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1 Introduction

Currently researchers and policymakers can choose among a number of statistical

approaches to measuring teacher effectiveness based on student test scores. Given

a relative lack of easily accessible information on the pros and cons of different

methodological choices, the choice of a method is often based on replicating what

others in similar contexts or disciplines have done rather than carefully weigh-

ing the relative merits of each approach. Policymakers, for example, will often

opt for a procedure that has been used in other states. An example would be

the increasingly popular Colorado Growth Model based on the work of Beteben-

ner (2012) and whose use is now spreading to other states, such as Indiana and

Massachusetts. Researchers, on the other hand, have tended to rely on value-

added models (VAMs) based on OLS or GLS regression techniques. The distinc-

tion between growth modeling procedures and OLS-based value-added models in

the context of teacher performance evaluation—and the relative merits of each

approach—has not been fully explored. This paper addresses this task.

Teacher performance measures can be used for different purposes. In some

cases researchers or administrators wish to rank a set of teachers in terms of their

effectiveness–those in a particular grade in a particular district, for example. Both

growth percentile methods and VAMs can be used for this purpose. The primary

technical distinction between VAMs and growth percentile models is that the for-

mer produce an estimate of the magnitude of a teacher’s effectiveness relative to

her peers and the latter yield information only on a teacher’s rank in the distribu-
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tion of student growth percentiles. In other words, the former method is poten-

tially capable of revealing how much better or worse a teacher may be relative to

peers whereas the latter reveals only the relative position a teacher holds among

other teachers

When test scores are vertically scaled from one year to the next, VAMs may

produce estimates of teacher effectiveness that can be interpreted as the average

amount of achievement growth an individual teacher contributes to her students.

Some argue that methods that do not use vertically scaled test scores are prefer-

able. Barlevy and Neal (2011), for example, favor simple rankings based on

growth percentile models, arguing that pay schemes based on performance mea-

sures that simply order teachers can induce teachers to exert an optimal level of

effort. They point out that these models do not require a vertical scale, so the

analyst may use test forms with no item overlap or equating, citing this as an ad-

vantage over VAMs. It is important to note, however, that VAMs can be employed

regardless of whether test scores are vertically scaled. Therefore a central ques-

tion is whether there are any advantages to using one approach versus another for

the purpose of ranking teachers.

To explore this research question, we evaluate the merits of growth models ver-

sus VAMs with regard to the goal of ranking teachers, since both approaches can

accomplish this task. Both types of approaches face a common set of challenges

when applied to the task of determining teacher effectiveness rankings. Perhaps

the most important of these is the issue of bias under conditions of nonrandom

assignment of students to teachers. To compare how well the two approaches deal
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with these challenges, we use them to rank teachers using simulated data in which

the true underlying effects are known. The simulated data sets are created to rep-

resent varying degrees of challenge to the estimation process: some of our data

generating processes randomly assign students to teachers, others do so in non-

random ways. In addition to the simulation study, we compare growth percentile

models to VAMs using administrative data from a large diverse southern state.

Previous studies comparing growth percentile models with VAMs in measur-

ing educational performance have been limited to empirical investigations of ac-

tual data. Wright et al. (2010) compares the EVAAS methodology and student

percentile growth models–both of which treat teacher effects as random–and finds

substantial agreement. Goldhaber et al. (2013) compare a subset of value-added

models that treat teacher effects as fixed with student growth percentile models

and find varying degrees of divergence depending upon on the characteristics of

the sample. Ehlert et al. (2013) investigate school-level value added and find

substantial divergence between growth percentile models and different types of

VAMs, although they endorse a noncausal approach, which treats school effects

as random for reasons of expediency in policymaking.

A primary contribution of our study is to use simulations to understand and

explain the fundamental differences among the estimators and to then target the

investigation of the empirical data in ways that highlight the conditions under

which they diverge and how these may affect policy applications regarding teacher

value-added. We find that growth percentile models and VAMs rank teachers very

similarly under random assignment of students to teachers. However, when stu-
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dents are nonrandomly assigned to teachers, VAMs that treat teacher effects as

fixed outperform both growth percentile models and VAMs that treat teacher ef-

fects as random, such as average residuals or empirical Bayes. Thus the primary

distinction to be made among different approaches to modeling teacher perfor-

mance is whether they merely describe classroom achievement growth or whether

they make headway in isolating the teacher’s role in producing that growth–a task

that is particularly challenging in the context of nonrandom assignment.

We begin with a description of the different types of models, beginning with

two different growth percentile approaches and following with four types of VAMs.

We then apply the various estimators to the task of ranking teachers using simu-

lated data and compare their ability to rank teachers accurately. This is followed

by a discussion and conclusions.

