

An important feature of design steps is their degree of automation:

•	 Manual (or interactive) steps are design steps whose outputs are pro
duced by humans. Even there may exist (more or less systematic)
guidelines for deriving these outputs from the inputs, such steps usu
ally require intuition, inventiveness, and intellectual effort from system
designers, and thus cannot be easily automated so far.

•	 Automatic steps are design steps whose outputs are automatically gen
erated by software tools, possibly guided by indications and constraints
provided by humans. Examples of such steps are all compiling, opti
mization, transformation, translation, and synthesis phases commonly
found in hardware and software design (see Section 3.4.4 above and
Section 4.6.5 below for concrete examples of automatic steps).

	

	

	

	

	

	

124 Chapter 4. Design flows and methodologies

•	 Semi-automatic steps are design steps in which a software tool gener
ates (skeletons of) models or programs that humans must then modify
or complete manually. For designs that evolve frequently, such ap
proaches may be awkward and error-prone due to the mixing between
inputs and outputs inside the same design artifacts.

4.3.3 Defective design steps

Certain design steps may be defective and introduce problems (namely cor
rectness bugs or security vulnerabilities) in the system under development.
This may happen during manual steps if human designers make mistakes.
This may happen during automatic steps if software tools contain bugs (e.g.,
translation or optimization algorithms may be wrong). Semi-automatic
steps combine both kinds of problems.
There are many reasons for design mistakes. Some are technical (e.g., ar
chitectural or algorithmic complexity), others are organizational (e.g., per
sonnel qualification or turnover). Potentially, mistakes can affect any com
ponent of the system and may be introduced anywhere in the design flow.
In practice however, they are not uniformly distributed.
First, according to [BB01, Law 4], about 50% of the software components
have defects and 20% of the components contain about 80% of the defects.
This application of the Pareto principle is confirmed by many empirical
studies [FO00] [OW02] [AR07] [HGP09].

Further reading:
▶	 Wikipedia: Pareto principle

Second, numerous studies (e.g., [BMU75] [End75] [NK91] [KSH92] [CG93]
[Lut93] [ER03] [HGP09] [ML09]) have pointed out that certain classes of
errors pertaining to specific design steps are more frequent than others. Fol
lowing this idea, various classification schemes have been proposed for soft
ware defects (see [FB98] for a survey); we mention here three well-identified
classes about which consensus exists in the literature:

•	 Requirement errors occur during the initial steps of the design flow,
when collecting and eliciting system requirements and environment as
sumptions. The reasons for requirements errors are — besides plain
mistakes — those listed in the seven sins of the specifier (see Sec
tion 3.5.1), omissions of requirements being the most common in prac
tice. Requirement errors trigger issues in the subsequent steps of the
design flow and are a major source — probably, the main source —

http://en.wikipedia.org/wiki/Pareto_principle

	

	

	

	

	

	

125 4.3. Design flows

of defects. A taxonomy based on a large bibliographic survey can be
found in [WC09].

•	 Interface errors are miscommunications taking place at the bound
aries between hardware and software, between system components
and, more generally, between different parts of the system obeying
to different logics. Typical examples of such errors [PE85, PE87]
[NK91] are mismatches on message types, value ranges, global vari
ables, file formats, communications protocols, etc. Interface errors are
often caused by insufficient or flawed documentation, and poor com
munication between different teams.

•	 Coding errors are programming bugs resulting from human mistakes
or, more often, from incorrect implementation of requirements, e.g.,
because of algorithmic complexity. Empirical studies of coding errors
in large-scale software exist — see e.g. [LTW+06]. A comprehensive
list of coding errors, together with related bibliographic references, can
be found in [Räm09, Section 2.1.1].

Notice that certain errors may logically belong to several classes; for in
stance, concurrency bugs (such as deadlocks or race conditions) can be seen
either as interface or coding errors.

4.3.4 Quality steps

To address the possibility of defective design steps, all methodologies com
plete their design flows with additional steps, which we call quality steps.
These steps provide for the two quality goals of Section 4.2.1, namely quality
control — trying to avoid the introduction of errors and to detect those al
ready present — and, if needed, quality assurance — gathering certification
evidence that demonstrates the correctness and the security of the system.
Quality steps, which are primarily a matter of checks and controls, are often
referred to as verification and validation activities (or V&V, for short); the
recent standard [ISO10] defines verification and validation as “the process
of determining whether the requirements for a system or component are
complete and correct, the products of each development phase fulfill the
requirements or conditions imposed by the previous phase, and the final
system or component complies with specified requirements”.
Traditionally, verification and validation can be defined separately, and the
following distinction is made between both terms:

•	 Verification can be defined as “the process of evaluating a system or
component to determine whether the products of a given development

	

	
	
	

	

	
	
	

126 Chapter 4. Design flows and methodologies

phase satisfy the conditions imposed at the start of that phase” [IEE04,
Section 3.1.36].

•	 Validation can be defined as “the process of providing evidence that
the software and its associated products satisfy system requirements
allocated to software at the end of each life cycle activity, solve the
right problem, and satisfy intended use and user needs” [IEE04, Sec
tion 3.1.35].

In essence, verification controls design steps separately while validation
checks the final system against its initial requirements. This difference is
often summarized as follows: verification ensures that “the system has been
built right” while validation ensures that “the right system has been built”.
Also, verification is performed during system design, while validation is per
formed both during system design (i.e., pre-release) and system operation
(i.e., post-release). In practice, it is not always easy to distinguish between
the verification activities and those validation activities performed during
system design.

Further reading:
▷	 Wikipedia: Verification and validation
▷	 Wikipedia: Verification and validation (software)
▶	 Wikipedia: Validation

Depending on the design flow considered, quality steps (i.e., verification
and validation) may use formal methods or not. In this respect, the term
“verification” can be misleading because it is often associated with formal
methods (e.g., [ISO10] defines verification as a “formal proof of program
correctness”); however, most design flows not based on formal methods rely
on testing to perform verification.
In practice, there are many different techniques for implementing quality
steps: the main ones are presented in the present chapter. Such techniques
depend on the goals of quality steps and their place in the design flow; for
instance, the techniques for checking initial steps and integration steps differ.
Fundamentally, a quality step is almost always a comparison between two
design artifacts, e.g., comparison between a model and a (generic or spe
cific) property, between a program and a property, between a model and a
program, between two models, between two properties, etc.
As for design steps, automation of quality steps is a desirable goal, although
this is not always theoretically possible and practically feasible.
Like design steps, quality steps may be defective too and, due to human
mistakes or software tool flaws, produce incorrect results. They may also

http://en.wikipedia.org/wiki/Verification_and_validation
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Validation

	

	

	
	

	
	

	
	
	

	
	
	

	

	

	
	

	
	

	
	
	

	
	
	

127 4.3. Design flows

fail to produce results at all (e.g., by never terminating or by exhausting
memory). One usually distinguishes between two types of issues affecting
quality steps:

•	 False positive (or false reject or type I error): a quality step incorrectly
reports an error where none exists (i.e., a false alarm is generated
about a non-existent correctness bug or security vulnerability);

•	 False negative (or false accept or type II error): a quality step fails to
identify an existing error (i.e., a correctness bug or a security vulner
ability is not discovered).

Further reading:
▶	 Wikipedia: False alarm
▶	 Wikipedia: Type I and type II errors

The vocabulary is sometimes confusing as certain publications on formal
methods permute the definitions of “false positive” and “false negative”. In
the present report, however, we stick to the standard definitions.

4.3.5 Revision steps

With its design and quality steps, a design flow does not always progress
forward; under certain circumstances, it may be forced to regress backwards,
undoing steps already done and formerly considered as stable. Such circum
stances occur either during system design (i.e., pre-release), e.g. when:

•	 quality steps detect errors,
•	 initial requirements or environment assumptions evolve,
• certain components are replaced by slightly different ones,

or after field deployment on the field (i.e., post-release), e.g. when:
•	 errors are reported and fixed (corrective maintenance),
•	 enhancements or functionalities are added (evolutive maintenance),
•	 components are reused and refactored for next-generation systems.

Further reading:
▶	 Wikipedia: Software maintenance
▶	 Wikipedia: Rewrite (programming)
▶	 Wikipedia: Code refactoring

http://en.wikipedia.org/wiki/False_alarm
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Rewrite_(programming)
http://en.wikipedia.org/wiki/Code_refactoring

	
	
	

	
	
	

128 Chapter 4. Design flows and methodologies

To take into account such changes, which are unavoidable, we introduce the
concept of revision steps, which usually occur at unforeseeable places in the
design flow.
The existence of revision steps gives design flows an iterative character
(which appears explicitly in terms such as “design cycle” and “life cycle”)
because revisions require to modify certain design artifacts resulting from
prior steps; system designers must therefore go back and redo, in a different
way, certain design and quality steps already completed.
When a revision step becomes necessary after a quality step — i.e., when
some error has been detected while comparing two design artifacts (e.g., a
model and a property) — there are different ways of solving the problem:
one may modify one design artifact (e.g., the model) or the other (e.g., the
property) — or even both — until the comparison succeeds. Thus, a revision
step may affect early design steps (if the solution is to keep models/programs
unchanged and to adapt initial requirements) and/or late design steps (if
initial requirements are kept unchanged and models/programs are adapted).
The potentially disruptive effect of revision steps on quality should not be
underestimated: if changes are usually meant to repair errors and enhance
a system, they often introduce new errors too [CG93] [OW02]. This issue
will be further discussed in Section 4.4.3 below.

4.4 Methodological principles

Methodologies (also design methodologies or development methodologies) are
systematic ways of planning and organizing design steps and quality steps
from the initial requirements to the final product, taking into account defec
tive design steps and revision steps. The expected benefits of methodologies
are multiple:

•	 producing a system that satisfies its requirements and quality goals;
•	 developing this system in a timely and cost-efficient manner;
•	 enabling maintainability and evolvability of the system on the long

run.
Many methodologies have been proposed for system engineering, software
engineering, and hardware engineering. Some are specific to certain com
panies in which they are used internally, others are international standards
prescribed for defined application domains (e.g., safety-critical systems, se
curity systems, etc.).
Methodologies can be based or not on formal methods. However, even if
one can use a methodology without formal methods, methodologies are a
prerequisite for using formal methods.

129 4.4. Methodological principles

In spite of their differences, methodologies share common characteristics on
which we want to focus, rather than enumerating the specific traits of each
particular methodology. In the present section, we review five key principles
that most methodologies follow or should follow.

4.4.1 Seamless design flows

A design flow is seamless1 if the choice of languages and formalisms used
in this flow for properties, models, and programs ensures a semantics
preserving continuity between the successive design artifacts. A seamless
design flow allows itself to be seen as a coherent suite of steps, in which
each design artifact can be semantically related to the previous ones, and in
which all properties can be traced from the initial requirements to the final
product.
On the contrary, in non-seamless design flows, there are gaps and discrepan
cies arising from semantically incompatible languages and formalisms. This
creates opportunities for errors when switching between design artifacts,
prevents certain steps from being automated, and makes certification more
difficult when it is required.
Seamless design flows are strongly advocated by proponents of formal meth
ods, but conventional methodologies also recognize them as desirable too
and are increasingly looking in this direction.
Ideally, seamless design flows should encompass the entire life cycle, but in
today’s practice they only cover fragments of it. On the short term, one has
to combine several partial methodologies during the design of a system and,
on the long term, the challenge of providing a unified methodology remains.

4.4.2 Disciplined design flows

Although system design is, by essence a highly creative task, methodologies
aim at making it a controlled, systematic, auditable, and repeatable process.
Notice that repeatability is meant to ensure that (part of) the experience
acquired while building a system can be reused for next-generation systems.
To this aim, methodologies promote disciplined design flows based on struc
tured development and project management, with a particular emphasis on
the following points:

• design artifacts must be extensively documented;
• design decisions must be carefully justified;
• version control/version management tools must be used;

1The expression “seamless design flow” is taken from the hardware design vocabulary.

130 Chapter 4. Design flows and methodologies

Further reading:
▶ Wikipedia: Configuration management
▶ Wikipedia: Revision control
▶ Wikipedia: Software configuration management

• bug/issue tracking tools must be used.

Further reading:
▶ Wikipedia: Defect tracking
▶ Wikipedia: Bug tracking system
▶ Wikipedia: Issue tracking system
▶ Wikipedia: Project management software
▶ Wikipedia: Computer-aided software engineering

For safety-critical systems, such provisions are required by all guidelines
and standard methodologies; the more critical a system or subsystem is, the
more disciplined its design flow must be.
For security-critical systems, additional measures (such as access control,
personnel monitoring, security audits, etc.) must be taken to prevent fraud
or subversion.
Such provisions contribute to detect errors, to ensure traceability throughout
the design, to ease future revisions of the system, and to maintain hardware
and software integrity. Additionally, documentation of design artifacts and
justification of design decisions provide a basis to formulate properties that
will be tested or verified during quality steps.

4.4.3 Management of changes

Disciplined design flows tend to discourage design changes that are not
strongly justified. But this is not enough: a suitable methodology should
also encourage design changes that are justified, and assist system designers
in applying those changes.
In particular, methodologies should help to preserve, on the long run, mutual
consistency between design artifacts during revision steps. To illustrate the
risks of consistency losses on a simple example, let us consider a system
that has been designed in two steps, using first a modeling language and
then a programming language; as software bugs are found and fixed after
the system is deployed on field, one should modify not only the program
but also, whenever needed, the model as well; otherwise this model, if not
properly updated, will soon diverge from the program, and will become
certainly useless and possibly harmful to system maintenance.

http://en.wikipedia.org/wiki/Configuration_management
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Software_configuration_management
http://en.wikipedia.org/wiki/Defect_tracking
http://en.wikipedia.org/wiki/Bug_tracking_system
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Project_management_software
http://en.wikipedia.org/wiki/Computer-aided_software_engineering

	

	

	

	

	
	
	

	

	

	

	

	
	
	

131 4.4. Methodological principles

There are various ways in which methodologies can avoid or attenuate the
disruptive impact of revisions steps:

•	 Design steps should have a fine granularity, both to reduce verification
complexity and enable frequent incremental changes: indeed, small
steps are easier to validate — during quality steps — and easier to
undo and redo — following revision steps — than big monolithic steps.
Moreover, fine granularity gives greater chances to keep certain steps
unchanged in spite of revisions.

•	 Modularity and abstractions — namely, models using components
with carefully restricted interfaces, and properties relying on black-box
(rather than white- or grey-box) observability — should be favored,
as they help to reduce the amount of changes caused by revisions.

•	 Methodologies should help to determine which steps are made obsolete
by a given revision step and must be subsequently undone and redone.
This determination should be (at least, partially) automated using
software tools, and should be as precise as possible to avoid undoing
and redoing more steps than needed.

•	 In addition to tracking which steps are affected by changes, method
ologies should assist system designers by automatically propagating
the consequences of changes whenever possible. This is obviously eas
ier for automatic (rather than semi-automatic or manual) design and
quality steps.

These principles for change management are already implemented, at least
for specific phases of design flows, in various tool-supported methodologies.

Further reading:
▶	 Wikipedia: Application lifecycle management
▶	 Wikipedia: Change control
▷	 Wikipedia: Software maintenance

4.4.4 Traceability of requirements

Methodologies seek to ensure, especially for life- and mission-critical sys
tems, the traceability of requirements through the life cycle. The goal is to es
tablish, document, and maintain correspondence links between the top-level
requirements and all other lower-level design artifacts (properties, models,
programs, test cases, test results, verification results, documentation, etc.)

http://en.wikipedia.org/wiki/Application_lifecycle_management
http://en.wikipedia.org/wiki/Change_control
http://en.wikipedia.org/wiki/Software_maintenance

	

	

	
	

	

	

	
	

132 Chapter 4. Design flows and methodologies

during all design steps, possibly including execution after the system has
been deployed and is in service. Traceability has a bidirectional role:

•	 Forward traceability records the consequences of each requirement on
the design artifacts developed during subsequent design steps and
checked during related quality steps.

•	 Backward traceability records the evolution of each requirement by
documenting its origin, its chronological modifications, as well as the
reasons and persons associated with such changes.

Further reading:
▶	 Wikipedia: Traceability#Software development
▶	 Wikipedia: Requirements traceability

In practice, traceability can be tedious to establish and maintain over time,
especially because it must address both formal and informal design arti
facts [GF94]. Also, consensus is often lacking on which information is impor
tant for traceability, as different stakeholders have different concerns about
the system under design. However, when properly done, traceability may
contribute to quality and long-term maintainability by helping:

1. To ensure that each requirement has been taken into account in the
final product and duly checked during the quality steps;

2. To detect whether the final product implements extra-functionalities
that were not mandated by the initial requirements;

3. To foresee the consequences on implementation of a change in require
ments, and vice versa.

4.4.5 Early detection of errors

As stated before, all methodologies aim at minimizing the introduction of
errors and maximizing the detection of those already present.
Obviously, the detection of errors should be reliable, so as to avoid or reduce
occurrences of false negatives (which threaten the quality of the system
under design) and false positives (which waste the time of system designers).
It is also essential to detect and remove errors as soon as possible because
the cost of correcting an error increases with the time elapsed since the
introduction of this error. This idea is well expressed in [Rus93]2: “It is

2We slightly rephrase his wording here, keeping the intending meaning unchanged.

http://en.wikipedia.org/wiki/Traceability#Software_development
http://en.wikipedia.org/wiki/Requirements_traceability

133 4.5. Quality by design principles

simple and cheap to insert a missed requirement that is caught during system
requirements review; it is usually equally cheap and simple to correct a
coding bug caught during unit test; but it can be ruinously expensive to
correct such a missed requirement if it is not detected until the system has
been coded and is undergoing integration test”.
Several experimental studies support this idea, e.g. [BMU75] [End75] [Fai85].
Quoting [Rus93] again: “Data presented by [Fai85, pp. 48–50] show that
it is 5 times more costly to correct a requirement fault at the design stage
than during initial requirements, 10 times more costly to correct it during
coding, 20 to 50 times more costly to correct it at acceptance testing, and
100 to 200 times more costly to correct the problem once the system is in
operation”. The latter statement is confirmed by [BB01, Law 1]: “Finding
and fixing a software problem after delivery is often 100 times more expensive
than finding and fixing it during the requirements and design phase”.
Therefore, a fundamental goal of most methodologies is to detect and correct
all kinds of errors as early as possible, thus reducing the cost of problem
resolution. This is clearly the mission of quality steps. An obvious approach
is to associate a quality step to each design step in order to eliminate (as
much as possible) all errors introduced in this design step before proceeding
to the next one, but there are other ways of organizing the design flow to
address this goal; this will be discussed in Section 4.6.1.
The effectiveness of a methodology on a given project can be monitored by
computing a leakage rate defined as the delay (or the number of steps in the
design flow) between the introduction and detection of errors. The better
the methodology, the lower this rate.

4.5 Quality by design principles

Before considering methodologies in more detail, we wish to emphasize that
quality can be enhanced by adequate decisions regarding the structure and
architecture of the system under design. We thus present seven design prin
ciples, which are “orthogonal” to any particular methodology but whose
application is, to a large extent, specific to the system under design. These
principles either try to avoid errors by addressing their root causes, or try
to handle remaining errors by containing or mitigating their effects.

4.5.1 Simplicity

The complexity of software and hardware designs is continuously increasing.
However, complexity is the source of many errors and the major obstacle
to quality. The more complex a system, the more difficult for humans to
understand it and for tools to analyze it automatically and exhaustively.

134 Chapter 4. Design flows and methodologies

Therefore, the prime principle for good design is to strive for simplicity and
fight complexity to keep the system as small and straightforward as possible.
A first cause of complexity is the introduction of superfluous system features.

Further reading:
▶ Wikipedia: Bullet-point engineering
▷ Wikipedia: Feature creep
▷ Wikipedia: Software bloat

But complexity may also be caused by inappropriate design decisions or
programming techniques, and by involved algorithmic solutions for which
system designers are lacking prior experience.

Further reading:
▶ Wikipedia: Accidental complexity
▶ Wikipedia: Essential complexity

There is quite often a tradeoff between simplicity and efficiency: the restric
tions laid by certain methodologies or design guidelines in order to increase
quality may have the undesirable effect of degrading performance. The loss
in efficiency should be reasonable so that methodologies and guidelines re
main acceptable for system designers.

4.5.2 Modularity and reusability

Most methodologies, either based or not on formal methods, promote the
use of components (see Section 3.2) for system design. Indeed, the advan
tages of modularity (encapsulation, flexibility, maintainability, readability,
reusability, etc.) are widely acknowledged.

Further reading:
▷ Wikipedia: Component-based software engineering
▶ Wikipedia: Modular design
▶ Wikipedia: Modular programming
▷ Wikipedia: Information hiding
▷ Wikipedia: Code reuse
▶ Wikipedia: Reusability
▶ Wikipedia: Software design pattern

http://en.wikipedia.org/wiki/Bullet-point_engineering
http://en.wikipedia.org/wiki/Feature_creep
http://en.wikipedia.org/wiki/Software_bloat
http://en.wikipedia.org/wiki/Accidental_complexity
http://en.wikipedia.org/wiki/Essential_complexity
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Modular_design
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Software_design_pattern

	
	

	

	

	

	

	
	

	

	
	

	

	

	

	

	
	

	

135 4.5. Quality by design principles

▶	 Wikipedia: Software factory
▶	 Wikipedia: Software product line

However, component-based design is no silver bullet and faces several issues:

•	 In general, there is no simple, systematic approach to modular
ity because several possible decomposition strategies exist (see Sec
tion 3.2.2). Methodological guidelines and tool support are often lack
ing to assist system designers for this task.

•	 Designing interfaces properly is a difficult task, which requires careful
decisions about which information will be hidden or exposed. The
correlation between quality of interfaces and software errors has been
established [CSB+10]. Needless to mention that this question is even
more crucial for hardware/software interfaces.

•	 Reusing validated components (or algorithms) from prior systems con
tributes to enhancing the quality of new systems [DGPK+12]. How
ever, such an evolutionary rather than revolutionary approach to sys
tem design is not free from risks. Major problems may arise when
reusing components in a new context that no longer satisfies the (often
implicit) assumptions under which these components were developed
and validated. This was indeed the case with the X-31 aircraft [Dor91]
[Rus93, pp. 135–136] (reuse of air data logic dating back to the mid
1960s), the Therac 25 radiotherapy engine [Lev95] (reuse of code from
the Therac 6 and Therac 20), and the Ariane 5 rocket [Lio96] (reuse
of code from Ariane 4).

Further reading:
▶	 Anomalies in Digital Flight Control Systems –

http://www.csl.sri.com/users/rushby/anomalies.html
▷	 Wikipedia: Therac-25
▶	 Wikipedia: Cluster (spacecraft)

Also, reusing commercial off-the-shelf components (e.g., processors,
network equipments, operating systems, etc.) may be cheaper than
developing proprietary solutions, but raises severe issues if components
targeting at the mass market do not reach the levels of quality required
for life- or mission-critical systems.

•	 Decomposing a system into components usually helps to reduce
design complexity and makes quality steps easier as certain test

http://en.wikipedia.org/wiki/Software_factory
http://en.wikipedia.org/wiki/Software_product_line
http://www.csl.sri.com/users/rushby/anomalies.html
http://www.csl.sri.com/users/rushby/anomalies.html
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Cluster_(spacecraft)

136 Chapter 4. Design flows and methodologies

ing/verification techniques take advantage of modularity by replacing
complex checks at system level with smaller ones at component level.

However, component-based design is far from removing complexity en
tirely because the mathematical complexity of a system does not only
depend on the intrinsic complexity of each component (e.g., its number
of lines of code); it also depend on the number of components and the
way they are composed together (e.g., their sequential, quasi-parallel,
or parallel execution, their interconnections, their mutual dependen
cies, the possible existence of feedback loops between them, etc.).

Further reading:
▶ Wikipedia: Coupling (computer programming)
▶ Wikipedia: Cohesion (computer science)
▶ Wikipedia: Connascence (computer programming)

Complexity issues are a major concern for quality steps, in which Aris
totle’s statement (“The properties of the whole are not a sum of the
properties of the parts”) is fully relevant. Indeed, the fact that all com
ponents satisfy a given property does not guarantee that their compo
sition will also satisfy this same property. Said differently, there are
numerous global properties at system level (e.g., absence of deadlocks,
causality, determinism, etc.) that cannot be easily inferred from local
properties at component level.

In practice, it is often possible to check components individually, but
the algorithmic cost of checking their composition is not necessarily
linear: even with a proper decomposition, this cost can be polynomial
or exponential in the size and/or complexity of individual components.

In the particular case where a global property can be deduced from
local properties at a low algorithmic cost, this property is said to be
compositional. Occurrences of compositionality are fortunate, yet rare.

4.5.3 Separation of concerns

Separation of concerns is an essential design principle supported by many
methodologies, including component-based design. Formally, it is a
functionality-based decomposition (see Section 3.2.2) that consists in sepa
rating different features (or viewpoints) of a system to address each of them
in isolation.

http://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://en.wikipedia.org/wiki/Connascence_(computer_programming)

137 4.5. Quality by design principles

Further reading:
▶ Wikipedia: Concern (computer science)
▶ Wikipedia: Separation of concerns

This principle is intensively used when designing the architecture of safe
systems and secure systems (it is often referred to as “separation of safety
concerns”, “separation of safety and control”, “separation of safety and non
safety”, “separation of security concerns”, etc.). Those parts of a system
that are safety- or security-critical are encapsulated in a reduced number of
components clearly separated from other system’s features. Naturally, such
critical components should be as few and as simple as feasible.
Such separation greatly simplifies the quality steps, which can focus on crit
ical components in full detail, whereas less critical components may receive
a less demanding (thus, less expensive) examination.
For the sake of completeness, let us mention finally the existence of cross
cutting concerns that affect many parts of a system simultaneously and can
not be encapsulated nicely into components; such situations are addressed
by dedicated approaches, particularly aspect-oriented programming (see Sec
tion 4.6.5).

Further reading:
▷ Wikipedia: Cross-cutting concern

4.5.4 Testability and verifiability

In order to detect errors as soon as possible, the models and programs devel
oped for the system under design should enable quality steps (e.g., testing
and verification) to be performed easily. The aforementioned principles of
simplicity, modularity, and separation of concerns obviously contribute to
this aim, but additional specific provisions are also necessary.
A key idea is to incorporate the needs of quality steps as requirements for
the design. This approach, which is used in both hardware and software
design, is known as design for testing and design for verification.
As a consequence, design steps must take into account constraints originat
ing from quality steps. For instance, certain models or programs may have
to be written in a suitable form that enables automatic test generation or
formal verification. Also, the system may be enriched with extra features
only intended for testing or verification and not available to its final users.

http://en.wikipedia.org/wiki/Concern_(computer_science)
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Cross-cutting_concern

138 Chapter 4. Design flows and methodologies

Further reading:
▶ Wikipedia: Design for testing

This approach also leads to the theoretical notions of testability and verifia
bility, which try to estimate the probability that design errors are detected
during quality steps.

Further reading:
▶ Wikipedia: Software testability

4.5.5 Partitioning and containment

Modularity and separation of concerns help to divide a monolithic system
into components during its design. But, in the final implementation of the
system, it is frequent that components that were conceptually separated dur
ing the design become dependent from each other because they use common
resources (e.g., they execute on the same processor or they share memory,
buses, network interfaces, file systems, etc.).
Such dependencies introduced at the implementation level raise difficult
problems in safety-critical systems. In particular, a critical component C1

sharing resources with a less critical (thus, less tested and less verified) com
ponent C2 may have its execution perturbated by C2. For instance, errors
(such as memory corruption) arising from C2 may propagate to C1 (see
[Add91] for an example). Also, an excessive use by C2 of shared resources
(processor, bus, network, etc.) may prevent C1 from operating normally. As
a consequence, any component C2 sharing resources with a critical compo
nent C1 should be considered to be as critical as C1.
The problems are somehow similar in security-critical systems. A trusted
component C1 may be attacked by another component C2 that for doing so
would exploit its dependencies with C1.
The solution to these problems is called partitioning. It consists in ensuring a
proper isolation between resource-sharing components, so that components
that were considered to be independent during their design remain inde
pendent during their execution. In addition to enforcing modular design
properties at run time, partitioning has a containment mission: preventing
error propagation and malicious attacks. There are two main partitioning
approaches:

http://en.wikipedia.org/wiki/Design_for_testing
http://en.wikipedia.org/wiki/Software_testability

	

	

	
	
	
	
	

	
	
	
	
	

	

	

	
	
	
	
	

	
	
	
	
	

139 4.5. Quality by design principles

•	 Physical partitioning suppresses (or greatly reduces) dependencies be
tween components by assigning them to separate (or loosely coupled)
computing platforms. This is the classical approach for safety-critical
systems (e.g., airplanes embedding multiple computers aboard) and
security-critical systems (e.g., secure computers connected by private
networks isolated from the Internet). It is very reliable, but costly in
equipment and maintenance.

•	 Logical partitioning attempts at providing the same isolation guar
antees as physical partitioning even when components actually share
resources. This is done by enhancing the execution environment with
dedicated hardware and/or software mechanisms that prevent undesir
able interactions between components. There are numerous examples
of logical partitioning, among which: memory management units, op
erating systems, real-time kernels, separation kernels, sandboxes, etc.

Further reading:
▶	 Wikipedia: Memory management unit
▶	 Wikipedia: Operating system
▶	 Wikipedia: Real-time operating system
▷	 Wikipedia: Separation kernel
▶	 Wikipedia: Sandbox (computer security)

In many industries there is a trend towards increased integration of
many features on the same circuit or computer (e.g., integrated mod
ular avionics, system on chip, X-by-wire with bus multiplexing issues,
etc.). Logical partitioning is an ambitious technological response to
this trend, which is a major challenge for quality.

Further reading:
▶	 Wikipedia: Integrated modular avionics
▷	 Wikipedia: System on chip
▶	 Wikipedia: Brake-by-wire
▶	 Wikipedia: Drive-by-wire
▶	 Wikipedia: Fly-by-wire

However, convenience has its price: the hardware and/or software
mechanisms of logical partitioning must be proven correct because
they are as critical as the most critical component they have to iso
late. In particular, one should demonstrate that they can cope with

http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Separation_kernel
http://en.wikipedia.org/wiki/Sandbox_(computer_security)
http://en.wikipedia.org/wiki/Integrated_modular_avionics
http://en.wikipedia.org/wiki/System_on_chip
http://en.wikipedia.org/wiki/Brake-by-wire
http://en.wikipedia.org/wiki/Drive-by-wire
http://en.wikipedia.org/wiki/Fly-by-wire

140 Chapter 4. Design flows and methodologies

exceptional conditions (such as hardware faults) and that each compo
nent runs identically when executing alone or on an execution platform
fully loaded with other components.

4.5.6 Redundancy and diversity

Hardware redundancy is a proven technique to increase the dependability
of a system by replicating its hardware components that are likely to fail
during system operation. This technique enables to detect and overcome
standard hardware failures, whether permanent or transient.

Further reading:
▶ Wikipedia: Redundancy (engineering)

Redundancy is not limited to hardware, but also applies to information as
well; for instance, data structures may include extra bits for control check
sums, and communication protocols may retransmit data packets that have
been lost or corrupted by the network.

Further reading:
▶ Wikipedia: Replication (computer science)
▶ Wikipedia: State machine replication
▶ Wikipedia: Checksum
▶ Wikipedia: Retransmission (data networks)

Redundancy has also been extrapolated from hardware to software, for
which it is known as software redundancy, design diversity, multi-version
programming, multiple-version dissimilar software, or N -version program
ming [Avi85] [Avi95]. The basic idea is to ensure the quality of a given crit
ical component by developing several independent implementations of this
component (e.g., each implementation being developed by a different com
pany, using a different programming language and/or a different compiler)
and executing these implementations simultaneously (e.g., each running in
parallel on a different processor). A supervision system observes the outputs
of these implementations (which may disagree if some of them are defective)
and computes the “most likely” decision, for instance using majority voting.

Further reading:
▶ Wikipedia: N-version programming

http://en.wikipedia.org/wiki/Redundancy_(engineering)
http://en.wikipedia.org/wiki/Replication_(computer_science)
http://en.wikipedia.org/wiki/State_machine_replication
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Retransmission_(data_networks)
http://en.wikipedia.org/wiki/N-version_programming

	

	

	

	

	

	

	

	

	

	

	

	

141 4.5. Quality by design principles

▶ Software Fault Tolerance (CMU) – Section on N-version software –
http://www.ece.cmu.edu/~koopman/des s99/sw fault tolerance

Software redundancy is tempting because it suggests that quality could al
ways be increased by pouring more money and manpower into a project, and
that this could be done using traditional design steps only (rather than qual
ity steps, which are more difficult and costly). Yet, this approach presents
several shortcomings and risks:

•	 Software redundancy might mask design errors but does not fix them.

•	 It relies on the assumption of “ideal” specifications that enable the ex
istence of diverse yet comparable and interoperable implementations.

•	 Increasing the volume of code by a multiplicative factor goes against
simplicity and may weaken, rather than strengthen, the overall quality
(including long-term maintainability) of the system.

•	 The supervision system is itself a critical component, as critical as the
original component for which software redundancy was used. The su
pervision system should thus be simple enough to be provably correct.
Unfortunately, this is not always the case in practice; for instance
[Rus93, pp. 47 and 138] reports that “redundancy management is suf
ficiently complex and difficult that it can become the primary source
of unreliability in a flight-control system”, explaining that “the redun
dancy management code [...] is stressed by [...] unusual combination of
events” such as “component failures and exceptions of various kinds”
and that “the simultaneous (and unanticipated) arrival of two or more
rare events seems to be the most common cause of severe failure”.

•	 Software bugs are of a different nature than hardware faults, and
one cannot exclude that incorrect software implementations, rather
than stopping, continue their execution by sending erroneous outputs.
Thus, software redundancy must cope with more complex situations
(namely, Byzantine faults) than hardware redundancy, which usually
deals only with fail-safe or transient faults.

•	 A fundamental conjecture of software redundancy is that independence
of programming efforts guarantees that errors will occur independently
in the multiple implementations of the same component. However, in
certain experiments [KL86] [KL90] [BKL90] [ECK+91] this conjecture
does not hold, as “distinct development groups working from a com
mon specification will produce software having the same bugs” — see
also the related discussion in Section 4.3.3 above.

http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance

	

	

	
	
	

	

	

	
	
	

142 Chapter 4. Design flows and methodologies

In spite of these criticisms, software redundancy has been used for significant
safety- and security-critical projects (e.g., in aerospace, railway interlocking,
nuclear reactor, and electronic voting systems) [Bis95]. A crucial method
ological question remains: is it better to opt for a single (thoroughly tested
and verified) software implementation or for multiple software implementa
tions with redundancy? Scientific and economic rationale for such a decision
are still unclear [PSL00] [LPS00] [LPS01] but the former approach seems to
be preferred nowadays.
Let us mention finally the concept of recovery blocks [RX95], which can be
seen as a sequential version of software redundancy (combined with excep
tion handling). In this approach, there are still several implementations of
the same component, but they are not executed in parallel. The most ef
ficient implementation is executed first and, if it fails, another less efficient
(e.g., older) and hopefully more reliable implementation retries the compu
tation, and so on. The essential drawback of this approach is the increase
in complexity: all implementations of a component have the same level of
criticality, as well as the mechanisms to detect failed computations and roll
back their effects.

Further reading:
▶	 Software Fault Tolerance (CMU) – Section on recovery blocks –

http://www.ece.cmu.edu/~koopman/des s99/sw fault tolerance

4.5.7 Fault tolerance and fail safety

Finally, when faults are unavoidable, various techniques can be employed to
mitigate their effects in order to maintain dependability and performability:

•	 Fault tolerance (or graceful degradation) aims at enabling a system to
continue its operation (normally, or in a moderately degraded manner)
despite the occurrence of faults or failures. Fault tolerance has many
facets. At the hardware level, it relies on partitioning and redundancy.
At the software level is the field of software fault tolerance [Lyu95],
which uses mechanisms such as redundancy, checkpointing, roll-back
recovery, passivation, self-stabilization, etc.

Further reading:
▷	 Wikipedia: Fault-tolerant design
▷	 Wikipedia: Fault-tolerant system
▷	 Wikipedia: Fault-tolerant computer system

http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance
http://en.wikipedia.org/wiki/Fault-tolerant_design
http://en.wikipedia.org/wiki/Fault-tolerant_system
http://en.wikipedia.org/wiki/Fault-tolerant_computer_system

	
	
	
	
	

	

	
	

	
	
	
	
	

	

	
	

143 4.6. Conventional design flows

▶	 Wikipedia: Maintenance, repair, and operations
▶	 Wikipedia: Software fault tolerance
▶	 Wikipedia: Byzantine fault tolerance
▶	 Wikipedia: Application checkpointing
▶	 Wikipedia: Self-stabilization

•	 Fail-safe design specifically addresses safety requirements. It consists
in designing the system in such a way that it will, upon occurrence
of severe faults or failures, enter a particular functioning mode (called
safe mode or safe state) in which the system no longer risks to cause
catastrophes. There are other guidelines to be followed for fail-safe
design, such as the clear separation between safety and non-safety
related functionalities.

Further reading:
▶	 Wikipedia: Fail-safe
▶	 Wikipedia: Safety instrumented system

4.6 Conventional design flows

In this section, we present the essential traits of conventional methodologies
for hardware, software, and system design. By using the term “conven
tional”, we deliberately exclude all aspects related to formal methods —
formal aspects will be specifically addressed in Section 4.7. We successively
review the overall organization of conventional design flows, their design
steps and quality steps, and finally discuss their limitations.

4.6.1 Organization of conventional design flows

Many methodologies have been proposed and there is a rich literature about
them. Although the vocabulary and definitions vary across methodologies,
the underlying concepts are often the same; we therefore focus on “generic”
principles common to most approaches. Methodologies usually share similar
goals — developing products reliably and timely — but differ on the best
way to organize design steps, quality steps, and revision steps together. We
briefly mention, out of all the proposed approaches, four typical ones3:

1. The waterfall model, which prescribes a careful attention to the early
design steps, but in which revision steps are almost impossible;

3Here, the term “model” has a different meaning than everywhere else in this report.

http://en.wikipedia.org/wiki/Maintenance,_repair,_and_operations
http://en.wikipedia.org/wiki/Software_fault_tolerance
http://en.wikipedia.org/wiki/Byzantine_fault_tolerance
http://en.wikipedia.org/wiki/Application_checkpointing
http://en.wikipedia.org/wiki/Self-stabilization
http://en.wikipedia.org/wiki/Fail-safe
http://en.wikipedia.org/wiki/Safety_instrumented_system

144 Chapter 4. Design flows and methodologies

Further reading:
▶ Wikipedia: Waterfall model
▶ Wikipedia: Big Design Up Front
▶ Wikipedia: Structured systems analysis and design method
▶ Wikipedia: DOD-STD-2167A

2. The V model, which proposes a balanced combination of design steps,
quality steps, and revision steps;

Further reading:
▶ Wikipedia: V-Model (software development)
▶ Wikipedia: Dual Vee Model

3. The iterative and spiral models, which split design flows into successive
cycles with frequent revision steps;

Further reading:
▶ Wikipedia: Iterative design
▶ Wikipedia: Iterative and incremental development
▶ Wikipedia: Spiral model

4. The rapid application development model (and its agile, extreme, lean,
scrum, etc. variants), which are short-cycle iterative models with em
phasis on (rapid) prototyping, early testing, and adaptive (rather than
predetermined) planning.

Further reading:
▶ Wikipedia: Rapid application development
▶ Wikipedia: Continuous design
▶ Wikipedia: Software prototyping
▶ Wikipedia: Agile software development
▶ Wikipedia: Extreme programming
▶ Wikipedia: Lean software development
▶ Wikipedia: Scrum (development)
▶ Wikipedia: Feature-driven development
▶ Wikipedia: Test-driven development

http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Big_Design_Up_Front
http://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
http://en.wikipedia.org/wiki/DOD-STD-2167A
http://en.wikipedia.org/wiki/V-Model_(software_development)
http://en.wikipedia.org/wiki/Dual_Vee_Model
http://en.wikipedia.org/wiki/Iterative_design
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Continuous_design
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Feature-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

	

	

	

	

	

	

	

	
	
	

	

	

	

	

	

	

	

	
	
	

145 4.6. Conventional design flows

The respective merits and drawbacks of these methodologies could lead to
lengthy discussions. To remain in the scope of this report, we restrict our
selves to a few remarks:

•	 These methodologies propose an idealized vision for the entire design
flow and, thus, may be too rigid in some situations; in practice, one
must sometimes escape from a methodology for certain aspects of a
system, or apply different methodologies to different parts of a system.

•	 Conventional methodologies are seeking for quality and early error de
tection but differ in the means to achieve these goals. For instance, the
waterfall and V models recommend that a design starts by producing
high-quality requirements that will remain relatively stable afterwards,
whereas the iterative and rapid application development models allow
for an incremental construction of requirements through frequent up
dates and prototype experiments.

•	 Methodologies must support components and, thus, have to be com
bined with the (somewhat orthogonal) component-based approaches
for the design flow mentioned in Section 3.2.1, namely:

–	 Top-down design: taking into account requirements and archi
tectural constraints, the system is progressively decomposed into
(recursively nested) components.

–	 Bottom-up design: the system is built by reusing (possibly with
some adaptations) components that already exist and composing
them together.

Further reading:
▶	 Wikipedia:

Top-down and bottom-up design#Computer science

•	 To get close to the seamless design flow objective (see Section 4.4.1),
conventional methodologies rely on build automation, which fully au
tomates certain parts of the design flow, and continuous integration,
which performs, as much as possible, quality steps automatically.

Further reading:
▶	 Wikipedia: Build automation
▶	 Wikipedia: Continuous integration
▶	 Wikipedia: Multi-stage continuous integration

http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#Computer_science
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#Computer_science
http://en.wikipedia.org/wiki/Build_automation
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Multi-stage_continuous_integration

	

	
	
	
	

	

	

	
	
	
	

	

146 Chapter 4. Design flows and methodologies

4.6.2 Conventional design steps: requirements

During the initial steps of a design flow (see Section 4.3.2), the top-level
specifications of the system under design are established. These specifica
tions include the requirements, which state what the system is expected to
do and not to do4, and which constraints it should satisfy. They also include
environment assumptions, which express fundamental hypotheses about the
environment in which the system will be deployed.

Further reading:
▷	 Wikipedia: Requirement

Establishing appropriate top-level specifications beforehand is of crucial im
portance, as these specifications, whether good or bad, will significantly
impact, positively or negatively, all subsequent steps of the design flow.
Unfortunately, it is a very difficult task — more of an art than a sci
ence. Moreover, system designers are often eager to undertake the modeling
and implementation tasks, and thus neglect top-level specifications. How
ever, methodological guidelines (known as requirements engineering) exist
[GW89] [KS98] [Wie03].

Further reading:
▶	 Wikipedia: Requirements engineering
▶	 Wikipedia: Requirements analysis
▶	 Requirements Engineering Specialist Group – http://www.resg.org.uk
▶	 IEEE International Requirements Engineering Conference –

http://requirements-engineering.org

Methodologies identify distinct activities to be performed systematically,
although not necessarily in a strictly sequential order:

•	 Requirements elicitation (also requirements capture) consists in collect
ing requirements from stakeholders for the system under design (e.g.,
customers, engineers, marketing people, etc.). This is done through in
terviews and meetings. Establishing good requirements requires both
engineering domain knowledge and communication skills to get the
right people involved, to conduct interviews and meetings effectively,
to reach a common understanding of vocabulary and concepts between
stakeholders, and to resolve conflicts between persons of different back
grounds and interests.

4Knowledge of what the system should not do is essential for safety-critical systems.

http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Requirements_engineering
http://en.wikipedia.org/wiki/Requirements_analysis
http://www.resg.org.uk
http://requirements-engineering.org
http://requirements-engineering.org

	

	

	

	

	

	

	

	

	

	

147 4.6. Conventional design flows

Requirements are clearly declarative specifications rather than opera
tional ones (see Section 3.3.1). They gather aims, constraints, expec
tations, goals, needs, and preferences about the system under design.
They are not limited to software only and cover both functional and
non-functional aspects of the system (see Section 3.5.4 for examples).

Further reading:
▶	 Wikipedia: Requirements elicitation

•	 Requirements negotiation (also requirements prioritization) consists in
arbitrating between conflicting requirements (taking into account cri
teria such as cost, safety, risk, value, etc.) and selecting which candi
date requirements will be considered for the system under design.

Further reading:
▶	 Wikipedia: Requirement prioritization

•	 Requirements specification (also requirements expression) consists in
clarifying, structuring, and documenting the requirements in a usable
manner. There exists standard recommendations for software require
ments specifications [IEE98].

Further reading:
▶	 Wikipedia: Software requirements specification

In conventional design methodologies, requirements and environment
assumptions are often expressed informally, mostly in natural language
or structured natural language. A survey [MFN04, Figure 5] points
out that 79% of user requirements documents are written in common
natural language, and 16% are written in structured natural language
(e.g., templates, forms, etc.) — only 5% use a formalized language.
However, (structured) natural language has drawbacks (see Sec
tion 3.5.3) and easily leads to requirements plagued by the seven
sins of the specifier (see Section 3.5.1). For this reason, conventional
methodologies may supplement when appropriate — especially when
the system under design is complex — informal specifications in nat
ural language with semi-formal ones, e.g., tables, diagrams, and other
semi-formal notations for models (see Section 3.4.3) and properties
(see Section 3.5.3).

http://en.wikipedia.org/wiki/Requirements_elicitation
http://en.wikipedia.org/wiki/Requirement_prioritization
http://en.wikipedia.org/wiki/Software_requirements_specification

	

	

	

	

	

	

	

	

	

	

148 Chapter 4. Design flows and methodologies

A standard file format named ReqIF (or RIF, for Requirements In
terchange Format) exists to store requirements in a portable, vendor
neutral way [EJ12].

Further reading:
▶	 OMG Requirements Interchange Format (ReqIF) –

http://www.omg.org/spec/ReqIF

•	 Requirements validation (also requirements verification, requirements
testing, or requirements quality control) consists in checking require
ments to enhance their quality. This will be detailed in Section 4.6.6.

At a more global level, requirements management seeks to ensure a disci
plined handling of requirements. Three main issues are to be addressed:

•	 Storage and retrieval of requirements: For large systems, there may
exist thousands of requirements, together with data dictionaries and
glossaries. Each requirement is assigned a unique name (e.g., an
alphanumeric identifier), associations with design artifacts (e.g., use
cases, scenarios, etc.), and tags (e.g., scope, priority, etc.) that can
be used to classify requirements. A central issue is to organize and
access large collections of requirements, keeping the correspondence
between requirement names, definitions, tags, and artifacts, recording
the chronological history of requirements, and storing their mutual
dependencies. This is usually done using data bases and related tools.

•	 Management of changes: Methodologies should cope with evolutions
of requirements, which are unavoidable in practice for several reasons.
At some point, system designers have to stop working on requirements
and proceed to the next design steps; if requirements are not perfect,
they will be enhanced at a later stage. Also, certain requirements
are intrinsically stable because they define the essence of a system,
while others are volatile (and, thus, more likely to change) as they
relate to a particular instance of a system. Finally, frequent revisions
of requirements are considered as normal, and even encouraged, by
certain methodologies such the iterative, spiral, and rapid application
development models.

•	 Traceability: Methodologies should support the traceability of require
ments (see Section 4.4.4) all along the design flow, with evolving re
quirements. This requires additional traceability-specific tasks and
documents. In particular, the correspondence between requirements
and design artifacts/design steps is usually kept in a traceability ma
trix, possibly with the help of data bases and dedicated software tools.

http://www.omg.org/spec/ReqIF
http://www.omg.org/spec/ReqIF

	
	

	
	
	
	
	
	
	
	
	

	

	

	
	

	
	
	
	
	
	
	
	
	

	

	

149 4.6. Conventional design flows

Further reading:
▶	 Wikipedia: Requirements management
▶	 Wikipedia: Traceability matrix

4.6.3 Conventional design steps: models and programs

After the initial steps devoted to requirements and environment assump
tions, the next design steps usually produce architectural and detailed spec
ifications, models, and programs for the system under design. These steps
are well known, so we will not present them in detail.

Further reading:
▶	 Wikipedia: Systems architecture
▶	 Wikipedia: Systems architect
▷	 Wikipedia: Software architecture
▶	 Wikipedia: Software architect
▶	 Wikipedia: Hardware architect
▷	 Wikipedia: Software design
▶	 Wikipedia: Design specification
▶	 Wikipedia: Software design document
▶	 Wikipedia: Object-oriented analysis and design

For a comparison of models and programs, see Section 3.4.2. Also, is worth
reminding the practice of prototyping (or rapid prototyping), which plays a
central role in methodologies based on the iterative, spiral, and rapid ap
plication development models. A prototype is an early specification (using
an executable modeling language) or an early implementation (using a pro
gramming language) of the system under design. Only certain parts of this
system may be considered (partial model) and certain details may be ig
nored (abstract model). A prototype is usually built on the basis of the
requirements produced during the initial steps of the design flow and may
have two roles:

•	 When the requirements are unstable, prototyping helps to better un
derstand the requirements by making them tangible, to detect poten
tial defects in requirements, and to solicit stakeholders’ feedback about
the future system (this is requirements validation — see Section 4.6.6).

•	 When the requirements are stable, prototyping enables to quickly ex
periment with certain design/implementation solutions and study their
consequences (this is design space exploration).

http://en.wikipedia.org/wiki/Requirements_management
http://en.wikipedia.org/wiki/Traceability_matrix
http://en.wikipedia.org/wiki/Systems_architecture
http://en.wikipedia.org/wiki/Systems_architect
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_architect
http://en.wikipedia.org/wiki/Hardware_architect
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Design_specification
http://en.wikipedia.org/wiki/Software_design_document
http://en.wikipedia.org/wiki/Object-oriented_analysis_and_design

	
	

	

	

	

	

	

	
	

	

	

	

	

	

150 Chapter 4. Design flows and methodologies

After being built and analyzed, prototypes may help to design and imple
ment the “real” system; afterwards, they are thrown away.

Further reading:
▶	 Wikipedia: Prototype
▷	 Wikipedia: Software prototyping

The two next Sections go further into design steps related to models and
programs in conventional methodologies, focusing on aspects directly rele
vant to quality and, indirectly, to formal methods. Following the distinction
between design steps made in Section 4.3.2, manual steps are considered first
(in Section 4.6.4) and automatic steps are considered next (in Section 4.6.5).

4.6.4 Conventional design steps: manual steps

Manual steps are intrinsically risky because design tasks are complex and
prone to human mistakes. But the risk is significantly increased when using
mainstream modeling languages (e.g., UML, statecharts, etc.), hardware
design (e.g., SystemC, Verilog, etc.) or software programming languages
(e.g., C, C++, etc.) with constructs posing specific challenges, namely:

•	 Constructs whose meaning is either imprecise (lack of formal se
mantics) or implementation-dependent (meaning that different inter
preters, simulators, translators, compilers — and even microprocessors
— may interpret these constructs differently), so that unexpected er
rors may arise when the system is moved to a new execution platform.

•	 Constructs that are potentially unsafe, in the sense that any single
part of a program may provoke a failure of the entire program, e.g.,
corrupting the memory or call stack.

•	 Constructs that are potentially insecure, because there is no built-in
protection against misuse (e.g., systematic checks when dereferencing
pointers or accessing array elements), thus leading to vulnerabilities
such as buffer overflows, unchecked malicious inputs, etc.

Further reading:
▶	 A Guide to Undefined Behavior in C and C++ (Part 1) –

http://blog.regehr.org/archives/213
▶	 A Guide to Undefined Behavior in C and C++ (Part 2) –

http://blog.regehr.org/archives/226

http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Software_prototyping
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/226
http://blog.regehr.org/archives/226

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

151 4.6. Conventional design flows

▶	 A Guide to Undefined Behavior in C and C++ (Part 3) –
http://blog.regehr.org/archives/232

▶	 Wikipedia: C dynamic memory allocation#Common errors
▶	 Wikipedia: Crash (computing)
▶	 Wikipedia: Infinite loop
▶	 Wikipedia: Memory corruption
▶	 Wikipedia: Dangling pointer
▶	 Wikipedia: Heap overflow
▶	 Wikipedia: Stack overflow
▶	 Wikipedia: Stack buffer overflow
▶	 Wikipedia: Buffer overflow
▶	 Wikipedia: Improper input validation
▶	 Wikipedia: Uncontrolled format string
▶	 Wikipedia: Arithmetic overflow
▶	 Wikipedia: Integer overflow

To address these issues, a natural solution is to switch to better languages
purposely designed to enforce safety and/or security properties. Such safe
and/or secure languages usually provide a higher level of abstraction, type
safety, memory safety, and, possibly, a formal semantics. By avoiding risk
prone constructs and limiting the expressiveness offered to the programmer,
these languages eliminate certain classes of errors and guarantee certain
properties (e.g., absence of certain run-time errors), either by making it
impossible to write programs containing such errors — such programs are
said to be correct-by-construction with respect to these properties — or by
enabling code-checking tools to detect such errors automatically.
Notice that this is a programming-oriented instance of the classical “freedom
vs security” philosophical tradeoff. The essence of safe/secure languages is
to authorize only those programs that can be proven to satisfy “good” prop
erties; other programs are rejected, either because they do not satisfy these
properties, or because the compiler cannot prove easily (i.e., using sufficient
conditions computable in reasonable time) that they do. In practice, such a
compromise — made at the price of forbidding rightful programs — is only
acceptable for programmers if the “good” properties are well-chosen and if
the sufficient conditions are not overly restrictive, so that rightful program
ming intents can always be expressed in some way the compiler accepts.

Further reading:
▷	 Wikipedia: Type system
▶ Wikipedia: Strong typing
▶ Wikipedia: Weak typing

http://blog.regehr.org/archives/232
http://blog.regehr.org/archives/232
http://en.wikipedia.org/wiki/C_dynamic_memory_allocation#Common_errors
http://en.wikipedia.org/wiki/Crash_(computing)
http://en.wikipedia.org/wiki/Infinite_loop
http://en.wikipedia.org/wiki/Memory_corruption
http://en.wikipedia.org/wiki/Dangling_pointer
http://en.wikipedia.org/wiki/Heap_overflow
http://en.wikipedia.org/wiki/Stack_overflow
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Improper_input_validation
http://en.wikipedia.org/wiki/Uncontrolled_format_string
http://en.wikipedia.org/wiki/Arithmetic_overflow
http://en.wikipedia.org/wiki/Integer_overflow
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Strong_typing
http://en.wikipedia.org/wiki/Weak_typing

	

	
	
	
	
	
	

	

	

	

	
	
	
	
	
	

	

	

152 Chapter 4. Design flows and methodologies

▶	 Wikipedia: Type safety
▶ Wikipedia: Memory safety

These principles have deeply impacted mainstream programming languages.
Regarding safety: carefully-designed languages such as Ada or Eiffel solve
most safety weaknesses present in C and C++; functional languages (such
as ML) avoid long-standing issues related to uninitialized variables, mutable
union discriminants, dangling pointers, and aliasing; synchronous languages
(such as Lustre) make it impossible to write concurrent programs with dead
locks; etc. Regarding security: Java comes with a Security Manager and re
lated concepts (e.g., application/applet control, security domains, security
policies, etc.) that have no equivalent in C++.

Further reading:
▷	 Wikipedia: ML (programming language)
▷	 Wikipedia: Lustre (programming language)
▶	 Wikipedia: Ada (programming language)
▶	 Wikipedia: Eiffel (programming language)
▶	 Wikipedia: Cyclone (programming language)
▶	 Oracle Java Tutorials: The Security Manager –

http://docs.oracle.com/javase/tutorial/essential/environment/security.html

If using safe and/or secure languages is not considered to be feasible — e.g.,
due to staff training or code legacy reasons — several measures can be taken
to reduce the risks of using imprecise and permissive languages:

•	 Best coding practices: There exist professional guidelines and recom
mendations on the best way of using computer languages to avoid
known causes of correctness bugs and security vulnerabilities. In par
ticular, defensive programming insists on writing robust programs that
can cope with unexpected situations: this requires, for instance, to
carefully check input values and subroutine parameters, to insert as
sertions, preconditions, and postconditions at appropriate places in
the code, to handle exceptions systematically [MO00], to use secure
libraries, etc.

Further reading:
▶	 Wikipedia: Best Coding Practices
▶ Wikipedia: Coding conventions

http://en.wikipedia.org/wiki/Type_safety
http://en.wikipedia.org/wiki/Memory_safety
http://en.wikipedia.org/wiki/ML_(programming_language)
http://en.wikipedia.org/wiki/Lustre_(programming_language)
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://en.wikipedia.org/wiki/Cyclone_(programming_language)
http://docs.oracle.com/javase/tutorial/essential/environment/security.html
http://docs.oracle.com/javase/tutorial/essential/environment/security.html
http://en.wikipedia.org/wiki/Best_Coding_Practices
http://en.wikipedia.org/wiki/Coding_conventions

	
	
	
	
	
	
	
	
	
	

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	

	

	

	

	

	

153 4.6. Conventional design flows

▷	 Wikipedia: Defensive programming
▷	 Wikipedia: Assertion (computing)
▶	 Wikipedia: Precondition
▶	 Wikipedia: Postcondition
▶	 Wikipedia: Bounds checking
▶	 Wikipedia: Data validation
▶	 Wikipedia: Secure input and output handling
▶	 Wikipedia: Exception handling
▶	 Wikipedia: Automated exception handling
▶	 G. Holzmann’s Ten Rules for Developing Safety-Critical Code

– http://spinroot.com/gerard/pdf/Power of Ten.pdf
▶	 Software Engineering Institute (Carnegie Mellon): Secure

Coding rules – http://www.cert.org/secure-coding

•	 Safe and/or secure language subsets: To prohibit risk-prone constructs
from a safety or security point of view, there exist restricted subsets of
permissive mainstream languages (e.g., MISRA C for C and JavaCard
for Java). Similarly, certification guidelines for safety-critical systems
rule out potentially unsafe language features (such as nondeterminism,
recursion, dynamic memory allocation, etc.) unless the correctness of
programs using these features is mathematically proven — which, in
practice, dissuades programmers from using these features.

Further reading:
▶	 Wikipedia: MISRA C
▶ Wikipedia: Java Card

•	 Quality steps: The quality of models and programs should be care
fully controlled using techniques described below; when imprecise and
permissive languages are used, quality control should be even stricter.

4.6.5 Conventional design steps: automatic steps

As mentioned in Section 4.3.2, there are many kinds of automatic steps.
Some are specific to hardware design:

Further reading:
▶	 Wikipedia: Silicon compiler
▶ Wikipedia: High-level synthesis

http://en.wikipedia.org/wiki/Defensive_programming
http://en.wikipedia.org/wiki/Assertion_(computing)
http://en.wikipedia.org/wiki/Precondition
http://en.wikipedia.org/wiki/Postcondition
http://en.wikipedia.org/wiki/Bounds_checking
http://en.wikipedia.org/wiki/Data_validation
http://en.wikipedia.org/wiki/Secure_input_and_output_handling
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Automated_exception_handling
http://spinroot.com/gerard/pdf/Power_of_Ten.pdf
http://spinroot.com/gerard/pdf/Power_of_Ten.pdf
http://www.cert.org/secure-coding
http://www.cert.org/secure-coding
http://en.wikipedia.org/wiki/MISRA_C
http://en.wikipedia.org/wiki/Java_Card
http://en.wikipedia.org/wiki/Silicon_compiler
http://en.wikipedia.org/wiki/High-level_synthesis

	
	
	
	
	
	
	
	

	

	
	
	
	

	

	
	
	
	
	
	
	
	

	

	
	
	
	

	

154 Chapter 4. Design flows and methodologies

▶ Wikipedia: Logic synthesis
▶ Wikipedia: Place and route

while others are specific to software design:

Further reading:
▶	 Wikipedia: Preprocessor
▶	 Wikipedia: Compiler
▶	 Wikipedia: Optimizing compiler
▶	 Wikipedia: Program optimization
▶	 Wikipedia: Code generation (compiler)
▶	 Wikipedia: Macro (computer science)
▶	 Wikipedia: Template processor
▶	 Wikipedia: Translator (computing)
▶ Wikipedia: Source-to-source compiler
▶ Wikipedia: Automatic programming

Besides these well-known automatic steps, there are two innovative ap
proaches to code generation that are worth mentioning:

•	 Aspect-oriented programming addresses the problematic of cross
cutting concerns (see Section 4.5.3) in system design; from a unique,
centralized description of a desirable property (or aspect), source code
— often of repetitive nature — is generated automatically and inserted
at many places, in many components of the system.

Further reading:
▶	 Wikipedia: Aspect (computer programming)
▶	 Wikipedia: Aspect-oriented programming
▶	 Wikipedia: Aspect-oriented software development
▶	 Wikipedia: Aspect weaver

•	 Model-driven engineering represents models of systems as decorated
syntax trees, and modeling languages as abstract grammars called
metamodels. This enables automated syntax-directed transformations
of models and/or programs, such as code generation, code refactoring,
code specialization, etc.

http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Place_and_route
http://en.wikipedia.org/wiki/Preprocessor
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Optimizing_compiler
http://en.wikipedia.org/wiki/Program_optimization
http://en.wikipedia.org/wiki/Code_generation_(compiler)
http://en.wikipedia.org/wiki/Macro_(computer_science)
http://en.wikipedia.org/wiki/Template_processor
http://en.wikipedia.org/wiki/Translator_(computing)
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://en.wikipedia.org/wiki/Automatic_programming
http://en.wikipedia.org/wiki/Aspect_(computer_programming)
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_software_development
http://en.wikipedia.org/wiki/Aspect_weaver

	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	

	

	

155 4.6. Conventional design flows

Further reading:
▷	 Wikipedia: Model-driven architecture
▷	 Wikipedia: Model-driven engineering
▷	 Wikipedia: Metamodeling
▶	 Wikipedia: Model transformation
▶	 Wikipedia: Model transformation language
▶	 Wikipedia: Transformation language
▷	 Wikipedia: Code refactoring

In principle, because they eliminate human intervention and the corollary
risk of human mistakes, automatic steps are less risk-prone than man
ual steps. However, one should neither exclude the possibility of non
intentional errors in compilers/translators (programmers may commit mis
takes when implementing complex algorithms) nor the threat of intentional
errors (malevolent programmers may introduce backdoors, Trojan horses, or
other vulnerabilities [Tho84]). Quality steps should assume that automatic
steps can be defective too and appropriately address this possibility.
Having presented the design steps in conventional methodologies, we now
consider, in the next sections, the quality steps used in those methodologies.

4.6.6 Conventional quality steps: requirements validation

Requirements validation (also requirements verification, requirements test
ing, or requirements quality control) has two missions:

•	 They must ensure that the requirements produced during the initial
steps (see Section 4.6.2) of the design flow accurately express the de
sires, intentions, and needs of the stakeholders for the system under
design. The goal is to make sure that those who produced the require
ments correctly understood (more often than not, guessed) the stake
holders’ expectations, taking into account that there is no higher-level
system description against which the requirements could be compared.

•	 They must also ensure that the requirements are appropriate to be
used as a basis for subsequent design steps. The goal is to catch (most
of) the defects that might have been introduced in the requirements,
keeping in mind that requirements are mostly informal or semi-formal
in conventional methodologies.

These two missions correspond, respectively, to the validation and verifica
tion parts of V&V activities (see Section 4.3.4) for requirements. However,

http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Metamodeling
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation_language
http://en.wikipedia.org/wiki/Transformation_language
http://en.wikipedia.org/wiki/Code_refactoring

156 Chapter 4. Design flows and methodologies

most authors globally denote both missions under the single term of require
ments validation, a choice that we will follow too in this report.
To be usable for the next design steps, suitable requirements should possess
various qualities. A primary list of qualities expresses that requirements
should be free from well-known defects, such as the seven sins of the specifier
(see Section 3.5.1). Namely, requirements should be:

• Correct, i.e., faithfully express the stakeholders’ expectations;
• Complete, i.e., express all these expectations (no omission, no silence);
• Consistent, i.e., do not conflict with each other (no contradiction);
• Precise, i.e., not subject to diverging interpretations (no ambiguity);
• Focused, i.e., not containing irrelevant information (no noise);
• Abstract, i.e., not mixed with design decisions (no overspecification);
• Feasible, i.e., realistically implementable (no wishful thinking).

There are also secondary, yet desirable qualities. Requirements should be:
• Well-formulated, to be readable and understandable;
• Well-structured, e.g., by concerns, by functionalities, etc.;
• Concise, to avoid unnecessary verbosity and redundancies;
• Conforming to relevant standards (unless justified deviations);
• Testable or verifiable during subsequent quality steps.