1.1 Description of the Models

Both growth percentile and value-added approaches can take various forms. In

this paper, we consider two types of growth modeling approaches: one based on

quantile regression as in Betebenner (2012)and one based on nearest neighbor

matching of students across classrooms, as implemented by Fryer et al. (2012).

Likewise, we consider more than one type of commonly-used value-added

model. Three of these utilize OLS regression but differ in their specifications:

one is based on a dynamic specification that treats teacher effects as fixed, one

is based on a gain-score specification that also treats teacher effects as fixed, and

one computes teacher effects by averaging residuals, thus treating teacher effects
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as random. In addition to these three VAMs, we also consider an empirical Bayes

approach, based on GLS, or more commonly referred to as HLM.

1.1.1 Colorado Growth Model Estimation Procedure

The growth model creates a metric of teacher effectiveness by calculating the me-

dian or mean conditional percentile rank of student achievement in a given year for

students in a teacher’s class. For a particular student with current year score Aig

and score history {Ai,g−1, Ai,g−2, ..., Ai,1}, one locates the percentile correspond-

ing to the student’s actual score, Aig, in the distribution of scores conditional on

having a test score history {Ai,g−1, Ai,g−2, ..., Ai,1}. In short, the analyst evaluates

how high in the distribution the student achieved, given their past scores. Then

teachers are evaluated by the median or average conditional percentile rank of

their students.

Here, we briefly describe the estimation procedure used in the Colorado Growth

Model. Details of this approach can be found in Betebenner (2011) . Quantile re-

gressions are used to estimate features of the conditional distribution of student

achievement. In particular, one estimates the conditional quantiles for all possible

test score histories, which are then used for assigning percentile ranks to students.

Using the notation in Betebenner (2011) , the τ -th conditional quantile is the value

Qy(τ |x) such that

Pr(y ≤ Qy(τ |x)) = τ
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The conditional quantiles are then modeled for achievement scores as:

QAig
(τ |Ai,g−1, Ai,g−2, ..., Ai,1) =

g−1∑
j=1

6∑
k=1

φik(Ai,j)βik(τ) (1)

where φik denote B-spline basis functions of prior test scores. Six knots are

used at the lowest score, 20th percentile, 40th percentile, 60th percentile, 80th per-

centile, and the highest score1. As discussed in Betebenner (2011) , the B-spline

functions are chosen to improve model fit by adding flexibility in the treatment

of prior test scores as covariates, primarily in that they allow for nonlinearities in

the relationship between current and prior scores. Several available prior year test

scores can be used as regressors, if available, and estimation is done using quan-

tile regression. In practice, student and family background variables are included

in the regressions.

To be specific, 100 quantile regressions are estimated, one for each percentile.

Regressions are run separately for each grade and year. Conditional test scores

are estimated for each percentile by generating fitted values from the regressions

as follows:

Q̂Aig
(τ |Ai,g−1, Ai,g−2, ..., Ai,1) =

g−1∑
j=1

6∑
k=1

φik(Ai,j)β̂ik(τ)

A student’s conditional percentile rank is then computed by counting the num-

ber of conditional percentiles that result in fitted test scores that are smaller than

1These knots were chosen based on a phone conversation with Dr. Betebenner. We would like
to thank him for his valuable time and generous help with the details of the model.
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the student’s current grade test score,Aig. For example, a student has a conditional

percentile rank of 20 if there are 20 percentiles estimated lower than or equal to

their score, in which case:

Q̂Aig
(.20|Ai,g−1, Ai,g−2, ..., Ai,1) ≤ Aig < Q̂Aig

(.21|Ai,g−1, Ai,g−2, ..., Ai,1)

Once conditional percentile ranks are computed for all students, teachers are

assigned a score equal to the median conditional percentile rank of the students

within their class. These scores cannot reveal how much better students performed

in one teacher’s class compared with another, but can be used to form rankings of

teachers by their estimated effectiveness.

An attractive feature of growth percentile models is that the student growth

percentiles,once computed, can be used to provide a variety of descriptive por-

traits. They can be averaged (or the median can be taken) by classroom, grade,

school, district, etc. Such models were originally developed to provide a descrip-

tion of student growth and were not intended to form a basis for determining the

causal impact of a teacher (Betebenner (2009)).

1.2 Growth Percentile Model using Nearest Neighbor Match-

ing

The second growth percentile model we consider is the approach proposed in Bar-

levy and Neal (2011) as a basis for distributing merit pay to teachers and applied
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by Fryer et al. (2012) in an experimental context. The method consists of match-

ing students based on their test score histories. Each student is matched to nine

other students in, say, the district, with similar prior year test scores. Fryer et al.

(2012) match students based on up to three prior year test scores and match only to

students in different schools. For students with fewer than three prior year scores,

as many as are available are used.