Requirements validation is of crucial importance because errors committed
during the initial steps are most difficult and costly to detect and repair
later and, if not, often cause serious failures after the system is deployed.
Moreover, experimental studies indicate that requirement errors are a large
(if not the largest) source of errors in system design. For instance, [KSH92],
after 203 reviews of five software-intensive NASA projects, reports that “the
highest density of defects was observed during requirements inspections”
(1.9 defects per page in the requirements, compared to 0.6–0.9 defects per
page in subsequent design artifacts); [Lut93], after analyzing the Voyager
and Galileo spacecraft software, concludes that “difficulties with require
ments is the key root cause of the safety-related software errors which have
persisted until integration and system testing” (respectively 30% and 49% of
all persistent errors in Voyager and Galileo software, and even 62% and 79%
when considering safety-critical functional errors alone [Lut92, Table 3b]);
[HGP09] evaluates to 33% the proportion of requirement errors for a large
scale NASA mission; the Altran-Praxis company estimates that “48% of
the sources of project failure are requirements problems” and “41% of sys
tem errors are introduced during the requirements phase”5; [Rus11] states
that “although no aircraft crash has been attributed to software, there have
been some incidents that should raise concern: these are invariably traced
to flawed requirements”.

5Source: http://www.altran-praxis.com/reveal.aspx – Retrieved on 2012-09-08.

http://www.altran-praxis.com/reveal.aspx

	

	

	

	

	

	

	

	

	

	

	

	

157 4.6. Conventional design flows

In conventional methodologies, requirements validation is mostly empirical
and, for doing so, the literature proposes multiple heterogeneous techniques,
with only a few attempts (e.g., [KS06]) at unifying concepts. There are two
main reasons for this: first, human communication is central in require
ments validation, which solicits stakeholders’ feedback to make sure that
the requirements are correct; second, when requirements are informal or
semi-formal (see Section 4.6.2), the task of validating them cannot be au
tomated; yet, it is still possible to argument and reason informally about
them for enhancing their quality. These are the main techniques for vali
dating requirements:

1.	 Reviews: requirements documents are submitted to a panel of examin
ers (including stakeholders) who will search for defects, usually follow
ing predefined guidelines or checklists (e.g., [Lut96] for safety-critical
embedded systems). See Section 4.6.7 for details about reviews.

2.	 Translation: requirements are reformulated in another notation. For
instance, informal requirements (e.g., in natural language) can be
translated into semi-formal ones (e.g., diagrams). Translation usu
ally reveals defects. Also, the translated requirements can passed for
examination to other reviewers with a different background.

3.	 Documentation: based on requirements, user manuals are drafted and
then proof-read (e.g., by future customers or end users). This forces
to look carefully at certain requirements, but only those related to the
external functionality and usability of the system.

4.	 Prototyping: to exercise the requirements, (parts of) the system can be
described in an executable modeling language or a programming lan
guage (see Section 4.6.3). The resulting prototype implementation(s)
can be shown to stakeholders to demonstrate in advance the future
system and get early feedback about it.

5.	 Testing: for each testable requirement, one or several test cases are
developed to check whether the final system will satisfy this require
ment or not. Of course, traceability links between requirements and
their associated test cases must be recorded. Developing test cases
before the system is available is an effective way of finding require
ments defects. These test cases may help explaining to stakeholders
the proposed system behavior and can later be applied to the actual
system or models of it. See below Sections 4.6.9 and 4.6.11 on testing.

6.	 Specific analyses: even if the requirements are not formal, one can use
them as a basis to perform (mostly manually) various analyses about
feasibility, correctness, dependability, security, etc. Although certain

	

	

	

	

	

	

158 Chapter 4. Design flows and methodologies

approaches have been successful in finding requirements errors (see,
e.g., [LW97] for safety analyses), they are often limited to surface-level
analyses and seem to be gradually replaced by automated analyses
done on formal models.

Requirements validation is a difficult task in conventional methodologies:

•	 During the initial steps, requirements evolve very fast. In particular,
requirements validation triggers revision steps to modify requirements.
Consequently, all derived artifacts produced during requirements val
idation (namely, translations, user manuals, prototypes, test cases,
analysis results) soon become obsolete unless a continuous effort is
made to keep them up to date.

•	 Although there are usually more defects in requirements, the detection
of defects during requirements validation may be less reliable than
during later steps of the design flow. For instance, [Rus93] reports that
“a quick count of faults detected and eliminated during development
of the space shuttle on-board software indicates that about 6 times as
many faults leak through requirements analysis, than leak through the
processes of code development and review”.

•	 There is no sensible measure of coverage that would help to quantify
the progress of requirements validation.

4.6.7 Conventional quality steps: reviews

Reviews are a key technique for quality control in system design. They
consist in submitting design artifacts to a committee of human examiners,
who will search for defects and, optionally, suggest fixes for these defects.
The rationale underlying reviews is the difficulty for design artifact authors
(designers, programmers, etc.) to detect their own mistakes.
Reviews can take place in most phases of the design flow, from the initial
requirements to the final product. Virtually all kinds of design artifacts
prepared by humans can be reviewed, and this equally applies to artifacts
produced during design steps (e.g., requirements, models, programs, etc.)
and during quality steps (e.g., tests, properties to be verified, etc.). Of
course, a disciplined design flow (see Section 4.4.2) must guarantee that the
artifacts reviewed are exactly those used to build the final product.
Reviews have been originally studied by Michael E. Fagan [Fag76] [Fag86]
[Fag99] and their principles are now standardized [IEE08]. A number of al
ternative terms (e.g., audit, examination, inspection, scrutiny, walkthrough)
are used to designate particular forms of reviews with varying characteristics

159 4.6. Conventional design flows

such as: the status of reviewers (customers, end users, domain specialists,
system designers, programmers, security experts, managers, external audi
tors, etc.), the degree of rigor (structured/formal6 or informal), the expected
result (insight gained from peer discussion, or pass/fail verdict), etc.
Well-structured, effective reviews [KSH92] [GG93] [Wie01] are often con
ducted using questionnaires (or checklists) that state the pursued goals and
enumerate precise points to be addressed. There are also entry criteria,
which impose quality constraints on design artifacts to make sure that these
have reached a sufficient level of maturity and readability before they are
reviewed, and exit criteria that determine when the examination of design
artifacts should be considered as complete, so that the next design steps can
be undertaken with little risk.
Participants in structured reviews fulfill different well-defined roles (authors,
readers, reviewers, moderators, secretaries, etc.); they may also have to con
sider the reviewed artifacts under diverse perspectives in order to detect
multiple kinds of defects. In active reviews [PW87], the traditional au
thors/reviewers roles are reversed: authors ask questions about artifacts to
the reviewers to make sure that the latter properly studied the artifacts.
Reviews take time and money in their preparation and execution (typically,
15% of project cost according to [Fag86]). However, there is a general con
sensus about their positive return in terms of quality, schedule, and savings,
although the numbers vary from one author to another: [Fag86] indicates
that reviews can find 60–90% of all defects and teach programmers to avoid
mistakes in future developments; [Rus93] estimates that reviews can detect
50% of design and implementation errors, and even 70–80% when conducted
with greater rigor and frequency; [BB01, Laws 6 and 7] states that “peer
reviews catch 60% of the defects” and that “perspective-based reviews catch
35% more defects than nondirected reviews”; regarding return on invest
ment, [O’N03, page 84] concludes that the savings of software inspections
exceed costs by four to one.
Moreover, reviews enable to catch defects that escape other detection tech
niques: [SV01] reports that “60% of all issues raised in the code inspections
are not problems that could have been uncovered by latter phases of testing
or field usage because they have little or nothing to do with the visible exe
cution behavior of the software; rather, they improve the maintainability of
the code”; [ML09] confirms this finding, noticing that “75% of defects found
during the review do not affect the visible functionality of the software; in
stead, these defects improved software evolvability by making it easier to
understand and modify”.
However, reviews have several limitations:

6This notion characterizes the review process and is not related to formal methods.

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

160 Chapter 4. Design flows and methodologies

•	 They help discovering defects but give no guarantee that all defects
have been found.

•	 The results of reviews are usually not reproducible — for this reason,
[RTC92, Section 6.3] distinguishes between reviews, which “provide a
qualitative assessment of correctness”, and analyses, which “provide
repeatable evidence of correctness”.

•	 The effectiveness of reviews strongly depends on the availability, in
telligence, knowledge, and tenacity of the reviewers, whose areas of
expertise should be complementary.

•	 Reviews must be organized carefully to avoid personal conflicts that
are likely to arise when a panel evaluates professional work.

Further reading:
▶	 Wikipedia: Code audit
▶	 Wikipedia: Code review
▶	 Wikipedia: Fagan inspection
▶	 Wikipedia: Software inspection
▶	 Wikipedia: Software review
▶	 Wikipedia: Software audit review
▶	 Wikipedia: Software peer review
▶	 Wikipedia: Software technical review
▶	 Wikipedia: Software management review
▶	 Wikipedia: Software walkthrough
▶	 Wikipedia: Reverse walkthrough
▶	 Wikipedia: Static testing
▶	 Wikipedia: Technical peer review
▶	 Fraunhofer Inspection Repository – http://inspection.iese.de
▶	 Guide to Code Inspections – http://www.ganssle.com/inspections.htm

Let us finally mention the pair programming approach (also paired devel
opment), in which two persons develop code together by sharing the same
workstation. This approach — which is intensively used in, e.g., agile and
extreme methodologies — closely integrates design steps and quality steps
in order to avoid introducing mistakes or to detect them as soon as possible.

Further reading:
▶	 Wikipedia: Pair programming
▶	 Wikipedia: Collaborative software development model

http://en.wikipedia.org/wiki/Code_audit
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Fagan_inspection
http://en.wikipedia.org/wiki/Software_inspection
http://en.wikipedia.org/wiki/Software_review
http://en.wikipedia.org/wiki/Software_audit_review
http://en.wikipedia.org/wiki/Software_peer_review
http://en.wikipedia.org/wiki/Software_technical_review
http://en.wikipedia.org/wiki/Software_management_review
http://en.wikipedia.org/wiki/Software_walkthrough
http://en.wikipedia.org/wiki/Reverse_walkthrough
http://en.wikipedia.org/wiki/Static_testing
http://en.wikipedia.org/wiki/Technical_peer_review
http://inspection.iese.de
http://www.ganssle.com/inspections.htm
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Collaborative_software_development_model

	
	
	

	

	

	
	

	
	
	

	

	

	
	

161 4.6. Conventional design flows

4.6.8 Conventional quality steps: static analyses

To make reviews more effective, software tools have been developed, which
partly automate the task of human reviewers. Of course, automated reviews
are only possible for design artifacts that are under machine-processable
form (e.g., programs and models rather than informal requirements in nat
ural language). These tools can be used before reviews to enforce entry
criteria, i.e., to ensure that the artifacts are of sufficient quality to be re
viewed (see Section 4.6.7). But these tools can also be used independently
from reviews: to this aim, they are increasingly part of compilers, devel
opment tools, and integrated development environments, so that designers
and programmers can use them routinely.

Further reading:
▶	 Wikipedia: Automated code review
▶	 Wikipedia: Integrated development environment
▶	 Wikipedia: Programming tool

Most of these tools implement techniques collectively referred to static anal
ysis, the common principle of which being to study design artifacts (usually
software programs, sometimes hardware circuits) without actually executing
them. Static analysis tools play various roles in conventional methodologies:

•	 They can enforce traceability constraints, e.g., by checking whether
each initial requirement is duly handled in later models and programs.

•	 They control compliance with best coding practices/coding standards.
This is done by checking simple, factual properties such as:

– Is every function of the program less than 60-line long?
– Does each type identifier start with an upper-case letter?
– Are there implicit conversions between integers of different sizes?

for which there is a clear yes/no verdict and that can be easily verified
at the level of program syntax or static semantics (variable binding,
type checking, etc.).

Further reading:
▶	 Wikipedia: Syntactic methods
▶	 Wikipedia: Programming language#Static semantics

• They help detecting potential defects by checking more involved static
properties (see Section 3.5.6) about the correctness, dependability, or

http://en.wikipedia.org/wiki/Automated_code_review
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Syntactic_methods
http://en.wikipedia.org/wiki/Programming_language#Static_semantics

162 Chapter 4. Design flows and methodologies

security of design artifacts. Most of these properties are generic (see
Section 3.5.7), i.e., they are not directly derived from the initial re
quirements and should be relevant to most programs, e.g.:

– Does the program contain dead code?
– Are some variables read before being initialized?
– Does a function return a pointer to stack-allocated storage?

Other properties may be specific, i.e., based on user-defined rules,
for instance to scan for special kinds of mistakes discovered during
reviews, or to check the proper usage of (public or private) application
programming interfaces, e.g.:

– Can a file descriptor be closed twice?
– Is a socket used before being connected?
– Are interrupt flags restored without having been saved?

Because many of these properties are undecidable, static analysis tools
cannot always produce exact verdicts. Instead, they give approximate
answers (usually, warnings) with an inherent risk of false negatives
(undetected mistakes) and/or false positives (spurious warnings).

In conventional methodologies, static analyses usually rely on (in
traprocedural or interprocedural) control-flow and data-flow analyses
performed on the abstract syntax trees or control flow graphs built
from programs. Considering the example of the C programming lan
guage, static analyses have been initially implemented in dedicated
checkers, such as Lint [Joh78], LCLint [EGHT94], Metal [ECCH00],
PREfast and PREfix [LBD+04]. Modern C compilers gradually incor
porate some of these analyses, so that they can be used systematically.

Further reading:
▶ Wikipedia: Control flow graph
▶ Wikipedia: Dependency graph
▶ Wikipedia: Control flow analysis
▶ Wikipedia: Data-flow analysis
▶ Wikipedia: Lint (software)
▶ LCLint User’s Guide (Version 2.5) – http://www.splint.org/guide
▶ Wikipedia: Design rule checking

Static analyses can also be used to warn about potential security vul
nerabilities. For instance, the Splint checker [EL02] detects in C pro
grams vulnerability-prone situations such as potential buffer overflows,
violations of information hiding, dangerous pointer aliasing, etc. Sim
ilar tools are being developed for checking Web applications.

http://en.wikipedia.org/wiki/Control_flow_graph
http://en.wikipedia.org/wiki/Dependency_graph
http://en.wikipedia.org/wiki/Control_flow_analysis
http://en.wikipedia.org/wiki/Data-flow_analysis
http://en.wikipedia.org/wiki/Lint_(software)
http://www.splint.org/guide
http://en.wikipedia.org/wiki/Design_rule_checking

	
	
	
	
	

	

	
	
	
	
	
	
	

	
	
	
	
	

	

	
	
	
	
	
	
	

163 4.6. Conventional design flows

Further reading:
▶	 Wikipedia: Taint checking
▷	 Wikipedia: Splint (programming tool)
▶	 Splint Manual (Version 3.1.1-1) – http://www.splint.org/manual
▶	 Common Weakness Enumeration – http://cwe.mitre.org
▶	 Open Web Application Security Project –

https://www.owasp.org/index.php/Category:OWASP Top Ten Project

•	 Static analyses may also compute numerical (rather than Boolean) val
ues from design artifacts. This is the highly prolific and controversial
field of software metrics, some ideas of which are also applicable to
hardware and systems as well.

In their most primitive form, software metrics attempt at quantify
ing design/program complexity (software sizing problem). In general,
complexity cannot be reduced to a scalar number because there are
multi-dimensional sources of complexity; yet, this can easily be reme
died by using several complexity measures instead of a single one. For
doing so, various complexity definitions have been proposed.

Certain approaches — which really belong to static analysis — focus on
the source code of programs to compute various complexity measures,
from simply counting the number of lines of code to involved formulas
based on control-flow and/or data-flow structure. These definitions are
usually guided by the common sense and some of them have a truly
concrete meaning, such as cyclomatic complexity, which gives an upper
bound on the effort required for testing all branches of a program.

Further reading:
▷	 Wikipedia: Software metric
▶	 Wikipedia: Programming complexity
▶	 Wikipedia: Source lines of code
▶	 Wikipedia: Software package metrics
▶	 Wikipedia: Cyclomatic complexity
▶	 Wikipedia: Design predicates
▶	 Wikipedia: Halstead complexity measures
▶ Wikipedia: Weighted Micro Function Points

Other approaches operate on higher-level design artifacts than pro

grams and compute software complexity measures based on the func

tional requirements of a system. The key concept is that of function

http://en.wikipedia.org/wiki/Taint_checking
http://en.wikipedia.org/wiki/Splint_(programming_tool)
http://www.splint.org/manual
http://cwe.mitre.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Programming_complexity
http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Software_package_metrics
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Design_predicates
http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Weighted_Micro_Function_Points

	
	
	
	
	

	

	

	

	

	

	

	
	
	
	
	

	

	

	

	

	

	

164 Chapter 4. Design flows and methodologies

points [Alb79, Jon94], which express complexity in the number of func
tional processes, events, inputs/outputs, read/write to persistent data,
etc. that can be observed by an external user of the system. Variants
have been proposed, leading to five ISO international standards pro
moted by several professional associations. By analyzing requirements,
such approaches try to compute “the size of the problem” (indepen
dently of any implementation technology) whereas the approaches an
alyzing programs rather compute “the size of a solution”.

Further reading:
▶	 Wikipedia: Software sizing
▶	 Wikipedia: Function point
▶	 Wikipedia: Use Case Points
▶	 Wikipedia: COSMIC software sizing
▶	 Common Software Measurement International Consortium –

http://www.cosmicon.com
▶	 International Software Benchmarking Standards Group –

http://www.isbsg.org
▶	 International Function Point Users Group –

http://www.ifpug.org
▶	 The Netherlands Software Metrics Association –

http://www.nesma.nl/sectie/home
▶	 Software Benchmarking Organization –

http://www.sw-benchmarking.org
▶	 United Kingdom Software Metrics Association –

http://www.uksma.co.uk

Computing fine software metrics is an acceptable activity, but scientific
questions arise each time a metric result is extrapolated to be given an
“external” meaning different from what the metric definition actually
states. This occurs frequently, as proponents of software metrics seem
eager to find applications, which we can classify in two groups:

–	 Resources: Software metrics, combined with various other param
eters and statistical data collected from past software projects,
are often advocated as a means to predict the expected size of
a software implementation from its requirements, as well as the
effort, duration, and cost needed to develop this implementation
(software estimation problem). Their use is also suggested for
estimating projects progress, developers’ productivity, software
maintainability, and similar goals out of the scope of this report.

http://en.wikipedia.org/wiki/Software_sizing
http://en.wikipedia.org/wiki/Function_point
http://en.wikipedia.org/wiki/Use_Case_Points
http://en.wikipedia.org/wiki/COSMIC_software_sizing
http://www.cosmicon.com
http://www.cosmicon.com
http://www.isbsg.org
http://www.isbsg.org
http://www.ifpug.org
http://www.ifpug.org
http://www.nesma.nl/sectie/home
http://www.nesma.nl/sectie/home
http://www.sw-benchmarking.org
http://www.sw-benchmarking.org
http://www.uksma.co.uk
http://www.uksma.co.uk

	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	

	

	

165 4.6. Conventional design flows

Further reading:
▶	 Wikipedia: Software development effort estimation
▶	 Wikipedia: Cost estimation in software engineering
▶	 Wikipedia: Software parametric models
▶	 Wikipedia: Putnam model
▶	 Wikipedia: COCOMO
▶	 Wikipedia: COSYSMO
▶	 Wikipedia: SEER-SEM

–	 Quality: There are also claims that software metrics can measure
software correctness, dependability or security, for instance by es
timating the number of correctness bugs or security issues present
in a software program (fault density or fault prediction problem).
This is compatible with the intuitive idea that complexity has an
adverse impact on quality (see Section 4.5.1).
However, such claims are not scientifically well founded. First,
software metrics cannot bring a general solution to a problem that
is theoretically undecidable. Second, the heuristic rules encoded
by metric definitions do not correspond to standard correctness,
dependability, or security properties. Third, certain experimental
validation studies (e.g., [OWB05] [GWV08]) report a correlation
between predicted and actual errors on large software examples,
but other studies point out: the absence of any correlation (e.g.,
[BP84] [FO00]), the fact that various metrics provide diverging
quality estimations for the same software [LGL10], and the fact
that various commercial tools implement the same metrics in in
compatible ways [LLL08].

Further reading:
▷	 Wikipedia:

Cyclomatic complexity#Correlation to number of defects

When comparing software metrics with static analysis, it is worth
noticing that metrics neither indicate the exact location of errors
in code modules or routines, nor guarantee the absence of er
rors. Also, the usual software metrics computation algorithms
are far more rudimentary than the sophisticated static analysis
algorithms: giving precise information to developers seems to be
more involved than producing statistics for managers. This sug
gests that better software quality metrics could be obtained by
simply counting the warnings of state-of-the-art static analyzers.

http://en.wikipedia.org/wiki/Software_development_effort_estimation
http://en.wikipedia.org/wiki/Cost_estimation_in_software_engineering
http://en.wikipedia.org/wiki/Software_parametric_models
http://en.wikipedia.org/wiki/Putnam_model
http://en.wikipedia.org/wiki/COCOMO
http://en.wikipedia.org/wiki/COSYSMO
http://en.wikipedia.org/wiki/SEER-SEM
http://en.wikipedia.org/wiki/Cyclomatic_complexity#Correlation_to_number_of_defects
http://en.wikipedia.org/wiki/Cyclomatic_complexity#Correlation_to_number_of_defects

	

	
	

	

	

	

	
	

	

	

166 Chapter 4. Design flows and methodologies

To conclude, static analyses — with the possible exception of software met
rics — enhance quality by quickly finding errors or vulnerabilities that might
have stayed undetected otherwise. For instance, [LBD+04] reports that Mi
crosoft’s PREfast and PREfix tools revealed a significant proportion (12.5%)
of the bugs fixed in Windows Server 2003.
However, conventional static analysis tools have two limitations. First, they
only check for certain classes of errors, possibly omitting errors in these
classes as well as other kinds of mistakes. Second, they usually generate
false positives that need to be processed manually, possibly with the help
of error-filtering tools. To overcome these limitations, analyses of a greater
algorithmic complexity and based on formal methods are required.

Further reading:
▷	 Wikipedia: Static program analysis

4.6.9 Conventional quality steps: dynamic analyses

Contrary to static analyses, which attempt at finding errors in design arti
facts without executing them, dynamic analyses rely on the actual execution
of design artifacts. These artifacts may be either virtual (i.e., models or
prototypes) or real (i.e., software programs or hardware circuits); they may
represent the entire system or only some of its components. Their execution
is carefully observed to check for dynamic properties (see Section 3.5.6), es
pecially to detect anomalies such as unexpected or invalid outputs, run-time
errors, and violations of design requirements or environment assumptions.

Further reading:
▷	 Wikipedia: Run time (program lifecycle phase)
▶	 Wikipedia: Dynamic program analysis

There are two (non mutually exclusive) main observation techniques:

•	 Action-based (or event-based) observation: the inputs and outputs of
the design artifact are examined, possibly together with other events
(interrupts, exceptions, real-time clocks, etc.) to check whether certain
external properties hold (e.g., absence of undesirable events, correct
ordering of events specified by an observer automaton, etc.).

•	 State-based observation: the memory of the design artifact is scruti
nized to check for internal properties. This can be done using asser
tions inserted in the code or using probes, which enable variables to

http://en.wikipedia.org/wiki/Static_program_analysis
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Dynamic_program_analysis

	
	

	

	
	
	

	

	

	
	

	

	
	
	

	

	

167 4.6. Conventional design flows

be read and, possibly, modified during execution (modifying variables
may be useful, e.g., to place the system into a given state).

Further reading:
▷	 Wikipedia: Assertion (computing)
▶	 Wikipedia: Instrumentation (computer programming)

One distinguishes between four different forms of dynamic analysis:

1.	 Simulation refers to the dynamic analysis of virtual design artifacts.
The term animation is also used as a synonym for simulation. The
term co-simulation is used when simulating heterogeneous models
(e.g., systems combining hardware and software), possibly using sev
eral simulators; the notion of co-simulation will be further detailed in
Section 4.6.10 below.

Further reading:
▶	 Wikipedia: Computer simulation
▶	 Wikipedia: Model-based design
▶	 Wikipedia: Simulation#Computer simulation

2. Testing refers to the dynamic analysis of real design artifacts, before
the system is deployed.

Further reading:
▶	 Wikipedia: Dynamic testing
▶ Wikipedia: Software testing
▶ Wikipedia: System testing

Halfway between simulation and testing is model-based testing, which

uses a virtual design artifact as a basis for testing a real design artifact.

Further reading:
▶	 Wikipedia: Model-based testing

3. Run-time analysis refers to the dynamic analysis of real design arti
facts, after the system is deployed, and during its execution.

http://en.wikipedia.org/wiki/Assertion_(computing)
http://en.wikipedia.org/wiki/Instrumentation_(computer_programming)
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Model-based_design
http://en.wikipedia.org/wiki/Simulation#Computer_simulation
http://en.wikipedia.org/wiki/Dynamic_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Model-based_testing

	

	

	
	
	
	

	

	

	

	

	
	
	
	

	

	

168 Chapter 4. Design flows and methodologies

The terms run-time checking, run-time monitoring, run-time testing,
run-time validation, and run-time verification are often used as syn
onyms for run-time analysis. Also, the term “on-line” is sometimes
used in place of “run-time”.

Further reading:
▶	 Wikipedia: Runtime verification

4.	 Log analysis refers to the dynamic analysis of real design artifacts,
after the system is deployed, and after its execution.
The terms log checking, log monitoring, log validation, and log verifica
tion are used as synonyms for log analysis. Also, the terms “log file”,
“off-line”, and “trace” are sometimes used in place of “log”.

Further reading:
▶	 Wikipedia: Log analysis
▶	 Wikipedia: Computer data logging
▶	 Wikipedia: Log management and intelligence
▶	 Wikipedia: Tracing (software)

The dynamic execution of design artifacts can seen as deterministic or not:

•	 Artifacts with a sequential, quasi-parallel, or synchronous execution
flow are usually deterministic, so that known inputs entirely decide
which execution path will be taken. The execution of such an artifact
can thus be represented by a (possibly infinite) trace.

•	 Artifacts with an asynchronous execution flow are often nondetermin
istic, so that, even with known inputs, one cannot predict which execu
tion path will be taken because each state may have several alternative
futures, depending on the relative execution speeds of concurrent pro
cesses. The execution of such an artifact can thus be represented by a
(possibly infinite) tree — or even a general graph — or by a (possibly
infinite) set of traces.

The four forms of dynamic analysis differ by the degrees of freedom allowed
during execution and, consequently, by the corresponding semantic models.
With run-time analysis and trace analysis, each execution is always a trace,
as the inputs are entirely determined by the system environment and, even

http://en.wikipedia.org/wiki/Runtime_verification
http://en.wikipedia.org/wiki/Log_analysis
http://en.wikipedia.org/wiki/Computer_data_logging
http://en.wikipedia.org/wiki/Log_management_and_intelligence
http://en.wikipedia.org/wiki/Tracing_(software)

	

	

	

	
	
	

	

	

	

	

	

	
	
	

	

	

169 4.6. Conventional design flows

if the system is concurrent, the existence of universal time imposes a total
order on the events observed during a given execution.
With simulation and testing, the situation is different. The inputs are freely
chosen by the human operators in charge of the execution platform for simu
lation or testing (in practice, the inputs are often generated automatically by
programs developed by these operators). Also, if permitted by the platform,
the operators may control other sources of nondeterminism, such as timers,
random number generators, or concurrent process schedulers. Therefore,
when a state has several possible futures, the operator has some (partial or
total) flexibility of deciding which future will be explored. Such flexibility
has important implications:

•	 It enables diverse forms of simulation, depending on two orthogonal
criteria: the way of choosing between alternative futures, and the pos
sibility of storing certain previously visited states to perform back
tracking (see [Gar98] for a discussion). Usual forms of simulation are:

–	 Interactive (or step-by-step) simulation: the futures to be ex
plored are manually selected by a human operator, who provides
inputs and observes outputs. Additional features are often avail
able, such as backtracking to states in the past, or directly jump
ing to certain states of interest. Inputs can also be given in batch
mode, e.g., in a file containing a predefined sequence of inputs.

–	 Random simulation: the futures to be explored are automatically
selected using a pseudo-random decision-making method. This
form of simulation is often used for probabilistic analyses.

Further reading:
▶	 Wikipedia: Random walk
▶	 Wikipedia: Branching random walk
▶	 Wikipedia: Monte Carlo method

–	 Guided (or goal-oriented) simulation: the futures to be explored
are automatically selected according to some high-level strategy
specified by the operator (e.g., following a given scenario pattern,
searching for certain events of interest, etc.).

•	 It also enables diverse forms of testing, which are quite symmetric
to the aforementioned forms of simulation, with some differences due
to the fact that testing deals with real design artifacts (e.g., circuits
or programs, or components of them), whereas simulation deals with
models. In particular, testing usually gives little freedom to store
and jump back to previously visited states; unless some checkpointing

http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Branching_random_walk
http://en.wikipedia.org/wiki/Monte_Carlo_method

	

	

	

	

	

	

	

	

	

	

	

	

170 Chapter 4. Design flows and methodologies

mechanism is available, one must often reset the design artifact to
its initial state and re-execute the beginning of the previous scenario.
Usual forms of testing are:

–	 Symmetric to interactive simulation is directed testing, in which
a human operator or a computer program selects well-chosen in
puts to purposely exercise specific behaviors of the design artifact
under test. In this respect, program debugging can be considered
as a sub-case of manual testing.

Further reading:
▶	 Wikipedia: Error guessing
▶ Wikipedia: Happy path
▶	 Wikipedia: Debugger

–	 Symmetric to random simulation is random testing in which the
behavior to be exercised is automatically determined by randomly
varying the inputs and, possibly, other sources of nondeterminism
as well.

–	 Symmetric to guided simulation, there are combined approaches
in which the behavior to be exercised is automatically or semi
automatically determined on the basis of high-level goals defined
by the human operator.

Directed, random, and combined testing in conventional methodolo
gies will be further discussed in Section 4.6.11 below.

When the design artifact under analysis is complex enough, the data value
domains and the number of execution paths are often huge or even infinite;
for instance, the number of paths may grow exponentially in the number of
successive “if-then-else” conditionals. It is therefore infeasible to enumerate
all possible inputs, and only a finite (reasonably small) number of execution
paths can be simulated, tested, or executed.
Therefore, one must identify clever exploration strategies that give confi
dence in quality steps performed using dynamic analyses. More precisely,
when simulating or testing a design artifact using a test suite, i.e., a finite
collection of individual tests (also called test cases — each of which being
a finite-length sequence of inputs together with the expected outputs), two
questions arise:

•	 Test effectiveness: Which proportion of faults potentially present in
the design artifact can actually be detected by this test suite? This
question is about the quality of the dynamic analysis.

http://en.wikipedia.org/wiki/Error_guessing
http://en.wikipedia.org/wiki/Happy_path
http://en.wikipedia.org/wiki/Debugger

	

	

	
	

	

	

	

	
	

	

171 4.6. Conventional design flows

•	 Test adequacy (or completeness): Is this test suite large enough (one
needs a stopping rule to know when the design artifact has been “suffi
ciently” simulated or tested) and not too large (given that superfluous
tests cost time and money)? This question is about the quantity of
the dynamic analysis.

Both questions are, to a large part, dual: should an exact measurement of
effectiveness exist, then one could quantify adequacy on precise grounds.
They are also antagonistic: reducing the volume of testing may very well
degrade its fault-finding capabilities. Related issues are test reduction (can
one decrease the size of an existing test suite, still preserving its effective
ness?) and test selection (how to avoid redundancies when building test
suites, by making sure that each test addresses a different class of faults?).
In practice, these questions receive only approximate answers based on the
concept of test criteria (or test adequacy criteria, or test selection criteria)
[GG75, GG77] [Gou83] [ZHM97], which attempt at quantifying how well a
test suite exercises a design artifact. Many test criteria have been proposed
(see [ZHM97] for a survey), among which we highlight the main ones:

1.	 Input coverage (or domain coverage, or input data coverage, or in
put domain coverage) tries to assess how exhaustively the data value
domains of inputs have been exercised. In principle, exhaustivity is
desirable but may be impossible in practice if these domains are infi
nite or too large. In such case, various heuristics can be used to select
finite, small enough subsets of these domains.
In particular, input partitioning (or domain testing, or equivalence par
titioning, or partition testing) [WO80] [WC80] (see [ZHM97] for a sur
vey) attempts at dividing data value domains into subdomains, each
subdomain gathering values that will be handled “similarly” in the
design artifact under analysis. In each subdomain, one or a few rep
resentative values are selected and used for the dynamic analysis.

Further reading:
▶	 Wikipedia: All-pairs testing
▶	 Wikipedia: Equivalence partitioning
▶ Wikipedia: Orthogonal array testing

2.	 Functional coverage tries to measure how thoroughly a design artifact
under analysis is checked against its specifications. In conventional
methodologies, specifications are often informal and, thus, it is not
always easy to precisely define what these functional specifications are

http://en.wikipedia.org/wiki/All-pairs_testing
http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Orthogonal_array_testing

	

	

	

	

172 Chapter 4. Design flows and methodologies

and how they can be exhaustively covered: definition of functional
coverage is often specific to each particular system considered.

In essence, functional coverage measures the proportion that has been
dynamically analyzed of the “total functionality” that the design ar
tifact under analysis is supposed to implement. This total function
ality can be be expressed, e.g., in the number of features listed in
the documentation of the design artifact, or in the number of initial
requirements for this artifact (requirements coverage), or, for a partic
ular component, in the number of externally observable properties or
assertions that the component is expected to satisfy. Full functional
coverage means that each feature, requirement, property, assertion,
etc. has been duly exercised using dynamic analysis.

In principle, functional coverage considers the design artifact under
analysis as a black box, i.e., as an opaque component that can be ac
cessed only through its interface and whose internal code is not avail
able. Measure of coverage is thus based only on external specifications,
without regard to the internal details of the design artifact.

Functional coverage is a crucial metric to ensure the compliance of a
design artifact with its specifications. Increasing functional coverage
is likely to reveal more functionality defects. Yet, because functional
coverage is a black-box approach, it cannot detect certain internal
issues in the design artifact under analysis; for instance, functional
coverage does not reveal if a design artifact contains dead code or
implements unintended functionality not stated in the specifications.

Further reading:
▶	 Wikipedia: Functional testing
▷ Wikipedia: Black-box testing

3.	 Structural coverage tries to quantify how much the code of a design
artifact is exercised during a dynamic analysis, the underlying idea
being to compute a static approximation on the code structure of the
proportion of dynamically explored (and unexplored) behavior. This
requires that the code of the design artifact is available, and that
information can gathered during the dynamic analysis (using, e.g.,
code instrumentation or monitoring) to determine which parts of the
source code have been simulated, tested, or executed.

Structural coverage can be considered as either a black-box or white
box approach, depending on both the nature of the design artifact and
on the kind of dynamic analysis considered:

http://en.wikipedia.org/wiki/Functional_testing
http://en.wikipedia.org/wiki/Black-box_testing

	

	

	

	
	

	

	

	

	
	

173 4.6. Conventional design flows

–	 If the design artifact is a model and if the dynamic analysis is
simulation: the corresponding structural coverage is a white-box
approach (usually referred to as model coverage).

–	 If the design artifact is an implementation (e.g., a program or
circuit) and if the dynamic analysis is testing, run-time or log
analysis: the corresponding structural coverage is also a white
box approach (usually referred to as code coverage, program cov
erage, etc.). Notice that, in the case of a software design artifact,
the code used as a basis for structural coverage can be source
code, byte code, or executable code — the latter giving the best
guarantees as it is the latest artifact in the design flow.

–	 If the design artifact is a model and if the dynamic analysis is
testing, run-time or log analysis: this is the case of model-based
testing, where a model M is used as a basis for testing an imple
mentation I. The corresponding structural coverage is a black
box approach (usually referred to as model coverage), in which
M serves as an operational specification for I — the dual case of
declarative specifications being addressed by functional coverage.

Further reading:
▷	 Wikipedia: White box (software engineering)
▷	 Wikipedia: White-box testing

In conventional methodologies, structural coverage is easier to pre
cisely define than functional coverage. Various approaches have
been proposed, in which structural coverage is expressed in terms of
source code elements (subroutines, instructions, branches, etc.) of
the model, circuit, or program under analysis. For instance, the DO
178B standard [RTC92] for avionics software mandates statement cov
erage at level C, decision coverage at level B, and modified condi
tion/decision coverage (or MC/DC) [CM94] [Chi01] at (the most de
manding) level A.
Refined definitions of structural coverage also consider those variables
that play a role in encoding the control structure (e.g., Boolean condi
tions, automata states, etc.) and watch whether, during the dynamic
analysis, such variables have taken all (or a significant subset of) pos
sible values in their domains.
Structural coverage is helpful for detecting dead code, as well as high
lighting code fragments that have not been properly exercised. How
ever, it has a low correlation with functionality defects and, in par
ticular, cannot expose omissions and unimplemented features. Also,

http://en.wikipedia.org/wiki/White_box_(software_engineering)
http://en.wikipedia.org/wiki/White-box_testing

 	

	

	

	

	

 	

	

	

	

	

174 Chapter 4. Design flows and methodologies

certain structural coverage criteria (e.g., MC/DC) are almost impos
sible to achieve without specialized software engineering tools.

Further reading:

▶ Wikipedia: Basis path testing
▶ Wikipedia: Code coverage
▷ Wikipedia: Cyclomatic complexity
▶ Wikipedia: Linear code sequence and jump
▶ Wikipedia: Modified condition/decision coverage

4. Functional and structural coverage are complementary.	 Taken sepa
rately, each approach has inherent limitations, which may be overcome
by combining approaches. For instance, grey-box testing was proposed
as an intermediate way between black-box and white-box testing.

Further reading:
▶	 Wikipedia: Grey-box testing

Also, it is widely acknowledged that combining coverage over the spec
ifications (requirements or models) and coverage over the implementa
tion gives better results. For instance, such a combination is required
by the DO-178B standard: in addition to high-level testing (namely,
functional testing on software considered as a black box), DO-178B
mandates low-level testing, in which tests must be derived from re
quirements (i.e., functional) and achieve structural coverage goals (e.g.,
MC/DC at level A) on the software source or executable code consid
ered as a white box. In practice, this double (functional and structural)
constraint on low-level testing has two desirable consequences:

–	 It forces requirements to be precise enough (namely, to announce
the branching structure that the implementation will have), so
that tests can be produced to reach structural coverage goals;

–	 It reveals the presence of unintended functionality, i.e., “extra”
code that tests derived from the requirements cannot exercise.

5.	 Mutation testing (also known as fault injection or mutation coverage)
[BLSD78] [DLS78] [BDLS80] [BG85] analyzes a test suite by deliber
ately inserting errors in the design artifact under analysis (i.e., the
simulated model or the implementation under test) to see if these er
rors are discovered by the test suite.

http://en.wikipedia.org/wiki/Basis_path_testing
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Linear_code_sequence_and_jump
http://en.wikipedia.org/wiki/Modified_condition/decision_coverage
http://en.wikipedia.org/wiki/Grey-box_testing

	
	

	

	
	

	

175 4.6. Conventional design flows

To do so, multiple variants (called mutants) of the design artifact are
produced, each mutant containing a single or a few small errors (e.g.,
substitution of variable names, modification of constant values, inser
tion or deletion of Boolean negations, change of arithmetic, logical, or
relational operators, etc.). These “artificial” errors, usually introduced
in an automated way, should be representative of the “real” human
mistakes that the test suite is supposed to detect [ABL05] [NAM08].
Then, the tests are applied to each mutant and one observes poten
tial differences between test results on mutants and test results on
the original system. Various observation criteria can be used [WH88],
ranging from strong mutation testing, in which one looks for modifica
tions in the outputs emitted by the mutants and the original system,
to weak mutation testing, in which one compares the internal memory
states of selected components in the mutants and in the original sys
tem [How82]. Using weak criteria reduces computational costs but at
the risk of irrelevant observations (i.e., focusing on differences between
internal states of components, although such differences may not nec
essarily propagate to the outputs and cause externally visible errors).
A related issue is functionally equivalent mutants, i.e., mutants that
do not observationally deviate from the expected correct behavior.
Mutation testing can be used as a test criterion to quantify the effec
tiveness and adequacy of a test suite, e.g., by measuring the proportion
of mutants detected by the test suite compared to the total number
of mutants produced. One can also compare this proportion with the
one measured for a randomly generated test suite of the same size.
More details on mutation testing can be found in a book [Won01] and
in a survey with a comprehensive bibliography [JH11].

Further reading:
▶	 Wikipedia: Bebugging
▶	 Wikipedia: Fault injection
▶ Wikipedia: Mutation testing

In summary, dynamic analyses are standard means to detect errors and are
well established in conventional methodologies. Moreover, they do not gen
erate false positives when applied to real design artifacts — notice however
that false positives may be produced when analyzing virtual design artifacts
(i.e., models or prototypes) that differ from real design artifacts. However,
dynamic analyses have three major shortcomings:

•	 False negatives: In general, dynamic analyses do not exhaustively
check all possible executions, and thus cannot establish correctness;

http://en.wikipedia.org/wiki/Bebugging
http://en.wikipedia.org/wiki/Fault_injection
http://en.wikipedia.org/wiki/Mutation_testing

	

	

	

	

	

	

176 Chapter 4. Design flows and methodologies

this was formulated by Dijkstra for the particular case of testing: “pro
gram testing can be used to show the presence of bugs, but never to
show their absence” [Dij72]. Moreover, certain kinds of requirements
(e.g., functional requirements prohibiting abnormal behaviors, or non
functional requirements regarding availability, reliability, and security)
are difficult to assess, even with a large set of tests. Testing is often
unpredictable and cannot guarantee the ultradependability of systems
relying on complex software [LS93] [Rus93, pages 111–112].

•	 Insufficient coverage: In practice, obtaining a good coverage is a
difficult issue. It has frequently been reported that, in “ordinary”
projects, testing only exercises about half of the source code. For
instance, exception handlers are often less tested than “normal” exe
cution paths due to the burden of provoking exceptional conditions;
this explains why such rare conditions, which trigger the execution of
poorly-tested code, are a major cause of safety- and mission-critical
failures [Hec93, Hec08]. Even if certain methodologies improve on this
50% code test ratio by emphasizing on systematic testing, still many
errors leak out, which are not detected by dynamic analyses.

•	 High cost: When full coverage is required (e.g., in aerospace, micropro
cessors, telecommunication systems, etc.), developing and executing
appropriate test suites is expensive and often exceeds 50% of the over
all project cost. As the size and complexity of modern systems grow
continuously, traditional approaches to writing and maintaining test
suites become increasingly problematic, technically and economically.

More details on simulation, testing, and run-time/log analyses will be given
below in Sections 4.6.10, 4.6.11 and 4.6.12, respectively.

4.6.10 Conventional quality steps: more on simulation

Simulation is a widespread V&V approach featured by almost every con
ventional design methodology. Simulation is commonly used to assess the
functional correctness of a system under design and to estimate its perfor
mance. Simulation and testing have much in common, the main difference
being that simulation operates on virtual design artifacts (namely, models)
whereas testing operates on real design artifacts (namely, actual implemen
tations, such as circuits or programs) — see Section 3.4.2 for a comparative
discussion of models and programs.
There are different types of simulation, with several application domains:

•	 For systems whose behavior can be expressed in terms of states and
transitions, many tools implementing the techniques of discrete event
simulation are available.

	

	

	

	

	

	

	
	
	

	

	

	

	

	

	

	
	
	

177 4.6. Conventional design flows

Further reading:
▶	 Wikipedia: Discrete event simulation

• For systems with a continuous behavior, many simulation tools have
been developed in numerous fields.

Further reading:
▶	 Wikipedia: Continuous simulation
▶ Wikipedia: Simulation software

• For networked systems, simulation is used to study the behavior and
performance of communication protocols.

Further reading:
▶	 Wikipedia: Network simulation

•	 In hardware design, simulation is used at all abstraction levels (behav
ioral level, register-transfer level, gate level, or transistor level) down
to the silicon chip, which itself is tested rather than simulated.

Further reading:
▶	 Wikipedia: Logic simulation

•	 At a higher abstraction level (chip level or system level), especially in
embedded system design [Led01], simulation is used to analyze the be
havior of an entire circuit (e.g., the instruction set of a microprocessor)
and also for hardware-software co-design, i.e., the joint development
of a circuit and its application software [SW97]; in this context, the
term co-simulation denotes a simulation that takes into account both
the hardware and software parts.

Further reading:
▶	 Wikipedia: Computer architecture simulator
▶	 Wikipedia: Instruction set simulator
▶	 Wikipedia: Microarchitecture simulation

http://en.wikipedia.org/wiki/Discrete_event_simulation
http://en.wikipedia.org/wiki/Continuous_simulation
http://en.wikipedia.org/wiki/Simulation_software
http://en.wikipedia.org/wiki/Network_simulation
http://en.wikipedia.org/wiki/Logic_simulation
http://en.wikipedia.org/wiki/Computer_architecture_simulator
http://en.wikipedia.org/wiki/Instruction_set_simulator
http://en.wikipedia.org/wiki/Microarchitecture_simulation

	

	
	
	
	
	
	
	
	

	

	

	

	

	
	
	
	
	
	
	
	

	

	

	

178 Chapter 4. Design flows and methodologies

•	 Beyond the particular case of hardware-software co-design, there is
the wider class of multidisciplinary systems, which rely on computers
to supervise and control “real” (e.g., physical, chemical, biological,
social, etc.) processes. For such systems, heterogeneous models are
developed (see Section 3.4.7), which combine software concerns with
process descriptions belonging to one or several scientific domains.

Further reading:
▶	 Wikipedia: AMESim
▶	 Wikipedia: EcosimPro
▶	 Wikipedia: MapleSim
▶	 Wikipedia: Modelica
▶	 The Modelica Association – http://www.modelica.org
▶	 Wikipedia: Simulink
▶	 Wikipedia: Stateflow
▶	 Wikipedia: SimEvents

To analyze heterogeneous models globally using simulation (e.g., to
study their correctness or evaluate their performance), one should be
able to simulate them in all their dimensions. This can be done ei
ther using multidisciplinary simulators — when they exist and are
available — or using co-simulation, which consists in simultaneously
running two or more unidisciplinary simulators from different domains,
each with its own domain-specific language and analysis methods. For
instance, hybrid systems can be studied by combining a discrete-event
simulator, which deals with the controlling software, and a continuous
time one, which computes the dynamics of real processes. There are
two practical issues to be solved with co-simulation:

–	 The simulators must be able to communicate and synchronize.
This can be implemented either using simulator coupling (i.e.,
direct bilateral interconnections between each pair of simulators)
or using a simulation backplane (i.e., a central unit to which each
simulator is connected via a common interface).

–	 The simulators must agree on a coherent progression of time,
although each simulated model may have its own time scale (e.g.,
nanoseconds for hardware and milliseconds for software).

Further reading:
▶	 Wikipedia: Hardware-in-the-loop simulation

http://en.wikipedia.org/wiki/AMESim
http://en.wikipedia.org/wiki/EcosimPro
http://en.wikipedia.org/wiki/MapleSim
http://en.wikipedia.org/wiki/Modelica
http://www.modelica.org
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/Stateflow
http://en.wikipedia.org/wiki/SimEvents
http://en.wikipedia.org/wiki/Hardware-in-the-loop_simulation

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

179 4.6. Conventional design flows

Because it operates on virtual design artifacts, simulation (together with
co-simulation) has several advantages:

•	 It can be used when experimenting with the system under design is
impossible, namely:

–	 when the real design artifacts are not available yet,
–	 when building prototypes would be infeasible or too costly,
–	 when there are inherent risks or costs associated with manipulat

ing the real system (e.g., nuclear plants, medical devices, etc.),
–	 when the real system evolves too slowly (e.g., chemical reactions,

spatial missions, etc.).

See [BFI09] for an epistemic discussion on simulation.

•	 Simulation plays an important role in system validation by enabling to
check the system against its requirements at each stage of the design
flow. Simulation also permits to validate environment assumptions by
running experiments to compare models and reality.

•	 Simulation often detects mistakes and unforeseen problems without
waiting until the late integration/testing stages, thus increasing the
confidence in the design from the earliest stages of the design flow.

•	 Simulation can ease debugging. For instance, it is often simpler to
debug a circuit using a simulator rather than testing the actual silicon,
whose internal state and implementation details may remain hidden.

•	 Simulation is also a privileged means of design space exploration, as
it enables to quickly investigate the consequences of potential changes
brought to the system under design.

•	 Simulation based on randomization (e.g., Monte-Carlo simulation) can
handle many and large classes of realistic models, contrary to analyti
cal techniques (e.g., linear analysis), which only apply to a few limited
classes, and only if the models are not overly complex.

•	 Finally, simulation is scientifically well-understood, implemented in
numerous industrial tools, and relatively easy to use, most system
engineers being already familiar with this technology.

However, simulation is not free from drawbacks and limitations, some of
which are common to all forms of conventional dynamic analyses:

•	 The cost, effort, and time required by simulation quickly grows as the
complexity of the system under design increases. The number of input
scenarios becomes large, as well as the time required to simulate them.

	

	

	

	
	
	
	
	

	

	

	

	

	
	
	
	
	

	

180 Chapter 4. Design flows and methodologies

•	 For highly complex systems, the coverage achieved by simulation is
generally insufficient. State explosion makes it prohibitive or impossi
ble to try all input scenarios that would ensure a complete exploration
of the state space. Even if certain particular metrics (e.g., statement
coverage, branch coverage) are chosen and full coverage is attained
with respect to these metrics, this does not ensure that all possible
execution paths are examined and all errors detected.

•	 Thus, simulation can reveal certain design issues but, because of false
negatives, it cannot provide strong guarantees about the functional
correctness, performance, safety, or security of a system.

•	 As mentioned above, simulators execute faster than certain real sys
tems, but they may be much slower for other kinds of systems. This is
notably the case in hardware design, where simulating a circuit design
at register-transfer level is several orders of magnitude slower than
testing the actual circuit. For instance, [KGN+09] reports that an
Intel Core i7 processor runs at 2.66GHz whereas the corresponding
pre-silicon full-chip simulator runs at 2–3Hz only; this drastically re
duces the coverage of simulation, as “the total number of all pre-silicon
simulation cycles on a large server farm amounts to no more than a
few minutes of run time on a single actual processor”.
Therefore, simulation speed can be a major concern, even when us
ing acceleration techniques, such as the integration of real or emu
lated hardware components into the simulation — emulation consists
in synthesizing automatically a hardware implementation on a fast
prototyping platform, such as an FPGA (Field-Programmable Gate
Array) — or the use of higher-level description languages, such as
SystemC and transaction-level modeling, which speed up simulation
by abstracting away low-level hardware details (e.g., cycle-accurate
information).

Further reading:
▶	 Wikipedia: Register-transfer level
▶	 Wikipedia: Hardware emulation
▶	 Wikipedia: Field-programmable gate array
▷	 Wikipedia: SystemC
▶	 Wikipedia: Transaction-level modeling

•	 Different simulators may produce very different results for the same
problem (see, e.g., [CSS02]), because they are complex pieces of soft
ware based on different internal models and algorithms, implement
custom options that need to be finely tuned, and/or depart from the

http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Hardware_emulation
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/SystemC
http://en.wikipedia.org/wiki/Transaction-level_modeling

181 4.6. Conventional design flows

established mathematical bases of simulation by offering proprietary
language extensions and interfaces to third-party software.

To summarize, simulation is a standard technique with many advantages; it
yields partial results quickly. but does not scale up to address the complexity
of those systems designed nowadays. When used as the unique or primary
V&V technique for such systems, simulation usually becomes a bottleneck
in terms of cost, effort, and time, as its poor effectiveness in finding bugs
causes budget and schedule overruns.

4.6.11 Conventional quality steps: more on testing

Of the four aforementioned forms of dynamic analyses, testing is certainly
the most widely used. Some methodologies (e.g., agile programming, ex
treme programming, and test-driven development) give testing a central role
in the design flow. There exists an abundant literature on testing, together
with a specialized vocabulary for those design artifacts, data, equipment,
and procedures relevant to testing.

Further reading:
▶ Wikipedia: Automatic test equipment
▶ Wikipedia: Device under test
▶ Wikipedia: System under test
▶ Wikipedia: Manual testing
▶ Wikipedia: Test automation
▶ Wikipedia: Test automation framework
▶ Wikipedia: Test bed
▶ Wikipedia: Test bench
▶ Wikipedia: Test case
▶ Wikipedia: Test compression
▶ Wikipedia: Test data
▶ Wikipedia: Test double
▶ Wikipedia: Test execution engine
▶ Wikipedia: Test fixture
▶ Wikipedia: Test harness
▶ Wikipedia: Test method
▶ Wikipedia: Test plan
▶ Wikipedia: Test script
▶ Wikipedia: Test stub
▶ Wikipedia: Test suite
▶ Wikipedia: Test vector
▶ Wikipedia: XUnit
▶ Wikipedia: JUnit

http://en.wikipedia.org/wiki/Automatic_test_equipment
http://en.wikipedia.org/wiki/Device_under_test
http://en.wikipedia.org/wiki/System_under_test
http://en.wikipedia.org/wiki/Manual_testing
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation_framework
http://en.wikipedia.org/wiki/Test_bed
http://en.wikipedia.org/wiki/Test_bench
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Test_compression
http://en.wikipedia.org/wiki/Test_data
http://en.wikipedia.org/wiki/Test_double
http://en.wikipedia.org/wiki/Test_execution_engine
http://en.wikipedia.org/wiki/Test_fixture
http://en.wikipedia.org/wiki/Test_harness
http://en.wikipedia.org/wiki/Test_method
http://en.wikipedia.org/wiki/Test_plan
http://en.wikipedia.org/wiki/Test_script
http://en.wikipedia.org/wiki/Test_stub
http://en.wikipedia.org/wiki/Test_suite
http://en.wikipedia.org/wiki/Test_vector
http://en.wikipedia.org/wiki/XUnit
http://en.wikipedia.org/wiki/JUnit

	

	
	
	
	
	
	
	

	

	
	
	

	

	
	
	
	
	
	
	

	

	
	
	

182 Chapter 4. Design flows and methodologies

An important — yet often neglected — concept associated to the test exe
cution is the notion of oracle (or test oracle). An oracle can either predict
the correct outputs to be emitted after given inputs, or observe inputs and
outputs and associate to each output a verdict: “pass” (the output is cor
rect), “fail” (the output is incorrect), or “inconclusive” (the oracle cannot
decide immediately, because the behavior of the design artifact under test
ing is known to be nondeterministic in this case). Notice that inconclusive
tests are basically useless and should be avoided.

Further reading:
▶	 Wikipedia: Oracle (software testing)

There are various methodologies for helping humans to produce and execute
tests and, more globally, to integrate testing in the design flow.

Further reading:
▶	 Wikipedia: Ad hoc testing
▶	 Wikipedia: Data-driven testing
▶	 Wikipedia: Exploratory testing
▶	 Wikipedia: Keyword-driven testing
▶	 Wikipedia: Hybrid testing
▶	 Wikipedia: Pair testing
▷	 Wikipedia: Test-driven development

There are many kinds of testing, which serve different purposes, and address
different steps of the design flow and different parts of the system considered
at various abstraction levels. In most conventional methodologies, testing
plays a double role with respect to V&V activities:

•	 Testing is used for validation purpose, to check whether a final system
duly implements its initial requirements and performs correctly when
deployed in a real environment. Such testing, which takes place at the
end of the design flow, may require sophisticated equipment platforms
to faithfully replicate the conditions in which the system will be used.

Further reading:
▶	 Wikipedia: Acceptance testing
▶	 Wikipedia: Component-based usability testing
▶	 Wikipedia: Graphical user interface testing

http://en.wikipedia.org/wiki/Oracle_(software_testing)
http://en.wikipedia.org/wiki/Ad_hoc_testing
http://en.wikipedia.org/wiki/Data-driven_testing
http://en.wikipedia.org/wiki/Exploratory_testing
http://en.wikipedia.org/wiki/Keyword-driven_testing
http://en.wikipedia.org/wiki/Hybrid_testing
http://en.wikipedia.org/wiki/Pair_testing
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Acceptance_testing
http://en.wikipedia.org/wiki/Component-based_usability_testing
http://en.wikipedia.org/wiki/Graphical_user_interface_testing

	
	
	
	

	

	
	
	
	

	
	

	

	
	

	
	
	
	

	

	
	
	
	

	
	

	

	
	

183 4.6. Conventional design flows

▶	 Wikipedia: Installation testing
▷	 Wikipedia: System testing
▶	 Wikipedia: Usability testing
▶	 Wikipedia: Usability#Testing methods

•	 Testing is also used for verification purpose, to check whether a given
real design artifact (i.e., a program or a circuit) correctly implements
its higher-level specifications, which can be expressed either as mod
els or as properties. In this approach, commonly referred to as con
formance testing, tests are used to reveal possible incompatibilities
between the specification and its implementation.

Further reading:
▶	 Wikipedia: Build verification test
▶	 Wikipedia: Conformance testing
▶	 Wikipedia: Smoke testing#Software development
▶	 Wikipedia: Testing high-performance computing applications

Testing can be applied to individual components (unit testing) or to the
entire system (integration testing).

Further reading:
▶	 Wikipedia: Integration testing
▶	 Wikipedia: Unit testing

There are many other useful forms of testing. For instance, non-regression
testing checks whether a modified design artifact still passes the same tests
as its original version; also, the DO-178B standard [RTC92] for avionics
software distinguishes between normal range tests, which exercise a system
in ordinary conditions, and robustness tests, which trigger abnormal inputs
and faults arising from inside or outside of the system.

Further reading:
▶	 Wikipedia: Boundary testing
▶ Wikipedia: Characterization test
▶ Wikipedia: Non-regression testing
▶	 Wikipedia: Regression testing
▶	 Wikipedia: Robustness testing

http://en.wikipedia.org/wiki/Installation_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Usability_testing
http://en.wikipedia.org/wiki/Usability#Testing_methods
http://en.wikipedia.org/wiki/Build_verification_test
http://en.wikipedia.org/wiki/Conformance_testing
http://en.wikipedia.org/wiki/Smoke_testing#Software_development
http://en.wikipedia.org/wiki/Testing_high-performance_computing_applications
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Boundary_testing
http://en.wikipedia.org/wiki/Characterization_test
http://en.wikipedia.org/wiki/Non-regression_testing
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Robustness_testing

184 Chapter 4. Design flows and methodologies

In addition to testing approaches that focus on correctness issues, func
tionality, and end-user feedback, there are testing approaches dedicated to
performance and dependability issues.

Further reading:
▶ Wikipedia: Non-functional testing
▶ Wikipedia: Software performance testing
▶ Wikipedia: Software Reliability Testing
▶ Wikipedia: Load testing
▶ Wikipedia: Recovery testing
▶ Wikipedia: Risk-based testing
▶ Wikipedia: Scalability testing
▶ Wikipedia: Soak testing
▶ Wikipedia: Stress testing
▶ Wikipedia: Stress testing (software)
▶ Wikipedia: Volume testing

There are also testing approaches specifically addressing security issues, such
as read access violations, write access violations, null pointer dereferences,
divisions by zero, etc.

Further reading:
▶ Wikipedia: Security testing
▶ Wikipedia: Penetration test
▶ Wikipedia: Application security#Security testing for applications

Automatic test generation has received considerable attention. The trends
towards such automation are driven by the following expectations:

1. Maintain a given level of quality control and assurance in spite of the
increasing size and complexity of systems;

2. Even increase, if possible, this level of quality by enabling more thor
ough testing based on test criteria with a proven effectiveness;

3. Produce test suites that are free from errors, which is rarely the case
when tests are written manually.

4. Enable involved tests to be developed by “average” engineers without
exceptional skills nor intensive preliminary training.

5. Reduce delays for producing test suites, so as to better accommodate
rapid design changes, agile methodologies, and continuous integration;

http://en.wikipedia.org/wiki/Non-functional_testing
http://en.wikipedia.org/wiki/Software_performance_testing
http://en.wikipedia.org/wiki/Software_Reliability_Testing
http://en.wikipedia.org/wiki/Load_testing
http://en.wikipedia.org/wiki/Recovery_testing
http://en.wikipedia.org/wiki/Risk-based_testing
http://en.wikipedia.org/wiki/Scalability_testing
http://en.wikipedia.org/wiki/Soak_testing
http://en.wikipedia.org/wiki/Stress_testing
http://en.wikipedia.org/wiki/Stress_testing_(software)
http://en.wikipedia.org/wiki/Volume_testing
http://en.wikipedia.org/wiki/Security_testing
http://en.wikipedia.org/wiki/Penetration_test
http://en.wikipedia.org/wiki/Application_security#Security_testing_for_applications

	

	

	

	

	

	

	

	

	

	

	

	

185 4.6. Conventional design flows

6. Reduce the high cost of testing, which is typically half or more of the
overall project cost;

7. Reduce the size of test suites using test adequacy metrics, in order to
avoid extra cost and delays caused by redundant tests.

Automatic test generation is difficult, for both theoretical reasons (it is gen
erally undecidable to statically determine if there exists a sequence of input
stimuli leading a system to a given state) and practical ones (combinatorial
explosion often occurs, even when the state space is finite). For this reason,
test criteria (see Section 4.6.9) can be helpful in several respects:

•	 They provide heuristic means to evaluate the efficiency (i.e., the fault
finding ability) of generated test suites.

•	 They provide a stopping rule to decide when testing can be stopped
(e.g., as soon as a certain level of test coverage is reached).

•	 They provide rules for test selection, i.e., for deciding whether a new
test is worth being included or not in a given test suite.

•	 They provide indications to augment test suites, by adding missing
tests needed to make a test suite adequate.

•	 Conversely, they provide guidelines to reduce test suites, by removing
tests found to be redundant in a test suite.

Many algorithms for automated test generation have been proposed, some
of which are implemented in commercial tools. However, in conventional
methodologies, test suites are not always generated automatically. As stated
in Section 4.6.9, there are two main approaches (plus combinations of these)
for producing test suites:

•	 Random testing (or random test generation): One automatically gen
erates tests, the length of which varies arbitrarily. Nondeterminism
(e.g., selection between several permitted input events, selection of in
put data in their value domains, etc.) is resolved either randomly (i.e.,
according to a uniform probability distribution) or statistically (i.e., by
assigning different probabilities to inputs depending on their likelihood
to occur after the design artifact is deployed in its real environment).
Random testing is often considered as a shallow methodology for gener
ating tests, and it is often used as the baseline approach to which more
sophisticated approaches are compared. Yet, this intuitive view is re
futed in many empirical and theoretical studies ranging from [DN84]

186 Chapter 4. Design flows and methodologies

to [CPO+11] and [AB12, AIB12]. In particular, random testing seems
as cost effective as approaches based on input partitioning [Nta01].

Variants of random test generation exist, which often depart from
the assumption that the different tests in a test suite are generated
independently. For instance, antirandom testing [Mal95, WJMJ08] or
adaptive random testing [CLM04, CKMT10] [MS06] tries to favor test
diversity by selecting new tests that are “far” from all prior tests, or
from those prior tests found to be ineffective (i.e., that did not detected
errors in the design artifact under test). Yet, it was pointed out that
adaptive random testing might not be as effective as expected [AB11].

A particular form of random testing is fuzzing (or fuzz testing), which
consists in providing unexpected or invalid input data to the design
artifact under test, and observing whether this provokes some unex
pected behavior (exception raise, crash, infinite loop, etc.). More often
than not, fuzzing is used to find security vulnerabilities automatically,
rather than to check correctness.

There are two main approaches to building input data for fuzzing.
The mutational approach starts from valid input data (e.g., provided
by a human operator) and performs random modifications (e.g., by
flipping random bits). The generational approach constructs input
data from scratch. Both approaches can be performed with different
degrees of knowledge about the design artifact under test, ranging from
black-box — the fuzzing program treats input data as semantics-less
sequences of bits, without relying on a design artifact specification
nor an application-specific test oracle — to grey-box and white-box
— the fuzzing program is aware of the format (syntax and, possibly,
semantics) of input data, and may also be guided by probabilistic
weights assigned to different classes of data.

Fuzzing, even in its least sophisticated forms, is particularly effective
in finding numerous security defects in complex software — see, e.g.,
[MFS90, MKL+95] for Unix utilities and services, [FM00] for Microsoft
Windows NT, [Jor03] for Acrobat Adobe Reader, and [MCM06] for
MacOS. Fuzzing is therefore a recommended quality step for secure
software development. The efficiency of fuzzing on a given software
is a clear indication that development practices must be enhanced.
Further details can be found in [SGA07] and [TDM08].

Further reading:
▶ Wikipedia: Fuzz testing
▷ Wikipedia: Fault injection

http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Fault_injection

	

	

	
	

	

	

	

	

	

	
	

	

	

	

187 4.6. Conventional design flows

▶	 Google’s Bunny-the-Fuzzer tool –
http://code.google.com/p/bunny-the-fuzzer

▶	 CERT’s Basic Fuzzing Framework (BFF) –
https://www.cert.org/vuls/discovery/bff.html

▶	 Google’s Flayer tool [DO07] – http://code.google.com/p/flayer
▶	 CERT’s Failure Observation Engine (FOE) –

https://www.cert.org/vuls/discovery/foe.html
▶	 Microsoft’s Minifuzz File Fuzzer –

http://www.microsoft.com/en-us/download/details.aspx?id=21769
▶	 Peach Fuzzing Platform – http://peachfuzzer.com

•	 Directed testing (or directed test generation): One generates tests de
signed to exercise specific functionality in the design artifact under
test. In conventional methodologies, such tests are usually produced
manually following functional coverage goals — concretely, test engi
neers craft sequences of input stimuli that exercise every feature or
requirement deemed to be important in the design artifact. Using
functional coverage as a test criterion enables project managers to
monitor progress and to estimate remaining effort.

However, writing test suites manually is tedious and may need to be
redone each time the design artifact evolves. For these reasons, there
are attempts at producing test suites more systematically using other
test criteria than functional coverage, namely input coverage or struc
tural coverage, which offer greater possibilities for automation. Are
these approaches efficient, in the sense that the test suites produced
using these approaches detect more errors that randomly generated
test suites of the same size?

Regarding input coverage, the answer is not clearly conclusive. Early
publications pointed out that random testing is more cost efficient for
many programs [DN84] and that passing successfully a test suite de
signed to satisfy input coverage “is no better than a random test” and
has “very small significance”, so that “partition-testing methods are
suspect when used to gain confidence in software” [HT90]. Subsequent
publications [WJ91] [CY94, CY96a, CY96b] [Gut99] [BSC03] [ZLP08]
investigate under which assumptions and conditions can input cover
age be inferior, comparable, or superior to random testing.

Regarding structural coverage, five key lessons can be drawn:

1. Test suites whose production is primarily driven by structural
coverage goals are not always efficient. Early studies comparing
the respective efficiency of coverage-directed approaches (branch

http://code.google.com/p/bunny-the-fuzzer
http://code.google.com/p/bunny-the-fuzzer
https://www.cert.org/vuls/discovery/bff.html
https://www.cert.org/vuls/discovery/bff.html
http://code.google.com/p/flayer
https://www.cert.org/vuls/discovery/foe.html
https://www.cert.org/vuls/discovery/foe.html
http://www.microsoft.com/en-us/download/details.aspx?id=21769
http://www.microsoft.com/en-us/download/details.aspx?id=21769
http://peachfuzzer.com

188 Chapter 4. Design flows and methodologies

coverage, in particular) vs random testing gave contradictory, in
conclusive results (see [JMV04] for a survey). Regarding MC/DC
coverage, recent studies report that the fault-finding capabilities
of this test criterion are generally good, but also mention dis
appointing situations — especially with automatically generated
test suites — in which MC/DC fails to detect a significant per
centage of errors [HDW04] [YL06] [KK10] [SGWH12]. Therefore,
structural coverage alone, even in its highly rigorous forms, is not
a reliable metrics for measuring test efficiency, and should not be
used as the prime basis for generating directed tests, as random
testing can produce more effective test suites of the same size.

2. A possible explanation for the above fact is that structural cover
age metrics may be sensitive to the structure of the design artifact
being considered. For instance, the coverage computed using the
MC/DC metric is dramatically affected — and so is the test effi
ciency of MC/DC — if auxiliary Boolean variables are introduced
to factor complex expressions into simpler ones [RWH08].

3. Another possible explanation is that structural coverage is not
the sole factor behind test efficiency. For instance, [NA09] reports
that efficiency (measured as the percentage of mutants detected
by a test suite) is strongly correlated to log(S) + C, where S is
the size of the test suite and C the degree of structural coverage
achieved by the test suite. Notice that variables S and C are not
independent, as increased coverage entails larger test suites (see,
e.g., [ABLN06]), and that S is classically used as surrogate mea
sure for test cost — although such an approximation is criticized,
e.g., in [Bri07].

4. Yet, structural coverage can be useful, not as a target for produc
ing test suites, but as a supplement for checking whether a test
suite initially developed to satisfy functional coverage goals pro
vides a sufficient structural coverage; if not, the test suite must
be extended with complementary tests that exercise those areas
of the source code that have not been already tested. This idea
of first generating test suites without considering structural cov
erage, and later using structural coverage to add missing tests,
has been advised by several practitioners, e.g., [CM94, Section 1]
and [Mar97]; its fault-detection capabilities are experimentally
confirmed in [DL00] and [SGWH12].

5. Finally, reducing the size of test suites while preserving some
structural coverage criterion (as advocated in, e.g., [WHLM95]
[BU97]) might severely decrease their efficiency. A substanti
ated warning about the risks of test-suite reduction strictly based
on edge coverage (also known as branch coverage) was given in

	

	

189 4.6. Conventional design flows

[RHOH98, RHRH02]. The same finding was made for MC/DC
coverage [JH03] [HD04, HD07]. A possible explanation is the
aforementioned correlation between size, coverage, and efficiency
of test suites [NA09]. A refined heuristic-based approach yields
large size reductions with limited loss of efficiency by selectively
keeping some tests that are redundant with respect to structural
coverage (e.g., branch coverage) but not redundant for over test
criteria (e.g., def-use coverage) [JG05, JG07].

•	 Combined approaches: There are attempts at combining random and
directed approaches (see [GOA05] for a survey of combination strate
gies). It is generally agreed that more efficient test suites can be gen
erated by combining diverse techniques rather than relying on a single
one, even if it is deemed to be “superior” to others.
For instance, constrained-random testing uses test criteria to select
among these tests or to reduce existing test suites, by preserving or
increasing an adequacy metrics such as functional coverage (e.g., “in
teresting” scenarios), structural coverage, or mutation testing. By
trying to satisfy the adequacy metrics, random tests are generated
that exercise “interesting” scenarios that were not planed originally.
This approach is now widely used in hardware testing, especially at
block level, where it almost replaced directed testing. It seems to be
efficient: for instance, [SGWH12] reports that “the use of branch and
MC/DC coverage as a supplement to random testing generally results
in more effective tests suites than random testing alone” and “for most
combinations of coverage criteria and case examples, randomly gener
ated test suites reduced while maintaining structural coverage find 7%
more faults than pure randomly generated test suites of equal size”.
One can also mention approaches for reducing the size of (randomly
generated) tests in order to help localizing faults [ZH02] [LA05]; here
too, as for directed testing, the size of random tests has a major influ
ence on their efficiency [AGWX08].

The comparison between directed and random approaches is a longstand
ing debate in the testing community. Depending on respective technology
progress, each approach has been alternatively considered as “better”. At
present, all approaches are mature enough to be applied to realistic systems.
Besides test efficiency, the effort and time needed to generate and execute
tests can make the difference: in this respect, random test generation has
an advantage, as it can produce voluminous test suites easily and quickly.
Scalability to large systems is also an issue: random testing probably scales
better than directed testing, although it crucially depends on the availability
of a test oracle to analyze the outputs of automatically generated tests.

	
	

	

	
	
	
	

	
	

	

	
	
	
	

190 Chapter 4. Design flows and methodologies

Finally, in addition to the aforementioned generic techniques for producing
test suites, ad hoc techniques can be used to improve the testing process
by exploiting knowledge about a specific domain (e.g., data bases, graphical
user-interfaces, telecommunications, Web applications, etc.).

Further reading:
▶	 Wikipedia: Automatic test pattern generation
▶	 Wikipedia: Test data generation

4.6.12	 Conventional quality steps: more on run-time and log
analyses

Strictly speaking, one may argue that run-time and log analyses are not
quality steps because they occur after the system has been released. Yet,
these two forms of dynamic analysis can significantly contribute to the main
tenance of the system by detecting mistakes that leaked in spite of all quality
checks, as well as violations of the hypotheses and environment assumptions
upon which the system was designed (unexpected behaviors of the environ
ment, unforeseen hardware problems, security attacks, etc.).
Run-time analysis can also contribute to the proper operation of the sys
tem by taking, whenever an anomaly is detected, corrective actions such as:
handling properly uncaught exceptions, shutting down the defective compo
nents or isolating them to protect the rest of the system from their unpre
dictable, potentially hazardous behavior, or bringing the entire system to a
fail-safe/fail-secure mode. Approaches based on run-time analysis to reduce
the impact of defects are related to defensive programming and fault toler
ance; they are known under various names (fault protection, recovery blocks,
safety monitoring, security monitoring, self-checking software, etc.) and ap
pear in standards for safety-critical aerospace systems [RTC92] [SAE10].

Further reading:
▶	 Wikipedia: Built-in self-test
▶	 Wikipedia: Built-in test equipment
▶	 Wikipedia: Logic built-in self-test
▶	 Software Fault Tolerance (CMU) – Sections on recovery blocks and

self-checking software –
http://www.ece.cmu.edu/~koopman/des s99/sw fault tolerance

Run-time analysis and trace analysis also contribute to enhance the perfor
mance of a system by collecting quantitative information about its execution.
This is called performance monitoring.

http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://en.wikipedia.org/wiki/Test_data_generation
http://en.wikipedia.org/wiki/Built-in_self-test
http://en.wikipedia.org/wiki/Built-in_test_equipment
http://en.wikipedia.org/wiki/Logic_built-in_self-test
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance

	

	
	
	

	

	

	

	

	
	
	

	

	

	

191 4.6. Conventional design flows

Further reading:
▶	 Wikipedia: Performance engineering#Monitoring
▶ Wikipedia: Profiling (computer programming)

4.6.13 Discussion

When applied rigorously, the static and dynamic analyses of conventional
methodologies enable to detect many existing defects and avoid introducing
many new ones. For a large part, the effectiveness of conventional method
ologies relies on the capability of organizations to enforce the respect of
disciplined development processes and best practices; this collective dimen
sion of quality is acknowledged and measured by dedicated quality metrics.

Further reading:
▷	 Wikipedia: ISO 9000
▷	 Wikipedia: ISO/IEC 15504
▷	 Wikipedia: Capability Maturity Model Integration

There is also a individual dimension of quality, which requires appropriate
training of system designers and developers. Approaches in this direction,
such as Watts Humphrey’s Personal Software Process, have been shown
to be effective, even in organizations already using mature processes col
lectively. According to [BB01, Law 8], “disciplined personal practices can
reduce defect introduction rates by up to 75%”.

Further reading:
▶	 Wikipedia: Personal software process

However, conventional methodologies have several limitations:

•	 They are slow, labor-intensive, and onerous, and thus face problems
with fast-evolving projects in which requirements change rapidly and
frequently.

•	 They do not satisfactorily scale to large systems having an inherent
complexity arising from asynchronous parallelism, nondeterminism,
real-time constraints, exception and interrupt handling, fault toler
ance, mixed hardware/software components, etc.

http://en.wikipedia.org/wiki/Performance_engineering#Monitoring
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/ISO_9000
http://en.wikipedia.org/wiki/ISO/IEC_15504
http://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
http://en.wikipedia.org/wiki/Personal_software_process

192 Chapter 4. Design flows and methodologies

In the next sections of this chapter, keeping in mind the merits and short
comings of conventional methodologies, we will examine alternative or com
plementary methodologies based on formal methods and discuss their ade
quacy to the development of safe and secure systems.

4.7 Formal design flows

In this section, we present formal methodologies, i.e., methodologies for
hardware, software, and system design that rely, in whole or in part, on
formal methods. Our presentation is based on the concept of formal design
flows, which are instances of design flows in which formal methods are used.
We successively review the organization of formal design flows, their design
steps, and their quality steps. Finally, we discuss the impact of formal meth
ods on quality steps, stressing the main differences between conventional and
formal methodologies.

4.7.1 Organization of formal design flows

Formal design flows are, to a large extent, similar to conventional design
flows, but differ in a number of points that we now review.
As with conventional methodologies, there are design artifacts ranging from
initial requirements to final implementation (software programs and hard
ware circuits). Between both ends, intermediate artifacts take place, namely
declarative specifications (properties) and operational specifications (mod
els). The main difference is that these specifications (or, at least, some of
them) are formal, i.e., expressed in languages with a well-defined syntax and
a mathematical semantics. Indeed, a certain degree of formality is required
to avoid well-known issues (e.g., ambiguity, contradiction, etc.) of infor
mal or semi-formal specifications, and to enable automated tool support for
verification and validation.
As with conventional methodologies, there are design steps that progress the
design in a descending manner, from the initial requirements down to the fi
nal implementation. According to the terminology of Section 3.4.1, the mod
els produced during such steps are a priori models, as they describe a system
under construction. Such steps, which can be manual, semi-automatic, or
automatic, will be detailed in Sections 4.8.1 and 4.8.2 below.
Formal methodologies have also abstraction steps, which do not exist in
conventional methodologies. These steps operate in an ascending manner
to perform so-called model extraction: they take as input a concrete (pos
sibly informal or semi-formal) design artifact — namely, a program or a
low-level model of a system — and produce as output one or several more

193 4.7. Formal design flows

abstract, formal models to be further analyzed. Abstraction steps are useful
to retroactively build a formal model (e.g., for reverse engineering, main
tenance, or certification purposes) of an already existing system developed
using conventional methodologies, but also to verify (parts of) a system un-
der design by providing simpler models that are easier to analyze. According
to the terminology of Section 3.4.1, the models produced during abstraction
steps are a posteriori models, as they describe a concrete system. Such
steps, which can be manual, semi-automatic, or automatic, will be further
detailed in Section 4.8.3 below.
As with conventional methodologies, there are quality steps meant for qual
ity control and quality assurance. With formal methods, quality steps are
truly at the center of the process. They are also closely related to models,
contrary to conventional methodologies in which both concepts are often dis
joint, either when modeling is performed without V&V (e.g., model-driven
engineering) or when V&V is performed without modeling (e.g., testing).
Finally, as with conventional methodologies, there are still revision steps
taking place when the initial requirements or environment assumptions are
modified, or when errors are repaired. In formal design flows, revision steps
should be less frequent, as formal design steps tend to avoid the introduction
of errors. However, when using abstraction steps, revisions steps occur when
the correction of errors detected in abstract models is propagated to the
concrete models or programs.

4.7.2 Differentiate usage of formal methods

When undertaking the design of a new system, one must decide whether
formal methods should be used and, if so, where and how to use them.
Even if, in principle, formal methods should be recommended for any non
trivial project, their adoption is, in practice, limited by several factors, prin
cipally the lack of formal methods experts, and possibly also budget and
schedule constraints — although experimental feedback (e.g. [Hal07]) indi
cates that formal methods can be cost- and time-efficient. In this section,
we consider various arguments supporting the idea that formal methods can
be used differently in different projects.
First, not all systems need to be designed with the same degree of rigor.
There are gradual levels in formal methods (see Section 4.7.3 below) and it
seems reasonable to use in priority the most formal analyses for the most
critical systems — although, in practice, many applications of formal meth
ods also target non-critical or lowly-critical systems.
Second, not all components of a given system need to be designed with the
same degree of rigor. When applicable, the separation of concerns principle
(see Section 4.5.3) leads to components having different criticalities, which

	

	

	

	

	

	

	

	

	

	

194 Chapter 4. Design flows and methodologies

suggests to reserve the most stringent kinds of formal methods to compo
nents crucial for system safety or security, while less critical components can
be subject to conventional analyses only. More generally, formal methods
should be primarily applied to the most involved parts of the system, e.g., to
evaluate major design decisions and analyze complex algorithms that can
not be satisfactorily tackled using conventional methodologies. In practice,
it is extremely rare that a system is entirely designed using formal methods,
and this holds even for hardware design, where formal verification is well
accepted and integrated in industrial methodologies – for instance, [SBH04]
points out that no chip has more than 25% of its logic formally verified.
Third, there is another decision to be taken, which is partly orthogonal to
the above discussion: where should formal methods be introduced in design
flows? Two approaches have been advocated:

•	 Partially-formal design flow: Formal methods are used only at certain
stages of the life cycle. This approach is based on cost effectiveness
considerations and employs formal methods only where they outper
form conventional approaches. It will be discussed in Section 4.7.4.

•	 Fully-formal design flows: Formal methods are used everywhere in the
life cycle. This approach, which is the most ideal one from a purist’s
point of view, will be presented in Section 4.7.5.

4.7.3 Gradual levels of rigor

There are various ways of using formal methods in system design, ranging
from the shallowest to the deepest analyses. The scientific literature at
tempts at classifying this spectrum into different levels of rigor. For instance,
[Rus93, p. 15–20] distinguishes four levels of rigor numbered from 0 (“not
formal”) to 3 (“truly formal”); [BH06, Table 2] distinguishes three levels
of formality numbered from 0 (“formal specification only”) to 2 (“machine
checkable proofs”). Building on these attempts, we propose here a classifi
cation of design flows in seven levels of increasing rigor, based on the nature
of design steps and quality steps:

•	 Level 1: Conventional design flow, with informal specifications.
•	 Level 2: Conventional design flow, with semi-formal specifications.
•	 Level 3: Formal design flow, with formal specifications and without

tool support. This is basically a conventional design flow in which
formal specifications replace informal/semi-formal ones. The formal
specification languages may be dedicated computer languages or, sim
ply, the usual notations of logics and discrete mathematics. Some
proofs of correctness can be performed manually, but most of qual
ity control and quality assurance remains achieved using conventional
quality steps.

	

	

	

	

	

	

	

	

195 4.7. Formal design flows

For long, many advocated that such “paper and pencil” formal meth
ods are valuable, because pure specification — even without verifica
tion tools — always improves the design flow and provides a more
reliable basis for coding, especially by systematic derivation of pro
grams or circuits from formal specifications. However, this approach
has been strongly criticized; for instance, [JW96] denies “the naive pre
sumption that formalization is useful in its own right”, and [WLBF09]
points out that “times have changed: today many people feel that it
would be inconceivable not to use some kind of verification tool”.

•	 Level 4: Formal design flow, with formal specifications and lightweight
checking tools. The formal specifications are written in computer lan
guages equipped with syntax and static semantics checkers, which can
detect shallow mistakes (e.g., syntax errors, undeclared identifiers,
type inconsistencies, etc.). Additional tools, such as syntax editors
and pretty-printers may also be available.

•	 Level 5: Formal design flow, with formal specifications and bug hunt
ing tools. In addition to level 4, there are tools (such as static ana
lyzers, dynamic analyzers, and model checkers) that can detect design
errors by performing deep analyses using computationally expensive
algorithms. Such tools have limitations: they only search for particu
lar kinds of errors, or they may detect the presence of certain mistakes
but cannot guarantee the absence of any mistake.

•	 Level 6: Formal design flow, with formal specifications and proof tools.
In addition to level 4 (and possibly 5), there are tools (such as the
orem provers) that can establish (either automatically or with user
assistance) the correctness, dependability, and/or security of formal
specifications, and the fact that a design artifact correctly implements
a formal specification.

•	 Level 7: Formal design flow, with formal specifications, proofs, and
proof checking tools. In addition to level 6, there are tools that cross
check the correctness of (manual or automatically generated) proofs,
so as to ensure that these proofs are themselves error-free.

Following remarks from [Rus93, p. 20], let us observe that such a classifi
cation in levels of rigor is not immutable in space and time. In the United
Kingdom, for instance, the term “formal methods” has been for long asso
ciated with levels 3 or 4, while in other countries it was associated with the
more stringent levels 5 to 7. Also, a formal methodology based on a given
specification language may increase its level of rigor as this language gets
equipped with increasingly powerful tools.

 	

	

 	

	

196 Chapter 4. Design flows and methodologies

4.7.4 Partially-formal design flows

If formal methods are to be introduced only in certain steps of design flows —
often because time, budget and/or qualified personal are insufficient to cover
the entire life cycle — this raises cost effectiveness and resource allocation
issues: where should formal methods be used?

In such case, one should consider partially-formal design flows, in which
formal methods are employed selectively, in response to existing development
problems, and only where they can successfully compete with conventional
methodologies, namely:

1. To target certain steps of the design flow (e.g., requirements elicita
tion and analysis) for which formal methods are particularly effective,
without commitment to using formal methods in all design flow steps;

2. To focus on issues of real concern, e.g., the most complex parts of the
system and the most critical safety and/or security properties;

3. To	 address classes of problems (e.g., parallelism, real-time, fault
tolerance, etc.) that cannot be satisfactorily tackled using informal
or semi-formal approaches (see Section 4.6.13);

4. To deliver higher levels of quality assurance than conventional ap
proaches — this is why formal methods are prescribed or recommended
in many safety and/or security standards; although partially-formal
design flows cannot guarantee the absence of errors, they increase con
fidence by revealing defects undetected using conventional techniques;

5. To reduce costs by replacing the most expensive conventional analy
ses (e.g., testing, reviews) with cheaper or more effective automated
approaches based on formal methods.

Lightweight formal methods [JW96] [ELC+98] [EC98] [Fea98] characterize
partially-formal design flows, often focused on requirements, and performing
rapid V&V analyses using formal methods at levels of rigor 4 or 5.
There has been a longstanding scientific debate to decide whether formal
methods are best used in the early or late steps of design flows.
Early-step advocates (e.g., [Rus93] [Ber02]) claim that formal methods are
maximally effective when applied early in the life cycle, i.e., to formalize
and validate requirements, and various experiments confirm the benefits of
this approach (e.g., [ELC+98] [EC98]). The following arguments are put
forward:

•	 The most severe and costly errors are introduced during the early
design steps (see Sections 4.3.3, 4.4.5, and 4.6.6).

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

197 4.7. Formal design flows

•	 Detecting and correcting errors as soon as possible is highly desirable
(see Section 4.4.5).

•	 Formal methods (at least, a number of them) are an aid and a guide
in producing suitable top-level specifications (see Section 4.8.1 below).

•	 Because models produced during early design steps are more abstract
than programs, their verification and validation is likely to be easier.

•	 Formal methods bring little added value if applied to sequential pro
grams or circuits, for which conventional methodologies are effective.

Conversely, late-step advocates (e.g., [Sha10]) support the application of
formal methods at the end of the life cycle, i.e., directly on the source code
of software programs or on the gate layout of hardware circuits. Various
arguments are invoked:

•	 Even if many software programming languages and hardware descrip
tion languages lack a formal semantics and even if many of their low
level features are implementation-dependent and remain to be spec
ified, the late design artifacts expressed in these languages are often
the most precise and unambiguous descriptions of a system, especially
when compared to informal artifacts produced during earlier design
steps. It is thus justifiable to conduct formal analyses at this level.

•	 Formal methods that directly operate on late design artifacts are eas
ier to apply because they do not require the development of additional
formal models. So doing, they avoid the issue of maintaining con
sistency between such formal models and late design artifacts; they
keep the design flow simple and remain compatible with conventional
methodologies; finally, they do not require that designers/developers
learn a formal modeling language.

•	 Applying formal methods to late design artifacts enhances not only the
quality, but also the readability, evolvability, maintainability, testabil
ity, and verifiability of these artifacts, especially by decorating source
code with assertions, preconditions, and postconditions, which provide
valuable information for understanding and modifying such artifacts.

•	 Models produced in early design steps are often partial and/or ab
stract and, thus, may hide errors actually present in implementations
(see Section 3.4.2). For instance, the finite bounds that most imple
mentations put on data (e.g., integers, buffers, dynamically allocated
memory, etc.) may cause safety or security issues that cannot be de
tected on models — unless if these models are accurate enough to
consider the possibility of overflows. On this ground, some authors

	

	

	

	

	

	

198 Chapter 4. Design flows and methodologies

(e.g., [Gut04, Chapter 4]) even discard formal methods that signifi
cantly differ from programming languages.
By performing validation and verification on the late design artifacts,
which most closely correspond to the final system, one avoids risks
inherent to restriction and abstraction in models — this is the famous
principle: “what you prove is what you execute” [Ber89]. So doing,
one also favors product quality over process quality (see Section 4.2.3).

Whether formal methods should be used either in the early or in the late
design steps is, we believe, largely a false debate. There are different stages in
the design flow where different kinds of formal methods find their usefulness.
Opposing them as if only a single approach had to be selected is artificial and
sterile — notice that such rhetoric often comes from scientists promoting
their particular approach. Keeping a broader view, both approaches are
clearly complementary:

•	 The properties formally verified on early and late design artifacts are
usually not the same because these artifacts differ in the scope and
level of abstraction at which the system is described (see Section 3.4.2).
On early design artifacts, one usually expresses global properties (see
Section 3.5.5), whereas on late design artifacts, one more likely checks
local properties, such as assertions and absence of run-time errors.

•	 As pointed out in [Rus93, page 34], it is irrelevant to claim that, unless
applied to late design artifacts, formal methods are not doing anything
that is real. Maybe this claim would be correct if only generic prop
erties (see Section 3.5.7) were to be checked on late design artifacts.
However, specific properties are also needed in practice, and they are
derived from the requirements produced during the early design steps.
It would be meaningless to verify late design artifacts against specific
properties that have not been checked themselves: this is why formal
methods are also useful for early design artifacts.

4.7.5 Fully-formal design flows

In its simplest and most ideal form, a fully-formal design flow can be seen
as the formal equivalent of the waterfall model used in conventional design
flows. It consists in a chain of design artifacts, all of which are formal, and
such that consistency is mathematically preserved all along the chain. Two
situations are to be considered:

•	 A fully-formal descending flow typically starts from a formal specifi
cation of the initial requirements and ends with a detailed model of

	

	

	

	

	

	

199 4.7. Formal design flows

the final implementation — or even a software program or a hard
ware circuit if these can be written in an implementation language
(or a well-chosen subset of an implementation language) having a for
mal semantics. Rigorous quality steps ensure that each design artifact
properly implements the design artifact immediately above in the flow;
these quality steps thus prevent the introduction of errors and unex
pected features at each step of the design flow; by transitivity, they
guarantee that the lowest design artifact (namely, the detailed model,
program, or circuit) properly implements the highest design artifact
(namely, the formal specification of the requirements).

•	 A fully-formal ascending flow typically starts from an existing im
plementation (program or circuit) and builds a chain of increasingly
abstract higher-level models. Again, rigorous quality steps ensure that
each design artifact is a proper abstraction of the design artifact im
mediately below in the flow.

Notice the difference in terminology between top down/bottom up, on the
one hand, and ascending/descending, on the other hand. The former terms
are related to components (decomposition vs reuse) whereas the latter apply
to flows. In particular, a descending flow may use bottom-up design.
In practice, a fully-formal descending flow is tractable only if certain con
ditions are met: the system under design should be kept simple (see Sec
tion 4.5.1), the design flow should be seamless (see Section 4.4.1) to avoid se
mantic gaps, and the design steps should be small enough (see Section 4.4.3)
so that their verification remains feasible.
To the contrary, conventional design flows often deal with overly com
plex systems, rely on multiple semantically incompatible languages and for
malisms, and tolerate big design steps, the correctness of which is often not
checked at each step, but only globally during the late steps of the design
flow (e.g., using integration testing).
In a fully-formal design flow, (descending or ascending) design steps, on the
one hand, and quality steps, on the other hand, are closely intertwined.
Indeed, verification and validation activities are required at each step and
may take two complementary forms:

•	 V&V on design artifacts: Generic properties are checked on a design
artifact to control and assess its quality before progressing to the next
step. This can be done, for instance, using static or dynamic analyses.
Notice that some of these generic properties may express best coding
practices, in which case the link between these properties and the
initial requirements may be quite indirect or nonexistent.

•	 V&V on design steps: This is the essence of fully-formal design flows.
At each step, one checks the existence of a mathematical relation be

200 Chapter 4. Design flows and methodologies

tween the upper (more abstract) and the lower (more concrete) design
artifacts. It is said that the lower design artifact refines the upper
design artifact. Refinement is a generic term: depending whether the
design artifacts are in one same or two different languages, diverse
mathematical relations are used, with particular vocabulary to denote
them (see Section 3.5.9).

When the upper design artifact is a declarative specification (i.e., a
collection of properties), one uses a satisfaction (or adequacy) relation:

lower design artifact |= upper design artifact

When the lower and upper design artifacts are both declarative speci
fications (e.g., algebraical or logical specifications), satisfaction can be
replaced by standard deduction:

lower design artifact =⇒ upper design artifact

When the lower and upper design artifacts are both operational speci
fications (i.e., models or programs), one can use equivalence relations:

lower design artifact ≈ upper design artifact
or, if the lower design artifact is abstracted away:

abstraction (lower design artifact) ≈ upper design artifact
One can also use preorder relations — in such case, one often says
that the lower design artifact correctly implements or derives from
the upper design artifact:

lower design artifact ⊑ upper design artifact
or, by abstracting away the lower design artifact:

abstraction (lower design artifact) ⊑ upper design artifact
Preorder relations may express, for example, that the lower design
artifact is “more defined” (i.e., it accepts at least the same inputs as
the upper design artifact and yields the same outputs), that it is “more
deterministic” (i.e., its outputs are a subset of those permitted by the
upper design artifact), etc.

Other forms of refinement relations are possible. For instance, one
may consider mappings between the state variables and/or the actions
of the upper and lower design artifacts. Also, if the respective domains
of both design artifacts are lattices (i.e., if each domain is equipped
with a partial order relation), one may search for Galois connections
between both domains.

Further reading:
▶ Wikipedia: Galois connection

http://en.wikipedia.org/wiki/Galois_connection

201 4.7. Formal design flows

In the scientific literature, this vision of fully-formal design flows is also re
ferred to as program derivation, formal refinement, model-based refinement,
refinement chain, stepwise derivation, stepwise refinement, systematic re
finement, top-down refinement, etc.

Further reading:
▶ Wikipedia: Program derivation
▶ Wikipedia: Refinement (computing)

In practice, such a waterfall-like scheme is an idealized vision of system
design, and is perhaps too simple to be directly applicable:

1. The notion of chain — i.e., each step going from one design artifact
to another one — may be too restrictive in practice. As mentioned in
Section 3.4.2, one may need several models for the same program to
describe (in descending flows) or analyze (in ascending flows) differ
ent (e.g., functional and non-functional) aspects separately. Also, all
components of a system may have their own design flows, which need
to be merged as the components are combined to form the complete
system. Therefore, in both ascending and descending flows, one should
permit several upper design artifacts for a single lower design artifact,
and vice versa; this corresponds to a broad vision of design flows seen
as Petri nets rather than mere graphs (see Section 4.3). In such case,
the mathematical relations (satisfaction, equivalence, preorder, etc.)
between upper and lower design artifacts must still be proven, possi
bly with the additional complexity of proving the coherence between
design artifacts at the same level of the design flow.

2. In a fully-formal design flow, the design artifacts can be models or pro
grams, but also properties. Starting from the informal requirements,
it is often easier to formalize requirements using declarative specifica
tions (i.e., collection of properties). Only then should the development
of operational specifications (i.e., models) be undertaken. Therefore,
a fully formal design flow is likely to exhibit the following chain:

(informal requirements) −→ properties −→ models1 −→

models2 −→ ... −→ modelsn −→ (implementation)

where parentheses enclose design artifacts that, strictly speaking, are
out of the flow if they are informal. For small problems, models may
be omitted, so that properties are directly proven on the program.
For large problems, there can be several increasingly detailed models
leading to the final implementation.

http://en.wikipedia.org/wiki/Program_derivation
http://en.wikipedia.org/wiki/Refinement_(computing)

202 Chapter 4. Design flows and methodologies

3. Refinement-based methodologies rely on the hypothesis that the top
level requirements are perfect, so that one just has to maintain consis
tency all along the refinement chain to obtain a proper implementation.
This hypothesis rarely holds in practice. The top-level requirements
are frequently incomplete, they do not describe the system exhaus
tively, and need to be revised and enriched as the design progresses.
Moreover, the top-level requirements focus on the external behavior
of the system under design and, as the system gets structured into
components, additional properties must be introduced in the design
flow to describe the expected relations between components, the char
acteristics of those components reused to build the system, and of the
hardware platform(s) on which the system will execute. Finally, re
finement often introduces new assumptions to be taken into account
and new properties to be verified, which are called proof obligations
(or derived requirements, or verification conditions).

4. When performing a design step “mi −→ mi+1” from a model mi to
another model mi+1, one must prove that mi+1 correctly refines mi,
which is often done by showing that an equivalence (mi ≈ mi+1) or,
at least, a preorder relation (mi ⊒ mi+1) holds between both models.
Many equivalences and many preorder relations have been proposed in
the scientific literature; unfortunately, the equivalences and preorders
that are most relevant in practice (i.e., mathematically and algorith
mically) do not preserve all suitable properties, meaning that, given
some useful property p, one may have:

(mi |= p) ∧ (mi ≈ mi+1 ∨ mi ⊒ mi+1) ∧ (mi+1 ̸|= p)

This clearly violates the so-called refinement monotonicity principle
that underlies refinement-based methodologies, as properties estab
lished at some stage of the design flow may no longer hold at the
next stage after a verified refinement step. To illustrate such a si
tuation, three examples can be given: (i) refinements based on the
trace inclusion preorder preserve safety properties but not liveness
properties, which are only preserved by more involved forms of re
finement [AL91, SGSAL98]; (ii) weak behavioral equivalences such
as observational equivalence [HM80, Mil80] and branching bisimula
tion [vW89, vW96] preserve deadlocks but not livelocks (i.e., diver
gence); (iii) a preorder relation mi ⊒ mi+1 ensures that model mi+1

properly implements all features specified by model mi, but also allows
mi+1 to implement more features than specified by mi: consequently,
“negative” properties stating what mi cannot do are not preserved
under preorder-based refinement steps [Rus93, p. 50].

203 4.8. Formal design steps

These four remarks have major impact on the concept of fully-formal design
flows. Remark 1 justifies the description of design flows as Petri nets rather
than graphs. Remark 2 confirms the coexistence of properties and models
in flows, ruling out the conception of design flows that would be exclusively
model-based. Remarks 3 and 4 question the principles of refinement-based
methodologies in two ways: assumptions and properties unrelated (or not
directly related) to the initial requirements may enter the design flow at any
stage, and certain classes of properties should be verified on late steps only
— as they would not be preserved by refinement if verified on early steps.
This suggests to abandon the vision of a single flow — even if it mixes models
and properties — and to consider instead a double flow: a flow of models
and a flow of properties. Both flows originate from the initial requirements
and progress in parallel. To each model in the first flow corresponds a
set of properties in the second flow. The flow of properties evolves (by
introduction, transformation, or discharge of properties) to follow the flow
of models. Equivalence and/or preorder relations should hold all along the
flow of models, and satisfaction relations should be verified between each
model and its corresponding set of properties.
The flow of properties should be supported by software tools for managing
large collection of properties, checking the consistency of properties, and
ensuring traceability of properties throughout all system development steps,
from initial requirements to implementation code.
An important question is to decide when a particular property should be
verified. The answer is: as soon as possible, to favor early detection of errors,
provided that all subsequent steps preserve the truth value of this property
from the point it is verified to the final implementation.
Finally, fully-formal design flows are particularly demanding in terms of
management of changes (see Section 4.4.3). Each time an upper design
artifact (in a descending flow) or a lower design artifact (in an ascending
flow) is modified, the derived design artifacts must be created again, and
the related quality steps (e.g., refinement proofs) must be redone.

4.8 Formal design steps

Formal flows have many traits in common with conventional flows. In this
section, we only present the major points where formal methodologies differ
from conventional ones, namely:

• the formalization of requirements in ascending flows,
• the refinement steps in ascending flows, and
• the abstraction steps in ascending or descending flows.

	

	

	

	

	

	

	

	

	

	

204 Chapter 4. Design flows and methodologies

4.8.1 Formalization of requirements

In formal design flows, formalization of requirements is the step at which in
formal and formal concerns meet together. This is a key step, as refinement
based approaches in descending flows crucially rely on the hypothesis that
the top-level requirements produced during the early design steps are formal
and correct. Three approaches may be used to formalize requirements:

•	 One-step approach: the requirements for the system under design are
directly specified in a formal language. Although such a direct ap
proach is ideal, it might only be feasible if the system is simple enough
and if the requirement specifiers are perfectly fluent in formal methods.

•	 Two-step approach: the requirements for the system under design are
first written informally or semi-formally (using the conventional tech
niques described in Section 4.6.2), and then specified in a formal lan
guage. This is the standard approach for most projects (see, e.g.,
[Abr06, Section 4.10] and [Abr10] for a discussion on the co-existence
of informal and formal requirements). The two-step approach enables
to divide the overall complexity between system designers, who build
informal requirements, and formal methods experts, who translate in
formal requirements into formal ones.

•	 Three-step approach: the requirements for the system under design are
first written informally, then expressed in a semi-formal language, and
finally specified in a formal language. The argument put forward for in
troducing semi-formal requirements is the difficulty of moving directly
from informal to formal requirements. Although such difficulty may be
real, it should be primarily addressed by choosing well-adapted formal
methods and by properly training the specifiers. Also, semi-formal
requirements demand additional translation steps, the correctness of
which cannot be checked automatically, and thus increase, without
clear benefit, the risks of errors and misunderstandings.

In practice, things are less simple, as the development of requirements is
a fast-evolving iterative process. In particular, the mixing of informal and
formal requirements is often unavoidable and supported, if not encouraged,
by several methodologies. Such mixing may take several forms:

•	 In the same design artifact, formal requirements may be accompanied
with informal explanations intended to readers who are not experts in
formal methods [Rus93, p. 80].

•	 At the same time instant, certain requirements may be already formal
while others are kept informal, their formalization being deferred to

	

	

	
	

	

	

	
	

205 4.8. Formal design steps

a later stage [JHL11], taking advantage of the constructive ambiguity
permitted by such ability to postpone design decisions.

•	 For the same system, one may decide that only certain require
ments (e.g., the most critical ones) will be formally specified and an
alyzed [ELC+98] [EC98] — this is the idea behind lightweight formal
methods and partially-formal design flows (see Section 4.7.4).

It is not mandatory to use one single language for all kinds of requirements.
Having a single formal unified language would be desirable, but remains
an open research problem; until a solution is found, combining different lan
guages (and different analysis tools) is certainly a better option than sticking
to a single language appropriate only for certain types of requirements and
clumsy for others, the expression of which is thus prevented or discouraged.
A related question is whether requirements should be formalized in terms of
models (see Section 3.4.3) or properties (see Section 3.5.3). Regarding this
question, partly addressed already in Section 4.7.5, the following observa
tions can be made:

•	 Being declarative rather than operational, properties are more abstract
and more likely to avoid overspecification issues than models, which
— especially when they are executable — are often more detailed and
implementation-dependent than suitable at the early steps of design
flows (see, e.g., [HJ90] and [Rus93, p. 143–144], which states the con
cern that expressing requirements in terms of prototypes or executable
models intended for simulation may “degenerate into hacking7”).
Therefore, in the classical vision of formal design flows (e.g., [Rus93]),
property-oriented specifications are preferred at the requirements level.
Model-oriented specifications are usually produced later, either during
translation-based requirements validation (where property-oriented re
quirements are checked by reformulation into model-oriented ones) or
during formal design steps.
The same vision is adopted by refinement-based approaches, such as
B and Event-B, that express top-level requirements in a declarative
manner first, even if their specification languages merge both notions
of models and properties into a unique notation.

Further reading:
▷	 Wikipedia: B-Method
▶	 Event-B and the Rodin platform – http://www.event-b.org

7Here, the word “hacking” means poor programming without clear prior design.

http://en.wikipedia.org/wiki/B-Method
http://www.event-b.org

	

	

	

	

	

	

	

	

	

	

206 Chapter 4. Design flows and methodologies

•	 Conversely, formulating requirements directly in terms of models may
have advantages. First, certain parts of the requirements (e.g., data
types, data operations, state machines, etc.) may be natively exe
cutable, without lending themselves to multiple, functionally different
implementations. Also, executable models can be presented to stake
holders that do not have a computer science background, and vali
dated using a larger set of techniques, among which simulation (see
Section 4.9.12 below).

•	 In the case of the double flow mentioned in Section 4.7.5 (property flow
and model flow), the informal requirements may be translated into two
formal specifications (a model-based one and a property-based one)
possibly developed by two independent teams (a design team and a
verification team). The early comparison of both specifications can be
used to detect defects in informal requirements.

Whichever approach is followed, formalization of requirements is a difficult
task that demands multiple competences: specification writers must master
the chosen formal method(s), understand the system under design, and be
capable of dialoguing with stakeholders of different backgrounds.
However, when used by specifiers with proper training and experience, for
mal methods are beneficial and lead to requirements of higher quality. There
are several reasons for this:

•	 Formal methods encourage to consider problems with a logical mindset
and to pay greater attention to modeling details.

•	 Certain formal methods provide well-designed dedicated constructs for
expressing concurrency, dependability, security, etc. that help speci
fiers to think and describe complex systems adequately.

•	 Expressing requirements in a formal notation (i.e., using formal meth
ods at level of rigor 3) reveals many hidden defects, especially ambi
guities and incompleteness issues, i.e., vague or missing elements.

4.8.2 Refinement steps

In conventional design flows, there are various kinds of design steps (see
Sections 4.3.2 and 4.6.3 to 4.6.5). The situation is globally similar in fully-
formal descending flows, with two main differences:

1. The steps in formal design flows are likely to be of lower complexity
and in greater number, as refinement-based methodologies rely on the
divide-and-conquer paradigm to reduce complexity and render verifi
cation tractable.

	

	

	

	

	

	

	

	

	

	

207 4.8. Formal design steps

2. Each of these steps should explicitly state and verify mathematical
conditions required to preserve the properties of interest obtained so
far (e.g., consistency of the specifications) and avoid introducing errors
in the design flow. More often than not, a flow of properties has to
be maintained in parallel of the flow of models and programs (see
Section 4.7.5).

Formal methodologies pay a great attention to certain design steps, which we
call refinement steps, that go from upper to lower design artifacts according
to systematic semantics-preserving transformations. One may distinguish
several (not necessarily mutually exclusive) classes of refinement steps:

•	 Enrichment steps: They progress the design of the system by gradually
incorporating new requirements into formal models, thus making these
models increasingly more detailed.

•	 Concretization steps: They make the system definition more precise
by taking design decisions that resolve choices previously left open.
Such steps may reduce nondeterminism, e.g., when replacing a nonde
terministic specification by a deterministic implementation.

Further reading:
▶	 Wikipedia: Refinement (computing)#Data refinement

•	 Translation steps: They encompass compiling, code generation, syn
thesis, and similar kinds of transformation from upper to lower design
artifacts. These steps can be performed manually (see Section 4.6.4) or
automatically (see Section 4.6.5); they may be similar to conventional
steps, but require a rigorous attention to semantics preservation.

•	 Decomposition steps: They split the upper design artifact into lower
level components using top-down and/or bottom-up decomposition
strategies (see Sections 3.2.1, 3.2.2, and 4.5.2). As with conventional
methodologies, the expected functionality of each component is speci
fied first, each component is then developed independently (or reused
if it already exists), and finally all components are assembled together.
In a formal design flow, one must prove that the composition of com
ponents behaves as expected. This is usually done in several steps,
to avoid the late discovery of errors during integration steps: (1) for
mal models are developed to describe precisely the expected behavior
of each component — these are not merely interfaces as in conven
tional approaches but richer semantics-oriented behavioral interfaces;

http://en.wikipedia.org/wiki/Refinement_(computing)#Data_refinement

	

	
	

	

	
	

208 Chapter 4. Design flows and methodologies

one then proves (2) that the composition of these models properly
refines the upper design artifact, and (3) that the implementation of
each component properly refines the formal model of its behavior.
Certain systems are easy to decompose into components but, in gen
eral, finding a suitable decomposition requires expertise and foresight,
as wrong decisions in defining components may have to be undone
later if they make verification difficult or even impossible. An addi
tional difficulty is that the decomposition that best suits the needs of
formal verification does not necessarily coincide with the actual de
composition used to implement the system.

•	 Replacement steps: During maintenance, certain system components
can be replaced by newer components that provide more features, or
deliver better performance, or are less expensive, or are just forced
substitutes for obsolete or unavailable components. The replacement
can be one-to-one or one-to-many, many-to-one, or many-to-many, in
which case a group of components is replaced by another group.
One must prove that the system obtained after replacement satisfies
the same requirements as the system before replacement. One way to
proceed is to redo all required quality steps from scratch. A better
way, when applicable, is to prove, between the replaced and replacing
components, some behavioral equivalence or preorder that preserves
all (or many) properties of interest. Again, to do so, one needs behav
ioral interfaces rather than mere interfaces. Preservation of properties
is only possible if the composition of components is semantically com
patible with the behavioral equivalence or preorder relation, e.g., if this
relation is a congruence with respect to composition. In most process
calculi, for instance, strong and branching bisimulation are congru
ences with respect to parallel composition operators, which enables
parallel components to be replaced with bisimilar ones.

Further reading:
▶	 Wikipedia: Congruence relation
▷	 Wikipedia: Bisimulation

4.8.3 Abstraction steps

As stated in Section 4.7.1, abstraction steps take as in inputs lower design
artifacts (namely, programs, circuit descriptions, or concrete models) and
deliver as outputs higher design artifacts (namely, more abstract models),
Abstraction steps produce formal design artifacts from possibly informal or
semi-formal ones. They are used in both ascending flows (to establish formal

http://en.wikipedia.org/wiki/Congruence_relation
http://en.wikipedia.org/wiki/Bisimulation

	

	

209 4.8. Formal design steps

models of an already existing system) and descending flows (to perform
verification by abstracting away irrelevant details).
In the former case, an abstraction step is basically the opposite of a refine
ment step. One seeks to retroactively build a flow that helps to better un
derstand how the system works and, possibly, demonstrates that the system
was properly designed. Although this flow is built a posteriori, progressing
from the lower to the upper design artifacts, it should eventually have the
same qualities as refinement-based flows, i.e., mathematical relations should
hold between upper and lower design artifacts to prove that properties of
interest are preserved all along the flow from the initial requirements to the
final implementation.
In the latter case, the goal is different. Rather than constructing an entire
ascending flow going back to the initial requirements, one merely seeks to
analyze a given lower design artifact efficiently. The upper design artifacts
produced by such abstraction steps are only useful to verification and are
not necessarily intended to represent or document the system entirely.
In the remainder of this section, we focus on the latter type of abstraction
steps and their interaction with subsequent quality steps.
The application of an abstraction step to a lower design artifact L produces
an upper design artifact U that is simpler than L (see Section 3.4.6 for ex
amples of model abstractions) with the expectation that formal verification
becomes tractable on U if it was difficult or even infeasible on L.
For the same lower design artifact L, various upper design artifacts U may
be constructed using different abstractions. In particular, if several (classes
of) properties P are to be verified on L, each model U may be specifi
cally tailored to a particular (class of) property P . Such property-driven
abstractions are a powerful means to break down verification complexity.
Notice that there is a permanent methodological tradeoff between applying
a few “conservative” abstractions that preserve many properties and apply
ing many “aggressive” abstractions preserving each a few properties.
For those abstraction steps intended for verification only, the mathemati
cal relations between upper and lower design artifacts may be weaker than
in refinement-based (ascending or descending) flows. Given a lower design
artifact L, an upper design artifact U obtained from L by applying an ab
straction A, and a property (or a class of properties) P of interest that can
be more easily verified on U than on L:

•	 A is said to be an exact (or faithful, or strongly preserving) abstraction
with respect to P iff L |= P ⇐⇒ U |= P , meaning that verifying P on
the abstract model is equivalent to verifying P on the original one.
Exact abstractions are ideal from a methodological point of view; in
practice however, undecidability results (namely, Gödel’s incomplete

	

	

	

	

	

	

	

	

210 Chapter 4. Design flows and methodologies

ness theorem and Rice’s theorem) make it impossible to automatically
prove important properties for any arbitrary model. Therefore, in or
der to have automatic abstraction steps, one is often forced to consider
abstractions that are inexact, i.e., that deliberately lose information
of L relevant to P when building U .

•	 A is said to be a sound (or conservative, or weakly preserving) abstrac
tion with respect to P iff U |= P =⇒ L |= P . If A is sound, the
abstract model U is an over-approximation of the original model L,
i.e., U contains the abstract images by A of all elements of L (e.g.,
states, transitions, behaviors, etc.) that are relevant to evaluate P .
Using a sound abstraction, one can verify properties on the abstract
model: if P is proven to be true on U , P will also be true on L. Sound
abstractions avoid the risk of false negatives: if there is a violation of
P in L, it is certain that P is also violated in U , meaning that no error
is missed by studying the abstract model only, whereas unsound (or
too coarse) abstractions may introduce false negatives (i.e., P true on
U but false on L).

•	 A is said to be a complete abstraction with respect to P iff L |=
P =⇒ U |= P . If A is complete, the abstract model U is an
under-approximation of the original model L, i.e., U is contained in
the abstract images by A of all elements of L (e.g., states, transitions,
behaviors, etc.) that are relevant to evaluate P .
Using a complete abstraction, one can falsify properties on the abstract
model: if P is proven to be false on U , P will also be false on L.
Complete abstractions avoid the risk of false positives: if a violation of
P is detected in U , it is certain that P is also violated in L, meaning
that no false alarm is triggered when studying the abstract model,
whereas incomplete abstractions may introduce false positives (i.e., P
false on U but true on L).

There are plenty of possible abstractions (see Section 3.4.6 for examples).
The main difficulty is to find suitable abstractions, i.e., abstractions that
both preserve correctness and reduce verification complexity. This is a del
icate choice, guided by several considerations:

•	 A suitable abstraction does not only depend on the models and prop
erties to be analyzed; it must also take into account the strengths and
limitations of the chosen verification technology.

•	 There is often a tradeoff between soundness and completeness, i.e., tol
erating either false negatives or false positives, occurrences of which
must be dealt with manually. Notice that many commercial tools used

	

	

211 4.9. Formal quality steps

to find bugs in conventional methodologies rely on inexact abstractions
that are neither sound nor complete; the presence of both false neg
atives and false positives does not yet prevent these tools from being
useful in practice.

•	 Because it is often difficult to find a suitable abstraction in one stroke,
there are abstraction refinement approaches (see Section 4.9.10 below)
that take a candidate abstract model U for an original model L and

′try to automatically generate abstract models U closer to L than U .

4.9 Formal quality steps

Although formal methodologies produce design artifacts of higher quality,
the need for quality steps (i.e., verification and validation activities) re
mains. Writing specifications using formal notations does not necessarily
make them correct. There are various reasons why formal design steps may
be erroneous, and why design artifacts developed using formal methods may
contain mistakes.
Even fully-formal design flows do not suppress the need for quality steps. To
the contrary, quality steps play a crucial role in such flows to guarantee that
consistency is preserved from end to end. Concretely, such flows generate
proof obligations (or verification conditions) that must be satisfied to ensure,
e.g., that a lower design artifact correctly refines an upper design artifact,
or that all the intended properties of a model hold.
In the next sections, we review those formal means to ensure the correctness
of design steps, but also of quality steps themselves.

4.9.1 Correct-by-construction approaches

Correct by construction (also: correct by design, safe by construction, safe by
design, secure by construction, secure by design, etc.) expresses the idea of
designing a system in such a way that the verification effort can be reduced,
or even suppressed in certain cases. Various methodological approaches can
be combined to make this idea feasible:

1. The methodological principles and quality-by-design principles stated,
respectively, in Sections 4.4 and 4.5 should be followed to the largest
possible extent.

2. Fully-formal design flows (and, particularly, refinement-based method
ologies) contribute to make verification easier by dividing complex
proofs into simpler ones. Although this does not solve all problems, it
tends to clearly separate and serialize issues.

 	

	
	
	

 	

	
	
	

212 Chapter 4. Design flows and methodologies

3. Using safe or secure languages (see Section 4.6.4) is another means
to ensure the absence of certain classes of errors or vulnerabilities,
possibly at the price of reducing expressiveness and/or performance.
Conversely, the use of languages with features known to be error- or
vulnerability-prone, or that are difficult to handle by verification tools
should be avoided in correct-by-construction approaches.

4. When translation tools (e.g., compilers,	 code generators, synthesis
tools, model extractors, etc.) are used in automatic design steps,
there is no need for corresponding quality steps if these tools have been
formally proven to be correct, or if they produce machine-checkable
proofs that the outputs they generate are correct. A typical example is
the CompCert C compiler [BDL06, Ler06, BFL+11]. For safety- and
security-critical applications, it is advisable to use translation tools
that have been certified or, at least, are reputed to have no or very
few defects.

Further reading:
▶	 Wikipedia: Compiler correctness
▷	 Wikipedia: CompCert
▶	 The CompCert project – http://compcert.inria.fr

5. Finally, there exist theoretical results guaranteeing that a design arti
fact having certain global properties can be decomposed into compo
nents having certain local properties, or that a composition of com
ponents automatically satisfies certain global properties if the compo
nents satisfy certain local properties and if they are assembled in a
certain way.

Correct-by-construction approaches are attractive, as they promise to de
liver zero-defect quality while suppressing the need for quality steps or, at
least, making them less difficult. A positive effect of these approaches is to
encourage the systematic design of systems that are easier to verify — yet
often at the expense of a performance decrease, which is the corollary for
a complexity reduction. One should also keep in mind the strict conditions
under which these methods can be used, and carefully examine whether
these hypotheses hold or not.

4.9.2 Correct-by-verification approaches

In many cases, correct-by-construction approaches are not applicable, so
that one cannot avoid quality steps involving formal verification (also named

http://en.wikipedia.org/wiki/Compiler_correctness
http://en.wikipedia.org/wiki/CompCert
http://compcert.inria.fr

	

	

	

	

	

	

	

	

	

	

	

	

	

	

213 4.9. Formal quality steps

correct-by-verification approaches). Said differently, if one is unable to
develop a system guaranteed to satisfy its requirements, one must check
whether these requirements are satisfied by the system. There are many
examples of situations in which quality steps are necessary:

•	 Initial requirements and environment assumptions which, even if prop
erly formalized, may be erroneous and must be checked carefully —
this is the role of validation activities;

•	 Manual or semi-automatic design steps that require creativity from
system designers/developers and are thus subject to human mistakes;

•	 Automatic design steps based on translation tools that are not proven
to be correct and may thus introduce errors in the design flow;

•	 Refinement steps that generate proof obligations to be verified so as
to ensure the correctness of the flow;

•	 Abstraction steps whose soundness and completeness need to be
demonstrated formally;

•	 Composition steps leading to a global behavior whose correctness can
not be easily deduced from that of the individual components;

•	 Properties that are so specific to the system under design that they
are not considered by any correct-by-construction methodology.

In correct-by-verification approaches, it is sometimes difficult to distinguish
between design steps and quality steps: a design step is immediately fol
lowed by a corresponding quality step; in many cases, both are performed
simultaneously, according to Dijkstra’s recommendation to “develop proof
and program hand in hand”.

4.9.3 Panorama of formal quality steps

Quality steps play a central role in formal methodologies, where they are
more thorough, systematic, and diverse than in conventional methodologies.
First, most conventional quality steps are also applicable to formal specifica
tions, as well as to informal specifications. More precisely, formal specifica
tions (model-based or property-based) can be subject to reviews and static
analyses, and formal executable model-based specifications can be subject
to dynamic analyses (based, e.g., on code generation or simulation).
But formal methodologies also have specific quality steps, which are based
on mathematical theories and sophisticated algorithms seldom used in con
ventional methodologies. Such formal quality steps are multiple and diverse,
the main ones being:

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	

214 Chapter 4. Design flows and methodologies

•	 theorem proving
•	 model checking
•	 equivalence checking
•	 extended type checking
•	 abstract interpretation
•	 generation of test cases
•	 synthesis of monitors for run-time and log analysis
•	 performance and dependability estimations

Further reading:
▷	 Wikipedia: Formal verification
▷	 Wikipedia: Formal methods#Verification
▷	 Wikipedia: Automated theorem proving
▷	 Wikipedia: Model checking
▷	 Wikipedia: Formal equivalence checking
▷	 Wikipedia: Type system
▷	 Wikipedia: Abstract interpretation

In the spectrum of V&V activities, formal methods are primarily oriented
towards verification. However, they also contribute to validation, both at
the beginning of the design flow (i.e., with requirement validation) and at
its end (e.g., with testing, run-time validation, post-silicon validation, etc.).

Further reading:
▶	 Wikipedia: Post-silicon validation

For a real system, there are many properties to be verified; moreover, these
properties evolve all along the design flow. It is by no means mandatory to
use the same formal technique(s) to verify all properties. Certain properties
can be dealt with using, e.g., model checking or abstract interpretation,
while other properties will be checked manually or using theorem proving.
If some properties cannot be verified formally, they can be subject to less
stringent analyses (such as testing or run-time analysis) that, even if they
are not exhaustive, can still benefit from formal methods.
This raises the question of how to select an appropriate formal verification
technique for a given quality step. Because most useful verification problems
are undecidable, no software tool can solve them in full generality. To be
tractable, computer-aided analyses must be restricted in a way or another:

•	 As mentioned in Section 1.3.1, one must accept restrictions on at least
one out of three desirable criteria: expressiveness, accuracy, and au
tomation.

http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Formal_methods#Verification
http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/Model_checking
http://en.wikipedia.org/wiki/Formal_equivalence_checking
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Abstract_interpretation
http://en.wikipedia.org/wiki/Post-silicon_validation

	

	

	

	

	

	

	

	

	

	

	

	

215 4.9. Formal quality steps

•	 Moreover, these three criteria often conflict with each other: in many
cases, there is a tradeoff between expressiveness and accuracy, as well
as between expressiveness and automation.

Therefore, the choice of a particular formal verification technique necessarily
results from a compromise between antagonistic criteria, and the decision
should only be taken after a careful examination of the design artifacts
(models and properties) under study and quality goals to achieve.
In the next sections, we review selection criteria for formal quality steps,
with the intent of establishing a taxonomy.

4.9.4 Static vs dynamic quality steps

The distinction between static and dynamic analyses used above for con
ventional quality steps (see Sections 3.5.6, 4.6.8, and 4.6.9) becomes less
relevant for formal quality steps. The following observations can be made:

•	 Theorem proving is usually considered as a static verification method,
because it is performed on the source code of models or programs.

•	 Model checking is considered as a dynamic verification method, at least
in its explicit-state variant, which is based on the forward exploration
of reachable states. However, in its symbolic variant based on the
forward or backward exploration of classes of states, model checking
is rather a static verification method — or perhaps a combination of
static and dynamic approaches.

•	 Abstract interpretation is fundamentally a static verification method,
but it performs symbolic execution of models or programs and, thus,
can also be seen as a dynamic verification method.

Further reading:
▶	 Wikipedia: Symbolic execution

•	 Testing and run-time monitoring are typically dynamic methods but,
when formal methods are used to generate test cases and synthesize
monitors, this is usually done in a static manner.

More generally, any automatic formal analysis relies on fixpoint computation
regarding the flow of execution and, thus, has dynamic aspects. Therefore,
the traditional distinction between static or dynamic analyses does not pro
vide a suitable basis for a taxonomy of formal quality steps.

http://en.wikipedia.org/wiki/Symbolic_execution

	

	

	

	

	

	

	

	

216 Chapter 4. Design flows and methodologies

4.9.5 Generic vs specific quality steps

A better criteria for comparing formal verification techniques is their degree
of generality. Certain approaches are generic, in the sense that they can
address a large class of verification questions, whereas other approaches are
specific, meaning that they are specialized for a given verification problem.
This criterion is closely related to the expressiveness of the language(s) in
which the models and properties have to be described, as language limita
tions are the usual way in which verification tool developers restrain general
ity. In particular, this criterion is related to the distinction between generic
and specific properties (see Section 3.5.7) and to the difference between zero-,
one-, and two-language approaches (see Section 3.5.9).
More often than not, focusing on a specific verification problem enables to
use dedicated algorithms that are more accurate and/or computationally
efficient. However, general-purpose verification tools may be easier to inte
grate in existing design flows, benefit from larger user communities, and can
be optimized too for handling particular situations efficiently.
The following verification techniques can be classified as follows:

•	 Theorem proving is generic and may address a large spectrum of prob
lems ranging from pure mathematics to applied issues in system design.

•	 Model checking is usually considered as generic, especially when its
modeling language and temporal logics are expressive enough. But
there also exist specific forms of model checking dedicated to particular
problems, e.g., proving security properties of cryptographic protocols.

•	 Equivalence checking is quite specific at first sight; notice however that
multiple, diverse properties can be expressed as comparisons against
well-chosen models, using appropriate equivalence or preorder relations
and carefully selected abstractions.

•	 Abstract interpretation, although very general in its principles, is
mainly used to check specific properties, such as assertions, absence of
run-time errors, memory consumption, and worst-case execution time.

4.9.6 Exact vs approximate quality steps

A second criteria to classify formal quality steps is the accuracy of their
results. This encompasses various aspects. One must first consider the
capability of a given formal verification technique to provide any result at
all; this cannot be taken as granted:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

217 4.9. Formal quality steps

•	 Certain verification algorithms (e.g., abstract interpretation) give in
conclusive (“don’t know”) answers to questions they cannot solve.

•	 Because some verification problems are semi-decidable, software tools
(e.g., theorem provers) implement semi-decision procedures that may
either give correct results or never terminate.

•	 Verification algorithms with heavy demands in computing resources
may abruptly stop with inconclusive results when these resources get
exhausted; this is the case of model checkers, which make intensive
use of memory and mail fail because of the state-explosion problem.

Then, when verification results are available, their accuracy should be con
sidered. Because abstractions are often used to replace an undecidable prob
lem by a decidable or semi-decidable one, verification algorithms may be
classified (following Section 4.8.3) into exact ones, which precisely answer to
a given question, and approximate ones, the results of which are subject to
under- and/or over-approximations:

•	 With exact algorithms, verification results are guaranteed to contain
all errors and only “real” errors. For instance, the explicit-state variant
of model checking (which does not use abstractions) is an exact verifi
cation approach — at least when the computation terminates without
being halted by state explosion, and when the verified temporal logic
formulas faithfully characterize the expected behavior of the system
under design.

•	 With over-approximations (i.e., sound abstractions), verification re
sults may contain false positives. A typical example is given by ab
stract interpretation tools, which traditionally produce false alarms,
i.e., spurious warning messages about non-existent issues.

•	 With under-approximations (i.e., complete abstractions), verification
results may contain false negatives. A typical example can be found
with simulation, testing, run-time and log analyses, which can detect
violations of, e.g., safety and security properties, but cannot prove
that such properties are satisfied.

This suggests classifying formal quality steps according to their degree of
ambition. Given a desirable property φ, two groups can be distinguished:

1.	 Methods for establishing that φ holds on all possible executions of the
system. These methods aim at verifying φ, so as to prove that the
system under design is correct (or safe, or secure, etc.) as far as φ
is concerned. This is the original motivation behind formal methods

	

	
	

	

	
	

218 Chapter 4. Design flows and methodologies

and, for this reason, formal verification is often equated with proof of
correctness. Theorem proving, of course, but also model checking and
abstract interpretation, belong to this first group of methods.

2.	 Methods for showing that φ does not hold on some executions of the
system. These methods aim at falsifying φ by exhibiting situations in
which the system under design is incorrect (or unsafe, or insecure, etc.)
with respect to φ. Simulation, testing, run-time and log analyses are
typical examples of such methods that search for design or program
ming mistakes, and which are usually referred to as bug hunting. Also,
model checking, when it cannot explore all possible execution because
of state explosion, as well as model checking variants that only explore
a defined subset of possible executions (such as bounded model check
ing, which restricts its explorations to some maximal depth) belong to
this second group of methods.

Clearly, methods in the first group are more ambitious than methods in the
second group. They are more general too: if a method can prove that a
property φ always holds, then it can prove that φ sometimes holds, and also
that some other property φ ′ sometimes does not hold (by taking φ ′ = ¬φ,
assuming that the set of desirable properties is closed under negation).
In practice, bug hunting methods are often effective at finding mistakes.
The main risk with these methods is to replace verification with debugging,
with no guarantee that the system is correct after all reported errors have
been fixed. Yet, bug hunting methods contribute to enhance the quality of
the system, especially when more ambitious methods fail to establish the
correctness of the system.
Finally, formal quality steps should be capable of providing not only a
Boolean result (i.e., correct or incorrect), but also diagnostics (see Sec
tions 3.5.1 and 3.5.2) that explain why this result is true or false. The
methodological role of diagnostics will be further discussed in Sections 4.9.8
and 4.9.9 below.

4.9.7 Manual vs automatic quality steps

A third criteria to classify formal quality steps is their degree of automation.
These steps, like design steps, can be manual, semi-automatic, or automatic.
In principle, manual quality steps can address any verification problem, up
to the limits of human intelligence. In practice, however, they face various
limitations:

•	 They have to be performed by skilled experts;
•	 They are tedious and thus cannot easily deal with large systems;

	

	
	
	
	

	

	

	

	

	

	
	
	
	

	

	

	

	

219 4.9. Formal quality steps

•	 They may contain human (individual or group consensus) mistakes;
• They often must be redone from scratch in case of revision steps.

For these reasons, automatic quality steps are generally preferred:
•	 In principle, they are easier to use by non-experts;
•	 They are more likely to scale to large industrial systems;
•	 They do not rely on intuition and are thus less subject to human errors;
•	 They are repeatable and can thus be rerun after revision steps.

These arguments justify the strong desire for “push-button verification” that
potential users of formal methods frequently express. Automatic quality
steps, however, have drawbacks:

•	 Many automatic analyses operate on formal design artifacts that re
quire expertise if they are produced manually or semi-automatically;

•	 Because of undecidability issues (see Section 1.3.1), fully automatic
analyses are necessarily restricted in expressiveness and/or accuracy;

•	 Even with such restrictions, automatic verification algorithms often
have a high computational complexity that limits their scalability.

One may also resort to semi-automatic steps, i.e., less ambitious approaches
combining human insight and machine support. For instance, a large part
of the proof obligations generated by a refinement step may be discharged
(i.e., proven) automatically using a theorem prover, while the remaining
ones have to be verified manually. Also, a human user may guide a theorem
prover by providing lemmas, i.e., intermediate goals that guide the proof.
Even when semi-automatic or fully automatic quality step are used, one
should not underestimate the human effort required to provide verification
tools with acceptable inputs (models, properties, abstractions, etc.), to guide
the tools to obtain useful outputs, and to properly interpret these outputs.

4.9.8 Errors in formal quality steps

Quality steps are meant to ensure that design steps are correct. But what
if quality steps themselves are incorrect? Quite symmetrically with design
steps, this may occur under two circumstances:

•	 If the quality steps are performed manually or semi-automatically,
they may be affected by human mistakes. In mathematics or com
puter science, for instance, it is not uncommon that incorrect proofs
of theorems or algorithms get accepted for scientific publication after

	
	

	

	

	

	

	

	
	

	

	

	

	

	

220 Chapter 4. Design flows and methodologies

defeating the vigilance of peer reviewers. This is even truer of quality
related proofs for large systems, as these proofs are lengthy, detailed,
and thus likely to contain mistakes.
To address this issue, it is advised to formalize manual proofs using
a theorem prover, which will help to provide all missing demonstra
tion steps, and then automatically check the resulting proofs. This
later step, called proof checking [Sha88b] or justification [Bru91], is
different from theorem proving in the sense that a theorem prover
produces (possibly with human assistance) a novel proof, whereas a
proof checker only verifies the correctness of an existing proof.
Theorem provers and proof checkers often detect hidden flaws in man
ual proofs (see, e.g., [RH93]), leading to more reliable and more com
plete proofs. Other formal approaches, such as model checking or
equivalence checking, can also reveal incorrect manual proofs by pro
ducing counterexamples (see, e.g., [GM97]).

Further reading:
▶	 Wikipedia: Proof assistant
▶	 Wikipedia: Automated proof checking

•	 If the quality steps are performed automatically, the verification tools
used may be bogus, i.e., produce results containing unexpected false
negatives and/or false positives. Although such issues should not be
underestimated, their severity is attenuated by two factors:

–	 Serious errors in verification tools having a large user community
are likely to be detected, reported, and fixed.

–	 Many verification techniques already generate false positives,
which verification engineers know how to handle.

Unexpected false negatives are more serious, as they may prevent de
tecting errors and lead to accept incorrect design artifacts. There are
three possible answers to this problem:

–	 Ideally, verification tools should be themselves proven to be cor
rect or, at least, qualified according to rigorous criteria.

–	 One could perform the same verification tasks using two different
tools, so as to double check the results. However, [Rus93, p. 85]
points out that “the resources expended on such second opinions
would probably be better expended on independent scrutiny of
the assumptions and modeling employed, which are rather more
likely to be faulty than mechanically-checked proofs”.

http://en.wikipedia.org/wiki/Proof_assistant
http://en.wikipedia.org/wiki/Automated_proof_checking

	

	

	

	

	

	

	

	

	

	

221 4.9. Formal quality steps

–	 Certain verification tools (namely, theorem provers) produce
machine-readable proofs that can be separately verified by a proof
checker. Because proof checkers are much simpler than theorem
provers, their correctness can be formally demonstrated, either
manually or even automatically, thus providing sound founda
tions to proof checking activities.

Even if errors can occur in quality steps as well as in design steps, and even
if current verification tools cannot be trusted as infallible oracles, such errors
do not have a high probability to occur in practice, and there are ways to
detect and cope with them. In any case, the possibility of such errors cannot
be seen as a serious obstacle against formal quality steps.
Let us mention that formal methods reduce the likelihood of such errors by
paying a great attention to semantic issues. In particular, the situation in
which different tools for the same language — i.e., tools from different soft
ware vendors or tools from the same vendor but with different functionalities
(e.g., a simulator, a compiler, a verifier, etc.) — would have diverging, in
compatible behaviors is likely to be quickly detected in the context of formal
methods, which will unambiguously indicate which tool is faulty.
In the sequel, we assume that the formal quality steps are correct.

4.9.9 Diagnostics in formal quality steps

As mentioned above, formal quality steps should give diagnostics that justify
why a verification result is true or false. When this result is true, diagnostics
enable to cross check its correctness (see Section 4.9.8). When this result is
false, diagnostics help human users to understand why a design artifact is
incorrect, or to conclude about the occurrence of false positives. These are
examples of diagnostics to be provided when a formal quality step fails:

•	 When a set of requirements is inconsistent, a suitable diagnostics
should indicate which requirements in this set are mutually incom
patible, and try to explain why.

•	 When a run-time error may occur, or when an assertion (or precondi
tion or postcondition) may be violated, a suitable diagnostics should
give the execution path(s) leading to this problem.

•	 When a security property does not hold, a suitable diagnostics should
provide a corresponding attack scenario.

•	 When, in equivalence checking, two models are not equivalent or con
tained one into another, a suitable diagnostics should precisely indicate

	

	

222 Chapter 4. Design flows and methodologies

the point(s) where models differ. Quite often, this diagnostics takes
the form of a distinguishing trace that both models can execute and
that leads to a point where models behave differently.

•	 When, in model checking, a temporal logic formula is not satisfied by
a model, a suitable diagnostics should exhibit a model fragment that
makes the formula invalid. If the temporal logic is linear time, this
diagnostics is likely to be a trace or a set of traces; if the temporal
logic is branching time, this diagnostics can be a trace, a tree, or even
an arbitrary graph containing circuits.
Notice that diagnostics are also useful when a temporal logic formula
is satisfied by a model. For instance, the diagnostics generated for
properties stating that it is possible to execute a given scenario or
reach a given state can be used as test cases (see Section 4.9.13 below).

Understanding errors and fixing them are tedious, time-consuming tasks
that cannot be easily automated. Therefore, the diagnostics generated for
human users should match two criteria:

1. They should be minimal, i.e., not contain spurious or redundant in
formation. In general, there is no unique definition of diagnostic min
imality, but common sense guidelines. For instance, a trace leading to
a problem should be as concise as possible and avoid including states
and events that are not related to the problem. Similarly, if a system
contains many variables, a suitable diagnostic should only display the
relevant ones.

2. They should be understandable, i.e., expressed at the same level as the
design artifacts produced by system designers, namely, in terms of the
source code of the models or programs under verification rather than
in terms of automatically generated lower-level artifacts. For instance,
if the diagnostics contain variables, the names of these variables should
be those used in the source code, rather than cryptic unique identifiers
generated by a compiler. Clearly, the more translation steps and/or
abstraction steps taking place between the source code and the core
verification algorithm, the more difficult it is to produce understand
able diagnostics.

4.9.10 Iterations in formal quality steps

As stated in Section 4.3.5, the design of a complex system is usually an
iterative process: any conventional methodology must take into account the
existence of revision steps arising from design modifications, environment

	

	

	

	

	

	

	

	

	

	

	

	

223 4.9. Formal quality steps

assumption changes, or quality steps. This is also the case with formal
methodologies, which also implement “trial-and-error” or “design → check
→ fix → check again” cycles, until the system under design successfully
passes its formal quality checks.

Further reading:
▶	 Wikipedia: Trial and error

Revision steps in a formal design flow can take different forms, and formal
quality steps themselves may be iterative. When verifying a design artifact,
several cases must be considered — still excluding the possibility (addressed
in Section 4.9.8) of mistakes in the formal quality steps themselves:

1. If the verification terminates and delivers a “correct” verdict, then two
cases should be distinguished:

–	 If no abstraction at all or only sound abstractions have been used
during the verification: the design artifact is indeed correct.

–	 If unsound abstractions have been used, then no conclusion can
be made (residual errors may still exist due to false negatives); if
an absolute confidence is deserved, the formal quality step should
be done again, in a different way.

2. If the verification terminates and delivers an “incorrect” verdict, then
one should carefully study the diagnostics provided by the verification
tool(s), so as to precisely understand the reason of the problem. Three
(not always mutually exclusive) cases should be investigated:

–	 Perhaps the design artifact itself is indeed incorrect: if so, a revi
sion step is required to modify this artifact, possibly overturning
design decisions already taken.

–	 Perhaps the property evaluated on the design artifact (e.g., us
ing model checking) or the model to which the design artifact
was compared (e.g., using refinement or equivalence checking)
are themselves incorrect: if so, one needs to revise this property
or this model, and restart the verification.

–	 Perhaps this verification verdict is a false positive if incomplete
abstractions have been used during the verification. If so, the di
agnostics should be examined to determine whether the problem
found in the abstract model also exists in the concrete model. If
the problem only exists in the abstract model, then it is caused
by the abstraction itself: in such case, one may either decide to

http://en.wikipedia.org/wiki/Trial_and_error

	

	

	

	

	

	

	

	

	

	

	

	

224 Chapter 4. Design flows and methodologies

ignore the problem, or to get rid of the false positive by “enhanc
ing” the abstraction, thus leading to a revised abstraction step,
after which the verification has to be restarted.
The attempt at enhancing an abstraction is called abstraction
refinement (or iterative abstraction refinement in order to em
phasize the existence of an “abstract → check → refine → check
again” cycle, meaning that it may be necessary to refine an ab
straction several times). This can be done manually by a hu
man expert, but there also exist automatic approaches imple
menting various strategies, e.g., assume-guarantee abstraction re
finement [BPG08], counterexample-guided abstraction refinement
(acronym: CEGAR) [CGJ+00] [CGJ+03], fixpoint-guided ab
straction refinement [CGR07] [RRT08], heuristic-guided abstrac
tion refinement [HSGS09], etc.

3. If the verification does not terminate satisfactorily, i.e., if it aborts
after exhausting system resources (e.g., memory), if it does not deliver
any result after an unacceptably long period of time, or if it delivers
an inconclusive verdict because the problem is too complex, several
ways to address the issue can be explored:

–	 One can try using more powerful computers to carry out the
verification. Too often, formal verification is performed on stan
dard, inexpensive hardware, although its computational demands
plainly justify using (clusters of) high-end machines.

–	 One can try switching to a different verification algorithm. In
general, verification tools implement various algorithms, which
have to be selected manually, e.g., using command-line options.

–	 One can try submitting the problem to another verification tool,
hoping that this latter tool will have better capabilities. In prac
tice, this is often difficult due to the poor interoperability of ver
ification tools, many of which use different input languages.

–	 One can try helping the verification tool, by providing additional
information to make verification tractable. For instance, one can
guide a static analyser by inserting assertions, constraints, in
variants, etc. in the source code under study; one can guide a
theorem prover by providing lemmas, tactics/strategies, etc.

–	 One can try to divide a refinement step that cannot be proven
correct into several intermediate, less ambitious refinement steps,
each of which is amenable to verification.

–	 One can try simplifying the design artifact under study by ap
plying coarser abstractions, so as remove irrelevant details and
make verification easier.

	

	

	

	

225 4.9. Formal quality steps

–	 One can try exploiting the compositional structure of this design
artifact, either by introducing a decomposition likely to enable
divide-an-conquer verification, or by experimenting with another
decomposition if the one(s) previously tried did not succeed.

–	 One can try replacing the property to verify by a weaker property
that is still sufficient for the assurance purpose.

The above list is by no means exhaustive: formal verification requires
both creativity (to imagine ways to solve apparently intractable prob
lems) and method (to systematically explore the multiple possibilities).
The fact that a quality step fails in a first attempt should not put an
end to the verification effort, but should rather be taken as an op
portunity to better think about the problem and perhaps revise the
design to obtain a simpler, more reliable system.

4.9.11 Impact on reviews

In conventional reviews (see Section 4.6.7), informal design artifacts are
scrutinized by one or several human examiners. Formal methods may impact
this well-established process in various ways8.
First, conventional reviews can also be applied to formal design artifacts
(e.g., formal specifications of models and properties). The formal nature of
these artifacts may encourage more precise discussions between reviewers.
Yet, formality in itself does not solve all issues and may even create problems
if reviewers whose domain of expertise is not computer science have problems
understanding formal notations (many of which are poorly readable and not
user-friendly); this issue can be (partially) addressed by making sure that
the review panel includes at least one formal methods expert.
Second, as mentioned in Section 4.6.8, formal (and semi-formal) specifica
tions enable certain review checks to be automated, because computer lan
guages, contrary to natural language, have a well-defined syntax and contain
redundant static semantics information (declaration of identifiers, typing in
formation, etc.), thus allowing certain classes of errors to be detected using
either conventional static analyses (e.g., syntax checking, type checking, best
coding practices, etc.) or formal approaches (especially, abstract interpre
tation). Such preliminary checks — which are necessary conditions for the
consistency of the design artifacts under review — are more efficiently per
formed by one or a few persons equipped with software tools than during
a plenary committee meeting; therefore, these checks should be completed

8In the present report, we will not use the term “formal reviews”, which can be con
fusing as it is often used to denote conventional reviews with well-documented formalized
procedures, rather than reviews based on formal methods.

	

	

	

	

226 Chapter 4. Design flows and methodologies

before the reviews, so that the intellectual resources of the committee can
be used for more substantial issues.
Third, formal specifications may be subject to deeper formal analyses based
on, e.g., model checking and theorem proving. Such analyses take time and
should thus be performed before and between the reviews. Consequently,
the role of the review committee evolves to focus more on verification is
sues: beyond inspecting the design artifacts themselves, the reviewers must
also examine and discuss the validity of the verification procedures used,
the assumptions made, the abstractions applied, the results obtained, with
a particular attention to the properties that could not be verified automat
ically — such as the proof obligations to be dealt with manually.
In summary, formal methods keep the well-known benefits of conventional
reviews, but increase both effectiveness and productivity, especially for large
and complex design artifacts, by:

•	 Replacing certain review activities with automatic (or semi-automatic)
analyses, meaning that certain human decisions based on argument,
discussion, consensus, and judgment are now replaced by objective,
provable, repeatable, and systematic computations;

•	 Increasing the thoroughness of reviews by enabling formal analyses
for certain issues (e.g., concurrency or security) that are notoriously
difficult — or even out of reach — for human reviewers.

Notice that, even in a fully-formal design flow, reviews will always be needed
because, in general, not all quality checks can be fully automated (see Sec
tion 4.9.7), and because nothing can replace the overall human judgment in
system engineering, at least at the top level of design and validation.

4.9.12 Impact on simulation

Formal methods are, to a large extent, compatible with simulation as used
in conventional methodologies (see Sections 4.6.9 and 4.6.10). In principle,
simulation can always be performed on formal specifications that are op
erational and written using an executable language, i.e., on all executable
models. Therefore, one fully retains the advantages of simulation by using
formal models, provided that these models are executable.
Formal methods improve the practice of simulation by giving semantics a
central role, thus ensuring that simulator implementations are semantically
well-founded and compatible with other tools used in the design flow (e.g.,
compilers, verification tools, etc.). In certain cases, simulators can be ob
tained as particular instances of tools providing more general functionalities,

	

	

	

	

227 4.9. Formal quality steps

such as state-space exploration and model checking [Gar98], thus ensuring
semantic compatibility between different tools for the same language.
Furthermore, simulators can, in certain cases, be produced automatically
from the formal definition of the modeling language used. For instance, al
gebraic data type specifications can be executed by passing their equations
to a term rewriting engine that will interpret them; similarly, the structured
operational semantics rules that formally define a process calculus can be
used as a basis to animate specifications written in this calculus [MD87]
[CMS95]. However, for efficiency reasons, it is often preferable to manu
ally develop a dedicated simulator for the language considered, rather than
relying on a generic solution.
The impact of formal methods on simulation depends on the kind of simu
lation considered. In this section, we will consider three domains: hardware
design, performance evaluation, and heterogeneous models, respectively.

1. Regarding simulation for hardware design: the fact that conventional
simulation does not provide sufficient quality assurance and must be
supplemented by formal methods has been recognized for long (see,
e.g., a 1998 report [NSF98] concluding that “methods combining for
mal and simulation techniques will be required”). Since then, formal
methods have progressively established themselves at various places
in hardware design flows, in which they complement simulation-based
techniques, and sometimes even replace them. These are a few exam
ples, ordered from lower to higher abstraction levels:

–	 At gate level, formal verification techniques are helpful to gain
confidence in asynchronous circuits. Compared to the preva
lent synchronous logic, asynchronous logic offers many advan
tages in terms of speed, low power, and security, but is signifi
cantly more complex to master using simulation, and thus only
used marginally. Formal methods — especially, model checking
— address this problem by enabling the detection of concurrency
issues (such as deadlocks) and, possibly, the establishment of cor
rectness proofs for asynchronous circuits; earliest publications on
this topic are [Boc82] and [CM83, MC85]; more recent ones are
[WK06, WK07] and [SSTV07, GSS09] (refer to them for addi
tional bibliographic references).

Further reading:
▷	 Wikipedia: Asynchronous circuit

– At register transfer and gate levels, formal methods are also
present with the concept of equivalence checking, which performs

http://en.wikipedia.org/wiki/Asynchronous_circuit

	
	

	

	
	
	

	

	

	
	

	

	
	
	

	

	

228 Chapter 4. Design flows and methodologies

a logical comparison of two hardware models (one at the register
transfer level and the other at the gate level) to prove the absence
of synthesis errors. Equivalence checking is now widely used and
has progressively replaced gate-level simulation.

Further reading:
▷	 Wikipedia: Logic simulation
▷	 Wikipedia: Formal equivalence checking

–	 At behavioral level, formal methods (especially model checking
and symbolic simulation) are also increasingly used. Usually, the
designs are expressed in the same hardware description languages
(e.g., VHDL or Verilog) used for conventional simulation. In addi
tion, properties must be formally specified using assertions, such
as SVA (SystemVerilog Assertions) [IEE09], or temporal logic for
mulas, e.g., using PSL (Property Specification Language) [IEE10].
Modern environments enable these properties to be checked using
either simulation or formal verification techniques.

Further reading:
▷	 Wikipedia: Property Specification Language
▷	 Wikipedia: SystemVerilog#Assertions
▷	 Wikipedia: Hardware verification language

–	 At the (more abstract) algorithmical level, complex designs in
volving asynchronous concurrency may also be specified using
dedicated languages specifically designed and optimized for, e.g.,
model checking verification. This is often the case, for instance,
with cache coherence protocols (e.g., [Che04]) and crucial coor
dinating blocks of multiprocessor architectures (e.g., [LS11]).

–	 At system level, formal methods enhance the capabilities of lan
guages (such as SystemC/TLM) initially intended for simulation
and hardware-software co-simulation purposes. For instance, cer
tain SystemC models can be verified using model checking, which
improves simulation speed and coverage [HMMM06, HMM09]
[PS08, GHPS09] [BKS08, BK09, BK10].

The introduction of formal methods in hardware design flows signif
icantly changes the practices of designers, in spite of all attempts at
hiding the formal machinery into simulation environments. With con
ventional simulation, designers focus on producing input stimuli (often
referred to as test cases, test patterns, test vectors, test scenarios, etc.)
and observing whether the simulator produces the expected outputs.

http://en.wikipedia.org/wiki/Logic_simulation
http://en.wikipedia.org/wiki/Formal_equivalence_checking
http://en.wikipedia.org/wiki/Property_Specification_Language
http://en.wikipedia.org/wiki/SystemVerilog#Assertions
http://en.wikipedia.org/wiki/Hardware_verification_language

229 4.9. Formal quality steps

With formal methods, designers must make a greater effort of abstrac
tion, i.e., think in terms of symbolic rather than concrete data values;
they must precisely specify environment assumptions (i.e., constraints
on inputs to state the legal inputs permitted by the environment),
and provide properties relating inputs and outputs (using, e.g., asser
tions or temporal logic formulas). So doing, designers acquire a deeper
understanding of their design.

Formal methods also bring enhancements with respect to cover
age. Conventional simulation easily supports structural coverage and
loosely supports functional coverage (see Section 4.6.9). Formal meth
ods address this issue by enabling precise definition of functional cover
age, which can be measured in terms of assertions, properties, and/or
requirements that have been verified.

Moreover, formal methods provide a better coverage than simulation.
While simulation, hunting for bugs, only observes selected traces, for
mal methods (try to) examine all possible behaviors, i.e., all sequences
of legal input stimuli, all reachable design states, and all possible ex
ecution paths: so doing, subtle bugs missed by simulation can be dis
covered.

When exhaustive verification is not feasible, formal methods can en
hance the effectiveness of simulation by automatically generating se
quences of input stimuli that satisfy stated constraints and ensure a
given level of coverage. For instance, if a desirable property P is never
found to be true during simulation, this may indicate that the simula
tion testbench (i.e., the set of input sequences submitted to simulation)
is incomplete. Then, one can try verifying the negated property ¬P
using a model checker: if counterexamples are produced, exhibiting
execution paths on which P evaluates to true, these can be added to
the simulation testbench; otherwise, the design and the property P
are incompatible, and at least of of them must be revised.

A similar, yet different approach consists in translating the simulation
testbench into a set of (automatically generated) temporal logic for
mulas — which can be, for instance, based on occurrences of events in
simulation traces [FD04]. Then, a model checker is used to check these
formulas on the design. If a formula evaluates to false, a counterex
ample is generated, which highlights parts of the design not already
covered by the simulation testbench.

Formal methods also support fuzzing, which consists in automatically
generating “perturbations” of a given simulation testbench to trigger
run-time errors, violate assertions, or make certain properties true or
false as desired. Application of formal methods to fuzzing will be
detailed in Section 4.9.13, the main difference being the kind of design

 	

 	

230 Chapter 4. Design flows and methodologies

artifact considered (a model for simulation, and a program or circuit
for testing).
In certain cases, formal methods may even replace simulation. In
a recent work done at Intel [KGN+09], the execution cluster of the
Intel Core i7 processor (including full datapath, control and state val
idation) was formally verified, dropping “most usual register-transfer
level simulation and all coverage-driven simulation validation for the
cluster”. The authors report that formal verification based on sym
bolic execution provided “results that were competitive with tradi
tional testing-based methods in timeliness and validation cost, and
at least comparable if not superior in quality” — leading to a lower
number of bugs escaping to silicon than for any other processor clus
ter analyzed with conventional simulation. The authors conclude that
“the value of formal verification primarily comes from its ability to
cover every possible behavior”, and that “in areas where a verifier
can concentrate on verification, instead of solving verification research
problems, the effort to carry out formal verification is comparable to
thorough coverage-based validation”.

2. Regarding simulation for performance evaluation:	 for long, simula
tion has been the sole technique for evaluating the performance and
dependability of complex systems — especially embedded systems.
For this purpose, dedicated formal methods have been progressively
developed, which combine mathematical techniques (probabilities,
discrete-time and continuous-time Markov chains, stochastic pro
cesses, queuing theory, etc.) with system design concepts (components
and modularity, parallel composition and concurrency, etc.).
These formal methods enable to describe systems whose behavior is
nondeterministic, probabilistic, and/or stochastic, as well as systems
that consume resources (time, memory, energy, etc.). If the system un-
der analysis is not too large, analysis algorithms based on model check
ing and known as probabilistic or stochastic model checking can com
pute numerical probabilities and resource consumption values. These
results — possibly given as a [min, max] interval if the system is non
deterministic — are usually faster to obtain and more precise than
using simulation.
Many performance evaluation tools based on formal methods have
been developed; among them one can mention Möbius [DCC+02],
MRMC [KZH+09, KZH+11], PRISM [KNP07, KNP11], and SMART
[CJMS06, CMW09] in addition to numerous research prototypes. Also,
traditional verification tools have been extended with Markovian anal
yses to support performance evaluation, e.g., CADP [GH02]. These
tools have been successfully applied — often in combination with

	

	

	
	

	

	

	

	

	
	

	

	

231 4.9. Formal quality steps

simulation-based techniques — to nontrivial problems, e.g., [JC01]
[FG06] [CHLS09] [KPBT06] [BKPA09] [ABK+10] [KM11] [CDKM12]
[EKN+12] [MS13] to mention only a few.

Further reading:
▶	 Möbius Model-based Environment for Validation of System

Reliability, Availability, Security, and Performance –
http://www.mobius.illinois.edu

▶	 MRMC (Markov Reward Model Checker) –
http://www.mrmc-tool.org

▶	 PRISM model checker – http://www.prismmodelchecker.org
▶	 SMART (Symbolic Model checking Analyzer for Reliability

and Timing) – http://www.cs.ucr.edu/~ciardo/SMART
▶	 CADP (Construction and Analysis of Distributed Processes) –

http://cadp.inria.fr

To fight state explosion, one seeks for symbolic state space represen
tation techniques, as well as compositional techniques that exploit the
structure of the system to compute global (i.e., system-wide) results
from local results obtained by analyzing each component individually.

3. Regarding simulation for heterogeneous models (see Section 3.4.7): for
nearly two decades, formal methods have been developed to model and
analyze timed systems (the behavior of which depends not only on the
input stimuli received, but also on the amount of time elapsed) and
hybrid systems (which mix continuous evolutions — to model physi
cal world processes — and discrete transitions — to model computer
hardware and software used to control these processes).
For such systems, computer scientists proposed general modeling for
malisms with mathematical foundations, such as timed automata
[AD94] [Alu99] and hybrid automata [ACH+95] (see also [ACHH92]
and [NOSY92]). These formalisms (together with their fragments,
variants, and extensions) have been thoroughly studied, leading
to major theoretical results regarding decidability and complexity
[PV94] [BV96] [Hen96] [HKPV95, HKPV98] [LPY99] [Mil00] [AM04]
[OW04, ADOW05].

Further reading:
▷	 Wikipedia: Hybrid system
▶ Wikipedia: Hybrid automaton
▶ Wikipedia: Hybrid bond graph

http://www.mobius.illinois.edu
http://www.mobius.illinois.edu
http://www.mobius.illinois.edu
http://www.mrmc-tool.org
http://www.mrmc-tool.org
http://www.prismmodelchecker.org
http://www.cs.ucr.edu/~ciardo/SMART
http://www.cs.ucr.edu/~ciardo/SMART
http://cadp.inria.fr
http://cadp.inria.fr
http://en.wikipedia.org/wiki/Hybrid_system
http://en.wikipedia.org/wiki/Hybrid_automaton
http://en.wikipedia.org/wiki/Hybrid_bond_graph

	

	

	

	

	

	

	
	

	

	

	

	

	

	

	

	
	

	

232 Chapter 4. Design flows and methodologies

▷ Wikipedia: Timed automaton

To analyze timed and hybrid models, various techniques have been
developed, including dedicated abstractions, temporal logics, equiva
lence relations, and algorithms combining verification technology (e.g.,
model checking and symbolic simulation), control theory (e.g., opti
mal control), and probabilistic/stochastic analyses. These ideas have
been implemented in software tools, such as d/dt [ADMB00, ADM02]
HyTech [AHH96, HHW97, HPW01], KeYmaera [PQ08, PC09a], Kro
nos [DOTY95, Yov97, BDM+98], PHAVer [Fre05, Fre08], SpaceEx
[FLD+11], and Uppaal [BLL+95, BDL+11]. Generic software envi
ronments have also been proposed, such as the Ptolemy system-level
design tool [EJL+03] that supports multiple models of computation
and represents hybrid systems by combining continuous-time models
with finite state automata.

Further reading:
▶	 HyTech: The HYbrid TECHnology tool –

http://embedded.eecs.berkeley.edu/research/hytech
▶	 KeYmaera: A hybrid theorem prover for hybrid systems –

http://symbolaris.com/info/KeYmaera.html
▶	 Kronos verification tool for real-time systems –

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos
▶	 PHAVer: Polyhedral Hybrid Automaton Verifier –

http://www-verimag.imag.fr/~frehse/phaver web
▶	 SpaceEx: State Space Explorer for continuous and hybrid

systems – http://spaceex.imag.fr
▶	 Uppaal integrated tool environment for real-time systems –

http://www.uppaal.org
▷	 Wikipedia: Uppaal Model Checker
▶	 Ptolemy II software framework –

http://ptolemy.berkeley.edu/ptolemyII

For overview presentations of this research field at different moments
in time, see [LSW97] [FK04, FK06] [TD09] [Alu11].

Beyond these approaches, which directly compete with simulation, for
mal methods also contribute to enhance simulation:

–	 by enhancing the coverage of simulation for hybrid systems
[KKMS03] [DM07] [JFA+07] [AKRS08, KAI+09];

http://en.wikipedia.org/wiki/Timed_automaton
http://embedded.eecs.berkeley.edu/research/hytech
http://embedded.eecs.berkeley.edu/research/hytech
http://symbolaris.com/info/KeYmaera.html
http://symbolaris.com/info/KeYmaera.html
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos
http://www-verimag.imag.fr/~frehse/phaver_web
http://www-verimag.imag.fr/~frehse/phaver_web
http://spaceex.imag.fr
http://spaceex.imag.fr
http://www.uppaal.org
http://www.uppaal.org
http://en.wikipedia.org/wiki/Uppaal_Model_Checker
http://ptolemy.berkeley.edu/ptolemyII
http://ptolemy.berkeley.edu/ptolemyII

	

	

	

	
	

	

	
	
	
	
	

	

	

	

	

	
	

	

	
	
	
	
	

	

233 4.9. Formal quality steps

–	 by designing and experimenting combinations of conventional
simulators and formal methods tools, e.g., [TNTBS00];

–	 by making a critical assessment of how co-simulation is imple
mented in mainstream industrial tools, and by proposing alterna
tive approaches with solid semantic foundations, e.g., [VVHB07];

–	 by rigorously investigating semantic problems in existing simula
tors, including convergence and stability issues for ordinary differ
ential equations, and zero crossing detection [BCP10, BBCP12];

Further reading:
▶	 Wikipedia: Ordinary differential equation
▶	 Wikipedia: Zero crossing

–	 by applying advances in timed and hybrid system verification to
problems so far addressed using simulation only — in particular,
analog mixed signal designs, which would greatly profit from the
availability of verification tools similar to those used for digital
circuits [DDM04] [GKR04].

Further reading:
▶	 Wikipedia: Analog verification
▶	 Wikipedia: Analog electronics
▶	 Wikipedia: Analog chip
▷	 Wikipedia: Mixed-signal integrated circuit
▶	 Wikipedia: SPICE

A notable effect is that mainstream simulation tools are now equipped
with formal methods extensions. For instance, Mathworks’ Simulink
design suite now includes a formal proof and static analysis engine (de
veloped by Prover Technology AB) that verifies properties and gener
ates tests, enhancing simulation coverage and finding errors that would
be hard to detect using simulation only.

More generally, the following conclusions can be made:

•	 Simulation only explores a part of the system state space and, thus,
can be used only for bug hunting (disproving certain properties by ex
hibiting counterexamples of incorrect behavior) and for certain simple
“existential” properties that simulation can prove by showing examples
of expected behaviors.

http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Zero_crossing
http://en.wikipedia.org/wiki/Analog_verification
http://en.wikipedia.org/wiki/Analog_electronics
http://en.wikipedia.org/wiki/Analog_chip
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/SPICE

	

	

	

	

	

	

	

	

234 Chapter 4. Design flows and methodologies

To the contrary, formal methods (symbolic simulation, equivalence
checking, model checking, theorem proving, etc.) consider the entire
state space and can thus prove or disprove properties for all possible
behaviors (i.e., for any reachable state, any execution path, under any
sequence of input stimuli). This situation is sometimes summarized as
follows: formal verification fully checks partial designs whereas simu
lation partially checks full designs.
Even if the state space is not exhaustively explored, formal methods
usually analyze a much larger part of it than simulation does, thus
discovering bugs missed by simulation and providing greater quality
control and quality assurance.

•	 For analyses (i.e., performance evaluation, dependability, and per
formability) that require numerical answers rather than Boolean ones
(see Section 2.3.3), simulation provides approximate results, the ac
curacy of which strongly depends on the number of simulation runs.
To the contrary, formal methods deliver precise numerical results (or
precise value intervals, when the system is nondeterministic or when
its initial state is uncertain).

•	 When considering parametric systems, i.e., systems whose behavior de
pends on various parameters to be chosen within known bounds, there
are formal methods (e.g., model checking, symbolic simulation, theo
rem proving, etc.) capable of handling these parameters symbolically,
e.g., to prove the correctness of the system for all parameter values or
to find optimal parameter values with respect to some criteria. Simu
lation is less general, as it requires to instantiate each parameter with
a particular value before running the simulator.

•	 Formal methods based on state-space exploration (e.g., model check
ing) are usually automated — always when applied to finite-state sys
tems, and quite often when applied to infinite-state systems. In the
case of hybrid systems, however, there are concerns that model check
ing verification cannot be fully automated [FK06].

•	 In practice, however, formal methods cannot exhaustively analyze
complex systems because of undecidability issues (for infinite-state sys
tems) or due to the state explosion problem (for finite-state systems).
Many research efforts aim at overcoming limitations and providing bet
ter scalability to large systems using, e.g., compositional approaches;
yet, despite progress and successful applications of formal methods to
realistic examples, simulation often remains the main analysis tech
nique used in industry.
In particular, simulation offers some scalability in time: by performing
simulation during a longer period of time, one may expect to explore

	

	

	

	

	

	

	

	

235 4.9. Formal quality steps

more behavior and detect more bugs, although there is no guaran
tee that running a simulation twice longer will explore twice as many
states or discover twice as many errors. On the contrary, formal meth
ods crucially rely on computing resources available (especially, main
memory) and, when these resources are exhausted, verification may
either abort or become woefully slow (i.e., running for days without
further producing any significant result).

Formal methods have progressively emerged and established themselves in
many places where simulation was the standard analysis technique. In cer
tain cases, formal methods even managed to replace simulation, and this
trend will certainly amplify in the future. Yet, despite recent progress, for
mal methods face problems dealing with large and/or heterogeneous models,
so that simulation and co-simulation are likely to stay for long. Therefore, a
reasonable strategy is to combine both approaches in the best possible way:

•	 Whenever applicable, formal methods should be systematically used,
simulation being used as a fallback when formal methods fail.

•	 Simulation can be used to double check the results of formal methods,
but this extra effort may be expensive and is not frequent in practice.

•	 Simulation can help discovering and empirically validating system
models and environment assumptions later used by formal methods.

•	 Formal methods provide automation that can reduce simulation effort.
They can also speed up simulation and increase its coverage.

4.9.13 Impact on testing

In conventional methodologies, testing is intensively used for verification and
validation purposes, although it suffers from the three main drawbacks of
dynamic analyses (see Section 4.6.9): false negatives, insufficient coverage,
and high cost (it is the most expensive activity in conventional design flows).
To overcome these limitations, formal methods have been explored as a
possible alternative. Although testing and formal methods pursue similar
goals (namely quality control and quality assurance), they have been origi
nally developed in separate communities following radically different princi
ples: testing focuses on correctness checking in an empirical, yet pragmatic
way, whereas formal methods primarily insist on rigorous, scientifically well
founded approaches for correctness verification [Hoa96]. For long, testing
and formal methods have been seen as competitors, but they progressively
cross-fertilized each other in a fruitful combination of empirical and math
ematical approaches. There is an abundant literature on the subject, in

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

236 Chapter 4. Design flows and methodologies

which one can mention roadmaps of the software testing community [Har00]
[Ber07b], as well as surveys on the relations between formal methods and
testing [HBH08] [HBB+09].
From a methodological point of view, the contributions of formal methods
to testing are the following9:

•	 They established the conceptual framework of testing, with its four
main artifacts:

–	 Specifications, which are upper design artifacts (models or prop
erties) defining the system to be implemented;

–	 Implementations, which are lower, executable design artifacts
(circuits or programs) derived from the specifications;

–	 Tests, which try to detect if some execution runs (traces of inputs
and outputs) of the implementations violate the specifications;

–	 Oracles, which check the results of the tests to determine if a
given execution run is compatible or not with the specifications.

•	 They developed theories to formally relate the specifications and the
execution traces generated by implementations. For instance, in the
particularly important case of conformance testing for reactive sys
tems, one must check whether a (manually produced or automatically
developed) implementation is behaviorally compatible with a speci
fication expressed, e.g., as a (possibly nondeterministic) finite-state
machines, labelled transition system, or input/output automaton. For
this purpose, various behavioral equivalences and preorders (e.g., con
formance, implementation, ioco, testing relations, etc.) have been pro
posed [DH84] [BSS86] [CH89, CH93] [Led91] [Tre93] [Led94] [Tre96]
[BT00] [Tre08] [ST08]. Related surveys and additional references can
be found in [LY96], [Gar04], and [Bru04].

•	 They insisted that the concept of oracle, often ignored or over
looked, must be made explicit and that the relationship between or
acles, tests, and specifications must be investigated [Wey82] [BY01]
[SWH11a] [SWH11b]. Various techniques have been proposed to derive
correct-by-construction oracles — i.e., oracles free from false negatives
and false positives — from formal specifications (see [HBB+09, Sec
tion 4.3.2] and also [CSE96] [FJJV96] [GVZ01]). Recent work shows
that one can automate certain steps of oracle construction, leading to
greater test efficiency [SGH12].

•	 They questioned the foundations of conventional testing techniques,
pointing out that underlying assumptions must be stated explicitly.

9Some of these contributions are more general than testing and also apply to other
forms of dynamic analyses: simulation, run-time and log analysis.

	

	

	

	

	

	

237 4.9. Formal quality steps

For instance, in the case of input partitioning (see, e.g., [AO94]), test
hypotheses (namely, regularity and uniformity) have been formulated
to express that an implementation behaves “similarly” when its input
values vary in well-chosen subdomains [BGM91, Gau95, Gau05].

From a practical point of view, formal methods also contributed to enhance
the process of testing, which consists of two main tasks: the production of
test suites and their execution. Compared to conventional methodologies,
the execution of test suites does not change significantly when using formal
methods. Thus, most of the effort focused on the generation of test suites,
which can be made more automatic and systematic using formal methods:

•	 Formal specifications can be used as a basis for test generation, as
these specifications are written in abstract, precise languages well
suited for analysis. So doing, test suites are generated from early
design artifacts (i.e., models) to be applied to late design artifacts
(i.e., implementations). Such specification-based testing exists in two
forms:

–	 Property-based testing, when the formal specifications are declar
ative. If these properties are external (e.g., high-level require
ments), they can be used to automatically generate functional
test suites. If these properties are internal (e.g., assertions, pre
conditions, and/or postconditions inserted in the model), they
can be used to produce tests that will be guided by the precondi
tions (i.e., to restrict the domain of input stimuli to meaningful
values) and will target at specifically exercising assertions and
postconditions with the intent of detecting related violations in
the design artifact under test.

–	 Model-based testing (see Section 4.6.9), when the formal specifica
tions are operational. Test suites can be generated automatically
to check the conformance of the design artifact under test against
the formal model. It is important to recall that the purpose of
such test suites is to check the design artifact, not the model
itself, which is assumed to be correct.
The algorithms used for test generation strongly depend on the
nature of the models. See [HBB+09, Sections 4–8] for a de
tailed survey covering many types of formal methods, includ
ing finite-state machines, algebraic data types, process calculi,
and hybrid systems. For detailed overviews of model-based test
ing approaches and tools, see also [BJK+05] (and its tool survey
chapter [BFS04]), [UL06], and [UPL12].

	
	

	

	

	

	

	

	

	
	

	

	

	

	

	

	

238 Chapter 4. Design flows and methodologies

Further reading:
▷	 Wikipedia: Model-based testing
▶	 Zoltán Micskei’s list of model-based testing tools –

http://mit.bme.hu/~micskeiz/pages/modelbased testing.html
▶	 Alan Hartman’s list of model-based testing tools –

http://www.agedis.de/documents/ModelBasedTestGenerationTools.pdf

In practice, specification-based testing must face three challenges:

–	 It is based on formal specifications, whose development require
budget, time, and expertise (i.e., formal modeling skills). For
tunately, there is an increasing use of properties and models in
software, circuit, and system design. Also, the initial cost of pro
ducing formal specifications may be balanced by later savings
arising from formal verification and automated test generation.
Finally, tests can be produced before the source code of the de
sign artifact under test has been written, thus enabling division
and parallelization of work between testers and implementers.

–	 There is often a gap between the “abstract” tests generated from
high-level specifications and the “concrete” tests that can be ex
ecuted by the design artifact under test. For instance, the data
types used in specifications may be less detailed than those actu
ally used in implementations. One must thus develop conversion
functions that map abstract inputs to concrete ones, and concrete
outputs to abstract ones.

–	 The classical notions of coverage used in conventional testing
(e.g., structural coverage) must be reconsidered and adapted to
the context of specification-based testing.

•	 In particular, formal methods enable precise formulations and stud
ies of the notion of functional coverage (see Section 4.6.9); this was
almost impossible in conventional methodologies, where specifications
are informal. For instance, various approaches have been proposed,
based on formal specifications expressed either as models (e.g., finite
state models of circuits [MAH98]) or as properties (e.g., temporal logic
formulas [HKHZ99]). More recently, three formal definitions of func
tional coverage have been proposed [WRHM06] to assess a test suite
T with respect to a set of requirements Ri (i ∈ {1, ..., n}) expressed in
linear-time temporal logic:

–	 Requirements coverage is defined as the proportion of indexes i for
which there exists at least one test in T that makes Ri evaluate
to true.

http://en.wikipedia.org/wiki/Model-based_testing
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html
http://www.agedis.de/documents/ModelBasedTestGenerationTools.pdf
http://www.agedis.de/documents/ModelBasedTestGenerationTools.pdf

	

	

	

	

	

	

	

	

	

	

	

	

239 4.9. Formal quality steps

–	 Antecedent coverage is defined as the proportion of indexes i for
which there exists at least one test in T that makes Ri evaluate
to true, and also makes Ai evaluate to true if Ri has the form
“always (Ai =⇒ Bi)”, thus excluding the trivial cases where Ri

is just true because Ai is false.
–	 Unique First Cause (UFC) coverage is defined as the proportion

of indexes i such that executing the tests T guarantees that ev
ery “basic condition” in Ri has taken on all possible outcomes at
least once, and that each basic condition has been shown to “in
dependently” affect the outcome of Ri — see [WRHM06] for the
exhaustive definition of UFC, which transposes to functional cov
erage the ideas of MC/DC for structural coverage (for this reason,
UFC is sometimes said to be “structural over the requirements”).

Clearly, these three functional coverage metrics are increasingly de
manding. Their adequacy and effectiveness have been empirically
studied in [RWSH08, SWRH10], leading to three main conclusions:

–	 Despite the reasonable intuition behind them, requirements cov
erage and antecedent coverage should not be used to measure
adequacy, as test suites satisfying these definitions of coverage
statistically appear to be less effective (i.e., find less faults) than
randomly generated test suites of approximately the same size.

–	 UFC coverage is rigorous enough to be used as a criterion for
test adequacy: test suites generated to provide UFC coverage are
statistically more effective than random test suites of similar size,
provided that requirements are not artificially split into simpler
requirements, which decreases the effectiveness of UFC coverage.

–	 But conformance test suites satisfying (black-box) UFC coverage
over the requirements are (slightly) less effective than test suites
satisfying (white-box) MC/DC over the formal model that plays
the role of specification in conformance testing. Test suites satis
fying both UFC coverage and MC/DC coverage are more effective
that test suites satisfying MC/DC coverage only.

•	 In addition to specification-based testing, formal methods also sup
port code-based testing, i.e., the generation of tests that are directly
derived from the design artifact that they are intended to test. This
particular form of white-box testing avoids the need for models, as
it exploits the (source or object) code of the implementation under
test (usually, a sequential program). So doing, it somehow blurs the
traditional distinction between testing and verification, as code-based
testing uses sophisticated analysis techniques to perform bug hunting
on an implementation.

	

	

	

	

	

	

	

	

	

	

	

	

240 Chapter 4. Design flows and methodologies

Code-based testing generates test suites according to test criteria, e.g.
to maximize some notion of coverage, or to systematically exercise all
inputs that may trigger a run-time error or violate an assertion or
a postcondition. When dealing with arbitrary design artifacts, this
problem is undecidable, so that exact solutions are impossible and
approximations are necessary.

•	 Conventional testing tools often have problems in handling nonde
terminism and only explore a small subset of feasible paths. Model
checkers do not have this problem, as they are designed to systemat
ically explore all reachable states of a design artifact. It is therefore
tempting to enhance testing with the capabilities of model checking,
an idea expressed in [JW96]: “The problem with testing is not that
it cannot show the absence of bugs, but that it fails to show their
presence. A model checker that exhausts an enormous state space
finds bugs much more reliably than conventional testing techniques,
which sample only a minute proportion of cases”. This idea has been
implemented in various ways:

–	 Dedicated test generation tools have been developed that, given
a model, produce test cases using exhaustive state-space explo
ration techniques borrowed from model checking, according to
user-specified test purposes (e.g., traces or automata derived from
high-level requirements) and/or coverage obligations to guide test
generation. For instance, the TGV [FJJV96, JM99, JJ05] and
TorX/JTorX tools [BFd+99, dVT00, TB03, BB05, Bel10] operate
on labelled transition systems using explicit-state model checking
algorithms.

Further reading:
▶	 The test sequence generator TGV –

http://www.irisa.fr/vertecs/Logiciels/TGV.html
▶	 The JTorX tool for model-based testing –

http://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki
▶	 The Reactis product line description –

http://www.reactive-systems.com/products.msp

–	 Other approaches [GFL+96] [EFM97] [GH99] [BGH+99]
[HLSC01, HLSU02, HCL+03] [RH01a, RH01b, RH03, HRV+03,
DHL05] [RUW01, RSU02] [GRR03] [BCH+04] directly reuse ex
isting model checkers for generating tests satisfying a given test
criterion (e.g., functional coverage, such as UFC coverage, or
structural coverage, such as state, transition, branch, or MC/DC
coverage). The test criterion is encoded as a set of temporal logic

http://www.irisa.fr/vertecs/Logiciels/TGV.html
http://www.irisa.fr/vertecs/Logiciels/TGV.html
http://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki
http://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki
http://www.reactive-systems.com/products.msp
http://www.reactive-systems.com/products.msp

	

	

	

	

	

	

	

	

241 4.9. Formal quality steps

formulas expressing coverage obligations. An explicit-state or
symbolic (i.e., based on binary decision diagrams) model checker
evaluates these formulas on a model and generates diagnostics
(i.e., witnesses or counterexamples explaining why each formula
is true or false). In some sense, the model checker is used as
a constraint solver that tries to obtain the desired coverage by
systematically exploring all behavior. Finally, the diagnostics
generated by the model checker are automatically converted into
test cases.

–	 Other approaches [ABM98] [AB01] [BHM+09] combine model
checking and mutation testing. Given a model, mutants are pro
duced; a model checker is then used to generate counterexamples
(e.g., traces) highlighting the variations between mutants and the
original model. These counterexamples are turned into test cases
and used to detect faults in an implementation under test.

The use of model checking to generate high-coverage test suites from
(formal or semi-formal) models meets a strong demand from the indus
try. However, despite all its advantages, such increase in automatic
test generation should be carefully controlled, as it is not free from
risks and drawbacks:

–	 The test suites produced this way are often much larger than
necessary, as they may contain redundant tests.

–	 Test suites produced this way and purely driven by structural
coverage can be less efficient than random testing [HDW04]. One
explanation for this lack of efficiency is that the diagnostics gener
ated by model checkers are often intended for humans and, thus,
tend to be as short as possible and use by default simple values in
each data domain (e.g., zero for integers and false for Booleans).
Therefore, test suites produced manually or randomly can be
more efficient, as they exercise more representative scenarios.

At present, for safety-critical systems, the good practice is to use cov
erage as a means to identify missing tests in a test suite priorly gen
erated, rather than as a target for generating an entire test suite from
scratch. Relaxing this rule to benefit from automated test generation
can only be done if there is considerable evidence that the automati
cally generated test suites are efficient enough.

•	 A key issue in the aforementioned testing approaches is the existence of
complex data types (e.g., arrays, linked lists, etc.), which are difficult
to handle using model checking (either explicit-state or based on binary
decision diagrams), as the number of values in these types can be

242 Chapter 4. Design flows and methodologies

infinite or too large to be feasibly enumerated. This issue arises both
in hardware and software: exhaustively testing all inputs is impossible
for, e.g., a floating-point instruction of an Intel processor (which may
have thousands of source data combinations) or a parser for reading
image/video files (these files are huge — only enumerating all possible
combinations of their 1000 first bits would be time prohibitive).
Thus, symbolic approaches to test generation have also been explored.
The fundamental concept is symbolic execution, which was introduced
in the mid 70s as a means to automatically generate tests for software
programs [Kin74, Kin76] [BEL75] [Cla76a, Cla76b] [RHC76] [How77]
— see [Cow88] for a survey on symbolic execution in the 70s and 80s.
The basic idea of symbolic execution is to execute a program with
symbolic rather than concrete data values. Input parameters are kept
symbolic rather than enumerating all their possible values. As the pro
gram is symbolically “executed”, Boolean conditions (e.g., first-order
logic formulas) accumulate along the execution path to express logical
constraints (between inputs parameters, program variables, program
functions, etc.) that must be satisfied to reach that program point.
When reaching a branch point (e.g., an “if C then ... else ...” statement
in a high-level language, or a conditional jump in assembly language),
the execution path splits in two branches, along which the additional
conditions C and ¬C, respectively, are propagated. The paths fol
lowed during symbolic execution form a (possibly infinite) symbolic
execution tree.

Further reading:
▶ Wikipedia: Symbolic computation
▷ Wikipedia: Symbolic execution
▶ Wikipedia: Symbolic simulation

The static test generation problem consists in exploring this execution
tree to reach a set of program points specified by a given test criterion
(e.g., all statements or all branches in structural coverage). This prob
lem is undecidable in the general case but, in many cases of practical
interest, decision procedures exist (implemented in constraint solvers
or theorem provers) that can be applied to the constraints accumu
lated along each path, namely to identify infeasible paths (i.e., paths
whose constraints cannot be satisfied) or to find concrete input values
that make a given path feasible.
For long, symbolic execution has been impractical for automated test
generation and, for this reason, has been left aside. Yet, since the
90s and especially the 2000s, this research topic has received renewed

http://en.wikipedia.org/wiki/Symbolic_computation
http://en.wikipedia.org/wiki/Symbolic_execution
http://en.wikipedia.org/wiki/Symbolic_simulation

	

	

	

	

	

	

	

	

243 4.9. Formal quality steps

interest due to advances in program analysis, constraint solvers, and
theorem provers, and due to increased computing capabilities provided
by modern hardware. Frameworks for symbolic testing have been
designed [RdJ00] [ABG+05] [FTW05, FTW06] [GP05] [TS05] and
various tools have been implemented using constraint logic program
ming and/or satisfiability techniques [DO91, DO93] [GBR98, GBR00]
[WLPS00] [PSAK04, PPW+05] [Got09].
Many of these approaches target code-based testing, initially for simple
sequential programs with simple data types, but have progressively
evolved to support high-level language features, such as multi-threaded
programs having complex data structures as inputs [KPV03, VPK04].
Due to these algorithmic advances, symbolic execution has become the
core technology of several professional test generation tools. However,
symbolic execution has practical limitations:

–	 It is often imprecise in presence of complex data types and op
erations (e.g., floating-point arithmetic, arrays, pointer manipu
lation and aliasing, etc.) and/or calls to library functions whose
behavior is intricate or opaque (e.g., hash functions, operating
system primitives, etc.).

–	 It is poorly scalable as the number of paths to be explored fre
quently gets large or even infinite. Moreover, imprecision in sym
bolic reasoning often prevents to cut infeasible paths and to detect
states that have been already visited.

–	 It is slower than concrete execution, from several times to hun
dred times slower [Ana12, p. 63] or even one thousand times
slower [God09, p. 21] — presumably depending on the desired
precision level. This time overhead can be decreased by parallel
algorithms for exploring the symbolic execution tree [SP10].

•	 To avoid the shortcomings of static test generation, alternative ap
proaches for code-based testing have been proposed, which are not
based on formal methods. In these approaches, symbolic execution
is replaced by “concrete” (i.e., actual) execution of the program un-
der test. Adaptive test generation methods [PJ87] study the con
ditions C used in the program branching points (e.g., “if C then
... else ...” statements) and modify consequently the concrete val
ues of input parameters in order to exercise program branches that
have not been already covered. Dynamic test generation methods
[Kor90a, Kor90b, Kor92, FK96, Kor96] [GN97] go further and, rather
than symbolically executing or statically analyzing the program to
build a complete test suite from scratch, these methods concretely ex
ecute the program on one or a few given test cases, perform run-time
monitoring of these executions and — using additional techniques such

244 Chapter 4. Design flows and methodologies

as control-flow analysis, data-flow analysis, and function minimiza
tion heuristics — incrementally generate new test cases, the genera
tion being driven by some test criterion (e.g., coverage of all program
branches). There have been also attempts at combining dynamic test
generation with (limited forms of) symbolic reasoning, such as numer
ical solvers and combinatorial optimization [OJP94, OJP99] [MM98]
[GMS99, GMM00].

In the 2000s, formal methods progress — especially, the advent of
powerful solvers — stimulated these attempts. New generation algo
rithms have emerged [WMM04, WMMR05] [CE05, CGP+06] [GKS05]
[SMA05], which blur the traditional distinction between static and dy
namic approaches by extending dynamic test generation with symbolic
data manipulation or, symmetrically, by enhancing static test gener
ation with concrete data collected at run-time. We collectively refer
to these algorithms as concolic testing (a mix between concrete and
symbolic) — although some authors give more restrictive definitions
of concolic testing.

Like dynamic test generation, concolic testing executes the program
under test, typically starting with some valid data inputs (either pro
vided by the user or generated randomly). The execution is both
symbolic and concrete. Symbolic constraints are collected at each
conditional statement encountered and are propagated along the ex
ecution path. Using a theorem prover or a constraint solver, new
data inputs are computed that will force the program to take different
paths. This process is repeated to systematically exercise the program
under test until some test criterion (e.g., structural coverage, detec
tion of mutants etc.) is satisfied. The set of program executions is
used for generating test cases and/or for bug hunting — namely, by
checking for run-time errors and verifying assertions, preconditions,
and postconditions while executing the program.

Two distinctive traits of concolic testing are (1) the joint use of con
crete and symbolic execution, which are performed alternatively or
concurrently, and (2) the concept of concretization: whenever sym
bolic reasoning is unable to process a constraint precisely (e.g., because
the constraint is too complex, uses involved data types, invokes exter
nal library functions, etc.), the constraint is simplified by replacing
symbolic variables by concrete values determined by randomization or
observation of the concrete execution of the program under test. Con
cretization is an under-approximation, i.e., it does not introduce false
positives; see [God11] for a formal study of concretization.

Recent tutorials and surveys on symbolic execution and concolic test
ing can be found in [PV09], [CGK+11], and [CS13].

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

245 4.9. Formal quality steps

Further reading:
▶	 Wikipedia: Concolic testing

Concolic testing has three inherent limitations:

–	 False negatives: as with any form of testing, it may leave certain
errors undetected.

–	 Path explosion: as with static test generation and depending on
the chosen test criterion, the number of paths to be explored may
be infinite or so large that the analysis does not terminate.

–	 Complexity: involved software developments are required to im
plement both symbolic and concrete execution, enumerate paths,
and solve constraints.

Despite these limitations, concolic testing is probably the most ad
vanced testing approach known today, with several key advantages:

–	 Scalability: it better handles large programs, as it requires less
program runs than standard dynamic test generation and avoids
the limiting factors of “pure” symbolic execution.

–	 High coverage: it improves code coverage by exercising more
paths, finding more bugs, and generating fewer redundant tests.

–	 Precision: if symbolic execution succeeds, concolic testing also
delivers the exact result; otherwise, it uses additional runtime
information to deliver under-approximated results.

–	 No false positives: concolic testing does not raise false alarms,
contrary to static analyses facing problems with infeasible paths.

–	 Automation: concolic test generation can be fully automated.

The success of concolic testing can be measured in the impressive num
ber of tool implementions. These tools differ by the kind of programs
to be tested (C code, Java code, .NET bytecode, x86 object code,
etc.), the kind of analysis performed (test generation or bug hunting),
the test criterion used as a stop condition, the constraint solver cho
sen and the kind of constraints it can process, the level of precision
sought, the type of license (proprietary or public domain, closed or
open source), etc. Examples of such tools are: Agitator [BDS06],
Apollo/Artemis [AKD+08, AKD+10, ADJ+11], CONTEST/Acteve
[ANHY12], CUTE (now CREST) [SMA05, Sen06, MS07, BS08],
jCUTE [SA06, Sen06], DART/SMART/SMASH [GKS05, God07,
GNRT10], JCrasher [CS04], Check ’n’ Crash [CS05], DSD-Crasher

http://en.wikipedia.org/wiki/Concolic_testing

	

	
	

	

	

	

	

	

	

	

	
	

	

	
	

	

	

	

	
	

	

	

	

	

	

	

	

	
	

	

	
	

	

	

246 Chapter 4. Design flows and methodologies

[CS06, SC07], EGT/EXE [CE05, CGP+06, CGP+08], KLEE [CDE08],
LIME/LCT [KLS+11], PathCrawler [WMMR05, MMWL08, BDH+09,
KWB+12], Pex [TdHS07, AGT08, dHT08, TdH08, GdN+08, XTdS09],
Splat/FlowTest [XGM08, MX09], Symbolic PathFinder [PMB+08,
MMP+12], Randoop [PLEB07, PLB08], and Yogi [GHK+06, BNRS08,
GdN+08, NRTT09]. See also [YLW09] for a survey of coverage-based
testing tools.

Further reading:
▶	 AgitarOne’s Agitator tool –

http://www.agitar.com/solutions/products/software agitation.html
▶	 Aarhus University’s Artemis tool – http://www.brics.dk/artemis
▶	 UC Berkeley’s Catchconv tool –

http://sourceforge.net/projects/catchconv
▶	 Univ. of Texas at Arlington’s Check ’n’ Crash (CnC) tool –

http://ranger.uta.edu/~csallner/cnc
▶	 Univ. of Texas at Arlington’s DSD-Crasher tool –

http://ranger.uta.edu/~csallner/dsd-crasher
▶	 UC Berkeley’s CREST tool (formerly known as CUTE) –

https://code.google.com/p/crest
▶	 Georgia Institute of Technology’s JCrasher tool –

http://code.google.com/p/jcrasher
▶	 Illinois Open Systems Laboratory’s jCUTE tool –

http://osl.cs.uiuc.edu/software/jcute
▶	 Parasoft’s jTest tool –

http://www.parasoft.com/jsp/fr/products/jtest.jsp
▶	 Helsinki UT’s LIME/LCT tool –

http://www.tcs.hut.fi/Software/lime/LCT-C
▶	 Stanford’s KLEE tool – http://klee.llvm.org
▶	 CEA-LIST’s PathCrawler tool (online version) –

http://pathcrawler-online.com
▶	 Microsoft’s Pex tool –

http://research.microsoft.com/en-us/projects/pex
▶	 UCLA’s Splat tool – http://code.google.com/p/splat
▶	 NASA’s Symbolic PathFinder tool –

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
▶	 Microsoft and MIT’s Randoop tool –

http://code.google.com/p/randoop
▶	 Microsoft’s Yogi tool –

http://research.microsoft.com/en-us/projects/yogi

http://www.agitar.com/solutions/products/software_agitation.html
http://www.agitar.com/solutions/products/software_agitation.html
http://www.brics.dk/artemis
http://sourceforge.net/projects/catchconv
http://sourceforge.net/projects/catchconv
http://ranger.uta.edu/~csallner/cnc
http://ranger.uta.edu/~csallner/cnc
http://ranger.uta.edu/~csallner/dsd-crasher
http://ranger.uta.edu/~csallner/dsd-crasher
https://code.google.com/p/crest
https://code.google.com/p/crest
http://code.google.com/p/jcrasher
http://code.google.com/p/jcrasher
http://osl.cs.uiuc.edu/software/jcute
http://osl.cs.uiuc.edu/software/jcute
http://www.parasoft.com/jsp/fr/products/jtest.jsp
http://www.parasoft.com/jsp/fr/products/jtest.jsp
http://www.tcs.hut.fi/Software/lime/LCT-C
http://www.tcs.hut.fi/Software/lime/LCT-C
http://klee.llvm.org
http://pathcrawler-online.com
http://pathcrawler-online.com
http://research.microsoft.com/en-us/projects/pex
http://research.microsoft.com/en-us/projects/pex
http://code.google.com/p/splat
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://code.google.com/p/randoop
http://code.google.com/p/randoop
http://research.microsoft.com/en-us/projects/yogi
http://research.microsoft.com/en-us/projects/yogi

	

	

	
	
	
	

	

	
	
	

	

	

	
	
	
	

	

	
	
	

247 4.9. Formal quality steps

•	 Many of the tools above can be used to detect either correctness bugs
or security vulnerabilities; there are also dedicated testing tools based
on formal methods that specifically target security issues.
Formal methods, especially, symbolic execution and concolic testing,
can significantly enhance fuzzing. This results in white-box fuzzers
that provide high coverage, scale to millions of lines of code or hun
dreds of millions of machine instructions, and are both automated and
generic, as they do not require upfront descriptions of the programs,
protocols, or file formats under test. In comparison, conventional
black-box fuzzers are simpler and faster, but may omit to exercise large
parts of code. In practice, combining black- and white-box fuzzers is
advisable. See [God12] and [BBGM12] for insightful discussions about
dynamic test generation and white-box fuzzing.
Formal methods have also been applied to taint analysis; in particu
lar, taint analysis can be combined with concolic testing to make it
faster — leading to the notion of taint-based concolic testing [LMMP07]
[GLR09] [SAB10] [WWGZ10] [CLS12].

Further reading:
▷	 Wikipedia: Taint checking

Example of security-oriented tools implementing these various ideas
are Ardilla [KGJE09], BitBlaze [SBY+08], BuzzFuzz [GLR09],
Catchconv [MW07, MLW09], Fuzzgrind [Cam09], Hampi [KGG+09,
GKA+11, KGA+12], IntScope [WWLZ09], jFuzz [JHGK09], Smart-
Fuzz [MLW09], SAGE [GLM08, GdN+08, GLRG11, GLM12], and
TaintScope [WWGZ10, WWGZ11].

Further reading:
▶	 MIT’s Ardilla tool – http://pag.csail.mit.edu/ardilla
▶	 UC Berkeley’s BitBlaze platform – http://bitblaze.cs.berkeley.edu
▶	 BuzzFuzz tool – http://people.csail.mit.edu/vganesh/buzzfuzz.html
▶	 UC Berkeley’s Catchconv tool –

http://sourceforge.net/projects/catchconv
▶	 Sogeti ESEC’s Fuzzgrind tool –

http://esec-lab.sogeti.com/pages/Fuzzgrind
▶	 NASA’s jFuzz tool – http://people.csail.mit.edu/akiezun/jfuzz
▶	 MIT’s Hampi tool – http://people.csail.mit.edu/akiezun/hampi
▶	 UC Berkeley’s SmartFuzz tool –

https://github.com/dmolnar/SmartFuzz

http://en.wikipedia.org/wiki/Taint_checking
http://pag.csail.mit.edu/ardilla
http://bitblaze.cs.berkeley.edu
http://people.csail.mit.edu/vganesh/buzzfuzz.html
http://sourceforge.net/projects/catchconv
http://sourceforge.net/projects/catchconv
http://esec-lab.sogeti.com/pages/Fuzzgrind
http://esec-lab.sogeti.com/pages/Fuzzgrind
http://people.csail.mit.edu/akiezun/jfuzz
http://people.csail.mit.edu/akiezun/hampi
https://github.com/dmolnar/SmartFuzz
https://github.com/dmolnar/SmartFuzz

248 Chapter 4. Design flows and methodologies

These tools have discovered numerous security flaws (e.g., buffer over
flows, memory access violations, numeric overflows and conversion er
rors, vulnerabilities to SQL injection and cross-site scripting attacks,
etc.) in Linux, Windows, Android, and Web applications.

A remarkably successful tool is the aforementioned SAGE white-box
fuzzer, which searches for crashes and vulnerabilities in Windows ap
plications that read files (e.g., image processors, media players, file
decoders, document parsers, etc.). SAGE operates at x86 object code
level, regardless of any source language or build process, and therefore
ensures that “what you fuzz is what you ship”. Since 2008, SAGE
has been running non-stop on a dedicated cluster of 100 machines
at Microsoft security testing labs to analyze hundreds of applications.
SAGE found roughly one third of all the bugs discovered by file fuzzing
during the development of Windows 7; because SAGE was typically
run last, those bugs were missed by all earlier quality steps, including
static analysis and black-box fuzzing. SAGE is so effective at finding
bugs that the number of crashing test cases exceeds human analysis
capabilities: automated triage tools had to be developed to detect du
plicates crashes, select minimal test cases, and identify crashes that
can be exploited for security attacks [GLM12].

It is thus clear that formal methods can significantly enhance most forms
of testing, bringing considerable progress over conventional testing: strong
theoretical foundations, novel algorithms, greater coverage and efficiency,
better scalability, higher automation, tighter schedules, and reduced costs.
Today, formal approaches to testing benefit from positive factors, among
which the increasing availability of formal specifications and models, the ef
ficiency of verification technology (model checkers, theorem provers, solvers,
etc.), and the computational power provided by modern computers. Yet,
these approaches only recently started their dissemination in industry, al
though the essential ideas of testing (such as symbolic execution) were for
mulated three decades ago, and despite the large amount of academic re
search on these topics; in many industrial projects, test generation is still, to
a large extent, performed manually — a situation that is about to change.
Formal methods enhance testing, but can they replace testing? When formal
methods appeared, there were initial expectations that the quality assurance
promised by formal methods would render testing activities obsolete and
useless. Things did not happen as expected: testing remained present in
industrial design flows. Numerous studies comparing formal methods and
testing (e.g., [KHCP00]) led to an academic consensus [HBH08, HBB+09]
that both approaches are complementary.

	

	

	

	

	

	

	

	

	

	

249 4.9. Formal quality steps

However, this consensus has been recently challenged by a series of publica
tions (e.g., [KGN+09] [SWDD09] [MWC10]) originating from leading world
wide industrial companies. These publications report that formal methods
clearly outperform certain testing activities (e.g., unit testing) and can re
place them in the design flow. Two main arguments are put forward:

•	 The first reason is that formal methods (formal verification, formal
refinement, etc.) provide better quality control and quality assurance
than conventional testing. The progress of formal methods made this
initial expectation eventually become true. For instance:

–	 [KHCP00] reports that proofs conducted on Z specifications “ap
pear[ed] to be substantially more efficient at finding faults than
the most efficient testing phase” and that “proofs at the SPARK
code level [...] were still more efficient at error detection than
unit testing, and they provided crucial assurance that the code
was free of run-time exceptions”.

–	 [MWC10] points out that “since model checking examines every
possible combination of input and state, it is also far more effec
tive at finding design errors than testing, which can only check
a small fraction of the possible inputs and states”. Moreover,
“the errors found through model checking tended to be inter
mittent, near simultaneous, or combinatory sequences of failures
that would be very difficult to detect through testing”. Globally,
“model checking was shown to be more cost effective than testing
in finding design errors” and “the time spent model checking is
recovered several times over by avoiding rework during unit and
integration testing”.

•	 A second reason for reducing the amount of testing stems from correct
by-construction approaches: it is not necessary to test design artifacts
produced in a way that guarantees their correctness. More precisely,
if the design steps leading from an upper design artifact U to a lower
design artifact L are known to be correct and if U has been formally
verified, then it is not necessary to verify (or test) L. This general
principle finds recent applications in the area of testing:

–	 According to [Rus11], “compilers are usually unqualified and that
is one of the reasons for requiring extensive testing of the ex
ecutable code”. This reason for the testing effort disappears if
a provably-correct compiler such as CompCert [BDL06, Ler06,
BFL+11] is used. Because such a compiler ensures that no error
is introduced at compile time, tests on the executable code gener
ated by the compiler can be replaced by higher-level verifications
on the source code given as input to the compiler.

	

	

	

	

	

	

	

	

250 Chapter 4. Design flows and methodologies

–	 Consequently, formal verifications performed at source code level
(using, e.g., theorem proving or abstract interpretation) may, to
gether with a provably-correct compiler, render certain tests use
less. For instance, [SWDD09] reports that conventional unit test
ing of C functions can be removed by combining a theorem prover
(namely, the Caveat prover) to establish that each C function
satisfies a set of properties (ensuring exhaustive structural code
coverage and absence of dead code) and a certified C compiler.

Therefore, certain testing activities (e.g., unit testing [SWDD09] and
coverage-oriented testing [KGN+09]) may be progressively replaced by for
mal methods. However, it is unlikely that testing will entirely disappear
from the design flow, for several reasons:

•	 To replace testing with earlier quality steps, one needs to trust all in
termediate steps in the design flow, which is rarely the case at present.

•	 The upper design artifacts are usually abstract and hide the actual
complexity of lower design artifacts. Only verifying these upper arti
facts enables to find design errors and obtain certain guarantees, but
is generally insufficient to fully assure the quality of the final product.

•	 Test campaigns on the final implementation (in particular, integra
tion testing at system level [SWDD09]) perform validation as well as
verification, and exercise together the hardware and software parts
of the system, thus enabling to check hardware properties (physical,
mechanical, electrical, etc.) not covered by formal methods.

In the foreseeable future, those testing activities not subsumed by formal
verification and formal refinement will certainly remain — in accordance
with Donald Knuth’s aphorism: “Beware of bugs in the above code; I have
only proved it correct, not tried it”. Anyway, the classical distinction be
tween verification and testing is increasingly blurred by, on the one hand,
the introduction of state space exploration algorithms in testing tools and,
on the other hand, the advent of verification tools (such as software model
checkers) that operate directly at the implementation level (i.e., source code,
bytecode, or object code).
Finally, testing will not scale to increasingly complex systems unless these
are espressly designed to facilitate testing, e.g., by enabling controllability
of inputs and observability of outputs, by introducing assertions, precondi
tions, postconditions, and contracts that help to increase the effectiveness of
testing [VM94], and, more generally, by making specific provisions to ensure
testability (see Section 4.5.4) [BWK05].

	

	

	

	

	

	

Chapter 5

Conclusion

Computer-based systems are increasingly assigned mission- and life-critical
tasks; their intrinsic complexity is steadily growing; at the same time, guar
anteeing their safety is increasingly difficult, while they are exposed to a
growing number of security threats. This situation has severe consequences:
for instance, [NIS02] estimated that faulty software annually costs between
22 and 60 billion dollars to the US economy, and there is no clear indication
that this figure is decreasing, quite the contrary.
Actually, the software crisis anticipated at the 1969 NATO conference in
Garmisch-Partenkirchen did not occur exactly as expected: there is no short
age of software engineers to program computers nowadays. But there is
indeed a software quality crisis, in the sense that it is extremely difficult
to produce reliable software at acceptable cost — even the largest software
vendors being unable to deliver products free from major flaws and vulnera
bilities. In other words, the crisis seems qualitative rather than quantitative.
Formal methods are a key enabling technology for building safe and secure
computer-based systems. They help fighting the software quality crisis, in
conjunction with related approaches, such as better technical education,
design methodologies, computer languages, and development tools. Yet, the
dissemination of formal methods in industry is hindered by several factors:

•	 The landscape of formal methods is fragmented between multiple lan
guages and algorithmic approaches.

•	 Formal methods — especially those with a particular emphasis on
logics, semantics, or concurrency — often have a steep learning curve.

•	 Most formal methods languages and tools have been developed as aca
demic projects, and sometimes lack robustness and user-friendliness.

251

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

252 Chapter 5. Conclusion

•	 Integrating formal methods in conventional design flows — including
those subject to certification constraints — is not immediate.

•	 The application of formal methods by anyone to any kind of project
is not guaranteed to succeed.

•	 One generally lacks economical data about the return on investment
achievable using formal methods.

•	 To introduce formal methods in a company, many persons have to
agree; quite often, one single person suffices to block the adoption.

Also, formal methods have been advertised too early and their merits often
exaggerated, at a moment where neither languages nor tools were mature
enough to meet the high expectations placed on them, with results ranging
from mitigated success (e.g., the SIFT aircraft control system [WLG+78]
[MMS90]) to bitter disappointment (e.g., the VIPER microprocessor [CP87]
[BH90] [Mac91]). Such overselling of formal methods is typical of Gartner’s
hype cycle, in which initial enthusiasm is followed by disillusion.

Further reading:
▶	 Wikipedia: Hype cycle

However, disillusion is only temporary in Gartner’s hype cycle, and followed
by a slow adoption phase during which the advantages of a technology are
progressively recognized. This is presently the case with formal methods:

•	 The foundational principles of formal methods are increasingly taught
and understood. The concept of model has gained industrial accep
tance through semi-formal approaches such as UML and model-driven
architecture/model-driven engineering. The level of abstraction in sys
tem and software design increases, as well as the awareness of the need
for appropriate development methodologies and formal analysis tools.

•	 The state of the art in formal methods steadily progresses, leading to
more expressive and user-friendly languages, more general and efficient
verification algorithms, and more capable and usable tools.

•	 The frontier of problems that formal methods can tackle is continu
ously pushed forward. Verification tasks that were out of reach one
or two decades ago are now automated and performed routinely. A
growing number of publications report about successful, well-targeted
applications of formal methods in many diverse industrial domains.

http://en.wikipedia.org/wiki/Hype_cycle

	

	

253

•	 The use of formal methods is admitted, recommended, and sometimes
prescribed in safety- and security-related standards dealing, e.g., with
avionics, railways, nuclear energy, and secure information systems.
Formal methods are therefore used in these industrial domains, but
also in other domains not subject to certification obligations, such as
hardware design, where formal methods emerge as the only way to
produce reliable systems within budget and schedule constraints.

The potential benefits of formal methods have been early identified by the
BSI through several studies, especially [BC00, BCK+00] and [MSUV04,
MSUV07]. The present report continues and complements this long-term
effort towards safer and more secure products.
Contrary to many books that give of formal methods a restrictive vision
by limiting their scope to a few approaches and their specific mathematical
details, we tried to present a complete account of formal methods in all
their diversity, together with their connections to related fields, such as
modeling and programming languages, compiler technology, mathematical
logics, computer-aided verification, and performance evaluation.
At present that formal methods have gained industrial recognition, at least
in the largest and most innovative companies, the point is no longer to ques
tion the usefulness of formal methods, but to discuss where and how formal
specifications and verification methods can be introduced in design method
ologies, and how the software tools developed in academia can be reused and
adapted to various applicative contexts. This way, formal methods, origi
nally touted as an alternative to conventional methodologies, will gradually
get accepted, more as an evolution than a revolution.

Index

A
abstract data type see algebraic

data type
abstract interpretation . . . 28, 31, 38,

214–218, 225, 250
abstract model . . . 88, 149, 193, 197,

208, 223
abstract property 110, 112
abstract state machine see ASM
abstraction 44, 45, 52,

76, 83, 88, 92, 95, 131, 198,
216, 217, 219, 224, 226, 232,
250

abstraction refinement 211, 224
abstraction step 192, 193, 203, 208,

213, 222, 224
accountability.59
accuracy 17, 19, 214, 216, 219
ACL2 . 31, 39
action-based model 98
active review 159
ACTL . 27
Ada . 69, 93, 152
adaptive random testing.186
adaptive test generation 243
adequacy see satisfaction
adversary .52
agile methodologies 184
agile programming 144, 160, 181
algebraic data type . 76, 82, 84, 113,

227, 237
algebraic property 103
Alloy . 39
ambiguity . . 100, 104, 105, 156, 192,

206
AMS. see analog mixed signal

analog mixed signal 233
analysis see decomposition
animation see simulation
anonymity . 59
antecedent coverage 239
antirandom testing 186
application domain 43
applicative property see specific

property
approximate verification algorithm

217
ascending flow. . .192, 199, 201, 203,

208
ASM . 39
aspect . 137, 154
assertion99, 108, 110, 112, 152, 166,

172, 197, 198, 216, 221, 224,
228, 229, 237, 240, 244, 250

assumption see environment
assumption

Astrée . 31
asynchronous circuit 48, 227
asynchronous parallelism 72, 94,

168, 191
attack 59, 61, 98, 221, 248
attacker see adversary
attribute 101, 102, 106
audit . see review
auditability . 59
authenticity. .59
automatic step . . 123, 124, 154, 155,

192, 193, 207, 212, 213, 218
automation 17, 19, 214, 218
availability 57, 58, 59, 106
average-case execution time 55

254

INDEX 255

B
B . 26, 39, 205

backtracking. .96

backward traceability 132

bad property . see negative property

BDD . . see binary decision diagram

behavioral abstraction 89

behavioral equivalence see

equivalence (behavioral)

behavioral interface . . . see interface

(behavioral)

behavioral preorder. . . . see preorder

(behavioral)

best coding practices . 152, 161, 199,

225

bigraph . 75

binary decision diagram 82, 241

bisimulation . 111

black box 96, 110, 118, 131, 172–174

Boolean abstraction 89, 95

Boolean equation systems 82

Boolean satisfiability 17

bottom-up design . 68, 145, 199, 207

bounded model checking 218

branch coverage . . 180, 187–189, 240,

244

branching bisimulation 202, 208

branching-time temporal logic . . 222

buffer overflow 150

bug hunting 195, 218, 233, 239, 244,

245

build automation 145

business-critical system 10

Byzantine fault 61, 141

C
C 28, 93, 150, 153, 162, 245

C++ . 150, 152

CADP . 29, 230

CAML. 86

CASL. .39

causal dependency 58

causality . 136

Caveat. .250

CCS . 39

CEGAR. see abstraction refinement

class diagram 84, 92

closed specification.78, 94

closed system see closed

specification

CMMI.13, 14, 35

co-design 51, 177

co-model . . see heterogeneous model

co-simulation . . 167, 177, 178, 228,

233, 235

code coverage 173

code duplication 68

code generation 207, 212, 213

code refactoring see refactoring

code-based testing 239, 243

coding conventions . see best coding

practices

coding errors 125

coding standard see best coding

practices
coding style see best coding

practices

combinational logic 48

combinatorial explosion . . 17, 44, 60,

62, 90, 185

common criteria 35

CompCert.32, 212, 249

compiling 86, 123, 207, 212

complete abstraction . 210, 213, 217,

223

complete model see total model

complete specification 100

complexity explosion see

combinatorial explosion

component. . .67, 108, 134, 145, 202,

207, 212, 230

component diagram 73, 74

component interaction 74

composition. . .68, 70, 207, 208, 212,

213, 225, 230

compositionality 120, 136

compound component 73

computational complexity theory 16

256 INDEX

computer algebra 50
computer architecture47
computer language 15, 225
computer system. 51
computer-based system 44
computing platform . . . see platform
concolic testing 244, 245, 247
concrete model 88, 192, 208, 223
concrete property.110, 112
concretization 207, 244
concurrency 12, 20, 226, 230
confidentiality 59
conformance testing . . 183, 236, 237,

239
congruence . 208
conservative abstraction . see sound

abstraction
consistency . 101
consistent specification 100, 221
constrained-random testing 189
constraint see property
constraint programming.78
constraint solving 241, 242, 244
constructive ambiguity 205
constructive specification 77
containment .138
continuous integration 145, 184
contract. .76, 250
contradiction100, 104, 105, 156, 192
control-flow analysis 162, 244
conventional design flow . . . 143, 192,

252
conventional methodology . 143, 171,

173, 185, 187, 192, 211, 226,
237, 238, 253

Coq . 32, 39
coroutine . 71
correct by construction 15, 151,

211, 212, 236, 249
correct by design see correct by

construction
correct by verification 213
corrective maintenance.127
correctness 53, 55, 60, 105, 184

counterexample-guided abstraction
refinement . see abstraction
refinement

coverage120, 158, 176, 180, 229, 232,
240, 241, 246

critical path . 58
cross-cutting concern . 108, 137, 154
cryptographic protocol 45, 216
cryptography . 62
CSP . 28, 39
cycle accuracy 49
cyclomatic complexity 163

D
d/dt . 232
data abstraction 89
data flow diagram.84
data model . 81
data path . 49
data-flow analysis 162, 244
dead code . . . 108, 120, 162, 172, 173
deadlock . 29, 105, 109, 136, 202, 227
decidability 17, 217, 231
decision coverage. see structural

coverage
decision procedure 16
decision table . 84
decision tree . 84
declarative programming 78
declarative specification 77, 79, 147,

173, 192, 200, 201, 205, 237
decomposition . 68, 69, 145, 207, 212
decomposition strategy.123, 135
defensive programming 79, 152, 190
dependability . . . 56, 58, 61, 96, 107,

142, 184, 214, 230, 234
derivation 195, 200
derived attribute 101
derived requirement see proof

obligation
descending flow . 192, 198, 201, 203,

204, 206, 209
design artifact 121, 158, 192
design error . 11

INDEX 257

design flow . 121

design for testing 137

design for verification 137

design life cycle see design flow

design methodology see

methodology

design space exploration . . . 149, 179

design step 121, 122, 192

determinism 136, 168

deterministic model.93

deterministic program see

deterministic model

development methodology see

methodology

development process 119, 121

diagnostics . . 98, 102, 218, 221, 223,

241

directed test generation see directed

testing

directed testing 170, 187, 189

discharge . 219

disciplined design flow 129, 158

discrete event simulation 176

dissimilarity. see redundancy

distinguishing trace 222

divergence . 202

diversity see redundancy

divide and conquer see

decomposition

DO-178B 34, 119, 173, 174, 183

DO-178C . 34

Dolev-Yao model.22

domain assumption see environment

assumption

domain coverage see input coverage

domain testing see input

partitioning

dynamic analysis 166, 175, 179, 195,

199, 213, 215, 235

dynamic interaction 75

dynamic property.108, 109, 166

dynamic semantics 81

dynamic test generation. . .243, 245,

247

E
EAL . see evaluation assurance level

early error detection. . .37, 132, 145,

203

edge coverage . . see branch coverage

Eiffel .93, 152

embedded system 90, 177

EMC . 24

emulation . 180

encapsulation 75, 134

entity relationship model 84

entry criterion 159, 161

environment 51, 67, 73

environment assumption.43,

52, 53, 78, 88, 123, 124, 127,

146, 147, 149, 166, 179, 190,

193, 213, 222, 229, 235

equational specification 87

equivalence . 236

equivalence (behavioral) . . 104, 111,

202, 208

equivalence checking . . . 48, 112, 214,

216, 220, 221, 223, 227, 234

equivalence partitioning . . see input

partitioning

equivalence relation 103, 200,

201–203, 232

Erlang . 64

error propagation 138

ESC/Java2 . 32

ESTELLE . 46

Estelle . 25

Esterel 36, 72, 94

Euclide . 33

evaluation assurance level 35

Event-B . 205

event-based model. see action-based

model

evolutive maintenance 127

evolving system.62

exact abstraction 209

exact verification algorithm.217

examination see review

exception.152, 176, 190, 191

258 INDEX

exception handling 142
executable model . 86, 149, 157, 205,

213, 226
execution path 168, 170, 234
execution platform see platform
exit criterion 159
explicit-state model checking . . . 215,

217, 240, 241
expressiveness . 17, 19, 214, 216, 219
extended type checking 214
extensibility.101, 105
external property 112, 166, 237
extreme programming 144, 160, 181

F
fail-safe 61, 143, 190
fail-secure 61, 190
failure . 55
faithful abstraction see exact

abstraction
false accept see false negative
false alarm. see false positive
false negative. . . .127, 132, 162, 175,

180, 210, 217, 220, 223, 235,
236

false negatives 245
false positive 127, 132, 162, 166,

175, 210, 217, 220, 221, 223,
236, 244, 245

false reject see false positive
fault 11, 52, 55, 63
fault attack. .61
fault density 165
fault injection . see mutation testing
fault model.52, 59, 61
fault prediction.165
fault protection 190
fault tolerance 12, 63, 142, 190
faulty environment 52, 55, 88
FDR. .28
feature creep . 13
fiber . 71
field-programmable gate array . . 180
finite-state machine 237

fixpoint-guided abstraction refine
ment see abstraction
refinement

Forge . 32
formal description see formal

specification
formal design flow 192
formal method 14, 251
formal methodology 192, 203
formal model 84, 193, 205, 248
formal property 103, 205
formal refinement . . . see refinement
formal semantics 15, 84, 103
formal specification. . . .77, 192, 213,

225, 226, 237, 248, 253
formal system biology 50
formal verification 15, 48, 218
forward reference 100
forward traceability 132
FPGA. see field-programmable gate

array
FS2PV . 33
FSP . 39
fully automatic verification 17
fully-formal design flow. . . 194, 198,

211, 226
function model 84
function point 163
functional correctness 53, 176
functional coverage. . .171, 173, 174,

187–189, 229, 238, 240
functional language 152
functional property . . 105, 118, 147,

201
functional testing 118, 237
fuzz testing see fuzzing
fuzzing.186, 229, 247, 248

G
Galois connection 200
gate level 177, 228
generic property.109, 111, 162, 198,

216
generic quality step.216

INDEX 259

global property 108, 198, 212

goal-oriented simulation . see guided

simulation
good property see positive property
graceful degradation see fault

tolerance

graph grammar 75

grey box 97, 110, 131, 174

guarded command 22, 91, 95

guided simulation 169, 170

H

halting problem 16, 24, 75

hard real time.21, 55, 107

hardware component 68

hardware description language . . 49,

123, 197, 228

hardware design.48, 227

hardware engineering . see hardware

design
hardware fault see fault
hardware redundancy. see

redundancy

hardware-software co-design see

co-design

hardware-software co-simulation see

co-simulation

heterogeneous model . . 90, 167, 178,

231, 235

heuristic-guided abstraction refine

ment see abstraction
refinement

hidden channel see side channel
hierarchical design. . . . see top-down

design

high-level model 81

high-quality bug 14

HOL. 33

homogeneous model 90

hostile environment 52, 59, 88

hybrid automaton 231

hybrid system. . . . 91, 178, 231, 233,

234, 237

hype cycle. .252

HyTech . 232

I

I/O automaton . . . see input/output

automaton

IABC . 28

incomplete abstraction see complete

abstraction
incomplete specification see

complete specification

incompleteness206

inconsistent specification see

consistent specification

informal model 85, 192

informal property.104, 157

informal specification . 147, 171, 192,

194, 213, 238

information hiding see encapsulation

initial requirement . see requirement

initial specification see top-level

specification

input . 51

input coverage171, 187

input data coverage see input

coverage
input domain coverage . . . see input

coverage

input partitioning 171, 186, 237

input/output automaton 84, 97, 236

inspection see review

instruction set 49

insufficient coverage.235

integrated circuit 47

integrated development environment

161

integrated modular avionics 139

integration testing 183, 250

integrity . 57, 59

interactive simulation.169, 170

interface . 76, 96, 110, 112, 131, 135,

172

interface (behavioral) . . 76, 207, 208

interface error 125

interleaving semantics 94

260 INDEX

internal property 112, 166, 237

intruder see adversary

invariant 99, 108, 112

Isabelle . 33, 39

iterative abstraction refinement . see

abstraction refinement

iterative model 144, 148, 149

ITSEC. .35

J

Java 93, 152, 153, 245

JavaCard . 153

JML . 32

JTorX . 240

justification see proof checking

K

Kerberos .28

KeYmaera 33, 232

Kripke structure 97

Kripke transition system 98

Kronos . 29, 232

L

labeled transition system.97

labelled transition system . . 236, 240

latency . 54

LCLint. .28, 162

leakage rate . 133

lemma . 219

level of rigor 194, 196, 206

life cycle see design flow

life-critical system. 10, 34, 251

lightweight formal method . 196, 205

linear temporal logic see linear-time

temporal logic

linear-time temporal logic . . 222, 238

Lint . 162

livelock . 109, 202

liveness property202

local property 108, 198, 212

log analysis . 168, 190, 214, 217, 218

log checking see log analysis

log file . see log

log monitoring see log analysis

log validation see log analysis

log verification see log analysis

logic gate . 49

logic model . 80

logical partitioning 139

logical property 103

LOTOS 26, 27, 29, 39, 69

low-level model 81, 97

LTL . see linear-time temporal logic

Lustre 32, 72, 94, 152

M
Möbius . 230

maintainability.57, 134, 197

management of changes 203

manual step 123, 124, 150, 155, 192,

193, 207, 213, 218

MapleSim. .178

Markov chain 97, 230

MC/DC. see modified

condition/decision coverage

measure . 102

memory management unit 139

memory safety 151

message passing.20

message sequence chart 104

Metal . 162

metamodel 81, 154

methodology 128

minimal diagnostic 222

minimality . 101

MISRA C . 153

mission-critical system . . . 10, 34, 44,

251

mixed model see heterogeneous

model

ML . 152

model 78, 80, 122, 149, 183, 192,

201, 236, 238, 252

model checking . . . 38, 48, 50, 60, 78,

102, 111, 195, 214–218, 220,

222, 223, 226–230, 232, 234,

240, 241, 248, 249

model coverage 173

INDEX 261

model extraction 192, 212

model of computation . . . 79, 91, 232

model-based refinement. see

refinement

model-based testing . 167, 173, 237

model-driven architecture81, 83, 252

model-driven engineering 81, 83,

154, 193, 252

Modelica . 178

modeling language 80, 253

models of computation 91

modified condition/decision coverage

173, 188, 189, 239, 240

modularity . . . 68, 131, 137, 138, 230

module see component

monitor. .214

Monte-Carlo simulation 179

MRMC . 230

muCRL or µCRL 29

multi-version programming see

redundancy

mutant 175, 188, 241, 244

mutation coverage see mutation

testing

mutation testing 174, 189, 241

N
natural language84, 85, 99, 104, 147,

157, 161, 225

Needham-Schroeder protocol . 28, 60

negative property 98, 99

nested component 69

network on chip.48

noise 100, 104, 156

nominal environment . 52, 53, 56, 88

non-constructive specification 77

non-functional property . . . 106, 118,

147, 201

non-regression testing 183

non-repudiation 59

nondeterminism . . 92, 168, 182, 185,

191, 207, 230, 236, 240

nondeterministic choice 59, 95

nondeterministic model 93

nondeterministic program see
nondeterministic model

NP-complete . 17

NQTHM . 24, 25

O

object . 71

object model . 84

ObjectGEODE 36

observability .96

observational equivalence 202

observer 104, 166

ODE see ordinary differential

equation

off-line. see log

OMG . 81

on-line see run-time

one-language approach 111, 216

open specification.78

open system . see open specification

operating system 139

operational specification . 77, 79, 80,

147, 173, 192, 200, 201, 226,

237

optimization . 123

oracle 182, 186, 189, 236

ordinary differential equation . . . 233

output . 51

over-approximation 210, 217

overspecification.100, 104, 105, 110,

156, 205

P

pair programming 160

paired development see pair

programming

parallel composition 208

parallel programming 20

parametric system.234

Pareto principle.124

parser see syntax checker

partial correctness 53

partial model 88, 149, 197

262 INDEX

partially automatic verification . see

semi-automatic verification

partially-formal design flow 194,

196, 205

partition testing see input

partitioning

partitioning 138, 142

Pascal . 69

path explosion 245

penetration test.117

perfection . 65

performability 56, 102, 107, 142, 234

performance . . 54, 58, 106, 107, 176,

184, 214, 230

performance evaluation 21, 102, 230,

234, 253

performance issue 12

performance monitoring 190

Personal Software Process 191

Petri net . 20, 22, 24, 39, 82, 91, 121,

201

PHAVer . 232

physical partitioning 138

pipeline . 49

platform 13, 22, 74

Polyspace Verifier 28

portability 101, 105

positive property 98

post-silicon validation 214

postcondition 112, 152, 197, 221,

237, 240, 244, 250

precise natural language see

structured natural language

precondition 112, 152, 197, 221, 237,

244, 250

PREfast 162, 166

PREfix . 162, 166

preorder . 236

preorder (behavioral) .104, 111, 208

preorder relation . 103, 200, 201–203

Presburger arithmetic 17

PRISM . 30, 230

privacy . 59

probabilistic choice.59, 95

probabilistic model checking 230

probabilistic system 21

probe . 166

problem diagram 104

process algebra see process calculus

process calculus . 49, 50, 84, 95, 208,

227, 237

process quality 119, 198

product cost . 37

product quality.13, 37, 119, 198

program 82, 122, 149

program correctness.19

program coverage see code coverage

program semantics 19

program verification 78

programming language.82, 123, 197,

253

Promela see SPIN

proof checking.220

proof obligation.202, 211, 213, 219,

226

property. . .15, 78, 98, 101–103, 105,

172, 183, 192, 198, 200, 201,

209, 228, 229, 236, 238

property-based testing.237

property-driven abstraction.209

protocol . 45

protocol design 45

protocol engineering 38, 45

prototype see prototyping

prototyping 87, 144, 149, 179

ProVerif . 33

pseudo parallelism see quasi

parallelism

pseudocode.82, 84

PSL.112, 113, 228

PSP . see Personal Software Process

Ptolemy . 232

push-button verification 219

PVS. 29, 30, 39

Q

QNAP2 . 36

INDEX 263

quality see product quality, see

attribute

quality assurance116, 125, 184, 193,

196, 227, 234, 235, 248, 249

quality attribute see attribute

quality check 226

quality control . . 116, 125, 184, 193,

234, 235, 249

quality of service 21, 58

quality step 125, 190, 193, 199, 211,

213, 215

quasi parallelism 71, 168

query . 102

R
RAISE. .39

random simulation 169, 170

random test generation. see random

testing

random testing . . 170, 185, 188, 189

randomized algorithms 94

rapid application development . 144,

148, 149

rapid prototyping . . see prototyping

reactive system 21, 36

real design artifact 166

real time see hard real time

real-time kernel 139

recovery block 142, 190

redundancy.62, 140, 142

refactoring 127, 154

refinement.112, 200, 223, 249

refinement monotonicity 202

refinement step. .203, 207, 209, 213,

224

register-transfer level . . 177, 180, 228

reliability 57, 59, 106, 107

replication see redundancy

reproducible execution 93

ReqIF . 148

requirement. .77, 99, 123, 131, 146,

163, 172, 192, 198, 201, 204,

213, 237, 240

requirement error124, 156

requirement traceability see
traceability

requirement validation 214

requirements capture see

requirements elicitation

requirements completeness 156

requirements consistency 156

requirements correctness 156

requirements coverage 238, 239

requirements elicitation.146

requirements engineering 146

requirements expression see

requirements specification

requirements management 148

requirements negotiation 147

requirements prioritization. see

requirements negotiation
requirements quality control see

requirements validation

requirements specification 147

requirements testing see

requirements validation

requirements validation . . . 148, 149,

155, 205

requirements verification. see

requirements validation

resource usage 54

response time . 54

restriction.44, 88, 92, 198

retiming . 49

reuse 68, 120, 134, 145

review 157, 158, 196, 225, 226

revision step128, 130, 158, 193, 219,

222

RIF . see ReqIF

RSL . see RAISE

RTL see register-transfer level

Ruby . 69

run-time analysis167, 168, 190, 214,

215, 217, 218

run-time checking see run-time

analysis

run-time error 12, 16, 108, 109, 111,

151, 166, 198, 216, 221, 240,

264 INDEX

244

run-time errors 229

run-time monitoring . . see run-time

analysis

run-time testing. see run-time

analysis

run-time validation. . . . see run-time

analysis

run-time verification . . see run-time

analysis

S
safe by construction . see correct by

construction

safe by design see correct by

construction

safe language 151, 212

safe language subset 153

safe mode see fail-safe

safe state see fail-safe

safety 58, 106, 143

safety integrity level 29, 58

safety monitoring.190

safety property 58, 202

safety-critical system.10, 253

SAGE . 248

sandbox . 139

SAT solving . 49

satisfaction . . . 80, 98, 111, 200, 201

SCADE. .32

scalability . 101

scenario . 104

scrum . 144

scrutiny see review

SDL . 36, 46

seamless design flow . . 129, 145, 199

secure by construction . . see correct

by construction

secure by design see correct by

construction

secure language 151

secure language subset 153

security . . . 56, 59, 96, 105–107, 184,

226, 247, 253

security issue . 12

security monitoring.190

security property.216, 221

security protocol notation 79

self-checking software.190

semi-automatic step . . 124, 192, 193,

213, 218, 219

semi-automatic verification 17

semi-decidability 17, 217

semi-decision procedure 17, 217

semi-formal model 84, 192

semi-formal property 104, 157

semi-formal specification . . 147, 192,

194, 225

separation kernel 139

separation of concerns . 70, 136, 137,

138, 193

sequence diagram 92

sequential execution flow. . . .71, 168

sequential logic 48

sequential program.19

seven myths . 38

seven sins 99, 105, 124, 147, 156

shared memory 20

side channel 52, 62, 96

side effect . 93

signal edge . 49

SIL. see safety integrity level

silence 100, 104, 156

SimEvents . 178

simplicity 134, 137, 141

simulation . . 167, 169, 176, 205, 206,

213, 217, 218, 226, 233, 235

simulation backplane 178

simulation preorder 111

simulation testbench 229

simulator coupling.178

Simulink 35, 178, 233

slicing . 89

SMART . 230

SMV . 27

soft real time.21, 55, 107

software architecture 46

software bloat 13

INDEX 265

software bug. .11
software components.68
software crisis 18, 46, 251
software design see software

engineering
software engineering 46
software estimation.164
software fault tolerance142
software metric 109, 163
software model checking 111
software patch 34, 47
software redundancy. see

redundancy
software reliability 63, 117
software sizing 163
sound abstraction 210, 213, 217, 223
source code . 14
SpaceEx . 232
SPARK. .249
specific property 109, 162, 198, 213,

216
specific quality step 216
specification . . 77, 101, 102, 171, 236
specification-based testing . 237, 238
SPIN . 29, 39, 85
spiral model 144, 148, 149
Splint . 28, 162
stable requirement 148
Standard ML.69, 86
state diagram . 84
state explosion . . . 180, 217, 231, 234
state space exploration.250
state-based model 97
state-space exploration . . . 23, 25, 31,

227, 233, 234, 240
statecharts69, 85, 92, 150
Stateflow . 178
statement coverage. . . see structural

coverage
static analysis 28, 93, 111, 118, 161,

195, 199, 213, 215, 224, 225,
233, 245, 248

static interaction 75
static property.108, 109, 161

static semantics . . . 81, 161, 195, 225
static test generation . 242, 243, 245
step-by-step execution see

interactive simulation
step-by-step simulation see

interactive simulation
stepwise derivation. . . see derivation
stepwise refinement . see refinement
stochastic model checking 230
stochastic system 21
strong bisimulation 208
strong mutation testing 175
strongly preserving abstraction . see

exact abstraction
structural coverage.172, 174,

187–189, 229, 238–242
structured English . . . see structured

natural language
structured natural language105, 147
structured operational semantics 227
subsystem see component
SVA . 228
SWEBOK . 46
symbolic execution . . . 215, 230, 242,

243–245, 247, 248
symbolic inference engine 86
symbolic model checking49, 215, 241
symbolic simulation . . . 228, 232, 234
synchronous circuit 48
synchronous language 79, 84, 94, 152
synchronous parallelism 72, 168
syntax checking 27, 195, 225
synthesis 86, 123, 207, 212, 214
SysML. .104
system 43, 51, 67
system architecture 88
system attribute see attribute
system boundary.51, 67
system component . . see component
system design . 44
system engineering 44
system on chip 48, 139
system under study 43
system under test 43

266 INDEX

system under verification.43

system-level design.43

system-level verification 43

SystemC 50, 150, 180, 228

SystemVerilog 50, 228

T
taint analysis247
temporal logic .58, 76, 102, 108, 112,

216, 217, 222, 228, 229, 232,
238, 240

ten commandments 38
term algebra . 82
term rewriting engine. . . .86, 87, 227
term rewriting specification 87
termination 53, 105
test adequacy . . . 171, 175, 185, 189,

239
test adequacy criterion see test

criterion
test case 170, 222, 228, 240, 241
test case generation see test

generation
test completeness see test adequacy
test coverage 185, 238
test criterion 171, 175, 184, 185,

187–189, 240, 242, 244, 245
test effectiveness . 170, 175, 184, 239
test efficiency 185–189, 236, 241
test generation. . .137, 184, 185, 214,

240, 245
test hypothesis 237
test oracle see oracle
test pattern generation see test

generation
test purpose . 240
test reduction.171, 188, 189
test selection 171, 185, 189
test selection criterion. see test

criterion
test suite . 170
test-driven development.181
testability.101, 138, 197, 250
testing14, 15, 48, 167, 169, 176,

181, 193, 196, 214, 215, 217,
218, 235, 250

TGV . 240
theorem proving38, 50, 60, 112, 195,

214–218, 220, 224, 226, 234,
242, 244, 248–250

throughput . 54
time abstraction 90
time correctness 55
time to market37
Time-Triggered Architecture 30
timed automaton 231
timed system 91, 231, 233
timeliness . 55
TLM see transaction-level modeling
too coarse abstraction. . . . see sound

abstraction
top-down design . . 68, 145, 199, 207
top-level requirement see

requirement
top-level specification 123, 197
TorX . 240
total correctness 53
total model . 88
trace . see log
trace analysis 168, 190
trace inclusion 111, 202
traceability . 131, 148, 157, 161, 203
traceability matrix 148
transaction-level modeling. .180, 228
transformation.123, 154, 207
translation 123, 222
two-language approach 111, 216
type checking . 27, 108, 161, 195, 225
type I error see false positive
type II error. see false negative
type safety. .151

U
UFC see unique first cause coverage
ultra-high dependability see

ultradependability
ultradependability 58

INDEX 267

UML 35, 39, 69, 83, 85, 92, 104, 150,

252

undecidability.16, 75, 117, 162, 165,

185, 209, 214, 217, 219, 234,

240, 242

under-approximation . 210, 217, 244

understandable diagnostic 222

unexpected message reception. . .109

unique first cause coverage.239, 240

unit testing 183, 249, 250

unsound abstraction see sound

abstraction

Uppaal .29, 232

usability 101, 106, 107

use case . 104

use case diagram. 92

V

V model . 144

V&V see verification and validation

validation . . 126, 179, 182, 213, 214,

250

value domain . 17

variable abstraction.89

VDM . 39, 87

verifiability 138, 197

verification. . .48, 125, 183, 209, 250

verification and validation . 15, 125,

182, 211, 214, 235

verification condition see proof

obligation

Verilog.49, 69, 113, 150, 228

VeriSoft. .31

VHDL. 49, 69, 113, 228

view . 92

virtual design artifact 166

volatile requirement 148

vulnerability . 61, 124, 150, 152, 155,

162, 186, 247

vulnerability scan 117

W

walkthrough. see review

waterfall model 143, 198

WCET . . . see worst-case execution
time

weak mutation testing 175

weakly preserving abstraction. . . see

sound abstraction

white box96, 110, 118, 131, 172–174

white-box testing 239

wishful thinking . 100, 104, 105, 156

worst-case execution time. . .55, 102,

216

X

X-by-wire .139

Xesar . 25

Z
Z 27, 29, 39, 87, 249

zero crossing . 233

zero-language approach 111, 216

 268 INDEX

Bibliography

[AB01] Paul E. Ammann and Paul E. Black. A Specification-Based
Coverage Metric to Evaluate Test Sets. International Jour
nal of Reliability, Quality and Safety Engineering, 8(4):275–
300, December 2001. Available from http://hissa.nist.gov/
~black/Papers/ijrqse.html.

[AB11] Andrea Arcuri and Lionel C. Briand. Adaptive Random Test
ing: An Illusion of Effectiveness? In Matthew B. Dwyer and
Frank Tip, editors, Proceedings of the 20th International Sym
posium on Software Testing and Analysis (ISSTA’11), Toronto,
Canada, pages 265–275, 2011.

[AB12] Andrea Arcuri and Lionel C. Briand. Formal Analysis of the
Probability of Interaction Fault Detection Using Random Test
ing. IEEE Transactions on Software Engineering, 38(5):1088–
1099, 2012.

[ABG+05] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus
Havelund, Sarfraz Khurshid, Michael R. Lowry, Corina S.
Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser, and
Richard Washington. Combining Test Case Generation and
Runtime Verification. Theoretical Computer Science, 336(2–
3):209–234, 2005.

[ABK+10] Nikolaos Alexiou, Stylianos Basagiannis, Panagiotis Katsaros,
Tushar Deshpande, and Scott A. Smolka. Formal Analysis of
the Kaminsky DNS Cache-Poisoning Attack Using Probabilis
tic Model Checking. In Proceedings of the 12th IEEE High
Assurance Systems Engineering Symposium (HASE’10), San
Jose, CA, USA, pages 94–103. IEEE Computer Society, 2010.

[ABL05] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is
Mutation an Appropriate Tool for Testing Experiments? In
Gruia-Catalin Roman, William G. Griswold, and Bashar Nu
seibeh, editors, Proceedings of the 27th International Confer

269

http://hissa.nist.gov/~black/Papers/ijrqse.html
http://hissa.nist.gov/~black/Papers/ijrqse.html

270 BIBLIOGRAPHY

ence on Software Engineering (ICSE’05), St. Louis, Missouri,
USA, pages 402–411. ACM, 2005.

[ABLN06] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Ak
bar Siami Namin. Using Mutation Analysis for Assessing and
Comparing Testing Coverage Criteria. IEEE Transactions on
Software Engineering, 32(8):608–624, 2006.

[ABM98] Paul E. Ammann, Paul E. Black, and William Majurski. Using
Model Checking to Generate Tests from Specifications. In John
Staples, Michael G. Hinchey, and Shaoying Liu, editors, Pro
ceedings of the 2nd IEEE International Conference on Formal
Engineering Methods (ICFEM’98), Brisbane, Australia, pages
46–54. IEEE Computer Society, 1998.

[Abr96] Jean-Raymond Abrial. The B-book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

[Abr06] Jean-Raymond Abrial. Formal Methods in Industry: Achieve
ments, Problems, Future. In Leon J. Osterweil, H. Dieter Rom
bach, and Mary Lou Soffa, editors, Proceedings of the 28th
International Conference on Software Engineering (ICSE’06),
Shanghai, China, pages 761–768. ACM, 2006.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B – System and Soft
ware Engineering. Cambridge University Press, 2010.

[ACD+93] B. Algayres, V. Coelho, L. Doldi, H. Garavel, Y. Lejeune, and
C. Rodríguez. VESAR: A Pragmatic Approach to Formal Spec
ification and Verification. Computer Networks and ISDN Sys
tems, 25(7):779–790, 1993.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs,
Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo
Olivero, Joseph Sifakis, and Sergio Yovine. The Algorithmic
Analysis of Hybrid Systems. Theoretical Computer Science,
138(1):3–34, 1995.

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and
Pei-Hsin Ho. Hybrid Automata: An Algorithmic Approach
to the Specification and Verification of Hybrid Systems. In
Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans
Rischel, editors, Proceedings of the Workshop on Theory of Hy
brid Systems, Lyngby, Denmark, volume 736 of Lecture Notes
in Computer Science, pages 209–229. Springer, 1992.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126(2):183–235, 1994.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

271 BIBLIOGRAPHY

[Add91]	 Edward Addy. A Case Study on Isolation of Safety-Critical
Software. In Proceedings of the 6th Annual Conference on
Computer Assurance (COMPASS’91), Gaithersburg, Mary
land, USA, pages 75–83. IEEE Press, 1991.

[ADJ+11]	 Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller,
and Frank Tip. A Framework for Automated Testing of
JavaScript Web Applications. In Richard N. Taylor, Harald
Gall, and Nenad Medvidovic, editors, Proceedings of the 33rd
International Conference on Software Engineering (ICSE’11),
Waikiki, Honolulu , HI, USA, pages 571–580. ACM, 2011.

[ADM02]	 Eugene Asarin, Thao Dang, and Oded Maler. The d/dt Tool for
Verification of Hybrid Systems. In Ed Brinksma and Kim Guld
strand Larsen, editors, Proceedings of the 14th International
Conference on Computer Aided Verification (CAV’02), Copen
hagen, Denmark, volume 2404 of Lecture Notes in Computer
Science, pages 365–370. Springer, 2002.

[ADMB00]	 Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez.
Approximate Reachability Analysis of Piecewise-Linear Dy
namical Systems. In Nancy A. Lynch and Bruce H. Krogh, ed
itors, Proceedings of the 3rd International Workshop on Hybrid
Systems: Computation and Control (HSCC’00), Pittsburgh,
PA, USA, volume 1790 of Lecture Notes in Computer Science,
pages 20–31. Springer, 2000.

[ADOW05]	 Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, and
James Worrell. Decidability and Complexity Results for Timed
Automata via Channel Machines. In Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung,
editors, Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP’05), Lisbon,
Portugal, volume 3580 of Lecture Notes in Computer Science,
pages 1089–1101. Springer, 2005.

[AGT08]	 Saswat Anand, Patrice Godefroid, and Nikolai Tillmann.
Demand-Driven Compositional Symbolic Execution. In C. R.
Ramakrishnan and Jakob Rehof, editors, Proceedings of the
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), Budapest,
Hungary, volume 4963 of Lecture Notes in Computer Science,
pages 367–381. Springer, 2008.

[AGWX08]	 James H. Andrews, Alex Groce, Melissa Weston, and Ru-Gang
Xu. Random Test Run Length and Effectiveness. In Proceed

272 BIBLIOGRAPHY

ings of the 23rd IEEE/ACM International Conference on Au
tomated Software Engineering (ASE’08), L’Aquila, Italy, pages
19–28. IEEE, 2008.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Au
tomatic Symbolic Verification of Embedded Systems. IEEE
Transactions on Software Engineering, 22(3):181–201, 1996.

[AIB12] Andrea Arcuri, Muhammad Zohaib Z. Iqbal, and Lionel C.
Briand. Random Testing: Theoretical Results and Practi
cal Implications. IEEE Transactions on Software Engineering,
38(2):258–277, 2012.

[AKD+08] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny
Dig, Amit M. Paradkar, and Michael D. Ernst. Finding Bugs
in Dynamic Web Applications. In Barbara G. Ryder and An
dreas Zeller, editors, Proceedings of the ACM SIGSOFT In
ternational Symposium on Software Testing and Analysis (IS
STA’08), Seattle, WA, USA, pages 261–272. ACM, 2008.

[AKD+10] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny
Dig, Amit M. Paradkar, and Michael D. Ernst. Finding
Bugs in Web Applications Using Dynamic Test Generation and
Explicit-State Model Checking. IEEE Transactions on Soft
ware Engineering, 36(4):474–494, 2010.

[AKRS08] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashid
har. Symbolic Analysis for Improving Simulation Coverage
of Simulink/Stateflow Models. In Luca de Alfaro and Jens
Palsberg, editors, Proceedings of the 8th ACM-IEEE Interna
tional Conference on Embedded Software (EMSOFT’08), At
lanta, Georgia, USA, pages 89–98, 2008.

[AL91] M. Abadi and L. Lamport. The Existence of Refinement Map
pings. Theoretical Computer Science, 82(2):253–284, 1991.

[Alb79] Allan J. Albrecht. Measuring Application Development Pro
ductivity. In Proceedings of the Joint SHARE, GUIDE, and
IBM Application Development Symposium, Monterey, Califor
nia, pages 83–92, October 1979. IBM Corporation.

[ALN+91] Jean-Raymond Abrial, Matthew K. O. Lee, David Neilson,
P. N. Scharbach, and Ib Holm Sørensen. The B-Method. In
Proceedings of the 4th International Symposium of VDM Eu
rope on Formal Software Development (VDM’91), Noordwijk
erhout, The Netherlands, volume 552 of Lecture Notes in Com
puter Science, pages 398–405. Springer, 1991.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

273 BIBLIOGRAPHY

[ALRL04]	 Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl E. Landwehr. Basic Concepts and Taxonomy of Depend
able and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

[Alu99]	 Rajeev Alur. Timed Automata. In Nicolas Halbwachs and
Doron Peled, editors, Proceedings of the 11th International
Conference on Computer Aided Verification (CAV’99), Trento,
Italy, volume 1633 of Lecture Notes in Computer Science, pages
8–22. Springer, 1999.

[Alu11]	 Rajeev Alur. Formal Verification of Hybrid Systems. In Samar
jit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and Sebas
tian Fischmeister, editors, Proceedings of the 11th International
Conference on Embedded Software (EMSOFT’11), Taipei, Tai
wan, pages 273–278. ACM, 2011.

[AM04]	 Rajeev Alur and P. Madhusudan. Decision Problems for Timed
Automata: A Survey. In Marco Bernardo and Flavio Corradini,
editors, Formal Methods for the Design of Real-Time Systems:
Revised Lectures Notes for the International School on For
mal Methods for the Design of Computer, Communication and
Software Systems (SFM-RT’04), Bertinoro, Italy, volume 3185
of Lecture Notes in Computer Science, pages 1–24. Springer,
2004.

[Ana12]	 Saswat Anand. Techniques to Facilitate Symbolic Execution of
Real-World Programs. PhD thesis, Georgia Institute of Tech
nology, August 2012.

[And94]	 Lars Ole Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU – University
of Copenhagen, Denmark, 1994. Also available as DIKU report
94/19.

[ANHY12]	 Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok
Yang. Automated Concolic Testing of Smartphone Apps. In
Will Tracz, Martin P. Robillard, and Tevfik Bultan, editors,
Proceedings of the 20th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE’12), Cary, NC,
USA, page 59, 2012.

[AO94]	 Paul Ammann and Jeff Offutt. Using Formal Methods to
Derive Test Frames in Category-partition Testing. In Pro
ceedings of the 9th Annual Conference on Computer Assur
ance (COMPASS’94), Gaithersburg, MD, USA, pages 69–79.

274 BIBLIOGRAPHY

IEEE Computer Society Press, June 1994. Available from
http://cs.gmu.edu/~offutt/rsrch/papers/zmist.pdf.

[APST10] Eyad Alkassar, Wolfgang J. Paul, Artem Starostin, and
Alexandra Tsyban. Pervasive Verification of an OS Micro
kernel – Inline Assembly, Memory Consumption, Concurrent
Devices. In Gary T. Leavens, Peter W. O’Hearn, and Sri
ram K. Rajamani, editors, Proceedings of the 3rd International
Conference on Verified Software: Theories, Tools, Experiments
(VSTTE’10), Edinburgh, Scotland, UK, volume 6217 of Lecture
Notes in Computer Science, pages 71–85. Springer, 2010.

[AR07] Carina Andersson and Per Runeson. A Replicated Quantitative
Analysis of Fault Distributions in Complex Software Systems.
IEEE Transactions on Software Engineering, 33(5):273–286,
May 2007.

[Avi85] Algirdas Avizienis. The N-Version Approach to Fault-
Tolerant Software. IEEE Transactions on Software Engineer
ing, 11(12):1491–1501, 1985.

[Avi95] Algirdas Avizienis. The Methodology of N-Version Pro
gramming. In M. R. Lyu, editor, Software Fault Toler
ance, chapter 2, pages 23–46. John Wiley & Sons Ltd.,
1995. Available from http://www.cse.cuhk.edu.hk/~lyu/
book/sft/pdf/chap2.pdf.

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO
Specification Language LOTOS. ISDN, 14(1):25–29, January
1988.

[BB01] Barry W. Boehm and Victor R. Basili. Software Defect Re
duction Top 10 List. IEEE Computer, 34(1):135–137, January
2001.

[BB05] Henrik C. Bohnenkamp and Axel Belinfante. Timed Testing
with TorX. In John A. Fitzgerald, Ian J. Hayes, and Andrzej
Tarlecki, editors, Proceedings of the International Symposium
of Formal Methods Europe (FM’05), Newcastle, UK, volume
3582 of Lecture Notes in Computer Science, pages 173–188.
Springer, 2005.

[BBCP12] Albert Benveniste, Timothy Bourke, Benoît Caillaud, and
Marc Pouzet. Non-standard Semantics of Hybrid Sys
tems Modelers. Journal of Computer and System Sciences,
78(3):877–910, 2012.

http://cs.gmu.edu/~offutt/rsrch/papers/zmist.pdf
http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap2.pdf
http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap2.pdf

	

	

	

	

	

	

	

	

	

	

	

	

275 BIBLIOGRAPHY

[BBGM12]	 Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent
Mounier. A Taint Based Approach for Smart Fuzzing. In Giu
liano Antoniol, Antonia Bertolino, and Yvan Labiche, editors,
Proceedings of the 5th IEEE International Conference on Soft
ware Testing, Verification and Validation, Montreal, Quebec,
Canada, pages 818–825. IEEE, 2012.

[BBKL10]	 Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir
Levin. SLAM2: Static Driver Verification with Under 4%
False Alarms. In Proceedings of 10th International Conference
on Formal Methods in Computer-Aided Design (FMCAD’10),
Lugano, Switzerland, pages 35–42. IEEE, 2010.

[BBL+10]	 Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar,
and Jakob Lichtenberg. The Static Driver Verifier Research
Platform. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Proceedings of the 22nd International Conference on
Computer Aided Verification (CAV’10), Edinburgh, Scotland,
UK, volume 6174 of Lecture Notes in Computer Science, pages
119–122. Springer, 2010.

[BC00]	 Robin E. Bloomfield and Dan Craigen. Formal Methods
Diffusion: Past Lessons and Future Prospects. Technical
report, Bundesamt für Sicherheit in der Informationstechnik
(BSI), Bonn, Germany, September 2000. Available from
https://www.bsi.bund.de/ContentBSI/Publikationen/
Studien/fmethode/formale_methoden.html or from https:
//www.bsi-fuer-buerger.de/cae/servlet/contentblob/
487166/publicationFile/31099/fms_v1_0_pdf.pdf.

[BC04]	 Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development – Coq’Art: The Calculus of Induc
tive Constructions. Springer, 2004.

[BCC+02]	 Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. Design and Implementation of a Special-Purpose
Static Program Analyzer for Safety-Critical Real-Time Em
bedded Software. In Torben Æ. Mogensen, David A. Schmidt,
and Ivan Hal Sudborough, editors, The Essence of Computa
tion, Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones on occasion of his 60th birthday, volume 2566
of Lecture Notes in Computer Science, pages 85–108. Springer,
2002.

https://www.bsi.bund.de/ContentBSI/Publikationen/Studien/fmethode/formale_methoden.html
https://www.bsi.bund.de/ContentBSI/Publikationen/Studien/fmethode/formale_methoden.html
https://www.bsi-fuer-buerger.de/cae/servlet/contentblob/487166/publicationFile/31099/fms_v1_0_pdf.pdf
https://www.bsi-fuer-buerger.de/cae/servlet/contentblob/487166/publicationFile/31099/fms_v1_0_pdf.pdf
https://www.bsi-fuer-buerger.de/cae/servlet/contentblob/487166/publicationFile/31099/fms_v1_0_pdf.pdf

276 BIBLIOGRAPHY

[BCC+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. A Static Analyzer for Large Safety-Critical
Software. In Proceedings of the ACM SIGPLAN Confer
ence on Programming Language Design and Implementation
(PLDI’03), San Diego, California, USA, pages 196–207. ACM,
2003.

[BCD86] Michael C. Browne, Edmund M. Clarke, and David L. Dill. Au
tomatic Circuit Verification Using Temporal Logic: Two New
Examples. In G. Milne, editor, Formal Aspects of VLSI Design
– Proceedings of the Workshop on VLSI, Edinburgh, Scotland,
UK. Elsevier Science Publishers (North Holland), 1986.

[BCDM86] Michael C. Browne, Edmund M. Clarke, David L. Dill, and
Bud Mishra. Automatic Verification of Sequential Circuits
Using Temporal Logic. IEEE Transactions on Computers,
35(12):1035–1044, 1986.

[BCH+04] Dirk Beyer, Adam Chlipala, Thomas A. Henzinger, Ranjit
Jhala, and Rupak Majumdar. Generating Tests from Coun
terexamples. In Anthony Finkelstein, Jacky Estublier, and
David S. Rosenblum, editors, Proceedings of the 26th Interna
tional Conference on Software Engineering (ICSE’04), Edin
burgh, Scotland, UK, pages 326–335. IEEE Computer Society,
2004.

[BCK+00] Robin E. Bloomfield, Dan Craigen, Frank Koob, Markus Ull
mann, and Stefan Wittmann. Formal Methods Diffusion:
Past Lessons and Future Prospects. In Floor Koornneef and
Meine van der Meulen, editors, Proceedings of the 19th Interna
tional Conference on Computer Safety, Reliability and Security
(SAFECOMP’00), Rotterdam, The Netherlands, volume 1943
of Lecture Notes in Computer Science, pages 211–226. Springer,
2000.

[BCP10] Albert Benveniste, Benoît Caillaud, and Marc Pouzet. The
Fundamentals of Hybrid Systems Modelers. In Proceedings of
the 49th IEEE Conference on Decision and Control (CDC’10),
Atlanta, Georgia, USA, pages 4180–4185. IEEE, 2010.

[BCR01] Thomas Ball, Sagar Chaki, and Sriram K. Rajamani. Param
eterized Verification of Multithreaded Software Libraries. In
Tiziana Margaria and Wang Yi, editors, Proceedings of the 7th
International Conference on Tools and Algorithms for the Con
struction and Analysis of Systems (TACAS’01), Genova, Italy,

	

	

	

	

	

	

	

	

	

	

	

	

277 BIBLIOGRAPHY

volume 2031 of Lecture Notes in Computer Science, pages 158–
173. Springer, 2001.

[BDH+09]	 Bernard Botella, Mickaël Delahaye, Stéphane Hong Tuan Ha,
Nikolai Kosmatov, Patricia Mouy, Muriel Roger, and Nicky
Williams. Automating Structural Testing of C Programs: Ex
perience with PathCrawler. In Dimitris Dranidis, Stephen P.
Masticola, and Paul A. Strooper, editors, Proceedings of the
4th International Workshop on Automation of Software Test
(AST’09)=, Vancouver, BC, Canada, pages 70–78. IEEE,
2009.

[BDL06]	 Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal
Verification of a C Compiler Front-End. In Jayadev Misra,
Tobias Nipkow, and Emil Sekerinski, editors, Proceedings of the
14th International Symposium on Formal Methods (FM’06),
Hamilton, Canada, volume 4085 of Lecture Notes in Computer
Science, pages 460–475. Springer, 2006.

[BDL+11]	 Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen,
Paul Pettersson, and Wang Yi. Developing UPPAAL over 15
Years. Software, Practice & Experience, 41(2):133–142, 2011.

[BDLS80]	 Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton,
and Frederick G. Sayward. Theoretical and Empirical Stud
ies on Using Program Mutation to Test the Functional Cor
rectness of Programs. In Paul W. Abrahams, Richard J. Lip
ton, and Stephen R. Bourne, editors, Proceedings of the 7th
Annual ACM Symposium on Principles of Programming Lan
guages (POPL’80), Las Vegas, Nevada, USA, pages 220–233.
ACM Press, 1980.

[BDM+98]	 Marius Bozga, Conrado Daws, Oded Maler, Alfredo Oliv
ero, Stavros Tripakis, and Sergio Yovine. Kronos: A Model-
Checking Tool for Real-Time Systems. In Alan J. Hu and
Moshe Y. Vardi, editors, Proceedings of the 10th International
Conference on Computer Aided Verification (CAV’98), Van
couver, British Columbia, Canada, volume 1427 of Lecture
Notes in Computer Science, pages 546–550. Springer, 1998.

[BDS06]	 Marat Boshernitsan, Roong-Ko Doong, and Alberto Savoia.
From Daikon to Agitator: Lessons and Challenges in Building a
Commercial Tool for Developer Testing. In Lori L. Pollock and
Mauro Pezzè, editors, Proceedings of the ACM SIGSOFT In
ternational Symposium on Software Testing and Analysis (IS
STA’06), Portland, Maine, USA, pages 169–180. ACM, 2006.

278 BIBLIOGRAPHY

[BEL75] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT
– A Formal System for Testing and Debugging Programs by
Symbolic Execution. SIGPLAN Notices, 10(6):234–245, April
1975.

[Bel10] Axel Belinfante. JTorX: A Tool for On-line Model-Driven Test
Derivation and Execution. In Javier Esparza and Rupak Ma
jumdar, editors, Proceedings of the 16th International Confer
ence on Tools and Algorithms for the Construction and Anal
ysis of Systems (TACAS’10), Paphos, Cyprus, volume 6015 of
Lecture Notes in Computer Science, pages 266–270. Springer,
2010.

[Ber89] Gérard Berry. Real Time Programming: Special Purpose or
General Purpose Languages. In Proceedings of the IFIP 11th
World Computer Congress, San Francisco, CA, USA, pages
11–17, 1989. Available as INRIA Research Report 1065 from
http://hal.inria.fr/inria-00075494.

[Ber02] Daniel M. Berry. Formal Methods: The Very Idea – Some
Thoughts About Why They Work When They Work. Science
of Computer Programming, 42(1):11–27, 2002.

[Ber05] Gérard Berry. Esterel v7: From Verified Formal Specification
to Efficient Industrial Designs. In Proceedings of the 8th Inter
national Conference on Fundamental Approaches to Software
Engineering (FASE’05), Edinburgh, UK, volume 3442 of Lec
ture Notes in Computer Science, page 1. Springer, 2005.

[Ber07a] Gérard Berry. SCADE: Synchronous Design and Validation
of Embedded Control Software. In S. Ramesh and Prahla
davaradan Sampath, editors, Proceedings of the General Mo
tors R&D Workshop on Next Generation Design and Verifica
tion Methodologies for Distributed Embedded Control Systems,
Bangalore, India, pages 19–33. Springer, 2007.

[Ber07b] Antonia Bertolino. Software Testing Research: Achievements,
Challenges, Dreams. In Lionel C. Briand and Alexander L.
Wolf, editors, Proceedings of the Workshop on the Future
of Software Engineering (FOSE’07), Minneapolis, MN, USA,
pages 85–103. IEEE, 2007.

[Ber08] Daniel M. Berry. Ambiguity in Natural Language Require
ments Documents. In Barbara Paech and Craig H. Martell,
editors, Revised Selected Papers from the 14th Monterey 2007

http://hal.inria.fr/inria-00075494

	

	

	

	

	

	

	

	

	

	

	

	

279 BIBLIOGRAPHY

Workshop “Innovations for Requirement Analysis. From Stake
holders’ Needs to Formal Designs”, Monterey, CA, USA, vol
ume 5320 of Lecture Notes in Computer Science, pages 1–7.
Springer, 2008.

[BFd+99]	 Axel Belinfante, Jan Feenstra, René G. de Vries, Jan Tret
mans, Nicolae Goga, Loe M. G. Feijs, Sjouke Mauw, and Lex
Heerink. Formal Test Automation: A Simple Experiment. In
Gyula Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors,
Proceedings of the IFIP TC6 12th International Workshop on
Testing Communicating Systems (IWTCS’99), Budapest, Hun
gary, volume 147 of IFIP Conference Proceedings, pages 179–
196. Kluwer, 1999.

[BFGT06]	 Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
and Stephen Tse. Verified Interoperable Implementations of
Security Protocols. In Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW 19), Venice, Italy,
pages 139–152, 2006.

[BFI09]	 Anouk Barberousse, Sara Franceschelli, and Cyrille Imbert.
Computer Simulations as Experiments. Synthese (special is
sue on Models and Simulations), 169(3):557–574, 2009. Guest
editors: Roman Frigg, Stephan Hartmann, and Cyrille Im
bert. Available from http://halshs.archives-ouvertes.fr/
halshs-00393932.

[BFK+98]	 Howard Bowman, Giorgio P. Faconti, Joost-Pieter Katoen,
Diego Latella, and Mieke Massink. Automatic Verification of
a Lip-Synchronisation Protocol Using Uppaal. Formal Aspects
of Computing, 10(5–6):550–575, 1998.

[BFL+11]	 Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc
Pantel, and Jean Souyris. Towards Formally Verified Opti
mizing Compilation in Flight Control Software. In Philipp
Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, and
Reinhard Wilhelm, editors, Proceedings of the DATE Work
shop “Bringing Theory to Practice: Predictability and Perfor
mance in Embedded Systems” (PPES’11), Grenoble, France,
volume 18 of OASICS, pages 59–68. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Germany, 2011. Available from http:
//drops.dagstuhl.de/opus/volltexte/2011/3082.

[BFM98]	 Howard Bowman, Giorgio P. Faconti, and Mieke Massink.
Specification and Verification of Media Constraints Using Up
paal. In Panos Markopoulos and Peter Johnson, editors, Pro

http://halshs.archives-ouvertes.fr/halshs-00393932
http://halshs.archives-ouvertes.fr/halshs-00393932
http://drops.dagstuhl.de/opus/volltexte/2011/3082
http://drops.dagstuhl.de/opus/volltexte/2011/3082

280 BIBLIOGRAPHY

ceedings of the 5th International Eurographics Workshop on the
Design, Specification and Verification of Interactive Systems,
Abingdon, UK, volume 1 of Eurographics series, pages 261–
277. Springer, 1998.

[BFS04] Axel Belinfante, Lars Frantzen, and Christian Schallhart. Tools
for Test Case Generation. In Manfred Broy, Bengt Jon
sson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, editors, Model-Based Testing of Reactive Systems –
Advanced Lectures, volume 3472 of Lecture Notes in Computer
Science, pages 391–438. Springer, 2004.

[BG85] Timothy A. Budd and Ajei S. Gopal. Program Testing by Spec
ification Mutation. Computer Languages, 10(1):63–73, 1985.

[BGH+99] Mike Benjamin, Daniel Geist, Alan Hartman, Gérard Mas,
Ralph Smeets, and Yaron Wolfsthal. A Study in Coverage-
Driven Test Generation. In Proceedings of the 36th ACM/IEEE
Design Automation Conference (DAC’99), New Orleans, LA,
USA, pages 970–975. ACM, 1999.

[BGM91] Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Soft
ware Testing Based on Formal Specifications: A Theory and a
Tool. Software Engineering Journal, 6(6):387–405, 1991.

[BGR+91] M. Baptista, Susanne Graf, Jean-Luc Richier, Luís Rodrigues,
Carlos Rodriguez, Paulo Veríssimo, and Jacques Voiron. For
mal Specification and Verification of a Network Indepen
dent Atomic Multicast Protocol. In Proceedings of the IFIP
TC6/WG6.1 3rd Int. Conference on Formal Description Tech
niques for Distributed Systems and Communication Protocols
(FORTE’90), Madrid, Spain. North-Holland, 1991.

[BH90] Bishop Brook and Warren A. Hunt. Report on the Formal
Specification and Partial Verification of the VIPER Micropro
cessor. Technical Report 46, Computational Logic Inc., Austin,
Texas, USA, January 1990.

[BH94] Jonathan P. Bowen and Michael G. Hinchey. Ten Command
ments of Formal Methods. IEEE Computer, 28:56–63, 1994.

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Seven More
Myths of Formal Methods. IEEE Software, 12(4):34–41, July
1995.

[BH97] Jonathan P. Bowen and Michael G. Hinchey. The Use of
Industrial-Strength Formal Methods. In Proceedings of the 21st

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

281 BIBLIOGRAPHY

International Computer Software and Applications Conference
(COMPSAC’97), Washington, DC, USA, pages 332–337. IEEE
Computer Society, 1997.

[BH06]	 Jonathan P. Bowen and Michael G. Hinchey. Ten Command
ments of Formal Methods – Ten Years Later. IEEE Computer,
39:40–48, 2006.

[BHM+09]	 Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel
Kroening, Mitra Purandare, Philipp Rümmer, and Georg Weis
senbacher. Mutation-Based Test Case Generation for Simulink
Models. In Frank S. de Boer, Marcello M. Bonsangue, Ste
fan Hallerstede, and Michael Leuschel, editors, Revised Selected
Papers from the 8th International Symposium on Formal Meth
ods for Components and Objects (FMCO’09), Eindhoven, The
Netherlands, volume 6286 of Lecture Notes in Computer Sci
ence, pages 208–227. Springer, 2009.

[Bil83]	 Jonathan Billington. Abstract Specification of the ISO Trans
port Service Definition Using Labelled Numerical Petri Nets. In
Harry Rudin and Colin H. West, editors, Proceedings of the 3rd
International Workshop on Protocol Specification, Testing and
Verification (PSTV’83), Rüschlikon, Switzerland, pages 173–
185. North-Holland, 1983.

[Bis95]	 Peter Bishop. Software Fault Tolerance by Design Diversity. In
M. R. Lyu, editor, Software Fault Tolerance, chapter 9, pages
211–229. John Wiley & Sons Ltd., 1995. Available from http:
//www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap9.pdf.

[Bis02]	 Matt Bishop. Computer Security: Art and Science. Addison-
Wesley Professional, 2002.

[BJ78]	 Dines Bjørner and Cliff B. Jones. The Vienna Development
Method: The Meta-Language, volume 61 of Lecture Notes in
Computer Science. Springer, 1978.

[BJK+05]	 Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner, editors. Model-Based Test
ing of Reactive Systems – Advanced Lectures, volume 3472 of
Lecture Notes in Computer Science. Springer, 2005.

[Bjø06a]	 Dines Bjørner. Software Engineering 1: Abstraction and Mod
elling. Texts in Theoretical Computer Science – An EATCS
Series. Springer, 2006.

http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap9.pdf
http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap9.pdf

282 BIBLIOGRAPHY

[Bjø06b] Dines Bjørner. Software Engineering 2: Specification of Sys
tems and Languages. Texts in Theoretical Computer Science –
An EATCS Series. Springer, 2006.

[Bjø06c] Dines Bjørner. Software Engineering 3: Domains, Require
ments, and Software Design. Texts in Theoretical Computer
Science – An EATCS Series. Springer, 2006.

[BK84] Ed Brinksma and Günter Karjoth. A Specification of the OSI
Transport Service in LOTOS. In Yechiam Yemini, Robert E.
Strom, and Shaula Yemini, editors, Proceedings of the 4th In
ternational Workshop on Protocol Specification, Testing and
Verification (PSTV’84), Skytop Lodge, Pennsylvania, USA,
pages 227–251. North-Holland, 1984.

[BK08] Christel Baier and Joost-Pieter Katoen.
Checking. MIT Press, 2008.

Principles of Model

[BK09] Nicolas Blanc and Daniel Kroening. Speeding Up Simulation of
SystemC Using Model Checking. In Marcel Vinicius Medeiros
Oliveira and Jim Woodcock, editors, Formal Methods: Foun
dations and Applications – Revised Selected Papers of the 12th
Brazilian Symposium on Formal Methods (SBMF’09), Gra
mado, Brazil, volume 5902 of Lecture Notes in Computer Sci
ence, pages 1–16. Springer, 2009.

[BK10] Nicolas Blanc and Daniel Kroening. Race Analysis for Sys
temC Using Model Checking. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 15(3), 2010.

[BKL90] Susan S. Brilliant, John C. Knight, and Nancy G. Leveson.
Analysis of Faults in an N-Version Software Experiment. IEEE
Transactions on Software Engineering, 16(2):238–247, 1990.

[BKM95] Robert S. Boyer, Matt Kaufmann, and J. Strother Moore.
The Boyer-Moore Theorem Prover and its Interactive En
hancement. Computers and Mathematics with Applications,
29(2):27–62, 1995.

[BKPA09] Stylianos Basagiannis, Panagiotis Katsaros, Andrew Pombort
sis, and Nikolaos Alexiou. Probabilistic Model Checking for the
Quantification of DoS Security Threats. Computers & Security,
28(6):450–465, 2009.

[BKS08] Nicolas Blanc, Daniel Kroening, and Natasha Sharygina.
Scoot: A Tool for the Analysis of SystemC Models. In C. R.
Ramakrishnan and Jakob Rehof, editors, Proceedings of the

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

283 BIBLIOGRAPHY

14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), Budapest,
Hungary, volume 4963 of Lecture Notes in Computer Science,
pages 467–470. Springer, 2008.

[Bla04]	 Bruno Blanchet. Automatic Proof of Strong Secrecy for Secu
rity Protocols. In Proceedings of the IEEE Symposium on Secu
rity and Privacy (S&P’04), Berkeley, California, USA, pages
86–100, May 2004.

[BLL+95]	 Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson,
Paul Pettersson, and Wang Yi. UPPAAL — a Tool Suite for
Automatic Verification of Real-Time Systems. In Rajeev Alur,
Thomas A. Henzinger, and Eduardo D. Sontag, editors, Pro
ceedings of the 4th DIMACS/SYCON Workshop on Verifica
tion and Control of Hybrid Systems, Rutgers University, New
Brunswick, New Yersey, USA, volume 1066 of Lecture Notes
in Computer Science, pages 232–243. Springer, 1995.

[BLR11]	 Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A
Decade of Software Model Checking with SLAM. Communica
tions of the ACM, 54(7):68–76, 2011.

[BLSD78]	 Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward,
and Richard A. DeMillo. The Design of a Prototype Muta
tion System for Program Testing. In Proceedings of National
Computer Conference, volume 47, pages 623–627, 1978.

[BM84a]	 Robert S. Boyer and J. Strother Moore. A Mechanical Proof of
the Unsolvability of the Halting Problem. Journal of the ACM,
31(3):441–458, 1984.

[BM84b]	 Robert S. Boyer and J. Strother Moore. Proof Checking the
RSA Public Key Encryption Algorithm. American Mathemat
ical Monthly, 91(3):181–189, 1984.

[BM84c]	 Robert S. Boyer and J. Strother Moore. Proof-Checking,
Theorem-Proving, and Program Verification. In W. W. Bled
soe and D. W. Loveland, editors, Automated Theorem Proving
– After 25 Years, volume 29 of Contemporary Mathematics,
pages 119–132. American Mathematical Society, 1984.

[BM04]	 Michel Bidoit and Peter D. Mosses. CASL User Manual – In
troduction to Using the Common Algebraic Specification Lan
guage, volume 2900 of Lecture Notes in Computer Science.
Springer, 2004.

284 BIBLIOGRAPHY

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Compu
tation: Decision Procedures with Applications to Verification.
Springer, 2007.

[BMLW11] Marc Bender, Tom Maibaum, Mark Lawford, and Alan
Wassyng. Positioning Verification in the Context of Soft
ware/System Certification). Electronic Communications of
the EASST, 46, 2011. Proceedings of the 11th Inter
national Workshop on Automated Verification of Critical
Systems (AVoCS’11), Newcastle upon Tyne, UK. Available
from http://journal.ub.tu-berlin.de/eceasst/article/
download/703/711.

[BMU75] Barry W. Boehm, Robert K. McClean, and D. B. Urfrig. Some
Experience with Automated Aids to the Design of Large-Scale
Reliable Software. IEEE Transactions on Software Engineer
ing, 1(1):125–133, 1975.

[BNRS08] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and
Robert J. Simmons. Proofs from Tests. In Barbara G. Ry
der and Andreas Zeller, editors, Proceedings of the ACM SIG
SOFT International Symposium on Software Testing and Anal
ysis (ISSTA’08), Seattle, WA, USA, pages 3–14. ACM, 2008.

[Boc82] Gregor von Bochmann. Hardware Specification with Tempo
ral Logic: An Example. IEEE Transactions on Computers,
31(3):223–231, 1982.

[Boc89] Gregor von Bochmann. Protocol Specification for OSI. Com
puter Networks and ISDN Systems, 18(3):167–184, 1989.

[Bon10] Maria Paola Bonacina. On Theorem Proving for Program
Checking: Historical Perspective and Recent Developments.
In Temur Kutsia, Wolfgang Schreiner, and Maribel Fernández,
editors, Proceedings of the 12th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Program
ming (PPDP’10), Hagenberg, Austria, pages 1–12. ACM, 2010.

[Bor97] Arne Borälv. The Industrial Success of Verification Tools Based
on Stålmarck’s Method. In Orna Grumberg, editor, Proceed
ings of the 9th International Conference on Computer Aided
Verification (CAV’97), Haifa, Israel, volume 1254 of Lecture
Notes in Computer Science, pages 7–10. Springer, 1997.

[Bor98] Arne Borälv. Case Study: Formal Verification of a Comput
erized Railway Interlocking. Formal Aspects of Computing,
10(4):338–360, 1998.

http://journal.ub.tu-berlin.de/eceasst/article/download/703/711
http://journal.ub.tu-berlin.de/eceasst/article/download/703/711

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

285 BIBLIOGRAPHY

[BP84]	 Victor R. Basili and Barry T. Perricone. Software Errors and
Complexity: An Empirical Investigation. Communications of
the ACM, 27(1):42–52, 1984.

[BPG08]	 Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra
Giannakopoulou. Automated Assume-Guarantee Reasoning by
Abstraction Refinement. In Aarti Gupta and Sharad Malik,
editors, Proceedings of the 20th International Conference on
Computer Aided Verification (CAV’08), Princeton, New Jer
sey, USA, volume 5123 of Lecture Notes in Computer Science,
pages 135–148. Springer, 2008.

[Bri07]	 Lionel C. Briand. A Critical Analysis of Empirical Research
in Software Testing. In Proceedings of the 1st International
Symposium on Empirical Software Engineering and Measure
ment (ESEM’07), Madrid, Spain, pages 1–8. IEEE Computer
Society, 2007.

[BRJ99]	 Grady Booch, James Rumbaugh, and Ivar Jacobson. The Uni
fied Modeling Language User Guide. Addison Wesley, 1999.

[Bru91]	 N. G. de Bruijn. Checking Mathematics with Computer Assis
tance. Notices of the American Mathematical Society, 38(1):8–
16, 1991. Available from http://www.win.tue.nl/automath/
aboutautomath-article.htm.

[Bru04]	 Stefan D. Bruda. Preorder Relations. In Manfred Broy, Bengt
Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, editors, Model-Based Testing of Reactive Systems –
Advanced Lectures, volume 3472 of Lecture Notes in Computer
Science, pages 117–149. Springer, 2004.

[BRW10]	 Gregor von Bochmann, Dave Rayner, and Colin H. West. Some
Notes on the History of Protocol Engineering. Computer Net
works, 54(18):3197–3209, 2010.

[BS98]	 Antonia Bertolino and Lorenzo Strigini. Assessing the Risk
due to Software Faults: Estimates of Failure Rate Versus Evi
dence of Perfection. Software Testing, Verification & Reliability
(STVR), 8(3):155–166, 1998.

[BS03]	 Egon Börger and Robert Stärk. Abstract State Machines: A
Method for High-Level System Design and Analysis. Springer,
2003.

[BS08]	 Jacob Burnim and Koushik Sen. Heuristics for Scalable Dy
namic Test Generation. In Andrew Ireland and Willem Visser,

http://www.win.tue.nl/automath/aboutautomath-article.htm
http://www.win.tue.nl/automath/aboutautomath-article.htm

286 BIBLIOGRAPHY

editors, Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE’08),
L’Aquila, Italy, pages 443–446. IEEE, 2008.

[BSC03] Philip J. Boland, Harshinder Singh, and Bojan Cukic. Com
paring Partition and Random Testing via Majorization and
Schur Functions. IEEE Transactions on Software Engineering,
29(1):88–94, 2003.

[BSS86] E. Brinksma, G. Scollo, and C. Steenbergen. Process Spec
ification, their Implementations, and their Tests. In Gregor
v. Bochmann and Behçet Sarikaya, editors, Proceedings of the
6th IFIP WG6.1 International Workshop on Protocol Specifica
tion, Testing and Verification (PSTV’86), Montreal, Canada,
pages 349–360. North-Holland, 1986.

[BT00] Ed Brinksma and Jan Tretmans. Testing Transition Systems:
An Annotated Bibliography. In Franck Cassez, Claude Jard,
Brigitte Rozoy, and Mark Dermot Ryan, editors, Proceedings
of the 4th Summer School on Modeling and Verification of Par
allel Processes (MOVEP’00), Nantes, France, volume 2067 of
Lecture Notes in Computer Science, pages 187–195. Springer,
2000.

[BU97] Erez Buchnik and Shmuel Ur. Compacting Regression Suites
On-the-fly. In Proceedings of the 4th Asia-Pacific Software
Engineering and International Computer Science Conference
(APSEC’97/ICSC’97), Clear Water Bay, Hong Kong, pages
385–394. IEEE Computer Society, 1997.

[BV96] Mireille E. Broucke and Pravin Varaiya. Decidability of Hybrid
Systems with Linear and Nonlinear Differential Inclusions. In
Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sas
try, editors, Proceedings of the 4th International Conference on
Hybrid Systems (Hybrid IV), Ithaca, NY, USA, volume 1273
of Lecture Notes in Computer Science, pages 77–92. Springer,
1996.

[BWB84a] Mirion Y. Bearman, Michael C. Wilbur-Ham, and Jonathan
Billington. Some Results of Verifying the OSI Class 0 Transport
Protocol. In J. M. Bennet and T. Pearcey, editors, Proceedings
of the 7th International Conference on Computer Communica
tion (ICCC’84), Sydney, Australia, pages 597–602, November
1984.

[BWB84b] Mirion Y. Bearman, Michael C. Wilbur-Ham, and Jonathan
Billington. Specification and Analysis of the OSI Class 0

	

	

	

	

287 BIBLIOGRAPHY

Transport Protocol. In J. M. Bennet and T. Pearcey, editors,
Proceedings of the 7th International Conference on Computer
Communication (ICCC’84), Sydney, Australia, pages 602–607,
November 1984.

[BWB85]	 Mirion Y. Bearman, Michael C. Wilbur-Ham, and Jonathan
Billington. Analysis of Open Systems Interconnection Trans
port Protocol Standard. Electronics Letters, 21(15):659–661,
1985.

[BWK05]	 Stefan Berner, Roland Weber, and Rudolf K. Keller. Observa
tions and Lessons Learned from Automated Testing. In Gruia-
Catalin Roman, William G. Griswold, and Bashar Nuseibeh,
editors, Proceedings of the 27th International Conference on
Software Engineering (ICSE’05), St. Louis, Missouri, USA,
pages 571–579. ACM, 2005.

[BWWH88] Jonathan Billington, Geoffrey R. Wheeler, and Michael C.
Wilbur-Ham. PROTEAN: A High-Level Petri Net Tool for
the Specification and Verification of Communication Protocols.
IEEE Transactions on Software Engineering, 14(3):301–316,
1988.

[BY01] Luciano Baresi and Michal Young. Test Oracles. Technical
Report CIS-TR-01-02, University of Oregon, Department of
Computer and Information Science, Eugene, OR, USA, August
2001. Available from http://ix.cs.uoregon.edu/~michal/
pubs/oracles.html.

[CAA84] Jean-Pierre Courtiat, Jean-Michel Ayache, and Bernard Al
gayres. Petri Nets Are Good for Protocols. ACM SIGCOMM
Computer Communication Review, 14(2):66–74, 1984.

[Cam09] Gabriel Campana. Fuzzgrind: An Automatic Fuzzing
Tool. Sogeti ESEC Lab. Slides available from http:
//esec-lab.sogeti.com/dotclear/public/publications/
09-sstic-fuzzgrind_article.pdf, 2009.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings of
the 4th ACM Symposium on Principles of Programming Lan
guages (POPL’77), Los Angeles, California, USA, pages 238–
252, 1977.

http://ix.cs.uoregon.edu/~michal/pubs/oracles.html
http://ix.cs.uoregon.edu/~michal/pubs/oracles.html
http://esec-lab.sogeti.com/dotclear/public/publications/09-sstic-fuzzgrind_article.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/09-sstic-fuzzgrind_article.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/09-sstic-fuzzgrind_article.pdf

288 BIBLIOGRAPHY

[CC01] Patrick Cousot and Radhia Cousot. Verification of Embed
ded Software: Problems and Perspectives. In Thomas A. Hen
zinger and Christoph M. Kirsch, editors, Proceedings of the 1st
International Workshop on Verification of Embedded Software:
Problems and Perspectives (EMSOFT’01), Tahoe, California,
USA, volume 2211 of Lecture Notes in Computer Science, pages
97–113. Springer, 2001.

[CDDM92] Michel Carnot, Clara DaSilva, Babk Dehbonei, and Fernando
Meija. Error-free Software Development for Critical Systems
Using the B-Methodology. In Proceedings of the 3rd Inter
national IEEE Symposium on Software Reliability Engineering
(ISSRE’92), Research Triangle Park, North Carolina, USA.
IEEE Computer Society, 1992.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Richard
Draves and Robbert van Renesse, editors, Proceedings of
the 8th USENIX Symposium on Operating Systems De
sign and Implementation (OSDI’08), San Diego, California,
USA, pages 209–224. USENIX Association, 2008. Avail
able from http://www.usenix.org/events/osdi08/tech/
full_papers/cadar/cadar.pdf.

[CDH+96] Jean-Pierre Courtiat, Piotr Dembinski, Gerard J. Holzmann,
Luigi Logrippo, Harry Rudin, and Pamela Zave. Formal Meth
ods After 15 Years: Status and Trends (Paper Based on Con
tributions of the Panelists at FORTE’95, Montreal, Canada).
Computer Networks and ISDN Systems, 28(13):1845–1855,
1996.

[CDKM12] Taolue Chen, Marco Diciolla, Marta Z. Kwiatkowska, and
Alexandru Mereacre. Quantitative Verification of Implantable
Cardiac Pacemakers. In Proceedings of the 33rd IEEE Real-
Time Systems Symposium (RTSS’12), San Juan, PR, USA,
pages 263–272. IEEE Computer Society, 2012.

[CE05] Cristian Cadar and Dawson R. Engler. Execution Generated
Test Cases: How to Make Systems Code Crash Itself. In Patrice
Godefroid, editor, Proceedings of the 12th International SPIN
Workshop on Model Checking Software (SPIN’05), San Fran
cisco, CA, USA, volume 3639 of Lecture Notes in Computer
Science, pages 2–23. Springer, 2005.

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

289 BIBLIOGRAPHY

[CES83]	 Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla.
Automatic Verification of Finite State Concurrent Systems Us
ing Temporal Logic Specifications: A Practical Approach. In
Proceedings of the 10th Annual ACM Symposium on Principles
of Programming Languages (POPL’83), Austin, Texas, USA,
pages 117–126, 1983.

[CES86]	 Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla.
Automatic Verification of Finite-State Concurrent Systems Us
ing Temporal Logic Specifications. ACM Transactions on Pro
gramming Languages and Systems, 8(2):244–263, 1986.

[CG93]	 James S. Collofello and Bakul P. Gosalla. An Application of
Causal Analysis to the Software Modification Process. Soft
ware, Practice & Experience, 23(10):1095–1105, 1993.

[CGH+93]	 Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh
Jha, David E. Long, Kenneth L. McMillan, and Linda A. Ness.
Verification of the Futurebus+ Cache Coherence Protocol. In
David Agnew, Luc J. M. Claesen, and Raul Camposano, edi
tors, Proceedings of the 11th IFIP International Conference on
Computer Hardware Description Languages and their Applica
tions (CHDL’93), Ottawa, Ontario, Canada, volume A-32 of
IFIP Transactions, pages 15–30. North-Holland, 1993.

[CGH+95]	 Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh
Jha, David E. Long, Kenneth L. McMillan, and Linda A. Ness.
Verification of the Futurebus+ Cache Coherence Protocol. For
mal Methods in System Design, 6(2):217–232, 1995.

[CGJ+00]	 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counterexample-Guided Abstraction Re
finement. In E. Allen Emerson and A. Prasad Sistla, editors,
Proceedings of the 12th International Conference on Computer
Aided Verification (CAV’00), Chicago, Illinois, USA, volume
1855 of Lecture Notes in Computer Science, pages 154–169.
Springer, 2000.

[CGJ+03]	 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counterexample-Guided Abstraction Re
finement for Symbolic Model Checking. Journal of the ACM,
50(5):752–794, 2003.

[CGK+11]	 Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S.
Pasareanu, Koushik Sen, Nikolai Tillmann, and Willem Visser.

290 BIBLIOGRAPHY

Symbolic Execution for Software Testing in Practice: Prelimi
nary Assessment. In Richard N. Taylor, Harald Gall, and Ne
nad Medvidovic, editors, Proceedings of the 33rd International
Conference on Software Engineering (ICSE’11), Waikiki, Hon
olulu, Hawai, USA, pages 1066–1071, 2011.

[CGP00] Edmund Clarke, Orna Grumberg, and Doron Peled.
Checking. MIT Press, January 2000.

Model

[CGP02] Satish Chandra, Patrice Godefroid, and Christopher Palm.
Software Model Checking in Practice: An Industrial Case
Study. In Proceedings of the 22th International Conference
on Software Engineering (ICSE’02), Orlando, Florida, USA,
pages 431–441. ACM, 2002.

[CGP+06] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.
Dill, and Dawson R. Engler. EXE: Automatically Generating
Inputs of Death. In Ari Juels, Rebecca N. Wright, and Sab
rina De Capitani di Vimercati, editors, Proceedings of the 13th
ACM Conference on Computer and Communications Security
(CCS’06), Alexandria, VA, USA, pages 322–335. ACM, 2006.

[CGP+08] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.
Dill, and Dawson R. Engler. EXE: Automatically Generat
ing Inputs of Death. ACM Transactions on Information and
System Security, 12(2), 2008.

[CGR92] Dan Craigen, Susan L. Gerhart, and Ted Ralston. An Interna
tional Survey of Industrial Applications of Formal Methods. In
Jonathan P. Bowen and J. E. Nicholls, editors, Proceedings of
the 1992 Z User Workshop, London, UK, Workshops in Com
puting, pages 1–5. Springer, 1992.

[CGR93a] Dan Craigen, Susan L. Gerhart, and Ted Ralston. An Inter
national Survey of Industrial Applications of Formal Methods.
Technical Report NIST GCR 93/626 (Vols. 1 and 2), U.S. Na
tional Institute of Standards and Technology. Also published
by the U.S. Naval Research Laboratory (Formal Report 5546
93-9582), and the Atomic Energy Control Board of Canada,
March 1993.

[CGR93b] Dan Craigen, Susan L. Gerhart, and Ted Ralston. Formal
Methods Reality Check: Industrial Usage. In Jim Woodcock
and Peter Gorm Larsen, editors, Proceedings of the 1st Inter
national Symposium of Formal Methods Europe on Industrial-
Strength Formal Methods (FME’93), Odense, Denmark, vol

	

	

	

	

	

	

	

	

	

	

	

	

	

	

291 BIBLIOGRAPHY

ume 670 of Lecture Notes in Computer Science, pages 250–267.
Springer, 1993.

[CGR95]	 Dan Craigen, Susan L. Gerhart, and Ted Ralston. Formal
Methods Reality Check: Industrial Usage. IEEE Transactions
on Software Engineering, 21(2):90–98, 1995.

[CGR07]	 Patrick Cousot, Pierre Ganty, and Jean-François Raskin.
Fixpoint-Guided Abstraction Refinements. In Hanne Riis Niel
son and Gilberto Filé, editors, Proceedings of the 14th Interna
tional Symposium on Static Analysis (SAS’07), Kongens Lyn
gby, Denmark, volume 4634 of Lecture Notes in Computer Sci
ence, pages 333–348. Springer, 2007.

[CH89]	 Rance Cleaveland and Matthew Hennessy. Testing Equiva
lence as a Bisimulation Equivalence. In Joseph Sifakis, editor,
Proceedings of the International Workshop on Automatic Ver
ification Methods for Finite-State Systems, Grenoble, France,
volume 407 of Lecture Notes in Computer Science, pages 11–23.
Springer, 1989.

[CH93]	 Rance Cleaveland and Matthew Hennessy. Testing Equivalence
as a Bisimulation Equivalence. Formal Aspects of Computing,
5(1):1–20, 1993.

[Che04]	 Ghassan Chehaibar. Integrating Formal Verification with Mur
phi of Distributed Cache Coherence Protocols in FAME Mul
tiprocessor System Design. In David de Frutos-Escrig and
Manuel Núñez, editors, Proceedings of the 24th IFIP WG 6.1
International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE’04), Madrid, Spain, volume
3235 of Lecture Notes in Computer Science, pages 243–258.
Springer, 2004.

[Chi01]	 John Joseph Chilenski. An Investigation of Three Forms of
the Modified Condition Decision Coverage (MCDC) Criterion.
Technical Report DOT/FAA/AR-01/18, Federal Aviation Ad
ministration, US Department of Transportation, Washington,
DC, USA, April 2001. Available from http://www.tc.faa.
gov/its/worldpac/techrpt/ar01-18.pdf.

[CHLS09]	 Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and
Wendelin Serwe. Towards Performance Prediction of Composi
tional Models in Industrial GALS Designs. In Ahmed Bouajjani
and Oded Maler, editors, Proceedings of the 21st International

http://www.tc.faa.gov/its/worldpac/techrpt/ar01-18.pdf
http://www.tc.faa.gov/its/worldpac/techrpt/ar01-18.pdf

292 BIBLIOGRAPHY

Conference on Computer Aided Verification (CAV’09), Greno
ble, France, volume 5643 of Lecture Notes in Computer Science,
pages 204–218. Springer, 2009.

[CI02] Kendra Cooper and Mabo Ito. Formalizing a Structured Nat
ural Language Requirements Specification Notation. In Pro
ceedings of the 12th Annual INCOSE International Symposium
(INCOSE’02), Las Vegas, Nevada, USA, 2002.

[CJMS06] Gianfranco Ciardo, R. L. Jones, Andrew S. Miner, and Radu
Siminiceanu. Logic and Stochastic Modeling with SMART.
Performance Evaluation, 63(6):578–608, 2006.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H.
Tse. Adaptive Random Testing: The ART of Test Case Diver
sity. Journal of Systems and Software, 83(1):60–66, 2010.

[CKOS09] Véronique Cortier, Claude Kirchner, Mitsuhiro Okad, and
Hideki Sakurada, editors. Formal to Practical Security, vol
ume 5458 of Lecture Notes in Computer Science. Springer,
2009.

[Cla76a] Lori A. Clarke. A Program Testing System. In Proceedings of
the 1976 Annual ACM Conference (ACM’76), Houston, Texas,
USA, pages 488–491. ACM, 1976.

[Cla76b] Lori A. Clarke. A System to Generate Test Data and Sym
bolically Execute Programs. IEEE Transactions on Software
Engineering, 2(3):215–222, 1976.

[Cla08] Edmund M. Clarke. The Birth of Model Checking. In Orna
Grumberg and Helmut Veith, editors, 25 Years of Model Check
ing – History, Achievements, Perspectives, volume 5000 of Lec
ture Notes in Computer Science, pages 1–26. Springer, 2008.

[CLM04] Tsong Yueh Chen, Hing Leung, and I. K. Mak. Adaptive Ran
dom Testing. In Michael J. Maher, editor, Proceedings of the
9th Asian Computing Science Conference (ASIAN’04) – Ad-
vances in Computer Science, Higher-Level Decision Making,
Chiang Mai, Thailand, volume 3321 of Lecture Notes in Com
puter Science, pages 320–329. Springer, 2004.

[CLS12] Yun-Min Cheng, Bing-Han Li, and Shiuhpyng Winston Shieh.
Accelerating Taint-Based Concolic Testing by Pruning Pointer
Overtaint. In Proceedings of the 6th International Conference
on Software Security and Reliability (SERE’12), Gaithersburg,
Maryland, USA, pages 187–196. IEEE, 2012.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

293 BIBLIOGRAPHY

[CM83]	 Edmund M. Clarke and Bud Mishra. Automatic Verification
of Asynchronous Circuits. In Proceedings of the Workshop on
Logics of Programs, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, volume 164 of Lecture Notes in Computer
Science, pages 101–115. Springer, 1983.

[CM94]	 John Joseph Chilenski and Steven P. Miller. Applicability
of Modified Condition/Decision Coverage to Software Testing.
Software Engineering Journal, 9(5):193–200, 1994.

[CMS95]	 Rance Cleaveland, Eric Madelaine, and Steve Sims. A Front-
End Generator for Verification Tools. In Ed Brinksma, Rance
Cleaveland, Kim Guldstrand Larsen, Tiziana Margaria, and
Bernhard Steffen, editors, Proceedings of the 1st International
Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’95), Aarhus, Denmark, volume
1019 of Lecture Notes in Computer Science, pages 153–173.
Springer, 1995.

[CMW09]	 Gianfranco Ciardo, Andrew S. Miner, and Min Wan. Advanced
Features in SMART: The Stochastic Model Checking Analyzer
for Reliability and Timing. SIGMETRICS Performance Eval
uation Review, 36(4):58–63, 2009.

[Coc06]	 Dermot Cochran. Secure Internet Voting in Ireland Using the
Open Source Kiezen op Afstand (KOA) Remote Voting Sys
tem. Master’s thesis, University College Dublin, March 2006.

[COR+95]	 Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and
Mandayam Srivas. A Tutorial Introduction to PVS, April
1995. Available from http://www.csl.sri.com/papers/
wift-tutorial.

[Cou07]	 Patrick Cousot. Proving the Absence of Run-Time Errors in
Safety-Critical Avionics Code. In Christoph M. Kirsch and
Reinhard Wilhelm, editors, Proceedings of the 7th ACM &
IEEE International conference on Embedded software (EM
SOFT’07), Salzburg, Austria, pages 7–9, 2007.

[Cow88]	 P. David Coward. Symbolic Execution Systems – A Review.
Software Engineering Journal, 3(6):229–239, November 1988.

[CP87]	 W. J. Cullyer and C. H. Pygott. Application of Formal Meth
ods to the VIPER Microprocessor. IEE Proceedings, Part E,
Computers and Digital Techniques, 134(3):133–141, May 1987.

http://www.csl.sri.com/papers/wift-tutorial
http://www.csl.sri.com/papers/wift-tutorial

294 BIBLIOGRAPHY

[CPO+11] Ilinca Ciupa, Alexander Pretschner, Manuel Oriol, Andreas
Leitner, and Bertrand Meyer. On the Number and Nature
of Faults Found by Random Testing. Software: Testing, Veri
fication and Reliability, 21(1):3–28, 2011.

[CS04] Christoph Csallner and Yannis Smaragdakis. JCrasher: An
Automatic Robustness Tester for Java. Software, Practice and
Experience, 34(11):1025–1050, 2004.

[CS05] Christoph Csallner and Yannis Smaragdakis. Check ’n’ Crash:
Combining Static Checking and Testing. In Gruia-Catalin Ro
man, William G. Griswold, and Bashar Nuseibeh, editors, Pro
ceedings of the 27th International Conference on Software En
gineering (ICSE’05), St. Louis, Missouri, USA, pages 422–431.
ACM, 2005.

[CS06] Christoph Csallner and Yannis Smaragdakis. DSD-Crasher: A
Hybrid Analysis Tool for Bug Finding. In Lori L. Pollock and
Mauro Pezzè, editors, Proceedings of the ACM SIGSOFT In
ternational Symposium on Software Testing and Analysis (IS
STA’06), Portland, Maine, USA, pages 245–254. ACM, 2006.

[CS13] Cristian Cadar and Koushik Sen. Symbolic Execution for Soft
ware Testing: Three Decades Later. Communications of the
ACM, 56(2):82–90, 2013.

[CSB+10] Marcelo Cataldo, Cleidson R. B. de Souza, David L. Bento
lila, Tales C. Miranda, and Sangeeth Nambiar. The Impact of
Interface Complexity on Failures: an Empirical Analysis and
Implications for Tool Design. Technical Report CMU-ISR
10-100, Institute for Software Research, School of Computer
Science, Carnegie Mellon University, January 2010. Avail
able from http://reports-archive.adm.cs.cmu.edu/anon/
isr2010/abstracts/10-100.html.

[CSE96] John Callahan, Francis Schneider, and Steve Easterbrook. Au
tomated Software Testing Using Model-Checking. In Lionel C.
Briand and Alexander L. Wolf, editors, Proceedings of the 2nd
International SPIN Verification Workshop (SPIN’96), Rutgers
University, Brunswick, NJ, USA, pages 118–127, 1996.

[CSS02] David Cavin, Yoav Sasson, and André Schiper. On the Accu
racy of MANET Simulators. In Proceedings of the Workshop
on Principles of Mobile Computing (POMC’02), Toulouse,
France, pages 38–43. ACM, 2002.

http://reports-archive.adm.cs.cmu.edu/anon/isr2010/abstracts/10-100.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2010/abstracts/10-100.html

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

295 BIBLIOGRAPHY

[CTW99]	 Michel R. V. Chaudron, Jan Tretmans, and Klaas Wijbrans.
Lessons from the Application of Formal Methods to the Design
of a Storm Surge Barrier Control System. In Jeannette M.
Wing, Jim Woodcock, and Jim Davies, editors, Proceedings
of the World Congress on Formal Methods in the Develop
ment of Computing Systems (FM’99), Toulouse, France, vol
ume 1709 of Lecture Notes in Computer Science, pages 1511–
1526. Springer, 1999.

[CW96]	 Edmund M. Clarke and Jeannette M. Wing. Formal Meth
ods: State of the Art and Future Directions. ACM Computing
Surveys, 28(4):626–643, 1996.

[CY94]	 Tsong Yueh Chen and Yuen-Tak Yu. On the Relationship Be
tween Partition and Random Testing. IEEE Transactions on
Software Engineering, 20(12):977–980, 1994.

[CY96a]	 Tsong Yueh Chen and Yuen-Tak Yu. A More General Suffi
cient Condition for Partition Testing to be Better than Ran
dom Testing. Information Processing Letters, 57(3):145–149,
1996.

[CY96b]	 Tsong Yueh Chen and Yuen-Tak Yu. On the Expected Number
of Failures Detected by Subdomain Testing and Random Test
ing. IEEE Transactions on Software Engineering, 22(2):109–
119, 1996.

[DBK03]	 Christian Denger, Daniel M. Berry, and Erik Kamsties. Higher
Quality Requirements Specifications Through Natural Lan
guage Patterns. In Proceedings of the IEEE International
Conference on Software: Science, Technology, and Engineering
(SwSTE’03), Herzelia, Israel. IEEE Computer Society, 2003.

[DCC+02]	 Daniel D. Deavours, Graham Clark, Tod Courtney, David
Daly, Salem Derisavi, Jay M. Doyle, William H. Sanders, and
Patrick G. Webster. The Möbius Framework and its Im
plementation. IEEE Transactions on Software Engineering,
28(10):956–969, 2002.

[DDK01]	 Christian Denger, Jörg Dörr, and Erik Kamsties. A Survey
on Approaches for Writing Precise Natural Language Require
ments. Technical Report IESE No. 070.01/E (version 1.0),
Fraunhofer Institut Experimentelles Software Engineering, Oc
tober 2001. Available from http://publica.fraunhofer.de/
dokumente/N-7793.html.

http://publica.fraunhofer.de/dokumente/N-7793.html
http://publica.fraunhofer.de/dokumente/N-7793.html

	

	

	

	

	

	

	

	

	

	

	

	

	

	

296 BIBLIOGRAPHY

[DDM04]	 Thao Dang, Alexandre Donzé, and Oded Maler. Verification of
Analog and Mixed-Signal Circuits Using Hybrid System Tech
niques. In Alan J. Hu and Andrew K. Martin, editors, Proceed
ings of the 5th International Conference on Formal Methods in
Computer-Aided Design (FMCAD’04), Austin, Texas, USA,
volume 3312 of Lecture Notes in Computer Science, pages 21–
36. Springer, 2004.

[Deu94]	 Alain Deutsch. Interprocedural May-Alias Analysis for Point
ers: Beyond k-limiting. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implemen
tation (PLDI’94), Orlando, Florida, USA, volume 29(6) of
SIGPLAN Notices, pages 230–241. ACM Press, 1994.

[Deu95]	 Alain Deutsch. Semantic Models and Abstract Interpretation
Techniques for Inductive Data Structures and Pointers. In Pro
ceedings of the ACM SIGPLAN Symposium on Partial Evalua
tion and Semantics-Based Program Manipulation (PEPM’95),
La Jolla, California, USA, pages 226–229. ACM Press, 1995.

[DFHP94]	 David J. Duke, Giorgio P. Faconti, Michael D. Harrison, and
Fabio Paternò. Unifying Views of Interactors. In Proceedings of
the ACM Workshop on Advanced Visual Interfaces (AVI’94),
Bari, Italy, pages 143–152, 1994.

[DGPK+12] Thomas R. Devine, Katerina Goseva-Popstojanova, Sandeep
Krishnan, Robyn R. Lutz, and J. Jenny Li. An Empirical Study
of Pre-release Software Faults in an Industrial Product Line. In
Giuliano Antoniol, Antonia Bertolino, and Yvan Labiche, edi
tors, Proceedings of the 5th International Conference on Soft
ware Testing, Verification and Validation (ICST’12), Montreal,
Canada, pages 181–190. IEEE, April 2012.

[DH84]	 Rocco De Nicola and Matthew Hennessy. Testing Equivalences
for Processes. Theoretical Computer Science, 34:83–133, 1984.

[DHL05]	 George Devaraj, Mats Per Erik Heimdahl, and Donglin Liang.
Coverage-Directed Test Generation with Model Checkers:
Challenges and Opportunities. In Proceedings of the 29th An
nual International Computer Software and Applications Con
ference (COMPSAC’05), Edinburgh, Scotland, UK, pages 455–
462. IEEE Computer Society, 2005.

[dHT08]	 Jonathan de Halleux and Nikolai Tillmann. Parameterized
Unit Testing with Pex. In Bernhard Beckert and Reiner
Hähnle, editors, Proceedings of the 2nd International Confer
ence on Tests and Proofs (TAP’08), Prato, Italy, volume 4966

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

297 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 171–181. Springer,
2008.

[Dij72]	 Edsger W. Dijkstra. Notes on Structured Programming.
In O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, ed
itors, Structured Programming, New York, 1972. Academic
Press. Available from http://www.cs.utexas.edu/~EWD/
transcriptions/EWD02xx/EWD268.html.

[Dix02]	 Alan Dix. Formal Methods in HCI: A Success Story
– Why It Works and How to Reproduce It. Unpub
lished manuscript, Lancaster University. Available from http:
//www.comp.lancs.ac.uk/~dixa/papers/formal-2002, Jan
uary 2002.

[DL00]	 Arnaud Dupuy and Nancy Leveson. An Empirical Evalua
tion of the MC/DC Coverage Criterion on the HETE-2 Satel
lite Software. In Proceedings of the 19th Digital Avionics Sys
tems Conference (DASC’00), Phildelphia, Pennsylvania, USA,
October 2000. Available from http://sunnyday.mit.edu/
papers/dupuy.pdf.

[DLS78]	 Richard A. DeMillo, Richard J. Lipton, and Frederick G. Say
ward. Hints on Test Data Selection: Help for the Practising
Programmer. Computer, 11(4):34–41, April 1978.

[DM07]	 Alexandre Donzé and Oded Maler. Systematic Simulation Us
ing Sensitivity Analysis. In Alberto Bemporad, Antonio Bicchi,
and Giorgio C. Buttazzo, editors, Proceedings of the 10th In
ternational Workshop on Hybrid Systems: Computation and
Control (HSCC’07), Pisa, Italy, volume 4416 of Lecture Notes
in Computer Science, pages 174–189. Springer, 2007.

[DN84]	 Joe W. Duran and Simeon C. Ntafos. An Evaluation of Ran
dom Testing. IEEE Transactions on Software Engineering,
10(4):438–444, 1984.

[DO91]	 Richard A. DeMillo and A. Jefferson Offutt. Constraint-based
Automatic Test Data Generation. IEEE Transactions on Soft
ware Engineering, 17(9):900–910, 1991.

[DO93]	 Richard A. DeMillo and A. Jefferson Offutt. Experimental
Results from an Automatic Test Case Generator. Transactions
on Software Engineering and Methodology, 2(2):109–127, 1993.

[DO07]	 Will Drewry and Tavis Ormandy. Flayer: Exposing Ap
plication Internals. In Proceedings of the 1st USENIX

http://www.cs.utexas.edu/~EWD/transcriptions/EWD02xx/EWD268.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD02xx/EWD268.html
http://www.comp.lancs.ac.uk/~dixa/papers/formal-2002
http://www.comp.lancs.ac.uk/~dixa/papers/formal-2002
http://sunnyday.mit.edu/papers/dupuy.pdf
http://sunnyday.mit.edu/papers/dupuy.pdf

298 BIBLIOGRAPHY

Workshop on Offensive Technologies (WOOT’07), Boston,
MA, USA. USENIX Association, 2007. Available from
http://www.usenix.org/event/woot07/tech/full_
papers/drewry/drewry.pdf.

[Dor91] Michael A. Dornheim. X-31 Flight Tests to Explore Combat
Agility to 70 Deg. AOA. Aviation Week and Space Technology,
11:38–41, 1991.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. The Tool KRONOS. In Rajeev Alur, Thomas A.
Henzinger, and Eduardo D. Sontag, editors, Proceedings of the
4th DIMACS/SYCON Workshop on Verification and Control
of Hybrid Systems, Rutgers University, New Brunswick, New
Yersey, USA, volume 1066 of Lecture Notes in Computer Sci
ence, pages 208–219. Springer, 1995.

[DS07] David Delmas and Jean Souyris. Astrée: From Research to In
dustry. In Hanne Riis Nielson and Gilberto Filé, editors, Pro
ceedings of the 14th International Symposium on Static Anal
ysis (SAS’07), Kongens Lyngby, Denmark, volume 4634 of
Lecture Notes in Computer Science, pages 437–451. Springer,
2007.

[dVT00] René G. de Vries and Jan Tretmans. On-the-fly Conformance
Testing Using SPIN. Springer International Journal on Soft
ware Tools for Technology Transfer (STTT), 2(4):382–393,
2000.

[DYJ08] Greg Dennis, Kuat Yessenov, and Daniel Jackson. Bounded
Verification of Voting Software. In Proceedings of the 2nd In
ternational Conference on Verified Software: Theories, Tools,
Experiments (VSTTE’08), Toronto, Canada, volume 5295 of
Lecture Notes in Computer Science, pages 130–145. Springer,
2008.

[EC98] Steve M. Easterbrook and John R. Callahan. Formal Methods
for Verification and Validation of Partial Specifications: A Case
Study. Journal of Systems and Software, 40(3):199–210, 1998.

[ECCH00] Dawson R. Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions. In Proceedings of
the 4th Symposium on Operating System Design and Imple
mentation (OSDI’00), San Diego, California, USA, pages 1–
16. USENIX Association, 2000.

http://www.usenix.org/event/woot07/tech/full_papers/drewry/drewry.pdf
http://www.usenix.org/event/woot07/tech/full_papers/drewry/drewry.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

299 BIBLIOGRAPHY

[ECK+91]	 Dave E. Eckhardt, Alper K. Caglayan, John C. Knight,
Larry D. Lee, David F. McAllister, Mladen A. Vouk, and John
P. J. Kelly. An Experimental Evaluation of Software Redun
dancy as a Strategy for Improving Reliability. IEEE Transac
tions on Software Engineering, 17(7):692–702, July 1991.

[EFM97]	 André Engels, Loe M. G. Feijs, and Sjouke Mauw. Test
Generation for Intelligent Networks Using Model Checking.
In Ed Brinksma, editor, Proceedings of the 3rd International
Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’97), Enschede, The Netherlands,
volume 1217 of Lecture Notes in Computer Science, pages 384–
398. Springer, 1997.

[EGHT94]	 David Evans, John V. Guttag, James J. Horning, and Yang
Meng Tan. LCLint: A Tool for Using Specifications to Check
Code. In Proceedings of the ACM SIGSOFT Symposium on
Foundations of Software Engineering (FSE’94), New Orleans,
LA, USA, pages 87–96. ACM Press, 1994.

[Eis99]	 Cindy Eisner. Using Symbolic Model Checking to Verify the
Railway Stations of Hoorn-Kersenboogerd and Heerhugowaard.
In Laurence Pierre and Thomas Kropf, editors, Proceedings
of the 10th IFIP Conference on Correct Hardware Design
and Verification Methods (CHARME’99), Bad Herrenalb, Ger
many, volume 1703 of Lecture Notes in Computer Science,
pages 97–109. Springer, 1999.

[EJ12]	 Christof Ebert and Michael Jastram. ReqIF: Seamless Require
ments Interchange Format Between Business Partners. IEEE
Software, 29(5):82–87, 2012.

[EJL+03]	 Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiao
jun Liu, Jozsef Ludvig, Stephen Neuendorffer, Sonia R. Sachs,
and Yuhong Xiong. Taming Heterogeneity – The Ptolemy Ap
proach. Proceedings of the IEEE, 91(1):127–144, 2003.

[EKN+12]	 Marie-Aude Esteve, Joost-Pieter Katoen, Viet Yen Nguyen,
Bart Postma, and Yuri Yushtein. Formal Correctness, Safety,
Dependability, and Performance Analysis of a Satellite. In
Martin Glinz, Gail C. Murphy, and Mauro Pezzè, editors,
Proceedings of the 34th International Conference on Software
Engineering (ICSE’12), Zurich, Switzerland, pages 1022–1031,
2012.

300 BIBLIOGRAPHY

[EL02] David Evans and David Larochelle. Improving Security Us
ing Extensible Lightweight Static Analysis. IEEE Software,
19(1):42–51, 2002.

[ELC+98] Steve M. Easterbrook, Robyn R. Lutz, Richard Covington,
John Kelly, Yoko Ampo, and David Hamilton. Experiences
Using Lightweight Formal Methods for Requirements Model
ing. IEEE Transactions on Software Engineering, 24(1):4–14,
1998.

[End75] Albert Endres. An Analysis of Errors and their Causes in Sys
tem Programs. IEEE Transactions on Software Engineering,
1(2):140–149, 1975.

[ER03] Albert Endres and Dieter Rombach. A Handbook of Software
and Systems Engineering: Empirical Observations, Laws and
Theories. Pearson/Addison-Wesley, 2003.

[Eva96] David Evans. Static Detection of Dynamic Memory Errors.
In Proceedings of the ACM SIGPLAN Conference on Pro
gramming Language Design and Implementation (PLDI’96),
Philadephia, Pennsylvania, USA, volume 31(5) of SIGPLAN
Notices, pages 44–53. ACM Press, 1996.

[FA88] David Freestone and Sukhvinder S. Aujla. Specifying ROSE in
LOTOS. In Kenneth J. Turner, editor, Proceedings of the 1st
International Conference on Formal Description Techniques
(FORTE’88), Stirling, Scotland, UK, pages 231–245. North-
Holland, 1988.

[FAA88] FAA (Federal Aviation Administration). System Design and
Analysis. Technical Report Advisory Circular (AC) 25.1309
1A, US Department of Transportation, June 1988.

[FAA04] FAA (Federal Aviation Administration). Reusable Software
Components. Technical Report Advisory Circular (AC) 20
148, US Department of Transportation, December 2004.

[Fag76] Michael E. Fagan. Design and Code Inspections to Re
duce Errors in Program Development. IBM Systems Journal,
15(3):182–211, 1976.

[Fag86] Michael E. Fagan. Advances in Software Inspections. IEEE
Transactions on Software Engineering, 12(7):744–751, 1986.

[Fag99] Michael E. Fagan. Design and Code Inspections to Re
duce Errors in Program Development. IBM Systems Journal,
38(2/3):258–287, 1999.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

301 BIBLIOGRAPHY

[Fai85]	 Richard E. Fairley. Software Engineering Concepts. McGraw-
Hill, New York, 1985.

[FB98]	 Michael Fredericks and Victor Basili. Using Defect Tracking
and Analysis to Improve Software Quality: A DACS State
of-the-Art Report. Technical Report SOAR-98-2, DoD Data
and Analysis Center for Software (DACS), November 1998.
Available from http://www.thedacs.com/techs/abstract/
347218.

[FBK+96]	 Giorgio P. Faconti, Monica Bordegoni, Klaus Kansy, Panos E.
Trahanias, Thomas Rist, and Michael D. Wilson. Formal
Framework and Necessary Properties of the Fusion of In
put Modes in User Interfaces. Interacting with Computers,
8(2):134–161, 1996.

[FD04]	 Görschwin Fey and Rolf Drechsler. Improving Simulation
based Verification by Means of Formal Methods. In Masa
haru Imai, editor, Proceedings of the Conference on Asia South
Pacific Design Automation: Electronic Design and Solution
Fair (ASP-DAC’04), Yokohama, Japan, pages 640–643. IEEE,
2004.

[Fea98]	 Martin S. Feather. Rapid Application of Lightweight Formal
Methods for Consistency Analysis. IEEE Transactions on Soft
ware Engineering, 24(11):949–959, 1998.

[Fer89]	 Luís Ferreira Pires. On the Use of LOTOS to Support the
Design of a Connection-oriented Internetting Protocol. In ES
PRIT’89 Conference, Dordrecht, The Netherlands, pages 957–
970. North-Holland, 1989.

[FF95]	 Giorgio P. Faconti and Angelo Fornari. A Gesture-based
Tool for the Development of Formal Architecture of Sys
tems. Technical report SM (System Modelling)/WP49 of
the ESPRIT Basic Research Action 7040 “Amodeus”. Avail
able from ftp://ftp.mrc-cbu.cam.ac.uk/amodeus/sysmod/
sm_wp49.ps.Z, February 1995.

[FF96]	 Kate Finney and Norman E. Fenton. Evaluating the Effective
ness of Z: The Claims Made About CICS and Where We Go
From Here. Journal of Systems and Software, 35(3):209–216,
1996.

[FG06]	 Ansgar Fehnker and Peng Gao. Formal Verification and Sim
ulation for Performance Analysis for Probabilistic Broadcast

http://www.thedacs.com/techs/abstract/347218
http://www.thedacs.com/techs/abstract/347218
ftp://ftp.mrc-cbu.cam.ac.uk/amodeus/sysmod/sm_wp49.ps.Z
ftp://ftp.mrc-cbu.cam.ac.uk/amodeus/sysmod/sm_wp49.ps.Z

302 BIBLIOGRAPHY

Protocols. In Thomas Kunz and S. S. Ravi, editors, Proceed
ings of the 5th International Conference on Ad-Hoc, Mobile,
and Wireless Networks (ADHOC-NOW’06), Ottawa, Canada,
volume 4104 of Lecture Notes in Computer Science, pages 128–
141. Springer, 2006.

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu
Mateescu, Laurent Mounier, and Mihaela Sighireanu. CADP
(CÆSAR/ALDEBARAN Development Package): A Proto
col Validation and Verification Toolbox. In Rajeev Alur
and Thomas A. Henzinger, editors, Proceedings of the 8th
Conference on Computer Aided Verification (CAV’96), New
Brunswick, New Jersey, USA, volume 1102 of Lectures Notes
in Computer Science, pages 437–440. Springer, August 1996.

[FJJV96] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César
Viho. Using On-the-fly Verification Techniques for the Gen
eration of Test Suites. In Rajeev Alur and Thomas A. Hen
zinger, editors, Proceedings of the 8th International Conference
on Computer Aided Verification (CAV’96), New Brunswick,
NJ, USA, volume 1102 of Lecture Notes in Computer Science,
pages 348–359. Springer, 1996.

[FK96] Roger Ferguson and Bogdan Korel. The Chaining Approach for
Software Test Data Generation. ACM Transactions on Soft
ware Engineering and Methodology, 5(1):63–86, 1996.

[FK04] Ansgar Fehnker and Bruce H. Krogh. Hybrid System Veri
fication Is Not a Sinecure – The Electronic Throttle Control
Case Study. In Proceedings of the 2nd International Confer
ence on Automated Technology for Verification and Analysis
(ATVA’04), Taipei, Taiwan, volume 3299 of Lecture Notes in
Computer Science, pages 263–277. Springer, 2004.

[FK06] Ansgar Fehnker and Bruce H. Krogh. Hybrid System Verifica
tion Is Not a Sinecure – The Electronic Throttle Control Case
Study. International Journal of Foundations of Computer Sci
ence, 17(4):885–902, 2006.

[FLD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot
ton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine
Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable Ver
ification of Hybrid Systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), Snow

	

	

	

	

	

	

	

	

	

	

	

	

	

	

303 BIBLIOGRAPHY

bird, Utah, USA, volume 6806 of Lecture Notes in Computer
Science, pages 379–395. Springer, 2011.

[FLL+02]	 Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended Static
Checking for Java. In Proceedings of the ACM SIGPLAN Con
ference on Programming Language Design and Implementation
(PLDI’02), Berlin, Germany, volume 37(5) of SIGPLAN No
tices, pages 234–245. ACM Press, 2002.

[FM00]	 Justin E. Forrester and Barton P. Miller. An Empirical Study
of the Robustness of Windows NT Applications Using Random
Testing. In Proceedings of the 4th USENIX Windows Systems
Symposium (WSS’00), Seattle, Washington, USA. USENIX
Association, August 2000. Available from http://pages.cs.
wisc.edu/~bart/fuzz/fuzz-nt.html.

[FMR00]	 Stephan Flake, Wolfgang Müller, and Jürgen Ruf. Struc
tured English for Model Checking Specification. In Klaus
Waldschmidt and Christoph Grimm, editors, Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV), Frankfurt, Germany,
pages 99–108, 2000.

[FO00]	 Norman E. Fenton and Niclas Ohlsson. Quantitative Analysis
of Faults and Failures in a Complex Software System. IEEE
Transactions on Software Engineering, 26(8):797–814, 2000.

[Fok96]	 Wan F. Fokkink. Safety Criteria for the Vital Processor In
terlocking at Hoorn-Kersenboogerd. In Proceedings of the 5th
Conference on Computers in Railways (COMPRAIL’96) – Vol
ume I: Railway Systems and Management, Berlin, Germany,
pages 101–110. Computational Mechanics Publications, 1996.

[Fre05]	 Goran Frehse. PHAVer: Algorithmic Verification of Hybrid
Systems Past HyTech. In Manfred Morari and Lothar Thiele,
editors, Proceedings of the 8th International Workshop on Hy
brid Systems: Computation and Control (HSCC’05), Zurich,
Switzerland, volume 3414 of Lecture Notes in Computer Sci
ence, pages 258–273. Springer, 2005.

[Fre08]	 Goran Frehse. PHAVer: Algorithmic Verification of Hybrid
Systems Past HyTech. Springer International Journal on Soft
ware Tools for Technology Transfer (STTT), 10(3):263–279,
2008.

http://pages.cs.wisc.edu/~bart/fuzz/fuzz-nt.html
http://pages.cs.wisc.edu/~bart/fuzz/fuzz-nt.html

304 BIBLIOGRAPHY

[FTM83] Masahiro Fujita, Hidehiko Tanaka, and Tohru Moto-Oka. Tem
poral Logic Based Hardware Description and its Verification
with Prolog. New Generation Computing, 1(2):195–203, 1983.

[FTW05] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse.
Test Generation Based on Symbolic Specifications. In Jens
Grabowski and Brian Nielsen, editors, Revised Selected Papers
of the 4th International Workshop on Formal Approaches to
Software Testing (FATES’04), Linz, Austria, volume 3395 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2005.

[FTW06] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. A Sym
bolic Framework for Model-Based Testing. In Klaus Havelund,
Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors, Re
vised Selected Papers of the 1st Combined International Work
shops on Formal Approaches to Software Testing and Runtime
Verification (FATES/RV’06), Seattle, WA, USA, volume 4262
of Lecture Notes in Computer Science, pages 40–54. Springer,
2006.

[Gar98] Hubert Garavel. OPEN/CÆSAR: An Open Software Archi
tecture for Verification, Simulation, and Testing. In Bernhard
Steffen, editor, Proceedings of the 4th International Conference
on Tools and Algorithms for Construction and Analysis of Sys
tems (TACAS’98), Lisbon, Portugal, volume 1384 of Lecture
Notes in Computer Science, pages 68–84. Springer, 1998.

[Gar04] Angelo Gargantini. Conformance Testing. In Manfred Broy,
Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors, Model-Based Testing of Reac
tive Systems – Advanced Lectures, volume 3472 of Lecture Notes
in Computer Science, pages 87–111. Springer, 2004.

[Gau95] Marie-Claude Gaudel. Testing Can Be Formal, Too. In Peter D.
Mosses, Mogens Nielsen, and Michael I. Schwartzbach, edi
tors, Proceedings of the 6th International Joint Conference on
Theory and Practice of Software Development (TAPSOFT’95),
Aarhus, Denmark, volume 915 of Lecture Notes in Computer
Science, pages 82–96. Springer, 1995.

[Gau05] Marie-Claude Gaudel. Formal Methods and Testing: Hypothe
ses, and Correctness Approximations. In John A. Fitzger
ald, Ian J. Hayes, and Andrzej Tarlecki, editors, Proceedings
of the 13th International Symposium of Formal Methods Eu
rope (FM’05), Newcastle, UK, volume 3582 of Lecture Notes
in Computer Science, pages 2–8. Springer, 2005.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

305 BIBLIOGRAPHY

[GBR98]	 Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Auto
matic Test Data Generation Using Constraint Solving Tech
niques. In Proceedings of ACM SIGSOFT International Sym
posium on Software Testing and Analysis (ISSTA’98), Clear
water Beach, Florida, pages 53–62. ACM, 1998.

[GBR00]	 Arnaud Gotlieb, Bernard Botella, and Michel Rueher. A CLP
Framework for Computing Structural Test Data. In John W.
Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-
Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua
Sagiv, and Peter J. Stuckey, editors, Proceedings of the 1st In
ternational Conference on Computational Logic (CL’00), Lon
don, UK, volume 1861 of Lecture Notes in Computer Science,
pages 399–413. Springer, 2000.

[GCR93]	 Susan L. Gerhart, Dan Craigen, and Ted Ralston. Observa
tions on Industrial Practice Using Formal Methods. In Pro
ceedings of the 15th International Conference on Software En
gineering (ICSE’93), Baltimore, Maryland, USA, pages 24–33.
IEEE Computer Society/ACM Press, 1993.

[GCR94a]	 Susan L. Gerhart, Dan Craigen, and Ted Ralston. Case Study:
Paris Metro Signalling System. IEEE Software, 11(1):32–35,
January 1994.

[GCR94b]	 Susan L. Gerhart, Dan Craigen, and Ted Ralston. Experi
ence with Formal Methods in Critical Systems. IEEE Software,
11(1):21–28, 1994.

[GdN+08]	 Patrice Godefroid, Peri de Halleux, Aditya V. Nori, Sriram K.
Rajamani, Wolfram Schulte, Nikolai Tillmann, and Michael Y.
Levin. Automating Software Testing Using Program Analysis.
IEEE Software, 25(5):30–37, 2008.

[GF94]	 Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An Anal
ysis of the Requirements Traceability Problem. In Proceedings
of International Conference on Requirements Engineering, Col
orado Springs, Colorado, USA, pages 94–101. IEEE Computer
Society, 1994.

[GFL+96]	 Daniel Geist, Monica Farkas, Avner Landver, Yossi Lichten
stein, Shmuel Ur, and Yaron Wolfsthal. Coverage-Directed
Test Generation Using Symbolic Techniques. In Mandayam K.
Srivas and Albert John Camilleri, editors, Proceedings of the
1st International Conference on Formal Methods in Computer-
Aided Design (FMCAD’96), Palo Alto, California, USA, vol

306 BIBLIOGRAPHY

ume 1166 of Lecture Notes in Computer Science, pages 143–
158. Springer, 1996.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a The
ory of Test Data Selection. IEEE Transactions on Software
Engineering, 1(2):156–173, 1975.

[GG77] John B. Goodenough and Susan L. Gerhart. Toward a The
ory of Testing: Data Selection Criteria. In R. T. Yeh, editor,
Current Trends in Programming Methodology, volume 2, pages
44–79, Englewood Cliffs, NJ, USA, 1977. Prentice Hall.

[GG93] Tom Gilb and Dorothy Graham, editors. Software Inspection.
Addison-Wesley, 1993.

[GH90] Gérard D. Guiho and Claude Hennebert. SACEM Software
Validation (Experience Report). In Proceedings of the 12th
International Conference on Software Engineering (ICSE’90),
Nice, France, pages 186–191. IEEE Computer Society, 1990.

[GH99] Angelo Gargantini and Constance L. Heitmeyer. Using Model
Checking to Generate Tests from Requirements Specifications.
In Oscar Nierstrasz and Michel Lemoine, editors, Proceedings of
the 7th European Software Engineering Conference, held jointly
with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’99), Toulouse, France,
volume 1687 of Lecture Notes in Computer Science, pages 146–
162. Springer, 1999.

[GH02] Hubert Garavel and Holger Hermanns. On Combining Func
tional Verification and Performance Evaluation Using CADP.
In Lars-Henrik Eriksson and Peter A. Lindsay, editors, Proceed
ings of the International Symposium on Formal Methods Eu
rope (FME’02), Copenhagen, Denmark, volume 2391 of Lecture
Notes in Computer Science, pages 410–429. Springer, 2002.

[GHJ98] Patrice Godefroid, Robert S. Hanmer, and Lalita Jategaonkar
Jagadeesan. Model Checking Without a Model: An Analysis of
the Heart-Beat Monitor of a Telephone Switch Using VeriSoft.
In Proceedings of the ACM SIGSOFT International Sympo
sium on Software Testing and Analysis (ISSTA’98), Clearwater
Beach, Florida, USA, pages 124–133, 1998.

[GHK+06] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kan
nan, Aditya V. Nori, and Sriram K. Rajamani. SYNERGY:
A New Algorithm for Property Checking. In Michal Young
and Premkumar T. Devanbu, editors, Proceedings of the 14th

	

	

	

	

	

	

	

	

	

	

	

	

	

	

307 BIBLIOGRAPHY

ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’06), Portland, Oregon, USA, pages
117–127. ACM, 2006.

[GHPS09]	 Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and
Wendelin Serwe. Verification of an Industrial SystemC/TLM
Model Using LOTOS and CADP. In Proceedings of the
7th ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE’09), Cambridge, Mas
sachusetts, USA, pages 46–55. IEEE Computer Society, 2009.

[GKA+11]	 Vijay Ganesh, Adam Kiezun, Shay Artzi, Philip J. Guo, Pieter
Hooimeijer, and Michael D. Ernst. HAMPI: A String Solver
for Testing, Analysis and Vulnerability Detection. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the
23rd International Conference of Computer Aided Verification
(CAV’11), Snowbird, UT, USA, volume 6806 of Lecture Notes
in Computer Science, pages 1–19. Springer, 2011.

[GKR04]	 Smriti Gupta, Bruce H. Krogh, and Rob A. Rutenbar. To
wards Formal Verification of Analog Designs. In Proceedings of
the International Conference on Computer-Aided Design (IC
CAD’04), San Jose, California, USA, pages 210–217. IEEE
Computer Society / ACM, 2004.

[GKS05]	 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
Directed Automated Random Testing. In Vivek Sarkar and
Mary W. Hall, editors, Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implemen
tation (PLDI’05), Chicago, IL, USA, pages 213–223. ACM,
2005.

[GKv94]	 Jan Friso Groote, Wilco Koorn, and Sebastiaan van Vlij
men. The Safety Guaranteeing System at Station Hoorn-
Kersenboogerd. Technical Report 121, Logic Group Preprint
Series, Department of Philosophy, Utrecht University, 1994.
Available from http://www.phil.uu.nl/preprints/lgps.

[GKv95]	 Jan Friso Groote, Wilco Koorn, and Sebastiaan van Vlij
men. The Safety Guaranteeing System at Station Hoorn-
Kersenboogerd (Extended Abstract). In Proceedings of the 10th
Annual Conference on Computer Assurance (COMPASS’95),
Gaithersburg, Maryland, USA, pages 57–68. IEEE Press, 1995.

[GLM08]	 Patrice Godefroid, Michael Y. Levin, and David A. Molnar.
Automated Whitebox Fuzz Testing. In Proceedings of the Net
work and Distributed System Security Symposium (NDSS’08),

http://www.phil.uu.nl/preprints/lgps

308 BIBLIOGRAPHY

San Diego, California, USA. The Internet Society, 2008. Avail
able from http://www.isoc.org/isoc/conferences/ndss/
08/papers/10_automated_whitebox_fuzz.pdf.

[GLM12] Patrice Godefroid, Michael Y. Levin, and David A. Molnar.
SAGE: Whitebox Fuzzing for Security Testing. Communica
tions of the ACM, 55(3):40–44, 2012.

[GLMS11] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin
Serwe. CADP 2010: A Toolbox for the Construction and Anal
ysis of Distributed Processes. In Parosh A. Abdulla and K.
Rustan M. Leino, editors, Proceedings of the 17th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’11), Saarbrücken, Germany, vol
ume 6605 of Lectures Notes in Computer Science, pages 372–
387. Springer, March 2011.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin
Serwe. CADP 2011: A Toolbox for the Construction and Anal
ysis of Distributed Processes. Springer International Journal
on Software Tools for Technology Transfer (STTT), 15(2):89–
107, 2013.

[GLR09] Vijay Ganesh, Tim Leek, and Martin C. Rinard. Taint-based
Directed Whitebox Fuzzing. In Proceedings of the 31st Inter
national Conference on Software Engineering (ICSE’09), Van
couver, Canada, pages 474–484. IEEE, 2009.

[GLRG11] Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-
González. Statically Validating Must Summaries for Incremen
tal Compositional Dynamic Test Generation. In Eran Yahav,
editor, Proceedings of the 18th International Symposium on
Static Analysis (SAS’11), Venice, Italy, volume 6887 of Lecture
Notes in Computer Science, pages 112–128. Springer, 2011.

[GM97] Hubert Garavel and Laurent Mounier. Specification and Veri
fication of Various Distributed Leader Election Algorithms for
Unidirectional Ring Networks. Science of Computer Program
ming, 29(1–2):171–197, 1997.

[GMM00] Neelam Gupta, Aditya P. Mathur, and Mary Lou Mathur. Gen
erating Test Data for Branch Coverage. In Proceedings of the
15th IEEE International Conference on Automated Software
Engineering (ASE’00), Grenoble, France, pages 219–228. IEEE
Computer Society, 2000.

http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

309 BIBLIOGRAPHY

[GMS99]	 Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa. UNA
Based Iterative Test Data Generation and its Evaluation.
In Proceedings of the 14th IEEE International Conference
on Automated Software Engineering (ASE’99), Cocoa Beach,
Florida, USA, pages 224–232. IEEE Computer Society, 1999.

[GN97]	 Matthew J. Gallagher and V. Lakshmi Narasimhan. ADTEST:
A Test Data Generation Suite for Ada Software Systems. IEEE
Transactions on Software Engineering, 23(8):473–484, 1997.

[GNRT10]	 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and
Sai Deep Tetali. Compositional May-Must Program Anal
ysis: Unleashing the Power of Alternation. In Manuel V.
Hermenegildo and Jens Palsberg, editors, Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’10), Madrid, Spain, pages 43–
56. ACM, 2010.

[GOA05]	 Mats Grindal, Jeff Offutt, and Sten F. Andler. Combination
Testing Strategies: A Survey. Software: Testing, Verifica
tion and Reliability, 15(3):167–199, 2005. Available as George
Mason University Technical Report ISE-TR-04-05, July 2004
from http://csrc.nist.gov/groups/SNS/acts/documents/
grindal-offutt-andler.pdf.

[God97]	 Patrice Godefroid. Model Checking for Programming Lan
guages Using Verisoft. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’97), Paris, France, pages 174–186, 1997.

[God05]	 Patrice Godefroid. Software Model Checking: The VeriSoft
Approach. Formal Methods in System Design, 26(2):77–101,
2005.

[God07]	 Patrice Godefroid. Compositional Dynamic Test Generation.
In Martin Hofmann and Matthias Felleisen, editors, Proceed
ings of the 34th ACM SIGPLAN-SIGACT Symposium on Prin
ciples of Programming Languages (POPL’07), Nice, France,
pages 47–54. ACM, 2007.

[God09]	 Patrice Godefroid. Software Model Checking Improving Se
curity of a Billion Computers. Microsoft Research. Slides
available from http://research.microsoft.com/en-us/um/
people/pg/public_psfiles/talk-spin2009.pdf, 2009.

[God11]	 Patrice Godefroid. Higher-order Test Generation. In Mary W.
Hall and David A. Padua, editors, Proceedings of the 32nd

http://csrc.nist.gov/groups/SNS/acts/documents/grindal-offutt-andler.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/grindal-offutt-andler.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-spin2009.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-spin2009.pdf

310 BIBLIOGRAPHY

ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’11), San Jose, CA, USA, pages
258–269. ACM, 2011.

[God12] Patrice Godefroid. Test Generation Using Symbolic Execu
tion. In Deepak D’Souza, Telikepalli Kavitha, and Jaiku
mar Radhakrishnan, editors, Proceedings of the IARCS Annual
Conference on Foundations of Software Technology and The
oretical Computer Science (FSTTCS’12), Hyderabad, India,
Leibniz International Proceedings in Informatics (LIPICS),
pages 24–33. Schloss Dagstuhl – Leibniz-Zentrum für Infor
matik, 2012. Available from http://drops.dagstuhl.de/
opus/volltexte/2012/3845.

[Goe07] Karen Mercedes Goertzel, editor. Software Security Assur
ance: State-of-the-Art Report. Soar, Information Assurance
Technology Analysis Center (IATAC) and Data and Analy
sis Center for Software (DACS), July 2007. Available from
http://iac.dtic.mil/iatac/download/security.pdf.

[Gon05] Georges Gonthier. A Computer-Checked Proof of the
Four Colour Theorem. Unpublished manuscript available
from http://research.microsoft.com/en-us/um/people/
gonthier/4colproof.pdf, 2005.

[Gon08] Georges Gonthier. Formal Proof – The Four-Color Theorem.
Notices of the American Mathematical Society, 55(11):1382–
1393, 2008. Available from http://www.ams.org/notices/
200811/tx081101382p.pdf.

[Got09] Arnaud Gotlieb. Euclide: A Constraint-Based Testing Frame
work for Critical C Programs. In Proceedings of the 2nd In
ternational Conference on Software Testing Verification and
Validation (ICST’09), Denver, Colorado, USA, pages 151–160.
IEEE Computer Society, 2009.

[Gou83] John S. Gourlay. A Mathematical Framework for the Investiga
tion of Testing. IEEE Transactions on Software Engineering,
9(6):686–709, 1983.

[GP94] Jan Friso Groote and Alban Ponse. Proof Theory for µCRL: A
Language for Processes with Data. In D. J. Andrews, Jan Friso
Groote, and C. A. Middelburg, editors, Proceedings of the In
ternational Workshop on Semantics of Specification Languages
(SoSL), Utrecht, The Netherlands, Workshops in Computing,
pages 232–251. Springer, 1994.

http://drops.dagstuhl.de/opus/volltexte/2012/3845
http://drops.dagstuhl.de/opus/volltexte/2012/3845
http://iac.dtic.mil/iatac/download/security.pdf
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

311 BIBLIOGRAPHY

[GP05]	 Elsa L. Gunter and Doron Peled. Model Checking, Testing and
Verification Working Together. Formal Aspects of Computing,
17(2):201–221, 2005.

[GRR03]	 Angelo Gargantini, Elvinia Riccobene, and Salvatore
Rinzivillo. Using Spin to Generate Tests from ASM Speci
fications. In Egon Börger, Angelo Gargantini, and Elvinia
Riccobene, editors, Proceedings of the 10th International
Workshop on Abstract State Machines – Advances in Theory
and Practice (ASM’03), Taormina, Italy, volume 2589 of
Lecture Notes in Computer Science, pages 263–277. Springer,
2003.

[GRRV90]	 Susanne Graf, Jean-Luc Richier, Carlos Rodriguez, and
Jacques Voiron. What Are the Limits of Model Checking Meth
ods for the Verification of Real Life Protocols? In Proceedings
of the International Workshop on Automatic Verification Meth
ods for Finite State Systems, Grenoble, France, volume 407 of
Lecture Notes in Computer Science, pages 275–285. Springer,
1990.

[GRW04]	 David Greve, Raymond Richards, and Matthew Wilding. A
Summary of Intrinsic Partitioning Verification. In Proceedings
of the 5th International Workshop on the ACL2 Prover and its
Applications, Austin, Texas, USA, 2004.

[GSS09]	 Hubert Garavel, Gwen Salaün, and Wendelin Serwe. On the
Semantics of Communicating Hardware Processes and their
Translation into LOTOS for the Verification of Asynchronous
Circuits with CADP. Science of Computer Programming,
74(3):100–127, 2009.

[Gut99]	 Walter J. Gutjahr. Partition Testing vs. Random Testing: The
Influence of Uncertainty. IEEE Transactions on Software En
gineering, 25(5):661–674, 1999.

[Gut04]	 Peter Gutmann. Cryptographic Security Architecture: Design
and Verification. Springer, 2004.

[GV08]	 Orna Grumberg and Helmut Veith, editors. 25 Years of Model
Checking: History, Achevements, Perspectives, volume 5000 of
Lectures Notes in Computer Science. Springer, 2008.

[GVZ01]	 Hubert Garavel, César Viho, and Massimo Zendri. System De
sign of a CC-NUMA Multiprocessor Architecture Using Formal

312 BIBLIOGRAPHY

Specification, Model-Checking, Co-simulation, and Test Gen
eration. Springer International Journal on Software Tools for
Technology Transfer (STTT), 3(3):314–331, 2001.

[GW89] Donald C. Gause and Gerald M. Weinberg, editors. Exploring
Requirements: Quality Before Design. Dorset House Publishing
Company, 1989.

[GWV03] David Greve, Matthew Wilding, and Mark Vanfleet. A Sepa
ration Kernel Formal Security Policy. In Proceedings of the 4th
International Workshop on the ACL2 Prover and its Applica
tions, Boulder, Colorado, USA, 2003.

[GWV05] David Greve, Matthew Wilding, and Mark Vanfleet. High As
surance Formal Security Policy Modeling. In Proceedings of the
17th Systems and Software Technology Conference (SSTC’05),
Salt Lake City, Utah, USA, 2005.

[GWV08] Michael Gegick, Laurie Williams, and Mladen Vouk. Predictive
Models for Identifying Software Components Prone to Failure
During Security Attacks. Department of Computer Science,
North Carolina State University, Raleigh, NC, USA. Avail
able from https://buildsecurityin.us-cert.gov/bsi/
articles/best-practices/measurement/1075-BSI.html,
October 2008.

[Hal90] Anthony Hall. Seven Myths of Formal Methods. IEEE Soft
ware, 7(5):11–19, September 1990.

[Hal93] Nicolas Halbwachs. Synchronous Programming of Reactive Sys
tems, volume 215 of International Series in Engineering and
Computer Science. Springer, 1993.

[Hal05] Nicolas Halbwachs. A Synchronous Language at Work: The
Story of Lustre. In Proceedings of the 3rd ACM & IEEE Inter
national Conference on Formal Methods and Models for Co-
Design (MEMOCODE’05), Verona, Italy, pages 3–11. IEEE,
2005.

[Hal07] Anthony Hall. Realising the Benefits of Formal Methods. Jour
nal of Universal Computer Science, 13(5):669–678, 2007.

[Har00] Mary Jean Harrold. Testing: A Roadmap. In Anthony Finkel
stein, editor, Proceedings of the 22nd International Conference
on Software Engineering (ICSE’00) – Future of Software En
gineering Track, Limerick, Ireland, pages 61–72. ACM, 2000.

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1075-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1075-BSI.html

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

313 BIBLIOGRAPHY

[Hax10]	 Anne E. Haxthausen. An Introduction to Formal Methods
for the Development of Safety-critical Applications. Available
from http://www2.imm.dtu.dk/courses/02263/F11/Files/
FormalMethodsNoteTS.pdf, August 2010.

[HB99]	 Michael Hinchey and Jonathan P. Bowen, editors. Industrial-
Strength Formal Methods in Practice. Formal Approaches to
Computing and Information Technology (FACIT). Springer,
1999.

[HBB+09]	 Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen,
Rance Cleaveland, John Derrick, Jeremy Dick, Marian Ghe
orghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald
Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R.
Woodward, and Hussein Zedan. Using Formal Specifications
to Support Testing. ACM Computing Surveys, 41(2), 2009.

[HBH08]	 Robert M. Hierons, Jonathan P. Bowen, and Mark Harman,
editors. Formal Methods and Testing – An Outcome of the
FORTEST Network, Revised Selected Papers, volume 4949 of
Lecture Notes in Computer Science. Springer, 2008.

[HCL+03]	 Hyoung Seok Hong, Sung Deok Cha, Insup Lee, Oleg Sokolsky,
and Hasan Ural. Data Flow Testing as Model Checking. In
Lori A. Clarke, Laurie Dillon, and Walter F. Tichy, editors,
Proceedings of the 25th International Conference on Software
Engineering (ICSE’03), Portland, Oregon, USA, pages 232–
243. IEEE Computer Society, 2003.

[HCRP91]	 Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud. The Synchronous Dataflow Programming Language
LUSTRE. In Proceedings of the IEEE, volume 79, pages 1305–
1320, 1991.

[HD04]	 Mats Per Erik Heimdahl and George Devaraj. Test-Suite Re
duction for Model Based Tests: Effects on Test Quality and
Implications for Testing. In Proceedings of the 19th IEEE
International Conference on Automated Software Engineering
(ASE’04), Linz, Austria, pages 176–185. IEEE Computer So
ciety, 2004.

[HD07]	 Mats Per Erik Heimdahl and George Devaraj. On the Effect of
Test-suite Reduction on Automatically Generated Model-based
Tests. Automated Software Engineering, 14(1):37–57, 2007.

http://www2.imm.dtu.dk/courses/02263/F11/Files/FormalMethodsNoteTS.pdf
http://www2.imm.dtu.dk/courses/02263/F11/Files/FormalMethodsNoteTS.pdf

314 BIBLIOGRAPHY

[HDW04] Mats Per Erik Heimdahl, George Devaraj, and Robert We
ber. Specification Test Coverage Adequacy Criteria = Speci
fication Test Generation Inadequacy Criteria? In Proceedings
of the 8th IEEE International Symposium on High-Assurance
Systems Engineering (HASE’04), Tampa, Florida, USA, pages
178–186. IEEE Computer Society, 2004.

[Hec93] Herbert Hecht. Rare Conditions: An Important Cause of
Failures. In Proceedings of the 8th Annual Conference on
Computer Assurance (COMPASS’93), Gaithersburg, Mary
land, USA, pages 81–85. IEEE, June 1993.

[Hec08] Herbert Hecht. A Systems Engineering Approach to Excep
tion Handling. In Proceedings of the 3rd International Confer
ence on Systems (ICONS’08), Cancun, Mexico, pages 190–195.
IEEE Computer Society, 2008.

[Hei09] Constance L. Heitmeyer. On the Role of Formal Methods
in Software Certification: An Experience Report. Electronic
Notes on Theoretical Computer Science, 238(4):3–9, 2009.

[Hen96] Thomas A. Henzinger. The Theory of Hybrid Automata. In
Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (LICS), New Brunswick, New Jersey, USA,
pages 278–292. IEEE Computer Society, 1996. An extended
version appeared in Verification of Digital and Hybrid Systems,
M. K. Inan and R. P. Kurshan, eds., NATO ASI Series F:
Computer and Systems Sciences, Vol. 170, Springer, 2000, pp.
265–292.

[HG93] Claude Hennebert and Gérard D. Guiho. SACEM: A Fault Tol
erant System for Train Speed Control. In Proceedings of the
23rd Annual International Symposium on Fault-Tolerant Com
puting (FTCS’93), Toulouse, France, pages 624–628. IEEE
Computer Society, 1993.

[HGP09] Margaret Hamill and Katerina Goseva-Popstojanova. Common
Trends in Software Fault and Failure Data. IEEE Transactions
on Software Engineering, 35(4):484–496, 2009.

[HHW97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HyTech: A Model Checker for Hybrid Systems. Springer In
ternational Journal on Software Tools for Technology Transfer
(STTT), 1(1–2):110–122, 1997.

[HJ90] I. J. Hayes and C. B. Jones. Specifications Are Not (Necessar
ily) Executable. Technical Report 148, Key Centre for Software

	

	

	

	

	

	

	

	

	

	

	

	

315 BIBLIOGRAPHY

Technology, Department of Computer Science, University of
Queensland, St Lucia, Australia, January 1990. Available from
ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-89-12-1.ps.Z.

[HK91]	 Ian Houston and Steve King. CICS Project Report: Experi
ences and Results from the Use of Z in IBM. In Søren Prehn and
W. J. Toetenel, editors, Proceedings of the 4th International
Symposium of VDM Europe on Formal Software Development
(VDM’91), Noordwijkerhout, The Netherlands, volume 551 of
Lecture Notes in Computer Science, pages 588–596. Springer,
1991.

[HKHZ99]	 Yatin Vasant Hoskote, Timothy Kam, Pei-Hsin Ho, and
Xudong Zhao. Coverage Estimation for Symbolic Model Check
ing. In Mary Jane Irwin, editor, Proceedings of the 36th
ACM/IEEE Design Automation Conference (DAC’99), New
Orleans, LA, USA, pages 300–305. ACM Press, 1999.

[HKPV95]	 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. What’s Decidable About Hybrid Automata? In
Frank Thomson Leighton and Allan Borodin, editors, Proceed
ings of the 27th Annual ACM Symposium on Theory of Com
puting (STOC’95), Las Vegas, Nevada, USA, pages 373–382.
ACM, 1995.

[HKPV98]	 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. What’s Decidable About Hybrid Automata? Journal
of Computer and System Sciences, 57(1):94–124, 1998.

[HLSC01]	 Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Sung Deok
Cha. Automatic Test Generation from Statecharts Using Model
Checking. In Ed Brinksma and Jan Tretmans, editors, Pro
ceedings of the Workshop on Formal Approaches to Testing of
Software (FATES’01), Aarhus, Denmark, pages 15–30. BRICS
Notes Series, vol. NS-01-4, August 2001. Also available from
ftp://ftp.cis.upenn.edu/pub/rtg/public_html/papers/
01fates.pdf. Extended version (Technical Report) available
from http://repository.upenn.edu/cgi/viewcontent.
cgi?article=1092&context=cis_reports. Workshop pro
ceedings available from http://www.brics.dk/NS/01/4.

[HLSU02]	 Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural.
A Temporal Logic Based Theory of Test Coverage and Gen
eration. In Joost-Pieter Katoen and Perdita Stevens, edi
tors, Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems

ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-89-12-1.ps.Z
ftp://ftp.cis.upenn.edu/pub/rtg/public_html/papers/01fates.pdf
ftp://ftp.cis.upenn.edu/pub/rtg/public_html/papers/01fates.pdf
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1092&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1092&context=cis_reports
http://www.brics.dk/NS/01/4

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

316 BIBLIOGRAPHY

(TACAS’02), Grenoble, France, volume 2280 of Lecture Notes
in Computer Science, pages 327–341. Springer, 2002.

[HM80]	 Matthew Hennessy and Robin Milner. On Observing Non
determinism and Concurrency. In J. W. de Bakker and Jan
van Leeuwen, editors, Proceedings of the 7th Colloquium on
Automata, Languages and Programming (ICALP’80), Noord
weijkerhout, The Netherland, volume 85 of Lecture Notes in
Computer Science, pages 299–309. Springer, 1980.

[HMM09]	 Claude Helmstetter, Florence Maraninchi, and Laurent
Maillet-Contoz. Full Simulation Coverage for SystemC
Transaction-Level Models of Systems-on-a-Chip. Formal Meth
ods in System Design, 35(2):152–189, 2009.

[HMMM06] Claude Helmstetter, Florence Maraninchi, Laurent Maillet-
Contoz, and Matthieu Moy. Automatic Generation of Schedul
ings for Improving the Test Coverage of Systems-on-a-Chip.
In Proceedings of the 6th International Conference on For
mal Methods in Computer-Aided Design (FMCAD’06), San
Jose, California, USA, pages 171–178. IEEE Computer So
ciety, 2006.

[Hoa85]	 C. A. R. Hoare. Communicating Sequential Processes. Pren
tice Hall, April 1985. New edition available from http://www.
usingcsp.com.

[Hoa96]	 C. A. R. Hoare. How Did Software Get So Reliable With
out Proof? In Marie-Claude Gaudel and Jim Woodcock, edi
tors, Proceedings of the 3rd International Symposium of Formal
Methods Europe (FME’96), Oxford, UK, volume 1051 of Lec
ture Notes in Computer Science, pages 1–17. Springer, 1996.

[Hol91]	 Gerard J. Holzmann. Design and Validation of Computer Pro
tocols. Prentice Hall, 1991.

[Hol92]	 Gerard J. Holzmann. Protocol Design: Redefining the State of
the Art. IEEE Software, 9(1):17–22, 1992. Full version avail
able from http://spinroot.com/gerard/pdf/ieee91.pdf.

[Hol03]	 Gerard J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[How77]	 William E. Howden. Symbolic Testing and the DISSECT Sym
bolic Evaluation System. IEEE Transactions on Software En
gineering, 3(4):266–278, 1977.

http://www.usingcsp.com
http://www.usingcsp.com
http://spinroot.com/gerard/pdf/ieee91.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

317 BIBLIOGRAPHY

[How82]	 William E. Howden. Weak Mutation Testing and Complete
ness of Test Sets. IEEE Transactions on Software Engineering,
8(4):371–379, 1982.

[HPW01]	 Thomas A. Henzinger, Jorg Preussig, and Howard Wong-Toi.
Some Lessons from the HyTech Experience. In Proceedings of
the 40th Annual Conference on Decision and Control, pages
2887–2892. IEEE Press, 2001.

[HR04]	 Michael Huth and Mark Ryan. Logic in Computer Science:
Modelling and Reasoning About Systems. Cambridge Univer
sity Press, 2004. 2nd edition.

[HRV+03]	 Mats Per Erik Heimdahl, Sanjai Rayadurgam, Willem Visser,
George Devaraj, and Jimin Gao. Auto-generating Test Se
quences Using Model Checkers: A Case Study. In Alexandre
Petrenko and Andreas Ulrich, editors, Proceedings of the 3rd
International Workshop on Formal Approaches to Testing of
Software (FATES’03), Montreal, Quebec, Canada, volume 2931
of Lecture Notes in Computer Science, pages 42–59. Springer,
2003.

[HSGS09]	 Fei He, Xiaoyu Song, Ming Gu, and Jia-Guang Sun. Heuristic-
Guided Abstraction Refinement. The Computer Journal,
52(3):280–287, 2009.

[HSY06]	 David S. Hardin, Eric W. Smith, and William D. Young. A
Robust Machine Code Proof Framework for Highly Secure Ap
plications. In Proceedings of the 6th International Workshop
on the ACL2 Prover and its Applications, Seattle, Washington,
USA, 2006.

[HT90]	 Richard G. Hamlet and Ross Taylor. Partition Testing Does
Not Inspire Confidence. IEEE Transactions on Software Engi
neering, 16(12):1402–1411, 1990.

[Hun85]	 Warren A. Hunt. FM8501: A Verified Microprocessor. PhD
thesis, The University of Texas at Austin, 1985. Later pub
lished as a book [Hun94].

[Hun89]	 Warren A. Hunt. Microprocessor Design Verification. Journal
of Automated Reasoning, 5(4):429–460, 1989.

[Hun94]	 Warren A. Hunt. FM8501: A Verified Microprocessor, volume
795 of Lecture Notes in Computer Science. Springer, 1994.

318 BIBLIOGRAPHY

[IEE98] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Recommended Practice for Software Requirements Specifica
tions. Standard 830-1998, IEEE, New York, October 1998.

[IEE04] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Standard for Software Verification and Validation. Standard
1012-2004, IEEE, New York, 2004.

[IEE06] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Standard Dictionary of Measures of the Software Aspects of
Dependability. Standard 982.1-2005, IEEE, New York, May
2006.

[IEE08] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Standard for Software Reviews and Audits. Standard 1028
2008, IEEE, New York, August 2008. Revision of IEEE stan
dard 1028-1997.

[IEE09] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Standard for SystemVerilog – Unified Hardware Design, Spec
ification, and Verification Language. Standard 1800-2009,
IEEE, New York, December 2009.

[IEE10] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Standard for Property Specification Language (PSL). Standard
1850-2010, IEEE, New York, April 2010.

[ISO89a] ISO (International Organization for Standardization). Informa
tion Processing Systems – Open Systems Interconnection – Es
telle: A Formal Description Technique Based on an Extended
State Transition Model. International Standard 9074:1989,
ISO/IEC, Geneva, 1989. Standard withdrawn in 1999.

[ISO89b] ISO (International Organization for Standardization). Infor
mation Processing Systems – Open Systems Interconnection
– LOTOS – A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour. International
Standard 8807:1989, ISO/IEC, Geneva, 1989.

[ISO89c] ISO (International Organization for Standardization). Infor
mation Processing Systems – Open Systems Interconnection –
LOTOS Description of the Session Protocol. Technical Recom
mendation TR 9572:1989, ISO/IEC, Geneva, 1989. Withdrawn
on 1997-03-07.

[ISO89d] ISO (International Organization for Standardization). Infor
mation Processing Systems – Open Systems Interconnection –

	

	

	

	

	

	

	

	

	

	

	

	

	

	

319 BIBLIOGRAPHY

LOTOS Description of the Session Service. Technical Recom
mendation TR 9571:1989, ISO/IEC, Geneva, 1989. Withdrawn
on 1997-03-07.

[ISO92a]	 ISO (International Organization for Standardization). In
formation Technology – Telecommunications and Informa
tion Exchange Between Systems – Formal Description of
ISO 8072 in LOTOS. Technical Recommendation TR
10023:1992, ISO/IEC, Geneva, 1992. (LOTOS description
of the connection-oriented transport service) – Withdrawn on
2004-04-23.

[ISO92b]	 ISO (International Organization for Standardization). Infor
mation Technology – Telecommunications and Information Ex
change Between Systems – Formal Description of ISO 8073
(Classes 0, 1, 2, 3) in LOTOS. Technical Recommendation TR
10024:1992, ISO/IEC, Geneva, 1992. (LOTOS description of
the connection-oriented transport protocol) – Withdrawn on
2004-04-23).

[ISO95a]	 ISO (International Organization for Standardization). Infor
mation Technology – Open Systems Interconnection – LOTOS
Description of the CCR Protocol. Technical Recommendation
TR 11590:1995, ISO/IEC, Geneva, 1995. Withdrawn on 2008
05-08.

[ISO95b]	 ISO (International Organization for Standardization). Infor
mation Technology – Open Systems Interconnection – LOTOS
Description of the CCR Service. Technical Recommendation
TR 11589:1995, ISO/IEC, Geneva, 1995. Withdrawn on 2008
05-08.

[ISO96]	 ISO (International Organization for Standardization). Infor
mation Technology – Programming Languages, their Environ
ments and System Software Interfaces – Vienna Development
Method – Specification Language – Part 1: Base Language.
International Standard 13817-1:1996, ISO/IEC, Geneva, 1996.

[ISO98]	 ISO (International Organization for Standardization). Infor
mation Technology – System and Software Integrity Levels.
International Standard 15026:1998, ISO/IEC, Geneva, 1998.

[ISO01]	 ISO (International Organization for Standardization). Soft
ware Engineering – Product Quality – Part 1: Quality Model.
International Standard 9126-1:2001, ISO/IEC, Geneva, 2001.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

320 BIBLIOGRAPHY

[ISO02]	 ISO (International Organization for Standardization). Infor
mation Technology – Z Formal Specification Notation – Syn
tax, Type System and Semantics. International Standard
13568:2002, ISO/IEC, Geneva, 2002.

[ISO05]	 ISO (International Organization for Standardization). Infor
mation Technology – Open Distributed Processing – Unified
Modeling Language (UML) Version 1.4.2. International Stan
dard 19501:2005, ISO/IEC, Geneva, 2005.

[ISO08]	 ISO (International Organization for Standardization). Systems
and Software Engineering – System Life Cycle Processes. In
ternational Standard 15288:2008, ISO/IEC, Geneva, 2008.

[ISO10]	 ISO (International Organization for Standardization). Systems
and Software Engineering – Vocabulary. International Stan
dard 24765:2010, ISO/IEC/IEEE, Geneva, 2010.

[ITU02]	 ITU (International Telecommunication Union). Specification
and Description Language (SDL). Recommendation Z100,
ITU-T, Geneva, 2002.

[Jac06a]	 Daniel Jackson. Dependable Software by Design. Scientific
American Magazine, pages 56–63, May 2006.

[Jac06b]	 Daniel Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2006.

[JC01]	 R. L. Jones and Gianfranco Ciardo. On Phased De
lay Stochastic Petri Nets: Definition and an Application.
In Proceedings of the 9th International Workshop on Petri
Nets and Performance Models (PNPM’01), Aachen, Ger
many, pages 165–174. IEEE Computer Society Press, Septem
ber 2001. Available from http://www.cs.ucr.edu/~ciardo/
pubs/2001PNPM-PDPN.pdf.

[JFA+07]	 A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, In
sup Lee, and George J. Pappas. Robust Test Generation and
Coverage for Hybrid Systems. In Alberto Bemporad, Antonio
Bicchi, and Giorgio C. Buttazzo, editors, Proceedings of the
10th International Workshop on Hybrid Systems: Computation
and Control (HSCC’07), Pisa, Italy, volume 4416 of Lecture
Notes in Computer Science, pages 329–342. Springer, 2007.

[JG05]	 Dennis Jeffrey and Neelam Gupta. Test Suite Reduction with
Selective Redundancy. In Proceedings of the 21st IEEE In
ternational Conference on Software Maintenance (ICSM’05),

http://www.cs.ucr.edu/~ciardo/pubs/2001PNPM-PDPN.pdf
http://www.cs.ucr.edu/~ciardo/pubs/2001PNPM-PDPN.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

321 BIBLIOGRAPHY

Budapest, Hungary, pages 549–558. IEEE Computer Society,
2005.

[JG07]	 Dennis Jeffrey and Neelam Gupta. Improving Fault Detection
Capability by Selectively Retaining Test Cases During Test
Suite Reduction. IEEE Transactions on Software Engineering,
33(2):108–123, 2007.

[JH03]	 James A. Jones and Mary Jean Harrold. Test-Suite Reduction
and Prioritization for Modified Condition/Decision Coverage.
IEEE Transactions on Software Engineering, 29(3):195–209,
2003.

[JH11]	 Yue Jia and Mark Harman. An Analysis and Survey of the
Development of Mutation Testing. IEEE Transactions on Soft
ware Engineering, 37(5):649–678, 2011.

[JHGK09]	 Karthick Jayaraman, David Harvison, Vijay Ganesh, and
Adam Kiezun. jFuzz: A Concolic Whitebox Fuzzer for Java. In
Ewen Denney, Dimitra Giannakopoulou, and Corina S. Pasare
anu, editors, Proceedings of the 1st NASA Formal Methods
Symposium (NFM’09), Moffett Field, California, USA, vol
ume NASA/CP-2009-215407 of NASA Conference Proceedings,
pages 121–125, 2009.

[JHL11]	 Michael Jastram, Stefan Hallerstede, and Lukas Ladenberger.
Mixing Formal and Informal Model Elements for Tracing Re
quirements. Electronic Communications of the EASST, 46,
2011. Proceedings of the 11th International Workshop on Au
tomated Verification of Critical Systems (AVoCS’11), New
castle upon Tyne, UK. Available from http://journal.ub.
tu-berlin.de/eceasst/article/view/685.

[JJ05]	 Claude Jard and Thierry Jéron. TGV: Theory, Principles and
Algorithms. Springer International Journal on Software Tools
for Technology Transfer (STTT), 7(4):297–315, 2005.

[JM99]	 Thierry Jéron and Pierre Morel. Test Generation Derived from
Model-Checking. In Nicolas Halbwachs and Doron Peled, edi
tors, Proceedings of the 11th International Conference on Com
puter Aided Verification (CAV’99), Trento, Italy, volume 1633
of Lecture Notes in Computer Science, pages 108–121. Springer,
1999.

[JMV04]	 Natalia Juristo Juzgado, Ana María Moreno, and Sira Vegas.
Reviewing 25 Years of Testing Technique Experiments. Em
pirical Software Engineering, 9(1–2):7–44, 2004.

http://journal.ub.tu-berlin.de/eceasst/article/view/685
http://journal.ub.tu-berlin.de/eceasst/article/view/685

322 BIBLIOGRAPHY

[Joh78] Stephen C. Johnson. Lint, a C Program Checker. Computer
Science Technical Report 65, AT&T Bell Laboratories, Mur
ray Hill, New Jersey, USA, December 1978. Revision of IEEE
standard 1028-1997.

[Jon86] Cliff B. Jones. Systematic Software Development Using VDM.
Prentice Hall, 1986.

[Jon94] Capers Jones. Function Points. IEEE Computer, 27(8):66–67,
August 1994.

[Jor03] Alan A. Jorgensen. Testing with Hostile Data Streams. ACM
SIGSOFT Software Engineering Notes, 28(2):1–6, 2003.

[Jür04] Jan Jürjens. Secure Systems Development with UML. Springer,
2004.

[JV84] Wolfgang Jürgensen and Son T. Vuong. Formal Specification
and Validation of ISO Transport Protocol Components Using
Petri Nets. ACM SIGCOMM Computer Communication Re
view, 14(2):75–82, 1984.

[JW96] Daniel Jackson and Jeannette Wing. Lightweight Formal Meth
ods. IEEE Computer, pages 21–22, April 1996.

[KAB+91] Kamara Kanoun, Jean Arlat, L. Burrill, Yves Crouzet, Su
sanne Graf, Eliane Martins, A. MacInness, David Powell, Jean-
Luc Richier, and Jacques Voiron. DELTA-4 Architecture Val
idation. In ESPRIT’91 Conference Proceedings, pages 234–
252. Commission of the European Communities, DG XIII:
Telecommunications, Information Industries and Innovation,
1991. ESPRIT Project 2252 “DELTA-4”. Available from http:
//aei.pitt.edu/39309/1/Esprit.1991.Conf..pdf.

[KAE+10] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot
Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal Verifica
tion of an Operating-System Kernel. Commununications of
the ACM, 53(6):107–115, 2010.

[KAI+09] Aditya Kanade, Rajeev Alur, Franjo Ivancic, S. Ramesh, Sri
ram Sankaranarayanan, and K. C. Shashidhar. Generating and
Analyzing Symbolic Traces of Simulink/Stateflow Models. In
Ahmed Bouajjani and Oded Maler, editors, Proceedings of the
21st International Conference on Computer Aided Verification
(CAV’09), Grenoble, France, volume 5643 of Lecture Notes in
Computer Science, pages 430–445. Springer, 2009.

http://aei.pitt.edu/39309/1/Esprit.1991.Conf..pdf
http://aei.pitt.edu/39309/1/Esprit.1991.Conf..pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

323 BIBLIOGRAPHY

[Kar96]	 Pim Kars. Formal Methods in the Design of a Storm Surge
Barrier Control System. In Grzegorz Rozenberg and Frits W.
Vaandrager, editors, European Educational Forum: School on
Embedded Systems, Veldhoven, The Netherlands, volume 1494
of Lecture Notes in Computer Science, pages 353–367. Springer,
1996.

[Kar97]	 Pim Kars. The Application of Promela and SPIN in the BOS
Project. In Jean-Charles Grégoire, Gerard J. Holzmann, and
Doron Peled, editors, Proceedings of the 2nd Workshop on the
SPIN Verification System (SPIN’96), volume 32 of DIMACS
series in Discrete Mathematics and Theoretical Computer Sci
ence, pages 51–63. American Mathematical Society, 1997.

[KB03]	 Hermann Kopetz and Günther Bauer. The Time-Triggered
Architecture. Proceedings of the IEEE, 91(1):112–126, 2003.

[KBE+95]	 Hermann Kopetz, Martin Braun, Christian Ebner, Andreas
Krüger, Dietmar Millinger, Roman Nossal, and Anton V.
Schedl. The Design of Large Real-Time Systems: The Time-
Triggered Approach. In Proceedings of the 16th IEEE Real-
Time Systems Symposium (RTSS’95), Pisa, Italy, pages 182–
189, 1995.

[KC05]	 Sascha Konrad and Betty H. C. Cheng. Real-Time Specifi
cation Patterns. In Gruia-Catalin Roman, William G. Gris
wold, and Bashar Nuseibeh, editors, Proceedings of the 27th
International Conference on Software Engineering (ICSE’05),
St. Louis, Missouri, USA, pages 372–381, 2005.

[KCT07]	 Joseph R. Kiniry, Dermot Cochran, and Patrick E. Tierney.
Verification-centric Realization of Electronic Vote Counting.
In Proceedings of the USENIX Workshop on Accurate Elec
tronic Voting Technology, Boston, Massachusetts, USA, pages
1–6, Berkeley, California, USA, 2007. USENIX Association.
Available from http://www.usenix.org/event/evt07/tech/
full_papers/kiniry.

[KG94]	 Hermann Kopetz and Günter Grünsteidl. TTP – A Protocol for
Fault-Tolerant Real-Time Systems. IEEE Computer, 27(1):14–
23, 1994.

[KGA+12]	 Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter
Hooimeijer, and Michael D. Ernst. HAMPI: A Solver for Word
Equations over Strings, Regular Expressions, and Context-free
Grammars. ACM Transactions on Software Engineering and
Methodology, 21(4):25, 2012.

http://www.usenix.org/event/evt07/tech/full_papers/kiniry
http://www.usenix.org/event/evt07/tech/full_papers/kiniry

324 BIBLIOGRAPHY

[KGG+09] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer,
and Michael D. Ernst. HAMPI: A Solver for String Constraints.
In Gregg Rothermel and Laura K. Dillon, editors, Proceedings
of the 19th International Symposium on Software Testing and
Analysis (ISSTA’09), Chicago, IL, USA, pages 105–116. ACM,
2009.

[KGJE09] Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and
Michael D. Ernst. Automatic Creation of SQL Injection and
Cross-site Scripting Attacks. In Proceedings of the 31st Inter
national Conference on Software Engineering (ICSE’09), Van
couver, BC, Canada, pages 199–209. IEEE, 2009.

[KGN+09] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Am
ber Telfer, Jesse Whittemore, Sudhindra Pandav, Anna Slo
bodová, Christopher Taylor, Vladimir Frolov, Erik Reeber, and
Armaghan Naik. Replacing Testing with Formal Verification
in Intel Core i7 Processor Execution Engine Validation. In
Ahmed Bouajjani and Oded Maler, editors, Proceedings of the
21st International Conference on Computer Aided Verification
(CAV’09), Grenoble, France, volume 5643 of Lecture Notes in
Computer Science, pages 414–429. Springer, 2009.

[KHCP00] Steve King, Jonathan Hammond, Roderick Chapman, and
Andy Pryor. Is Proof More Cost-Effective than Testing? IEEE
Transactions on Software Engineering, 26(8):675–686, 2000.

[KHR97] Lars Kühne, Jozef Hooman, and Willem-Paul de Roever. To
wards Mechanical Verification of Parts of the IEEE P1394
Serial Bus. In Ignac Lovrek, editor, Proceedings of the 2nd
COST 247 International Workshop on Applied Formal Meth
ods in System Design, Zagreb, Croatia, June 1997. Available
from http://www.cs.ru.nl/~hooman/P1394.html.

[Kin74] James C. King. A New Approach to Program Testing. In
Clemens Hackl, editor, Proceedings of the 4th IBM Symposium
on Programming Methodology, Wildbad, Germany, volume 23
of Lecture Notes in Computer Science, pages 278–290. Springer,
1974.

[Kin76] James C. King. Symbolic Execution and Program Testing.
Communications of the ACM, 19(7):385–394, 1976.

[Kin07] Joseph Kiniry. Formally Counting Electronic Votes (But Still
Only Trusting Paper). In Proceedings of the 12th Interna
tional Conference on Engineering of Complex Computer Sys

http://www.cs.ru.nl/~hooman/P1394.html

	

	

	

	

	

	

	

	

	

	

	

	

	

	

325 BIBLIOGRAPHY

tems (ICECCS’07), Auckland, New Zealand, pages 261–269.
IEEE Computer Society, 2007.

[KK10]	 Susanne Kandl and Raimund Kirner. Error Detection Rate of
MC/DC for a Case Study from the Automotive Domain. In
Sang Lyul Min, Robert G. Pettit IV, Peter P. Puschner, and
Theo Ungerer, editors, Proceedings of the 8th IFIP WG 10.2 In
ternational Workshop on Software Technologies for Embedded
and Ubiquitous Systems (SEUS’10), Waidhofen/Ybbs, Austria,
volume 6399 of Lecture Notes in Computer Science, pages 131–
142. Springer, 2010.

[KKMS03]	 James Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Sturs
berg. On Systematic Simulation of Open Continuous Systems.
In Oded Maler and Amir Pnueli, editors, Proceedings of the 6th
International Workshop on Hybrid Systems: Computation and
Control (HSCC’03), Prague, Czech Republic, volume 2623 of
Lecture Notes in Computer Science, pages 283–297. Springer,
2003.

[KL86]	 John C. Knight and Nancy G. Leveson. An Experimental
Evaluation of the Assumption of Independence in Multiversion
Programming. IEEE Transactions on Software Engineering,
12(1):96–109, 1986.

[KL90]	 John C. Knight and Nancy G. Leveson. A Reply to the Crit
icisms of the Knight & Leveson Experiment. ACM SIGSOFT
Software Engineering Notes, 15(1):24–35, January 1990.

[Kle09]	 Gerwin Klein. Operating System Verification – An Overview.
Sādhanā, 34(1):27–69, February 2009.

[KLS+11]	 Kari Kähkönen, Tuomas Launiainen, Olli Saarikivi, Janne
Kauttio, Keijo Heljanko, and Ikka Niemelä. LCT: An Open
Source Concolic Testing Tool for Java Programs. In Pierre
Ganty and Mark Marro, editors, Proceedings of the 6th Work
shop on Bytecode Semantics, Verification, Analysis and Trans
formation (BYTECODE’11), Saarbrücken, Germany, pages
75–80, 2011.

[KM11]	 Shinji Kikuchi and Yasuhide Matsumoto. Performance Mod
eling of Concurrent Live Migration Operations in Cloud Com
puting Systems Using PRISM Probabilistic Model Checker.
In Ling Liu and Manish Parashar, editors, Proceedings of
the 4th IEEE International Conference on Cloud Computing
(CLOUD’11), Washington, DC, USA, pages 49–56, 2011.

326 BIBLIOGRAPHY

[KMC+06] Joseph R. Kiniry, Alan E. Morkan, Dermot Cochran, Fintan
Fairmichael, Patrice Chalin, Martijn Oostdijk, and Engelbert
Hubbers. The KOA Remote Voting System: A Summary
of Work to Date. In Ugo Montanari, Donald Sannella, and
Roberto Bruni, editors, Proceedings of the 2nd Symposium on
Trustworthy Global Computing (TGC’06), Lucca, Italy, volume
4661 of Lecture Notes in Computer Science, pages 244–262.
Springer, 2006.

[KMM00a] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore.
Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Aca
demic Publishers, June 2000.

[KMM00b] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers, June 2000.

[KNP00] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Verifying Randomized Distributed Algorithms with PRISM. In
E. Allen Emerson and A. Prasad Sistla, editors, Proceedings of
the Workshop on Advances in Verification (Wave’00), Chicago,
USA, 2000.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Probabilistic Symbolic Model Checking with PRISM: A Hybrid
Approach. In Joost-Pieter Katoen and Perdita Stevens, edi
tors, Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’02), Grenoble, France, volume 2280 of Lecture Notes
in Computer Science, pages 52–66. Springer, 2002.

[KNP05] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Probabilistic Model Checking in Practice: Case Studies with
PRISM. SIGMETRICS Performance Evaluation Review,
32(4):16–21, 2005.

[KNP07] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Stochastic Model Checking. In Marco Bernardo and Jane Hill
ston, editors, Advanced Lectures on Formal Methods for Perfor
mance Evaluation – 7th International School on Formal Meth
ods for the Design of Computer, Communication, and Software
Systems (SFM’07), Bertinoro, Italy, volume 4486 of Lecture
Notes in Computer Science, pages 220–270. Springer, 2007.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM 4.0: Verification of Probabilistic Real-Time Systems.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

327 BIBLIOGRAPHY

In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceed
ings of the 23rd International Conference on Computer Aided
Verification (CAV’11), Snowbird, Utah, USA, volume 6806 of
Lecture Notes in Computer Science, pages 585–591. Springer,
2011.

[KNS01]	 Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala.
Automated Verification of a Randomized Distributed Consen
sus Protocol Using Cadence SMV and PRISM. In Gérard
Berry, Hubert Comon, and Alain Finkel, editors, Proceedings
of the 13th International Conference on Computer Aided Veri
fication (CAV’01), Paris, France, volume 2102 of Lecture Notes
in Computer Science, pages 194–206. Springer, 2001.

[Kop95]	 Hermann Kopetz. Why Time-Triggered Architectures Will
Succeed in Large Hard Real-Time Systems. In Proceedings of
the 5th IEEE Workshop on Future Trends of Distributed Com
puting Systems (FTDCS’95), Chenju, Korea, pages 2–9. IEEE
Computer Society, 1995.

[Kor90a]	 Bogdan Korel. A Dynamic Approach of Test Data Genera
tion. In Proceedings IEEE Conference on Software Mainte
nance, San Diego, CA, USA, pages 311–317, November 1990.

[Kor90b]	 Bogdan Korel. Automated Software Test Data Generation.
IEEE Transactions on Software Engineering, 16(8):870–879,
1990.

[Kor92]	 Bogdan Korel. Dynamic Method of Software Test Data Genera
tion. Software Testing, Verification & Reliability, 2(4):203–213,
1992.

[Kor96]	 Bogdan Korel. Automated Test Data Generation for Programs
with Procedures. In Steven J. Zeil, editor, Proceedings of
the International Symposium on Software Testing and Anal
ysis (ISSTA’96), San Diego, CA, USA, volume 21(3) of ACM
SIGSOFT Software Engineering Notes, pages 209–215. ACM,
1996.

[KPBT06]	 Simon Künzli, Francesco Poletti, Luca Benini, and Lothar
Thiele. Combining Simulation and Formal Methods for
System-Level Performance Analysis. In Georges G. E. Gielen,
editor, Proceedings of the Conference on Design, Automation
and Test in Europe (DATE’06), Munich, Germany, pages 236–
241. European Design and Automation Association, Leuven,
Belgium, 2006.

328 BIBLIOGRAPHY

[KPV03] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser.
Generalized Symbolic Execution for Model Checking and Test
ing. In Hubert Garavel and John Hatcliff, editors, Proceedings
of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’03),
Warsaw, Poland, volume 2619 of Lecture Notes in Computer
Science, pages 553–568. Springer, 2003.

[KS98] Gerald Kotonya and Ian Sommerville, editors. Requirements
Engineering: Processes and Techniques. John Wiley & Sons,
1998.

[KS06] Artem Katasonov and Markku Sakkinen. Requirements Qual
ity Control: A Unifying Framework. Requirements Engineer
ing, 11(1):42–57, 2006.

[KSH92] John C. Kelly, Joseph S. Sherif, and Jonathan M. Hops. An
Analysis of Defect Densities Found During Software Inspec
tions. Journal of Systems and Software, 17(2):111–117, 1992.

[KTVW11] Jörg Kreiker, Andrzej Tarlecki, Moshe Y. Vardi, and Reinhard
Wilhelm. Modeling, Analysis, and Verification – The Formal
Methods Manifesto 2010 (Dagstuhl Perspectives Workshop
10482). Dagstuhl Manifestos, 1(1001):21–40, 2011. Available
from http://drops.dagstuhl.de/opus/volltexte/2011/
3212/pdf/dagman_v001_i001_p021_10482.pdf.

[KWB+12] Nikolai Kosmatov, Nicky Williams, Bernard Botella, Muriel
Roger, and Omar Chebaro. A Lesson on Structural Test
ing with PathCrawler-online.com. In Achim D. Brucker and
Jacques Julliand, editors, Proceedings of the 6th International
Conference on Tests and Proofs (TAP’12), Prague, Czech Re
public, volume 7305 of Lecture Notes in Computer Science,
pages 169–175. Springer, 2012.

[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Hol
ger Hermanns, and David N. Jansen. The Ins and Outs of
the Probabilistic Model Checker MRMC. In Proceedings of the
6th International Conference on the Quantitative Evaluation of
Systems (QEST’09), Budapest, Hungary, pages 167–176. IEEE
Computer Society, 2009.

[KZH+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Hol
ger Hermanns, and David N. Jansen. The Ins and Outs of the
Probabilistic Model Checker MRMC. Performance Evaluation,
68(2):90–104, 2011.

http://drops.dagstuhl.de/opus/volltexte/2011/3212/pdf/dagman_v001_i001_p021_10482.pdf
http://drops.dagstuhl.de/opus/volltexte/2011/3212/pdf/dagman_v001_i001_p021_10482.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

329 BIBLIOGRAPHY

[LA05]	 Yong Lei and James H. Andrews. Minimization of Random
ized Unit Test Cases. In Proceedings of the 16th International
Symposium on Software Reliability Engineering (ISSRE’05),
Chicago, Illinois, USA, pages 267–276. IEEE Computer Soci
ety, 2005.

[LBD+04]	 James R. Larus, Thomas Ball, Manuvir Das, Robert De-
Line, Manuel Fähndrich, Jonathan D. Pincus, Sriram K.
Rajamani, and Ramanathan Venkatapathy. Righting Soft
ware. IEEE Software, 21(3):92–100, 2004. Available from
http://research.microsoft.com/apps/pubs/default.
aspx?id=67481.

[Led91]	 Guy Leduc. Conformance Relation, Associated Equivalence,
and New Canonical Tester in LOTOS. In Bengt Jonsson,
Joachim Parrow, and Björn Pehrson, editors, Proceedings of
the 11th IFIP WG6.1 International Symposium on Protocol
Specification, Testing and Verification (PSTV’91), Stockholm,
Sweden, pages 249–264. North-Holland, 1991. Revised ver
sion available from ftp://ftp.run.montefiore.ulg.ac.be/
test/pub/RUN-PP91-01.ps.

[Led94]	 Guy Leduc. Failure-based Congruences, Unfair Divergences
and New Testing Theory. In Son T. Vuong and Samuel T.
Chanson, editors, Proceedings of the 14th IFIP WG6.1 In
ternational Symposium on Protocol Specification, Testing and
Verification (PSTV’94), Vancouver, BC, Canada, volume 1 of
IFIP Conference Proceedings, pages 252–267. Chapman & Hall,
1994.

[Led01]	 Jim Ledin. Simulation Engineering: Build Better Embedded
Systems Faster. CRC Press, 2001.

[Ler06]	 Xavier Leroy. Formal Certification of a Compiler Back-end or:
Programming a Compiler with a Proof Assistant. In J. Gre
gory Morrisett and Simon L. Peyton Jones, editors, Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Princi
ples of Programming Languages (POPL’06), Charleston, South
Carolina, USA, pages 42–54, 2006.

[Lev95]	 Nancy G. Leveson. Medical Devices: The Therac-25. Avail
able from http://sunnyday.mit.edu/papers/therac.pdf.
Updated version of the original article published in IEEE Com
puter, 26(7), July 1993, pp. 18–41. Also appeared in the ap
pendix of the book by Nancy Leveson Software: System Safety
and Computers, Addison Wesley, 1995.

http://research.microsoft.com/apps/pubs/default.aspx?id=67481
http://research.microsoft.com/apps/pubs/default.aspx?id=67481
ftp://ftp.run.montefiore.ulg.ac.be/test/pub/RUN-PP91-01.ps
ftp://ftp.run.montefiore.ulg.ac.be/test/pub/RUN-PP91-01.ps
http://sunnyday.mit.edu/papers/therac.pdf

330 BIBLIOGRAPHY

[LG00] Guy Leduc and François Germeau. Verification of Security
Protocols Using LOTOS – Method and Application. Computer
Communications, 23(12):1089–1103, 2000.

[LGL10] Rüdiger Lincke, Tobias Gutzmann, and Welf Löwe. Soft
ware Quality Prediction Models Compared. In Ji Wang,
W. K. Chan, and Fei-Ching Kuo, editors, Proceedings of the
10th International Conference on Quality Software (QSIC’10),
Zhangjiajie, China, pages 82–91. IEEE Computer Society,
2010.

[Lio96] Jacques-Louis Lions et al. ARIANE 5 Flight 501 Failure Re
port. Technical report, European Space Agency (ESA) & Na
tional Center for Space Study (CNES) Inquiry Board, July
1996. Available from http://esamultimedia.esa.int/docs/
esa-x-1819eng.pdf.

[Lit00] Bev Littlewood. The Use of Proof in Diversity Arguments.
IEEE Transactions on Software Engineering, 26(10):1022–
1023, 2000.

[LLL08] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Compar
ing Software Metrics Tools. In Barbara G. Ryder and An
dreas Zeller, editors, Proceedings of the ACM SIGSOFT In
ternational Symposium on Software Testing and Analysis (IS
STA’08), Seattle, WA, USA, pages 131–142. ACM, 2008.

[LMMP07] Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, and
Roberto Paleari. A Smart Fuzzer for x86 Executables. In Pro
ceedings of the 3rd International Workshop on Software Engi
neering for Secure Systems (SESS’07), Minneapolis, MN, USA.
IEEE, 2007.

[Lov84] Donald W. Loveland. Automated Theorem Proving: A Quar
ter Century Review. In W. W. Bledsoe and D. W. Loveland,
editors, Automated Theorem Proving – After 25 Years, vol
ume 29 of Contemporary Mathematics, pages 1–45. American
Mathematical Society, 1984.

[Low95] Gavin Lowe. An Attack on the Needham-Schroeder Public-
Key Authentication Protocol. Information Processing Letters,
56(3):131–133, 1995.

[Low96a] Gavin Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. In Tiziana Margaria and
Bernhard Steffen, editors, Proceedings of the 2nd International
Workshop on Tools and Algorithms for the Construction and

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

331 BIBLIOGRAPHY

Analysis of Systems (TACAS’96), Passau, Germany, volume
1055 of Lecture Notes in Computer Science, pages 147–166.
Springer, 1996.

[Low96b]	 Gavin Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. Software — Concepts and
Tools, 17(3):93–102, 1996.

[LPS00]	 Bev Littlewood, Peter T. Popov, and Lorenzo Strigini. Assess
ment of the Reliability of Fault-Tolerant Software: A Bayesian
Approach. In Floor Koornneef and Meine van der Meulen,
editors, Proceedings of the 19th International Conference on
Computer Safety, Reliability and Security (SAFECOMP’00),
Rotterdam, The Netherlands, volume 1943 of Lecture Notes in
Computer Science, pages 294–308. Springer, 2000.

[LPS01]	 Bev Littlewood, Peter T. Popov, and Lorenzo Strigini. Mod
eling Software Design Diversity. ACM Computing Surveys,
33(2):177–208, 2001.

[LPY98]	 Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design
and Analysis of a Gear Controller. In Bernhard Steffen, edi
tor, Proceedings of the 4th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’98), Lisbon, Portugal, volume 1384 of Lecture Notes
in Computer Science, pages 281–297. Springer, 1998.

[LPY99]	 Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. A
New Class of Decidable Hybrid Systems. In Frits W. Vaan
drager and Jan H. van Schuppen, editors, Proceedings of the
2nd International Workshop on Hybrid Systems: Computation
and Control (HSCC’99), Berg en Dal, The Netherlands, vol
ume 1569 of Lecture Notes in Computer Science, pages 137–
151. Springer, 1999.

[LPY01]	 Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal De
sign and Analysis of a Gear Controller. Springer International
Journal on Software Tools for Technology Transfer (STTT),
3(3):353–368, 2001.

[LS88]	 Jeroen van de Lagemaat and Giuseppe Scollo. On the Use of
LOTOS for the Formal Description of a Transport Protocol. In
Kenneth J. Turner, editor, Proceedings of the 1st International
Conference on Formal Description Techniques (FORTE’88),
Stirling, Scotland, UK, pages 247–261. North-Holland, 1988.

332 BIBLIOGRAPHY

[LS93] Bev Littlewood and Lorenzo Strigini. Validation of Ultra-High
Dependability for Software-Based Systems. Communications
of the ACM, 36(11):69–80, 1993.

[LS11] Etienne Lantreibecq and Wendelin Serwe. Model Checking
and Co-simulation of a Dynamic Task Dispatcher Circuit Using
CADP. In Gwen Salaün and Bernhard Schätz, editors, Proceed
ings of the 16th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS’11), Trento, Italy, volume
6959 of Lecture Notes in Computer Science, pages 180–195.
Springer, 2011.

[LST05] D. T. Lee, S. P. Shieh, and J. Doug Tygar, editors. Computer
Security in the 21st Century. Springer, 2005.

[LSW97] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise.
Continuous Modeling of Real-Time and Hybrid Systems: From
Concepts to Tools. Springer International Journal on Software
Tools for Technology Transfer (STTT), 1(1–2):64–85, 1997.

[LTW+06] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan
Zhou, and Chengxiang Zhai. Have Things Changed Now? –
An Empirical Study of Bug Characteristics in Modern Open
Source Software. In Josep Torrellas, editor, Proceedings of the
1st Workshop on Architectural and System Support for Improv
ing Software Dependability (ASID’06), San Jose, California,
USA, pages 25–33. ACM, 2006.

[Lut92] Robyn R. Lutz. Analyzing Software Requirements Er
rors in Safety-Critical Embedded Systems. Techni
cal Report TR92-27, Department of Computer Science,
Iowa State University, USA, August 1992. Available
from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.31.5795&rep=rep1&type=pdf.

[Lut93] Robyn R. Lutz. Analyzing Software Requirements Errors in
Safety-Critical Embedded Systems. In Proceedings of the IEEE
International Symposium on Requirements Engineering, San
Diego, CA, USA, January 1993.

[Lut96] Robyn R. Lutz. Targeting Safety-related Errors During Soft
ware Requirements Analysis. Journal of Systems and Software,
34(3):223–230, 1996.

[Lut97] Bas Luttik. Description and Formal Specification of the Link
Layer of P1394. In Ignac Lovrek, editor, Proceedings of the 2nd

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.5795&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.5795&rep=rep1&type=pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

333 BIBLIOGRAPHY

COST 247 International Workshop on Applied Formal Meth
ods in System Design, Zagreb, Croatia, June 1997. Also avail
able from http://oai.cwi.nl/oai/asset/4758/04758D.pdf
as CWI Report SEN-R9706.

[LW97]	 Robyn R. Lutz and Robert M. Woodhouse. Requirements
Analysis Using Forward and Backward Search. Annals of Soft
ware Engineering, 3:459–475, 1997.

[LY96]	 David Y. Lee and Mihalis Yannakakis. Principles and Methods
of Testing Finite State Machines – A Survey. Proceedings of
IEEE, 84(8):1089–1123, August 1996.

[Lyu95]	 Michael R. Lyu, editor. Software Fault Tolerance. John Wiley
& Sons, 1995. Book contents available from http://www.cse.
cuhk.edu.hk/~lyu/book/sft/.

[Mac91]	 Donald MacKenzie. The Fangs of the VIPER. Nature, 352:467–
468, August 1991.

[MAH98]	 Dinos Moundanos, Jacob A. Abraham, and Yatin Vasant
Hoskote. Abstraction Techniques for Validation Coverage
Analysis and Test Generation. IEEE Transactions on Com
puters, 47(1):2–14, 1998.

[Mal95]	 Yashwant K. Malaiya. Antirandom Testing: Getting the Most
out of Black-box Testing. In Proceedings of the 6th Interna
tional IEEE Symposium on Software Reliability Engineering
(ISSRE’95), Toulouse, France, pages 86–95. IEEE Computer
Society, October 1995.

[Mar95]	 Panos Markopoulos. On the Expression of Interaction Prop
erties Within an Interactor Model. In Philippe A. Palanque
and Rémi Bastide, editors, Proceedings of the Eurographics
Workshop on Design, Specification and Verification of Inter
active Systems (DSV-IS’95), Toulouse, France, pages 294–310.
Springer, 1995.

[Mar97]	 Brian Marick. How to Misuse Code Coverage. Available
from www.exampler.com/testing-com/writings/coverage.
pdf, 1997.

[Mau04]	 Laurent Mauborgne. Astrée: Verification of Absence of Run-
Time Error. In René Jacquart, editor, Proceedings of the IFIP
18th World Computer Congress on Building the Information
Society – Topical Sessions, Toulouse, France, pages 385–392.
Kluwer Academic Publishers, 2004.

http://oai.cwi.nl/oai/asset/4758/04758D.pdf
http://www.cse.cuhk.edu.hk/~lyu/book/sft/
http://www.cse.cuhk.edu.hk/~lyu/book/sft/
www.exampler.com/testing-com/writings/coverage.pdf
www.exampler.com/testing-com/writings/coverage.pdf

334 BIBLIOGRAPHY

[MC85] Bhubaneswaru Mishra and Edmund M. Clarke. Hierarchical
Verification of Asynchronous Circuits Using Temporal Logic.
Theoretical Computer Science, 38:269–291, 1985.

[MC11] Sjouke Mauw and Cas Cremers. Operational Semantics and
Verification of Security Protocols. Springer, 2011.

[McM92] Kenneth L. McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. PhD thesis, Carnegie Mellon
University, 1992.

[MCM06] Barton P. Miller, Gregory Cooksey, and Fredrick Moore. An
Empirical Study of the Robustness of MacOS Applications Us
ing Random Testing. In Johannes Mayer and Robert G. Merkel,
editors, Proceedings of the 1st International Workshop on Ran
dom Testing (RT’06), Portland, Maine, USA, pages 46–54.
ACM, 2006.

[MD87] Eric Madelaine and Robert De Simone. ECRINS, un Lab
oratoire de Preuve pour les Calculs de Processus. Research
Report 672, INRIA, Sophia-Antipolis, France, 1987. Available
from http://hal.inria.fr/inria-00075881.

[Mey80] John F. Meyer. On Evaluating the Performability of Degrad
able Computing Systems. IEEE Transaction on Computers,
29(8):720–731, 1980.

[Mey85] Bertrand Meyer. On Formalism in Specifications. IEEE Soft
ware, 2(1):6–26, 1985.

[Mey92] John F. Meyer. Performability: A Retrospective and Some
Pointers to the Future. Performance Evaluation, 14(3–4):139–
156, 1992.

[Mey95] John F. Meyer. Performability Evaluation: Where It Is and
What Lies Ahead. In Proceedings of 1995 IEEE Interna
tional Computer Performance and Dependability Symposium
(IPDS’95), Erlangen, Germany, pages 334–343, 1995.

[MFN04] Luisa Mich, Mariangela Franch, and Pierluigi Novi Inverardi.
Market Research for Requirements Analysis Using Linguistic
Tools. Requirements Engineering, 9(1):40–56, 2004.

[MFS90] Barton P. Miller, Lars Fredriksen, and Bryan So. An Empirical
Study of the Reliability of UNIX Utilities. Communications of
the ACM, 33(12):32–44, 1990.

http://hal.inria.fr/inria-00075881

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

335 BIBLIOGRAPHY

[MGL+83]	 B. Montel, D. Grissault, E. Le Mer, C. Robert, A. Sivet,
J. M. Ayache, P. Azema, S. Bachmann, B. Berthomieu,
B. Chezalviel-Pradin, J. P. Courtiat, M. Diaz, and J. Dufau.
OVIDE: A Software Package for Verifying and Validating Petri
Nets. In Proceedings of the Softfair Conference ond Develop
ment Tools Techniques and Alternatives, Arlington, Virginia,
USA, pages 86–92, 1983.

[MH03]	 Jean-Francois Monin and Michael Gerard Hinchey. Under
standing Formal Methods. Springer, 2003.

[Mil80]	 Robin Milner. A Calculus of Communicating Systems, vol
ume 92 of Lecture Notes in Computer Science. Springer, 1980.

[Mil89]	 Robin Milner. Communication and Concurrency. Prentice
Hall, 1989.

[Mil00]	 Joseph S. Miller. Decidability and Complexity Results for
Timed Automata and Semi-linear Hybrid Automata. In
Nancy A. Lynch and Bruce H. Krogh, editors, Proceedings of
the 3rd International Workshop on Hybrid Systems: Computa
tion and Control (HSCC’00), Pittsburgh, Pennsylvania, USA,
volume 1790 of Lecture Notes in Computer Science, pages 296–
309. Springer, 2000.

[Mil08]	 Steven P. Miller. Will This Be Formal? In Otmane Aït Mo
hamed, César Muñoz, and Sofiène Tahar, editors, Proceedings
of the 21st International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’08), Montreal, Canada, vol
ume 5170 of Lecture Notes in Computer Science, pages 6–11.
Springer, 2008.

[Mis08]	 Krishna B. Misra. Handbook of Performability Engineering.
Springer, 2008.

[MK06]	 Jeff Magee and Jeff Kramer. Concurrency: State Models and
Java Programs. Wiley, 2006. 2nd edition.

[MKL+95]	 Barton P. Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl.
Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services. Technical report, Computer Sciences
Department, University of Wisconsin, Madison, WI, USA,
1995. Available from ftp://ftp.cs.wisc.edu/paradyn/
technical_papers/fuzz-revisited.pdf.

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

336 BIBLIOGRAPHY

[ML09]	 Mika Mäntylä and Casper Lassenius. What Types of Defects
Are Really Discovered in Code Reviews? IEEE Transactions
on Software Engineering, 35(3):430–448, 2009.

[MLW09]	 David Molnar, Xue Cong Li, and David Wagner. Dynamic
Test Generation to Find Integer Bugs in x86 Binary Linux
Programs. In Proceedings of the 18th USENIX Security Sym
posium, Montreal, Canada, pages 67–82. USENIX Associa
tion, 2009. Available from http://www.usenix.org/events/
sec09/tech/full_papers/molnar.pdf.

[MM98]	 Christoph C. Michael and Gary McGraw. Automated Software
Test Data Generation for Complex Programs. In Proceedings
of the 13th IEEE Conference on Automated Software Engineer
ing (ASE’98), Honolulu, Hawaii, USA, pages 136–146. IEEE
Computer Society, 1998.

[MMP+12]	 Nariman Mirzaei, Sam Malek, Corina S. Pasareanu, Naeem Es
fahani, and Riyadh Mahmood. Testing Android Apps Through
Symbolic Execution. ACM SIGSOFT Software Engineering
Notes, 37(6):1–5, 2012.

[MMS90]	 Louise E. Moser and P. M. Melliar-Smith. Formal Verification
of Safety-critical Systems. Software, Practice & Experience,
20(8):799–821, 1990.

[MMWL08] Patricia Mouy, Bruno Marre, Nicky Williams, and Pascale Le
Gall. Generation of All-Paths Unit Test with Function Calls.
In Rob Hierons and Aditya Mathur, editors, Proceedings of the
1st International Conference on Software Testing, Verification,
and Validation (ICST’08), Lillehammer, Norway, pages 32–41.
IEEE Computer Society, 2008.

[MO00]	 Roy A. Maxion and Robert T. Olszewski. Eliminating Ex
ception Handling Errors with Dependability Cases: A Com
parative, Empirical Study. IEEE Transactions on Software
Engineering, 26(9):888–906, 2000.

[Mos04]	 Peter D. Mosses. CASL Reference Manual – The Complete
Documentation of the Common Algebraic Specification Lan
guage, volume 2960 of Lecture Notes in Computer Science.
Springer, 2004.

[MP91]	 Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification (Volume 1). Springer,
1991.

http://www.usenix.org/events/sec09/tech/full_papers/molnar.pdf
http://www.usenix.org/events/sec09/tech/full_papers/molnar.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

337 BIBLIOGRAPHY

[MP95]	 Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Safety (Volume 2). Springer, 1995.

[MRJ97]	 Panos Markopoulos, Jon Rowson, and Peter Johnson. Compo
sition and Synthesis with a Formal Interactor Model. Interact
ing with Computers, 9(2):197–223, 1997.

[MS01]	 John F. Meyer and William H. Sanders. Specification and Con
struction of Performability Models. In Boudewijn R. Haverkort,
Raymond Marie, Gerardo Rubino, and Kishor S. Trivedi, ed
itors, Performability Modelling: Techniques and Tools, chap
ter 9, pages 179–222. Wiley, 2001.

[MS06]	 Johannes Mayer and Christoph Schneckenburger. An Empiri
cal Analysis and Comparison of Random Testing Techniques.
In Guilherme Horta Travassos, José Carlos Maldonado, and
Claes Wohlin, editors, Proceedings of the International Sympo
sium on Empirical Software Engineering (ISESE’06), Rio de
Janeiro, Brazil, pages 105–114. ACM, 2006.

[MS07]	 Rupak Majumdar and Koushik Sen. Hybrid Concolic Testing.
In Wolfgang Emmerich and Gregg Rothermel, editors, Pro
ceedings of the 29th International Conference on Software En
gineering (ICSE’07), Minneapolis, MN, USA, pages 416–426.
IEEE Computer Society, 2007.

[MS13]	 Radu Mateescu and Wendelin Serwe. Model Checking and
Performance Evaluation with CADP Illustrated on Shared
memory Mutual Exclusion Protocols. Science of Computer
Programming, 78(7):843–861, July 2013.

[MSE10]	 Ken Madlener, Sjaak Smetsers, and Marko C. J. D. van Eeke
len. A Formal Verification Study on the Rotterdam Storm
Surge Barrier. In Jin Song Dong and Huibiao Zhu, editors,
Proceedings of the 12th International Conference on Formal
Engineering Methods (ICFEM’10), Shanghai, China, volume
6447 of Lecture Notes in Computer Science, pages 287–302.
Springer, 2010.

[MSUV04]	 Heiko Mantel, Werner Stephan, Markus Ullmann, and Roland
Vogt. Guideline for the Development and Evaluation of For
mal Security Policy Models in the Scope of ITSEC and Com
mon Criteria – Version 1.1. Technical report, Bundesamt für
Sicherheit in der Informationstechnik (BSI), Bonn, Germany,
December 2004. Available from http://david.von-oheimb.
de/cs/teach/BSI-Leitfaden_1.1.pdf.

http://david.von-oheimb.de/cs/teach/BSI-Leitfaden_1.1.pdf
http://david.von-oheimb.de/cs/teach/BSI-Leitfaden_1.1.pdf

338 BIBLIOGRAPHY

[MSUV07] Heiko Mantel, Werner Stephan, Markus Ullmann, and
Roland Vogt. Guideline for the Development and Eval
uation of Formal Security Policy Models in the Scope of
ITSEC and Common Criteria – Version 2.0. Technical
report, Bundesamt für Sicherheit in der Informationstechnik
(BSI), Bonn, Germany, December 2007. Available from
https://www.bsi.bund.de/ContentBSI/Publikationen/
Studien/fmethode/formale_methoden.html or from https:
//www.bsi-fuer-buerger.de/cae/servlet/contentblob/
487166/publicationFile/31099/fms_v1_0_pdf.pdf.

[MW07] David Alexander Molnar and David Wagner. Catchconv:
Symbolic Execution and Run-time Type Inference for Inte
ger Conversion Errors. Technical Report UCB/EECS-2007-23,
EECS Department, University of California, Berkeley, Febru
ary 2007. Available from http://www.eecs.berkeley.edu/
Pubs/TechRpts/2007/EECS-2007-23.html.

[MWC10] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer.
Software Model Checking Takes Off. Communications of the
ACM, 53(2):58–64, 2010.

[MX09] Rupak Majumdar and Ru-Gang Xu. Reducing Test Inputs
Using Information Partitions. In Ahmed Bouajjani and Oded
Maler, editors, Proceedings of the 21st International Confer
ence on Computer Aided Verification (CAV’09), Grenoble,
France, volume 5643 of Lecture Notes in Computer Science,
pages 555–569. Springer, 2009.

[NA09] Akbar Siami Namin and James H. Andrews. The Influence
of Size and Coverage on Test Suite Effectiveness. In Gregg
Rothermel and Laura K. Dillon, editors, Proceedings of the
18th International Symposium on Software Testing and Anal
ysis (ISSTA’09), Chicago, IL, USA, pages 57–68. ACM, 2009.

[NAM08] Akbar Siami Namin, James H. Andrews, and Duncan J. Mur-
doch. Sufficient Mutation Operators for Measuring Test Effec
tiveness. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker
Gruhn, editors, Proceedings of the 30th International Confer
ence on Software Engineering (ICSE’08), Leipzig, Germany,
pages 351–360. ACM, 2008.

[NIS02] NIST (National Institute of Standards and Technology). The
Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3, NIST, Gaithersburg, Mary

https://www.bsi.bund.de/ContentBSI/Publikationen/Studien/fmethode/formale_methoden.html
https://www.bsi.bund.de/ContentBSI/Publikationen/Studien/fmethode/formale_methoden.html
https://www.bsi-fuer-buerger.de/cae/servlet/contentblob/487166/publicationFile/31099/fms_v1_0_pdf.pdf
https://www.bsi-fuer-buerger.de/cae/servlet/contentblob/487166/publicationFile/31099/fms_v1_0_pdf.pdf
https://www.bsi-fuer-buerger.de/cae/servlet/contentblob/487166/publicationFile/31099/fms_v1_0_pdf.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-23.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-23.html

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

339 BIBLIOGRAPHY

land, USA, May 2002. Available from http://www.nist.gov/
director/planning/upload/report02-3.pdf.

[NK91]	 Takeshi Nakajo and Hitoshi Kume. A Case History Analysis of
Software Error Cause-Effect Relationships. IEEE Transactions
on Software Engineering, 17(8):830–838, 1991.

[NOSY92]	 Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio
Yovine. An Approach to the Description and Analysis of Hy
brid Systems. In Robert L. Grossman, Anil Nerode, Anders P.
Ravn, and Hans Rischel, editors, Proceedings of the Workshop
on Theory of Hybrid Systems, Lyngby, Denmark, volume 736 of
Lecture Notes in Computer Science, pages 149–178. Springer,
1992.

[NPW02]	 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is
abelle/HOL — A Proof Assistant for Higher-Order Logic, vol
ume 2283 of Lectures Notes in Computer Science. Springer,
2002.

[NRTT09]	 Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and
Aditya V. Thakur. The Yogi Project: Software Prop
erty Checking via Static Analysis and Testing. In Stefan
Kowalewski and Anna Philippou, editors, Proceedings of the
15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’09), York, UK,
volume 5505 of Lecture Notes in Computer Science, pages 178–
181. Springer, 2009.

[NS78]	 Roger Needham and Michael Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Communica
tions of the ACM, 21(12):993–999, December 1978.

[NS87]	 Roger M. Needham and Michael D. Schroeder. Authentication
Revisited. Operating Systems Review, 21(1), 1987.

[NSF98]	 NSF (National Science Foundation). Final Report: NSF
Workshop on Billion-Transistor Systems. Technical re
port, Princeton, New Jersey, USA, March 1998. Available
from http://www.ee.princeton.edu/~wolf/nsf-workshop/
final-report.html.

[Nta01]	 Simeon C. Ntafos. On Comparisons of Random, Partition, and
Proportional Partition Testing. IEEE Transactions on Soft
ware Engineering, 27(10):949–960, 2001.

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.ee.princeton.edu/~wolf/nsf-workshop/final-report.html
http://www.ee.princeton.edu/~wolf/nsf-workshop/final-report.html

340 BIBLIOGRAPHY

[NV90] Rocco De Nicola and Frits W. Vaandrager. Action Versus
State-based Logics for Transition Systems. In Irène Guessarian,
editor, Proceedings of the LITP Spring School on Theoretical
Computer Science – Semantics of Systems of Concurrent Pro
cesses, La Roche Posay, France, volume 469 of Lecture Notes
in Computer Science, pages 407–419. Springer, 1990.

[OJP94] A. Jefferson Offutt, Zhenyi Jin, and Jie Pan. The Dynamic Do
main Reduction Procedure for Test Data Generation: Design
and Algorithms. Technical Report ISSE-TR-94-110, George
Mason University, 1994.

[OJP99] A. Jefferson Offutt, Zhenyi Jin, and Jie Pan. The Dynamic Do
main Reduction Procedure for Test Data Generation. Software,
Practice and Experience, 29(2):167–193, 1999. Available from
http://cs.gmu.edu/~offutt/rsrch/papers/dd-gen.pdf.

[O’N03] Don O’Neill. National Software Quality Experiment – A Les
son in Measurement – 1992–2002. Available from http://www.
reviewtechnik.de/NationalSoftwareQualityExperiment.
pdf, 2003.

[ORSS96] Sam Owre, John Rushby, Natarjan Shankar, and M. Srivas.
PVS: Combining Specification, Proof Checking and Model-
Checking. In Proceedings of the 8th International Conference
on Computer Aided Verification (CAV’96), New Brunswick,
NJ, USA, volume 1102 of Lectures Notes in Computer Science,
1996.

[OW02] Thomas J. Ostrand and Elaine J. Weyuker. The Distribution of
Faults in a Large Industrial Software System. In Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA’02), Roma, Italy, pages 55–64, 2002.

[OW04] Joël Ouaknine and James Worrell. On the Language Inclusion
Problem for Timed Automata: Closing a Decidability Gap. In
Proceedings of the 19th IEEE Symposium on Logic in Com
puter Science (LICS’04), Turku, Finland, pages 54–63. IEEE
Computer Society, 2004.

[OWB05] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell.
Predicting the Location and Number of Faults in Large Soft
ware Systems. IEEE Transactions on Software Engineering,
31(4):340–355, 2005.

[Pat93] Fabio Paternò. Definition of Properties of User Interfaces Us
ing Action-Based Temporal Logic. In A. Monk, D. Diaper,

http://cs.gmu.edu/~offutt/rsrch/papers/dd-gen.pdf
http://www.reviewtechnik.de/NationalSoftwareQualityExperiment.pdf
http://www.reviewtechnik.de/NationalSoftwareQualityExperiment.pdf
http://www.reviewtechnik.de/NationalSoftwareQualityExperiment.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

341 BIBLIOGRAPHY

and M. D. Harrison, editors, Proceedings of the 5th Interna
tional Conference on Software Engineering and Knowledge En
gineering (SEKE’93), San Francisco Bay, USA, pages 314–318.
Knowledge Systems Institute, 1993.

[Pat94]	 Fabio Paternò. A Theory of User-interaction Objects. Journal
of Visual Languages and Computing, 5(3):227–249, 1994.

[PC09a]	 André Platzer and Edmund M. Clarke. Computing Differential
Invariants of Hybrid Systems as Fixedpoints. Formal Methods
in System Design, 35(1):98–120, 2009.

[PC09b]	 André Platzer and Edmund M. Clarke. Formal Verification of
Curved Flight Collision Avoidance Maneuvers: A Case Study.
In Proceedings of the 2nd World Congress on Formal Methods
(FM’09), Eindhoven, The Netherlands, volume 5850 of Lecture
Notes in Computer Science, pages 547–562. Springer, 2009.

[PE85]	 Dewayne E. Perry and W. Michael Evangelist. An Empirical
Study of Software Interface Faults. In Proceedings of the Inter
national Symposium on New Directions in Computing, Trond
heim, Norway, pages 32–37, August 1985. Technical report ver
sion available from http://users.ece.utexas.edu/~perry/
work/papers/isnd.pdf.

[PE87]	 Dewayne E. Perry and W. Michael Evangelist. An Empirical
Study of Software Interface Faults – An Update. In Proceedings
of the Twentieth Annual Hawaii International Conference on
System Sciences, pages 113–126, January 1987. Technical re
port version available from http://users.ece.utexas.edu/
~perry/work/papers/ie-update.pdf.

[Peh89]	 Björn Pehrson. Protocol Verification for OSI. Computer Net
works and ISDN Systems, 18(3):185–201, 1989.

[Pet81]	 James Lyle Peterson. Petri Net Theory and the Modeling of
Systems. Prentice Hall, June 1981.

[PF92]	 Fabio Paternò and Giorgio P. Faconti. On the Use of LOTOS
to Describe Graphical Interaction. In A. Monk, D. Diaper, and
M. D. Harrison, editors, Proceedings of the Human-Computer
Interaction Conference (HCI’92) – People and Computers VII,
York, UK, pages 155–173. Cambridge University Press, 1992.

[Pfe00]	 Holger Pfeifer. Formal Verification of the TTP Group Mem
bership Algorithm. In Tommaso Bolognesi and Diego Latella,
editors, Proceedings of the Joint International Conference on

http://users.ece.utexas.edu/~perry/work/papers/isnd.pdf
http://users.ece.utexas.edu/~perry/work/papers/isnd.pdf
http://users.ece.utexas.edu/~perry/work/papers/ie-update.pdf
http://users.ece.utexas.edu/~perry/work/papers/ie-update.pdf

342 BIBLIOGRAPHY

Formal Description Techniques for Distributed Systems and
Communication Protocols and Protocol Specification, Testing
and Verification (FORTE/PSTV’00), Pisa, Italy, volume 183
of IFIP Conference Proceedings, pages 3–18. Kluwer, 2000.

[PH04] Holger Pfeifer and Friedrich W. von Henke. Modular Formal
Analysis of the Central Guardian in the Time-Triggered Ar
chitecture. In Maritta Heisel, Peter Liggesmeyer, and Stefan
Wittmann, editors, Proceedings of the 23rd International Con
ference on Computer Safety, Reliability, and Security (SAFE
COMP’04), Potsdam, Germany, volume 3219 of Lecture Notes
in Computer Science, pages 240–253. Springer, 2004.

[PJ87] Ronald E. Prather and J. Paul Myers Jr. The Path Prefix
Software Testing Strategy. IEEE Transactions on Software
Engineering, 13(7):761–766, 1987.

[PL07] Dong-bo Pan and Feng Liu. Influence Between Functional
Safety and Security. In Proceedings of the 2nd IEEE Confer
ence on Industrial Electronics and Applications (ICIEA’07),
Harbin, China, pages 1323–1325, 2007.

[PLB08] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Find
ing Errors in .NET with Feedback-Directed Random Testing.
In Barbara G. Ryder and Andreas Zeller, editors, Proceedings
of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’08), Seattle, WA, USA, pages
87–96. ACM, 2008.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and
Thomas Ball. Feedback-Directed Random Test Generation. In
Wolfgang Emmerich and Gregg Rothermel, editors, Proceed
ings of the 29th International Conference on Software Engi
neering (ICSE’07), Minneapolis, MN, USA, pages 75–84. IEEE
Computer Society, 2007.

[PM94] Fabio Paternò and Menica Mezzanotte. Analysing Matis by
Interactors and ACTL. Technical report SM (System Mod
elling)/WP36 of the ESPRIT Basic Research Action 7040
“Amodeus”. Available from ftp://ftp.mrc-cbu.cam.ac.uk/
amodeus/sysmod/sm_wp36.rtf, September 1994.

[PMB+08] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell,
Karen Gundy-Burlet, Michael R. Lowry, Suzette Person, and
Mark Pape. Combining Unit-level Symbolic Execution and
System-level Concrete Execution for Testing NASA Software.

ftp://ftp.mrc-cbu.cam.ac.uk/amodeus/sysmod/sm_wp36.rtf
ftp://ftp.mrc-cbu.cam.ac.uk/amodeus/sysmod/sm_wp36.rtf

	

	

	

	

	

	

	

	

	

	

	

	

343 BIBLIOGRAPHY

In Barbara G. Ryder and Andreas Zeller, editors, Proceedings
of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’08), Seattle, WA, USA, pages
15–26. ACM, 2008.

[PPW+05]	 Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner,
Christian Kühnel, M. Baumgartner, B. Sostawa, R. Zölch, and
Thomas Stauner. One Evaluation of Model-based Testing and
its Automation. In Gruia-Catalin Roman, William G. Gris
wold, and Bashar Nuseibeh, editors, Proceedings of the 27th
International Conference on Software Engineering (ICSE’05),
St. Louis, Missouri, USA, pages 392–401. ACM, 2005.

[PQ08]	 André Platzer and Jan-David Quesel. KeYmaera: A Hybrid
Theorem Prover for Hybrid Systems. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editors, Proceedings of
the 4th International Joint Conference on Automated Reason
ing (IJCAR’08), Sydney, Australia, volume 5195 of Lecture
Notes in Computer Science, pages 171–178. Springer, 2008.

[PS08]	 Olivier Ponsini and Wendelin Serwe. A Schedulerless Semantics
of TLM Models Written in SystemC via Translation into LO
TOS. In Jorge Cuéllar, T. S. E. Maibaum, and Kaisa Sere, edi
tors, Proceedings of the 15th International Symposium on For
mal Methods (FM’08), Turku, Finland, volume 5014 of Lecture
Notes in Computer Science, pages 278–293. Springer, 2008.

[PSAK04]	 Alexander Pretschner, Oscar Slotosch, Ernst Aiglstorfer, and
Stefan Kriebel. Model-based Testing for Real. Springer In
ternational Journal on Software Tools for Technology Transfer
(STTT), 5(2–3):140–157, 2004.

[PSH99]	 Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke.
Formal Verification for Time-Triggered Clock Synchronization.
In C. B. Weinstock and J. Rushby, editors, Proceedings of
the 7th IFIP International Working Conference on Depend
able Computing for Critical Applications (DCCA-7), San Jose,
California, USA, volume 12 of Dependable Computing and
Fault-Tolerant Systems, pages 207–226. IEEE Computer So
ciety, 1999.

[PSL95]	 Fabio Paternò, M. S. Sciacchitano, and Jonas Löwgren. A
User Interface Evaluation Mapping Physical User Actions to
Task-Driven Formal Specifications. In Philippe A. Palanque
and Rémi Bastide, editors, Proceedings of the Eurographics

344 BIBLIOGRAPHY

Workshop on Design, Specification and Verification of Inter
active Systems (DSV-IS’95), Toulouse, France, pages 35–53.
Springer, 1995.

[PSL00] Peter T. Popov, Lorenzo Strigini, and Bev Littlewood. Choos
ing Between Fault-Tolerance and Increased V&V for Improving
Reliability. In Hamid R. Arabnia, editor, Proceedings of the In
ternational Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’00), Las Vegas, Nevada,
USA. CSREA Press, 2000.

[PV94] Anuj Puri and Pravin Varaiya. Decidability of Hybrid Systems
with Rectangular Differential Inclusion. In David L. Dill, edi
tor, Proceedings of the 6th International Conference on Com
puter Aided Verification (CAV’94), Stanford, California, USA,
volume 818 of Lecture Notes in Computer Science, pages 95–
104. Springer, 1994.

[PV09] Corina S. Pasareanu and Willem Visser. A Survey of New
Trends in Symbolic Execution for Software Testing and Analy
sis. Springer International Journal on Software Tools for Tech
nology Transfer (STTT), 11(4):339–353, 2009.

[PW87] David Lorge Parnas and David M. Weiss. Active Design Re
views: Principles and Practices. Journal of Systems and Soft
ware, 7(4):259–265, 1987.

[Räm09] Kukka Rämö. Eliminating Software Failures – A Literature
Survey. Licentiate thesis, Lappeenranta University of Tech
nology, Faculty of Technology Management. Available from
http://urn.fi/URN:NBN:fi-fe201005051790, March 2009.

[RdJ00] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An Ap
proach to Symbolic Test Generation. In Wolfgang Grieskamp,
Thomas Santen, and Bill Stoddart, editors, Proceedings of the
2nd International Conference on Integrated Formal Methods
(IFM’00), Dagstuhl, Germany, volume 1945 of Lecture Notes
in Computer Science, pages 338–357. Springer, 2000.

[Rei85] W. Reisig. Petri Nets: An Introduction. Monographs on The
oretical Computer Science. An EATCS Series. Springer, 1985.

[RH93] John Rushby and Friedrich W. von Henke. Formal Verifica
tion of Algorithms for Critical Systems. IEEE Transactions on
Software Engineering, 19(1):13–23, 1993.

http://urn.fi/URN:NBN:fi-fe201005051790

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

345 BIBLIOGRAPHY

[RH01a]	 Sanjai Rayadurgam and Mats Per Erik Heimdahl. Coverage
Based Test-Case Generation Using Model Checkers. In Pro
ceedings of the 8th IEEE International Conference on Engi
neering of Computer-Based Systems (ECBS’01), Washington,
DC, USA, pages 83–91. IEEE Computer Society, 2001.

[RH01b]	 Sanjai Rayadurgam and Mats Per Erik Heimdahl. Test-
Sequence Generation from Formal Requirement Models. In
Proceedings of the 6th IEEE International Symposium on High-
Assurance Systems Engineering (HASE’01), Albuquerque, NM,
USA, pages 23–31. IEEE Computer Society, 2001.

[RH03]	 Sanjai Rayadurgam and Mats Per Erik Heimdahl. Generat
ing MC/DC Adequate Test Sequences Through Model Check
ing. In Proceedings of the 28th Annual IEEE/NASA Software
Engineering Workshop (SEW’03), Greenbelt, Maryland, USA,
pages 91–96. IEEE Computer Society, 2003.

[RHC76]	 Chittoor V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen.
On the Automated Generation of Program Test Data. IEEE
Transactions on Software Engineering, 2(4):293–300, 1976.

[RHOH98]	 Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and
Christie Hong. An Empirical Study of the Effects of Mini
mization on the Fault Detection Capabilities of Test Suites. In
Proceedings of the International Conference on Software Main
tenance (ICSM’98), Bethesda, Maryland, USA, pages 34–43.
IEEE, November 1998.

[RHRH02]	 Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne,
and Christie Hong. Empirical Studies of Test-suite Reduc
tion. Journal of Software Testing, Verification and Reliability,
12(4):219–249, 2002.

[RP11]	 Joeri de Ruiter and Erik Poll. Formal Analysis of the EMV
Protocol Suite. In Sebastian A. Mödersheim and Catuscia
Palamidessi, editors, Proceedings of the Workshop on the The
ory of Security and Applications (TOSCA’11), Saarbrücken,
Germany, March–April 2011. Available from http://www.cs.
ru.nl/E.Poll/papers/emv.pdf.

[RRSV87a]	 Jean-Luc Richier, Carlos Rodriguez, Joseph Sifakis, and
Jacques Voiron. Verification in XESAR of the Sliding Win
dow Protocol. In Proceedings of the IFIP WG6.1 7th Int.
Conference on Protocol Specification, Testing and Verification,
Zurich. North-Holland, 1987.

http://www.cs.ru.nl/E.Poll/papers/emv.pdf
http://www.cs.ru.nl/E.Poll/papers/emv.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

346 BIBLIOGRAPHY

[RRSV87b]	 Jean-Luc Richier, Carlos Rodrìguez, Joseph Sifakis, and
Jacques Voiron. Xesar: A Tool for Protocol Validation – User’s
Guide. LGI-Imag, Grenoble, France, 1987.

[RRT08]	 Francesco Ranzato, Olivia Rossi-Doria, and Francesco Tap
paro. A Forward-Backward Abstraction Refinement Algo
rithm. In Francesco Logozzo, Doron Peled, and Lenore D.
Zuck, editors, Proceedings of the 9th International Conference
on Verification, Model Checking, and Abstract Interpretation
(VMCAI’08), San Francisco, USA, volume 4905 of Lecture
Notes in Computer Science, pages 248–262. Springer, 2008.

[RSU02]	 Gil Ratsaby, Baruch Sterin, and Shmuel Ur. Improvements in
Coverability Analysis. In Lars-Henrik Eriksson and Peter A.
Lindsay, editors, Proceedings of the International Symposium
of Formal Methods Europe (FME’02), Copenhagen, Denmark,
volume 2391 of Lecture Notes in Computer Science, pages 41–
56. Springer, 2002.

[RTC92]	 RTCA (Radio Technical Commission for Aeronautics), Inc.
Software Considerations in Airborne Systems and Equipment
Certification. Technical Report DO-178B, RTCA Committee
SC-167, December 1992.

[Rud86]	 Harry Rudin. Tools for Protocols Driven by Formal Specifica
tions. In Albert T. Kündig, Richard E. Bührer, and Jacques
Dähler, editors, Embedded Systems: New Approaches to their
Formal Description and Design – An Advances Course, Zürich,
Switzerland, volume 284 of Lecture Notes in Computer Science,
pages 127–152. Springer, 1986.

[Rud92]	 Harry Rudin. Protocol Development Success Stories: Part 1. In
Proceedings of the 12th IFIP International Symposium on Pro
tocol Specification, Testing and Verification (PSTV’92), Lake
Buena Vista, Florida, USA, volume C-8 of IFIP Transactions.
North-Holland, 1992.

[Rus93]	 John Rushby. Formal Methods and the Certification of Critical
Systems. Technical Report SRI-CSL-93-7, Computer Science
Laboratory, SRI International, Menlo Park, California, USA,
December 1993. Available from http://www.csl.sri.com/
papers/csl-93-7. Also issued under the title “Formal Meth
ods and Digital Systems Validation for Airborne Systems” as
NASA Contractor Report 4551, December 1993.

http://www.csl.sri.com/papers/csl-93-7
http://www.csl.sri.com/papers/csl-93-7

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

347 BIBLIOGRAPHY

[Rus99]	 John Rushby. Systematic Formal Verification for Fault-
Tolerant Time-Triggered Algorithms. IEEE Transactions on
Software Engineering, 25(5):651–660, 1999.

[Rus01]	 John Rushby. Bus Architectures for Safety-Critical Embed
ded Systems. In Proceedings of the 1st International Workshop
on Embedded Software (EMSOFT’01), Tahoe City, CA, USA,
volume 2211 of Lecture Notes in Computer Science, pages 306–
323. Springer, 2001.

[Rus02]	 John Rushby. An Overview of Formal Verification for the Time-
Triggered Architecture. In Werner Damm and Ernst-Rüdiger
Olderog, editors, Proceedings of the 7th International Sympo
sium on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’02), Oldenburg, Germany, volume 2469 of
Lecture Notes in Computer Science, pages 83–106. Springer,
2002.

[Rus07]	 John Rushby. What Use Is Verified Software? In Proceedings
of the 12th International Conference on Engineering of Com
plex Computer Systems (ICECCS’07), Auckland, New Zealand,
pages 270–276. IEEE Computer Society, 2007.

[Rus09]	 John Rushby. Software Verification and System Assurance. In
Dang Van Hung and Padmanabhan Krishnan, editors, Proceed
ings of the 7th IEEE International Conference on Software En
gineering and Formal Methods (SEFM’09), Hanoi, Vietnam,
pages 3–10. IEEE Computer Society, 2009.

[Rus11]	 John Rushby. New Challenges in Certification for Aircraft Soft
ware. In Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K.
Baruah, and Sebastian Fischmeister, editors, Proceedings of
the 11th International Conference on Embedded Software (EM
SOFT’11), Taipei, Taiwan, pages 211–218. ACM, 2011.

[RUW01]	 Gil Ratsaby, Shmuel Ur, and Yaron Wolfsthal. Coverability
Analysis Using Symbolic Model Checking. In Tiziana Mar
garia and Thomas F. Melham, editors, Proceedings of the
11th IFIP WG 10.5 Advanced Research Working Conference
(CHARME’01), Livingston, Scotland, UK, volume 2144 of
Lecture Notes in Computer Science, pages 155–160. Springer,
2001.

[RWH08]	 Ajitha Rajan, Michael W. Whalen, and Mats Per Erik Heim
dahl. The Effect of Program and Model Structure on MC/DC
Test Adequacy Coverage. In Wilhelm Schäfer, Matthew B.

348 BIBLIOGRAPHY

Dwyer, and Volker Gruhn, editors, Proceedings of the 30th
International Conference on Software Engineering (ICSE’08),
Leipzig, Germany, pages 161–170. ACM, 2008.

[RWSH08] Ajitha Rajan, Michael W. Whalen, Matt Staats, and Mats
Per Erik Heimdahl. Requirements Coverage as an Adequacy
Measure for Conformance Testing. In Shaoying Liu, Tom
S. E. Maibaum, and Keijiro Araki, editors, Proceedings of the
10th International Conference on Formal Engineering Methods
(ICFEM’08), Kitakyushu City, Japan, volume 5256 of Lecture
Notes in Computer Science, pages 86–104. Springer, 2008.

[RWZ78] Harry Rudin, Colin H. West, and Pitro Zafiropulo. Automated
Protocol Validation: One Chain of Development. Computer
Networks, 2:373–380, 1978.

[RX95] Brian Randell and Jie Xu. The Evolution of the Recov
ery Block Concept. In M. R. Lyu, editor, Software Fault
Tolerance, chapter 1, pages 1–22. John Wiley & Sons Ltd.,
1995. Available from http://www.cse.cuhk.edu.hk/~lyu/
book/sft/pdf/chap1.pdf.

[SA06] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic
Unit Testing and Explicit Path Model-Checking Tools. In
Thomas Ball and Robert B. Jones, editors, Proceedings of the
18th International Conference on Computer Aided Verification
(CAV’06), Seattle, WA, USA, volume 4144 of Lecture Notes in
Computer Science, pages 419–423. Springer, 2006.

[SAB10] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
All You Ever Wanted to Know About Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have Been Afraid
to Ask). In Proceedings of the 31st IEEE Symposium on Se
curity and Privacy (S&P’10), Berkeley/Oakland, California,
USA, pages 317–331. IEEE Computer Society, 2010.

[SAC88] Marten van Sinderen, Ibrahim Ajubi, and Fausto Caneschi.
The Application of LOTOS for the Formal Description of the
ISO Session Layer. In Kenneth J. Turner, editor, Proceedings of
the 1st International Conference on Formal Description Tech
niques (FORTE’88), Stirling, Scotland, UK, pages 263–277.
North-Holland, 1988.

[SAE10] SAE International. Aerospace Recommended Practices –
Guidelines for Development of Civil Aircraft and Systems.

http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap1.pdf
http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap1.pdf

	

	

	

	

	

	

	

	

	

	

	

	

349 BIBLIOGRAPHY

Technical Report ARP-4754A, SAE Committee S-18, De
cember 2010. Available from http://standards.sae.org/
arp4754a.

[Säf94]	 Marten Säflund. Modelling and Formally Verifying Systems
and Software in Industrial Applications. In Xu Ferong, editor,
Proceedings of the 2nd International Conference on Reliability,
Maintainability and Safety (ICRMS’94), Beijing, China, pages
169–174. International Academic Publishers, 1994.

[Saj84]	 Michal Sajkowski. Protocol Verification Techniques: Status
Quo and Perspectives. In Yechiam Yemini, Robert E. Strom,
and Shaula Yemini, editors, Proceedings of the 4th Interna
tional Workshop on Protocol Specification, Testing and Veri
fication (PSTV’84), Skytop Lodge, Pennsylvania, USA, pages
697–720. North-Holland, 1984.

[SB98]	 Gunnar Stålmarck and Arne Borälv. Formal Verification in
Railways. In Michael Gerard Hinchey and Jonathan Peter
Bowen, editors, Industrial-Strength Formal Methods in Prac
tice, pages 329–350. Springer London Ltd, 1998.

[SBH04]	 Sandeep K. Shukla, Tevfik Bultan, and Constance L. Heit
meyer. Panel: Given that Hardware Verification Has Been
an Uphill Battle, What Is the Future of Software Verification?
In Proceedings of the 2nd ACM & IEEE International Confer
ence on Formal Methods and Models for Co-Design (MEM
OCODE’04), San Diego, California, USA, pages 157–158.
IEEE, 2004.

[SBY+08]	 Dawn Xiaodong Song, David Brumley, Heng Yin, Juan Ca
ballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, and Prateek Saxena. BitBlaze:
A New Approach to Computer Security via Binary Analysis.
In R. Sekar and Arun K. Pujari, editors, Proceedings of the
4th International Conference on Information Systems Security
(ICISS’08), Hyderabad, India, volume 5352 of Lecture Notes in
Computer Science, pages 1–25. Springer, 2008.

[SC07]	 Yannis Smaragdakis and Christoph Csallner. Combining Static
and Dynamic Reasoning for Bug Detection. In Yuri Gurevich
and Bertrand Meyer, editors, Revised Papers of the 1st Inter
national Conference on Tests and Proofs (TAP’07), Zurich,
Switzerland, volume 4454 of Lecture Notes in Computer Sci
ence, pages 1–16. Springer, 2007.

http://standards.sae.org/arp4754a
http://standards.sae.org/arp4754a

350 BIBLIOGRAPHY

[Sch98] Fred B. Schneider, editor. Trust in Cyberspace. National
Academy Press, 1998.

[Sch11] Fred B. Schneider. Beyond Traces and Independence. In
Cliff B. Jones and John L. Lloyd, editors, Dependable and His
toric Computing – Essays Dedicated to Brian Randell on the
Occasion of His 75th Birthday, volume 6875 of Lecture Notes
in Computer Science, pages 479–485. Springer, 2011.

[SD07] Jean Souyris and David Delmas. Experimental Assessment of
Astrée on Safety-Critical Avionics Software. In Francesca Sagli
etti and Norbert Oster, editors, Proceedings of the 26th Inter
national Conference on Computer Safety, Reliability, and Secu
rity (SAFECOMP’07), Nuremberg, Germany, volume 4680 of
Lecture Notes in Computer Science, pages 479–490. Springer,
2007.

[Sen06] Koushik Sen. Scalable Automated Methods for Dynamic Pro
gram Analysis. PhD thesis, University of Illinois at Urbana-
Champaign, June 2006.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspec
tives on an Emerging Discipline. Prentice Hall, 1996.

[SGA07] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley Profes
sional, 2007.

[SGH12] Matt Staats, Gregory Gay, and Mats Per Erik Heimdahl. Au
tomated Oracle Creation Support, or: How I Learned to Stop
Worrying About Fault Propagation and Love Mutation Test
ing. In Martin Glinz, Gail C. Murphy, and Mauro Pezzè, edi
tors, Proceedings of the 34th International Conference on Soft
ware Engineering (ICSE’12), Zurich, Switzerland, pages 870–
880, 2012.

[SGSAL98] Roberto Segala, Rainer Gawlick, Jørgen F. Søgaard-Andersen,
and Nancy A. Lynch. Liveness in Timed and Untimed Systems.
Information and Computation, 141(2):119–171, 1998.

[SGWH12] Matt Staats, Gregory Gay, Michael W. Whalen, and Mats
Heimdahl. On the Danger of Coverage Directed Test Case
Generation. In Juan de Lara and Andrea Zisman, editors, Pro
ceedings of the 15th International Conference on Fundamental
Approaches to Software Engineering (FASE’12), Tallinn, Esto
nia, volume 7212 of Lecture Notes in Computer Science, pages
409–424. Springer, 2012.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

351 BIBLIOGRAPHY

[Sha85]	 Natarajan Shankar. Towards Mechanical Metamathematics.
Journal of Automated Reasoning, 1(4):407–434, 1985.

[Sha86]	 Natarajan Shankar. Proof Checking Metamathematics. PhD
thesis, The University of Texas at Austin, 1986.

[Sha88a]	 Natarajan Shankar. A Mechanical Proof of the Church-Rosser
Theorem. Journal of the ACM, 35(3):475–522, 1988.

[Sha88b]	 Natarajan Shankar. Observations on the Use of Computers in
Proof Checking. Notices of the American Mathematical Society,
35(6), 1988.

[Sha94]	 Natarajan Shankar. Metamathematics, Machines and Gödel’s
Proof, volume 38 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1994.

[Sha08]	 Robin Sharp. Principles of Protocol Design. Springer, 2008.

[Sha10]	 Zhong Shao. Certified Software. Communications of the ACM,
53(12):56–66, 2010.

[SM97]	 Mihaela Sighireanu and Radu Mateescu. Validation of the Link
Layer Protocol of the IEEE-1394 Serial Bus (“FireWire”): an
Experiment with E-LOTOS. In Ignac Lovrek, editor, Pro
ceedings of the 2nd COST 247 International Workshop on
Applied Formal Methods in System Design, Zagreb, Croatia,
June 1997. Full version available from http://hal.inria.fr/
inria-00073516 as INRIA Research Report RR-3172.

[SM98]	 Mihaela Sighireanu and Radu Mateescu. Verification of the
Link Layer Protocol of the IEEE-1394 Serial Bus (FireWire):
An Experiment with E-LOTOS. Springer International
Journal on Software Tools for Technology Transfer (STTT),
2(1):68–88, July 1998.

[SMA05]	 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Con
colic Unit Testing Engine for C. In Michel Wermelinger and
Harald Gall, editors, Proceedings of the Joint 10th European
Software Engineering Conference and 13th ACM SIGSOFT In
ternational Symposium on Foundations of Software Engineer
ing (ESEC/FSE’05), Lisbon, Portugal, pages 263–272. ACM,
2005.

[Som10]	 Ian Sommerville. Software Engineering. Addison Wesley, 2010.
(9th Edition).

http://hal.inria.fr/inria-00073516
http://hal.inria.fr/inria-00073516

352 BIBLIOGRAPHY

[SP10] Matt Staats and Corina S. Pasareanu. Parallel Symbolic
Execution for Structural Test Generation. In Paolo Tonella
and Alessandro Orso, editors, Proceedings of the 19th Inter
national Symposium on Software Testing and Analysis (IS
STA’10), Trento, Italy, pages 183–194. ACM, 2010.

[Spi92] J. Michael Spivey. The Z Notation: A Reference Manual. Pren
tice Hall, 1992. Second edition.

[SRSP04] Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer.
Model Checking a Fault-Tolerant Startup Algorithm: From De
sign Exploration to Exhaustive Fault Simulation. In Proceed
ings of the International Conference on Dependable Systems
and Networks (DSN’04), Florence, Italy, pages 189–198. IEEE
Computer Society, 2004.

[SS90] Gunnar Stålmarck and Marten Säflund. Modelling and Ver
ifying Systems and Software in Propositional Logic. In
B. K. Daniels, editor, Proceedings of the IFAC/EWICS/SARS
Symposium on Safety of Computer Control Systems (SAFE
COMP’90), Gatwick, UK, pages 31–36. Pergamon Press, Ox
ford, 1990.

[SS00] Mary Sheeran and Gunnar Stålmarck. A Tutorial on Stål
marck’s Proof Procedure for Propositional Logic. Formal Meth
ods in System Design, 16(1):23–58, 2000.

[SSTV07] Gwen Salaün, Wendelin Serwe, Yvain Thonnart, and Pascal
Vivet. Formal Verification of CHP Specifications with CADP
Illustration on an Asynchronous Network-on-Chip. In Pro
ceedings of the 13th IEEE International Symposium on Asyn
chronous Circuits and Systems (ASYNC’07), Berkeley, Cali
fornia, USA, pages 73–82. IEEE Computer Society, 2007.

[ST08] Julien Schmaltz and Jan Tretmans. On Conformance Testing
for Timed Systems. In Franck Cassez and Claude Jard, edi
tors, Proceedings of the 6th International Conference on For
mal Modeling and Analysis of Timed Systems (FORMATS’08),
Saint Malo, France, volume 5215 of Lecture Notes in Computer
Science, pages 250–264. Springer, 2008.

[Stå89a] Gunnar Stålmarck. A Note on the Computational Complexity
of the Pure Classical Implication Calculus. Information Pro
cessing Letters, 31(6):277–278, 1989.

[Stå89b] Gunnar Stålmarck. A System for Determining Propositional
Logic Theorems by Applying Values and Rules to Triplets that

	

	

	

	

	

	

	

	

	

	

	

	

	

	

353 BIBLIOGRAPHY

Are Generated from a Formula. Swedish Patent No. 467 076
(approved 1992), U.S. Patent No. 5 276 897 (approved 1994),
European Patent No. 0403 454 (approved 1995), 1989.

[Sun78]	 Carl A. Sunshine. Survey of Protocol Definition and Verifica
tion Techniques. Computer Networks, 2(4–5):346–350, 1978.

[SV01]	 Harvey P. Siy and Lawrence G. Votta. Does the Modern Code
Inspection Have Value? In Proceedings of the IEEE Interna
tional Conference on Software Maintenance (ICSM’01), Flo
rence, Italy, 2001.

[SW90]	 Marten van Sinderen and Ing Widya. On the Design and For
mal Specification of a Transaction Processing Protocol. In Juan
Quemada, José A. Mañas, and Enrique Vázquez, editors, Pro
ceedings of the 3rd International Conference on Formal De
scription Techniques for Distributed Systems and Communi
cation Protocols (FORTE’90), Madrid, Spain, pages 411–426.
North-Holland, 1990.

[SW97]	 Jørgen Staunstrup and Wayne Wolf, editors. Hard
ware/Software Co-Design: Principles and Practice. Kluwer
Academic Publishers, 1997.

[SWDD09]	 Jean Souyris, Virginie Wiels, David Delmas, and Hervé
Delseny. Formal Verification of Avionics Software Products. In
Ana Cavalcanti and Dennis Dams, editors, Proceedings of the
2nd World Congress on Formal Methods (FM’09), Eindhoven,
The Netherlands, volume 5850 of Lecture Notes in Computer
Science, pages 532–546. Springer, 2009.

[SWH11a]	 Matt Staats, Michael W. Whalen, and Mats Heimdahl. Pro
grams, Tests, and Oracles: The Foundations of Testing Revis
ited. In Richard N. Taylor, Harald Gall, and Nenad Medvi
dovic, editors, Proceedings of the 33rd International Confer
ence on Software Engineering (ICSE’11), Waikiki, Honolulu,
Hawai, USA, pages 391–400. ACM, 2011.

[SWH11b]	 Matt Staats, Michael W. Whalen, and Mats Per Erik Heim
dahl. Better Testing Through Oracle Selection. In Richard N.
Taylor, Harald Gall, and Nenad Medvidovic, editors, Proceed
ings of the 33rd International Conference on Software En
gineering (ICSE’11), Waikiki, Honolulu, Hawai, USA, pages
892–895. ACM, 2011.

354 BIBLIOGRAPHY

[SWRH10] Matt Staats, Michael W. Whalen, Ajitha Rajan, and Mats
Heimdahl. Coverage Metrics for Requirements-Based Test
ing: Evaluation of Effectiveness. In César Muñoz, edi
tor, Proceedings of the 2nd NASA Formal Methods Sympo
sium (NFM’10), Washington D.C., USA, volume NASA/CP
2010-216215 of NASA Conference Proceedings, pages 161–
170, NASA Langley Research Center, Hampton, VA, USA,
2010. Available from http://shemesh.larc.nasa.gov/
NFM2010/papers/nfm2010_161_170.pdf.

[TB03] Jan Tretmans and Ed Brinksma. TorX: Automated Model
Based Testing. In A. Hartman and K. Dussa-Zieger, editors,
Proceedings of the 1st European Conference on Model-Driven
Software Engineering, Nuremberg, Germany, 2003. Available
from http://eprints.eemcs.utwente.nl/9475.

[TD09] Stavros Tripakis and Thao Dang. Modeling, Verification and
Testing Using Timed and Hybrid Automata. In Gabriela Nico
lescu and Pieter J. Mosterman, editors, Model-Based Design for
Embedded Systems, Computational Analysis, Synthesis, and
Design of Dynamic Systems series. CRC Press, November 2009.
Also available from http://www-verimag.imag.fr/~tdang/
Papers/CRC2009.pdf.

[TdH08] Nikolai Tillmann and Jonathan de Halleux. Pex – White Box
Test Generation for .NET. In Bernhard Beckert and Reiner
Hähnle, editors, Proceedings of the 2nd International Confer
ence on Tests and Proofs (TAP’08), Prato, Italy, volume 4966
of Lecture Notes in Computer Science, pages 134–153. Springer,
2008.

[TdHS07] Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte.
Parameterized Unit Testing with Pex: Tutorial. In Paulo
Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Wood
cock, editors, Revised Lectures of the 2nd Pernambuco Sum
mer School on Software Engineering (PSSE’07), Recife, Brazil,
volume 6153 of Lecture Notes in Computer Science, pages 141–
202. Springer, 2007.

[TDM08] Ari Takanen, Jared DeMott, and Charlie Miller. Fuzzing
for Software Security Testing and Quality Assurance. Artech
House, 2008.

[Tho84] Ken Thompson. Reflections on Trusting Trust. Communica
tions of the ACM, 27(8):761–763, 1984.

http://shemesh.larc.nasa.gov/NFM2010/papers/nfm2010_161_170.pdf
http://shemesh.larc.nasa.gov/NFM2010/papers/nfm2010_161_170.pdf
http://eprints.eemcs.utwente.nl/9475
http://www-verimag.imag.fr/~tdang/Papers/CRC2009.pdf
http://www-verimag.imag.fr/~tdang/Papers/CRC2009.pdf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

355 BIBLIOGRAPHY

[TNTBS00] Stéphane Tudoret, Simin Nadjm-Tehrani, Albert Benveniste,
and Jan-Erik Strömberg. Co-simulation of Hybrid Systems:
Signal-Simulink. In Mathai Joseph, editor, Proceedings of the
6th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’00), Pune, India,
volume 1926 of Lecture Notes in Computer Science, pages 134–
151. Springer, 2000.

[Tre93]	 Jan Tretmans. A Formal Approach to Conformance Test
ing. In Omar Rafiq, editor, Proceedings of the 6th IFIP TC6
WG6.1 International Workshop on Protocol Test Systems, Pau,
France, volume C-19 of IFIP Transactions, pages 257–276.
North-Holland, 1993.

[Tre96]	 Jan Tretmans. Conformance Testing with Labelled Transi
tion Systems: Implementation Relations and Test Generation.
Computer Networks and ISDN Systems, 29(1):49–79, 1996.

[Tre08]	 Jan Tretmans. Model Based Testing with Labelled Transition
Systems. In Robert M. Hierons, Jonathan P. Bowen, and Mark
Harman, editors, Formal Methods and Testing – An Outcome of
the FORTEST Network, Revised Selected Papers, volume 4949
of Lecture Notes in Computer Science, pages 1–38. Springer,
2008.

[TS05]	 Nikolai Tillmann and Wolfram Schulte. Parameterized Unit
Tests. In Michel Wermelinger and Harald Gall, editors, Pro
ceedings of the Joint 10th European Software Engineering Con
ference and 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE’05), Lisbon,
Portugal, pages 253–262. ACM, 2005.

[Tur89]	 Kenneth J. Turner. A LOTOS Case Study: Specification of
the OSI Connection-Oriented Network Service. Presented at
the OTC (Overseas Telecommunications Commission) Work
shop on Formal Description Techniques, Sydney, Australia,
July 1989.

[Tur93]	 Kenneth J. Turner. Using Formal Description Techniques –
An Introduction to ESTELLE, LOTOS, and SDL. John Wi
ley, 1993. Available from http://www.cs.stir.ac.uk/~kjt/
using-fdts/using-fdts.html.

[TWC01]	 Jan Tretmans, Klaas Wijbrans, and Michel R. V. Chaudron.
Software Engineering with Formal Methods: The Development
of a Storm Surge Barrier Control System Revisiting Seven

http://www.cs.stir.ac.uk/~kjt/using-fdts/using-fdts.html
http://www.cs.stir.ac.uk/~kjt/using-fdts/using-fdts.html

356 BIBLIOGRAPHY

Myths of Formal Methods. Formal Methods in System Design,
19(2):195–215, 2001.

[TY98] Stavros Tripakis and Sergio Yovine. Verification of the Fast
Reservation Protocol with Delayed Transmission Using the
Tool Kronos. In Proceedings of the 4th IEEE Real-Time Tech
nology and Applications Symposium (RTAS’98), Denver, Col
orado, USA, pages 165–170. IEEE Computer Society Press,
1998.

[UL06] Mark Utting and Bruno Legeard. Practical Model-Based Test
ing – A Tools Approach. Morgan and Kaufmann, 2006.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A
Taxonomy of Model-based Testing Approaches. Software Test
ing, Verification and Reliability,, 22(5):297–312, 2012.

[VM94] Jeffrey M. Voas and Keith W. Miller. Putting Assertions in
their Place. In Karama Kanoun, Taghi Khoshgoftaar, and
John C. Munson, editors, Proceedings of the 5th International
Symposium on Software Reliability Engineering (ISSRE’94),
Monterey, California, USA, pages 152–157. ACM, 1994.

[VP84] M. Veran and D. Potier. QNAP 2: A Portable Environment
for Queueing Systems Modelling. Research Report 314, INRIA,
Rocquencourt (France), 1984.

[VPK04] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid.
Test Input Generation with Java PathFinder. In George S.
Avrunin and Gregg Rothermel, editors, Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’04), Boston, Massachusetts, USA, pages 97–
107. ACM, 2004.

[VS87] Chris A. Vissers and Giuseppe Scollo. Formal Specification in
OSI. In Günter Müller and Robert Blanc, editors, Proceedings
of the International Seminar on Networking in Open Systems,
Oberlech, Austria, volume 248 of Lecture Notes in Computer
Science, pages 338–359. Springer, 1987.

[VVHB07] Marcel Verhoef, Peter Visser, Jozef Hooman, and Jan F.
Broenink. Co-simulation of Distributed Embedded Real-Time
Control Systems. In Jim Davies and Jeremy Gibbons, editors,
Proceedings of the 6th International Conference on Integrated
Formal Methods (IFM’07), Oxford, UK, volume 4591 of Lecture
Notes in Computer Science, pages 639–658. Springer, 2007.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

357 BIBLIOGRAPHY

[vW89]	 Rob J. van Glabbeek and W. P. Weijland. Branching Time and
Abstraction in Bisimulation Semantics (Extended Abstract).
In G. X. Ritter, editor, Proceedings of the IFIP 11th World
Computer Congress, San Francisco, CA, USA, pages 613–618.
North-Holland, 1989. Also available as CWI Report CS-R8911,
Asmterdam, The Netherlands.

[vW96]	 Rob J. van Glabbeek and W. P. Weijland. Branching Time and
Abstraction in Bisimulation Semantics. Journal of the ACM,
43(3):555–600, 1996.

[WC80]	 Lee J. White and Edward I. Cohen. A Domain Strategy for
Computer Program Testing. IEEE Transactions on Software
Engineering, 6(3):247–257, 1980.

[WC09]	 Gursimran Singh Walia and Jeffrey C. Carver. A Systematic
Literature Review to Identify and Classify Software Require
ment Errors. Information & Software Technology, 51(7):1087–
1109, 2009.

[Wes78]	 Colin H. West. General Technique for Communications Pro
tocol Validation. IBM Journal of Research and Development,
22(4):393–404, July 1978.

[Wes86]	 Colin H. West. A Validation of the OSI Session Layer Protocol.
Computer Networks, 11(3):173–182, March 1986.

[Wey82]	 Elaine J. Weyuker. On Testing Non-Testable Programs. The
Computer Journal, 25(4):465–470, 1982.

[WH88]	 M. R. Woodward and K. Halewood. From Weak to Strong,
Dead or Alive? An Analysis of Some Mutation Testing Issues.
In Proceedings of the 2nd Workshop on Software Testing, Ver
ification, and Analysis, pages 152–158, 1988.

[WH93]	 Ing Widya and Gert-Jan van der Heijden. Towards an
Implementation-oriented Specification of TP Protocol in LO
TOS. In Jim Woodcock and Peter Gorm Larsen, editors, Pro
ceedings of the 1st International Symposium of Formal Meth
ods Europe on Industrial-Strength Formal Methods (FME’93),
Odense, Denmark, volume 670 of Lecture Notes in Computer
Science, pages 93–109. Springer, 1993.

[WHLM95]	 W. Eric Wong, Joseph Robert Horgan, Saul London, and
Aditya P. Mathur. Effect of Test Set Minimization on Fault
Detection Effectiveness. In Dewayne E. Perry, Ross Jeffrey,

358 BIBLIOGRAPHY

and David Notkin, editors, Proceedings of the 17th Interna
tional Conference on Software Engineering (ICSE’95), Seattle,
Washington, USA, pages 41–50. ACM, 1995.

[Wie01] Karl E. Wiegers, editor. Peer Reviews in Software: A Practical
Guide. Addison-Wesley, 2001.

[Wie03] Karl E. Wiegers, editor. Software Requirements: Practi
cal Techniques for Gathering and Managing Requirements
Throughout the Product Development Cycle. Microsoft Press,
2003. Second edition.

[Win98] Jeannette M. Wing. A Symbiotic Relationship Between For
mal Methods and Security. In Proceedings of the ONR/SNF
Workshop on Computer Security, Dependability, and Assur
ance: From Needs to Solution, Washington DC, USA, pages
26–38, 1998. Also available as Carnegie Mellon University re
port CMU-CS-98-188, December 1998.

[WJ91] Elaine J. Weyuker and Bingchiang Jeng. Analyzing Partition
Testing Strategies. IEEE Transactions on Software Engineer
ing, 17(7):703–711, 1991.

[WJMJ08] Shen Hui Wu, Sridhar Jandhyala, Yashwant K. Malaiya, and
Anura P. Jayasumana. Antirandom Testing: A Distance-Based
Approach. VLSI Design, 2008, 2008. Available from http:
//www.hindawi.com/journals/vlsi/2008/165709.

[WK06] Xu Wang and Marta Z. Kwiatkowska. On Process-algebraic
Verification of Asynchronous Circuits. In Proceedings of the
6th International Conference on Application of Concurrency
to System Design (ACSD’06), Turku, Finland, pages 37–46.
IEEE Computer Society, 2006.

[WK07] Xu Wang and Marta Z. Kwiatkowska. On Process-algebraic
Verification of Asynchronous Circuits. Fundamenta Informat
icae, 80(1–3):283–310, 2007.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and
John S. Fitzgerald. Formal Methods: Practice and Experience.
ACM Computing Surveys, 41(4), 2009.

[WLG+78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W.
Green, Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak,
and Charles B. Weinstock. SIFT: Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control. Proceedings of
the IEEE, 60(10):1240–1254, 1978.

http://www.hindawi.com/journals/vlsi/2008/165709
http://www.hindawi.com/journals/vlsi/2008/165709

	

	

	

	

	

	

	

	

359 BIBLIOGRAPHY

[WLPS00] Guido Wimmel, Heiko Lötzbeyer, Alexander Pretschner, and
Oscar Slotosch. Specification Based Test Sequence Generation
with Propositional Logic. Software Testing, Verification & Re
liability, 10(4):229–248, 2000.

[WMM04] Nicky Williams, Bruno Marre, and Patricia Mouy. On-the
fly Generation of K-Path Tests for C Functions. In Proceed
ings of the 19th IEEE International Conference on Automated
Software Engineering (ASE’04),Linz, Austria, pages 290–293.
IEEE Computer Society, 2004.

[WMMR05] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel
Roger. PathCrawler: Automatic Generation of Path Tests by
Combining Static and Dynamic Analysis. In Mario Dal Cin,
Mohamed Kaâniche, and András Pataricza, editors, Proceed
ings of the 5th European Dependable Computing Conference
(EDCC’05), Budapest, Hungary, volume 3463 of Lecture Notes
in Computer Science, pages 281–292. Springer, 2005.

[WO80]	 Elaine J. Weyuker and Thomas J. Ostrand. Theories of Pro
gram Testing and the the Application of Revealing Subdo
mains. IEEE Transactions on Software Engineering, 6(3):236–
246, 1980.

[Won01]	 W. Eric Wong, editor. Mutation Testing for the New Century,
volume 24 of Advances in Database Systems. Kluwer Academic
Publishers, 2001.

[WRHM06]	 Michael W. Whalen, Ajitha Rajan, Mats Per Erik Heimdahl,
and Steven P. Miller. Coverage Metrics for Requirements
based Testing. In Mary Jane Irwin, editor, Proceedings of
International Symposium on Software Testing and Analysis
(ISSTA’06), Portland, Maine, USA, pages 25–36. ACM, July
2006.

[WV00]	 James A. Whittaker and Jeffrey M. Voas. Toward a More
Reliable Theory of Software Reliability. IEEE Computer,
33(12):36–42, 2000.

[WWBG85] Geoffrey R. Wheeler, Michael C. Wilbur-Ham, Jonathan
Billington, and J. A. Gilmour. Protocol Analysis Using Nu
merical Petri Nets. In Grzegorz Rozenberg, editor, Proceedings
of the 6th European Workshop on Applications and Theory in
Petri Nets (Advances in Petri Nets’85), Espoo, Finland, vol
ume 222 of Lecture Notes in Computer Science, pages 435–452.
Springer, 1985.

	

	

	

	

360 BIBLIOGRAPHY

[WWGZ10]	 Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope:
A Checksum-Aware Directed Fuzzing Tool for Automatic Soft
ware Vulnerability Detection. In Proceedings of the 31st
IEEE Symposium on Security and Privacy (S&P’10), Berke
ley/Oakland, California, USA, pages 497–512. IEEE Computer
Society, 2010.

[WWGZ11]	 Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Checksum-
Aware Fuzzing Combined with Dynamic Taint Analysis and
Symbolic Execution. ACM Transactions on Information and
System Security, 14(2):15, 2011.

[WWLZ09] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. IntScope:
Automatically Detecting Integer Overflow Vulnerability in x86
Binary Using Symbolic Execution. In Proceedings of the Net
work and Distributed System Security Symposium (NDSS’09),
San Diego, California, USA. The Internet Society, 2009. Avail
able from http://www.isoc.org/isoc/conferences/ndss/
09/pdf/17.pdf.

[XGM08] Ru-Gang Xu, Patrice Godefroid, and Rupak Majumdar. Test
ing for Buffer Overflows with Length Abstraction. In Bar
bara G. Ryder and Andreas Zeller, editors, Proceedings of the
ACM SIGSOFT International Symposium on Software Test
ing and Analysis (ISSTA’08), Seattle, WA, USA, pages 27–38.
ACM, 2008.

[XTdS09] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram
Schulte. Fitness-guided Path Exploration in Dynamic Symbolic
Execution. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’09),
Estoril, Lisbon, Portugal, pages 359–368. IEEE, 2009.

[YL06] Yuen-Tak Yu and Man Fai Lau. A Comparison of MC/DC,
MUMCUT and Several Other Coverage Criteria for Logical
Decisions. Journal of Systems and Software, 79(5):577–590,
2006.

[YLW09] Qian Yang, J. Jenny Li, and David M. Weiss. A Survey
of Coverage-Based Testing Tools. The Computer Journal,
52(5):589–597, 2009.

[Yov97] Sergio Yovine. KRONOS: A Verification Tool for Real-Time
Systems. Springer International Journal on Software Tools for
Technology Transfer (STTT), 1(1–2):123–133, 1997.

http://www.isoc.org/isoc/conferences/ndss/09/pdf/17.pdf
http://www.isoc.org/isoc/conferences/ndss/09/pdf/17.pdf

	

	

	

	

	

	

	

	

	

	

361 BIBLIOGRAPHY

[YZ80]	 Raymond T. Yeh and Pamela Zave. Specifying Software
Requirements. Proceedings of the IEEE, 68(9):1077–1085,
September 1980.

[ZH02]	 Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolat
ing Failure-Inducing Input. IEEE Transactions on Software
Engineering, 28(2):183–200, 2002.

[ZHM97]	 Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software
Unit Test Coverage and Adequacy. ACM Computing Surveys,
29(4):366–427, 1997.

[ZLP08]	 Jingyong Zeng, Hang Lei, and Haibo Pu. Evaluating the Effec
tiveness of Random and Partition Testing by Delivered Relia
bility. In Shuvra S. Bhattacharyya, Xingshe Zhou, Bing Guo,
Zili Shao, and Xiangke Liao, editors, Proceedings of the 5th
International Conference on Embedded Software and Systems
(ICESS’08), Chengdu, China, pages 496–502, 2008.

[ZWR+82]	 Pitro Zafiropulo, Colin H. West, Harry Rudin, D. D. Cowan,
and Daniel Brand. Protocol Analysis and Synthesis Using a
State Transition Model. In P. E. Green Jr., editor, Computer
Networks Architectures and Protocols, pages 645–669. Plenum
Publishing Company, New York, 1982.

	Motivation
	Introduction
	What are formal methods?
	How are formal methods today?
	A difficult problem
	A fragmented landscape
	A broadening scope
	A growing number of success stories
	A limited industrial impact

	Why this report?
	A favorable timing for formal methods
	A crucial need for a synthesis

	Who should read this report?
	What is in this report?

	Scope and taxonomies
	Introduction
	Taxonomy according to application domains
	System design and engineering
	Protocol design and engineering
	Software design and engineering
	Hardware design and engineering
	Discussion

	Taxonomy according to environment assumptions
	Environment and system boundary
	Environment assumptions
	Correctness and performance issues
	Dependability and performability issues
	Security issues
	Discussion

	Components, models, and properties
	Introduction
	Components
	System components
	Decomposition strategies
	Composition means
	Component environments
	Component interactions
	Component interfaces

	Specifications
	Declarative vs operational specifications
	Open vs closed specifications

	Models
	Definition
	Programs vs models
	Formal vs informal models
	Executable vs non-executable models
	Partial vs total models
	Abstract vs concrete models
	Unique vs multiple models
	Deterministic vs nondeterministic models
	System observability

	Properties
	Definition
	Attributes and queries vs properties
	Formal vs informal properties
	Functional vs non-functional properties
	Local vs global properties
	Static vs dynamic properties
	Generic vs specific properties
	Abstract vs concrete properties
	One-language vs two-language properties
	Internal vs external properties

	Design flows and methodologies
	Introduction
	Quality issues
	Quality goals
	Obstacles to quality measurement
	Product quality vs process quality
	System quality vs component quality

	Design flows
	Design artifacts
	Design steps
	Defective design steps
	Quality steps
	Revision steps

	Methodological principles
	Seamless design flows
	Disciplined design flows
	Management of changes
	Traceability of requirements
	Early detection of errors

	Quality by design principles
	Simplicity
	Modularity and reusability
	Separation of concerns
	Testability and verifiability
	Partitioning and containment
	Redundancy and diversity
	Fault tolerance and fail safety

	Conventional design flows
	Organization of conventional design flows
	Conventional design steps: requirements
	Conventional design steps: models and programs
	Conventional design steps: manual steps
	Conventional design steps: automatic steps
	Conventional quality steps: requirements validation
	Conventional quality steps: reviews
	Conventional quality steps: static analyses
	Conventional quality steps: dynamic analyses
	Conventional quality steps: more on simulation
	Conventional quality steps: more on testing
	Conventional quality steps: more on run-time and log analyses
	Discussion

	Formal design flows
	Organization of formal design flows
	Differentiate usage of formal methods
	Gradual levels of rigor
	Partially-formal design flows
	Fully-formal design flows

	Formal design steps
	Formalization of requirements
	Refinement steps
	Abstraction steps

	Formal quality steps
	Correct-by-construction approaches
	Correct-by-verification approaches
	Panorama of formal quality steps
	Static vs dynamic quality steps
	Generic vs specific quality steps
	Exact vs approximate quality steps
	Manual vs automatic quality steps
	Errors in formal quality steps
	Diagnostics in formal quality steps
	Iterations in formal quality steps
	Impact on reviews
	Impact on simulation
	Impact on testing

	Conclusion
	Index
	Bibliography