The Mahalanobis distance measure is used for matching. For two students, i

and h, the distance is computed by the following formula:

(Ah −Ai)
′Σ̂−1A (Ah −Ai) (2)

where Ah and Ai are the vectors of past achievement scores and Σ̂A is the

sample variance-covariance matrix of the past achievement scores.

Students are matched to other students with the smallest distance from their

prior achievement scores. Once nine matches are found for each student, students

are ranked within this group of ten according to how they perform on the achieve-

ment test in the current year. Teacher evaluations are then computed, based on the

average percentile rank of students within their class.

1.3 VAMs

Value added models attempt to model the achievement process over time and are

based on the broad notion that achievement at any grade can be modeled as a
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function of both past and current child, family, and schooling inputs2. In its most

general formulation, the model can be expressed as:

Aig = fg(Eig, . . . , Ei0, Xig, . . . , Xi0, ci, uig)

where Aig is achievement of student i in grade g, Eig is a vector of educational

inputs including teacher, school, and classroom characteristics, and in some cases

a set of teacher indicators, Xig consists of a set of relevant time-varying student

and family inputs, ci is an unobservable student fixed effect (representing, for

example, motivation, some notion of sustained ability, or some persistent behav-

ioral or physical issue that affects achievement), and the uig is an idiosyncratic,

time varying error term. In this very general formulation, the functional form is

unspecified and can vary over time.

To estimate this function, several assumptions are generally made. The func-

tional form is considered to be more or less linear and unchanging over time,

learning ”decay” (that is, the amount of forgetting that takes place over time) is

generally assumed to be constant for all inputs over time, and the time-constant

student effect is assumed to either be ignorable or, at least, constant in its impact

over time3. The resultant value-added model is typically expressed as follows:

Aig = τg + λAi,g−1 + Eigβ +Xigγ + ci + eig (3)

2See Hanushek (1979) or Todd and Wolpin (2003)
3For a full explication of the assumptions applied in value-added models, see Todd and Wolpin

(2003), Harris et al. (2011), and Guarino et al. (2012b)
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where Ai,g−1 is the prior year achievement score of student i and only cur-

rent schooling and family inputs are required for estimation.4 When value-added

models are used to estimate teacher effects, the Eig vector generally consists of

indicator variables for specific teachers.5

There are several ways of estimating equation (1) to compute teacher effects.

We focus on four value-added estimators that form the basis for most of the com-

mon procedures currently in use. A nice feature of value-added estimators is that,

with a vertical scale, an analyst can not only rank teachers but also judge, subject

to sampling variation, how much better one teacher is compared with another in

terms of the their contribution to student growth. Of course, when the assump-

tions are met that allow these estimators to recover each teacher’s contribution to

student growth, we can also successfully order teachers according to their effec-

tiveness.

A full discussion of all of these estimators’ econometric properties can be

found in Guarino et al. (2012b).

1.3.1 Dynamic OLS (DOLS)

A simple estimator for equation (1) involves OLS regression to estimate λ, β,

and γ. We refer to this estimator as DOLS because it contains the lagged test

score (or in many applications, more than one lagged score) on the right hand

4It is also common to include multiple prior years of achievement, other subject scores, and
sometimes polynomials of both as regressors.

5The vector may also consists of exposure variables (i.e. the fraction of the year that a student
spend with a particular teacher)
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side of the equation along with a full set of teacher indicator 6variables. Teacher

effect estimates are then constructed from the coefficients on the teacher indicator

variables. This estimator ignores the presence of ci, but the inclusion of teacher

indicators in addition to prior year test scores specifically adjusts the teacher effect

estimates for nonrandom assignment to students based on prior year scores, as

explained in Guarino et al. (2012b).

1.3.2 OLS using Gain Scores (OLS-Gain)

A second value-added estimator assumes that the persistence rate of past inputs,

λ, is equal to one. In this case, the model collapses to a gain score equation:

∆Aig = τg + Eigβ +Xigγ + ci + eig (4)

This model is also estimated using OLS. As in the case of DOLS, a full set

of teacher indicators are included to estimate teacher effects. If λ is not equal to

one, then a portion of prior achievement–specifically (λ− 1)Ai,g−1 –is left in the

error term and will cause omitted variable bias when assignment is based on prior

test scores.

1.3.3 Average Residual (AR) and Empirical Bayes (EB)

Another estimator of equation (1) is the average residual estimator, which we

will refer to as AR. This estimator also uses OLS regression to estimate λ and

6or exposure
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coefficients on the other covariates, except that it is typical not to include teacher

indicators in the regressions. Instead, teacher effect estimates are recovered by

averaging the regression residuals within a classroom.

Often researchers and policy analysts choose to shrink the average residual

measures towards the mean teacher effect, with the shrinkage term being related

to the variance of the unshrunken estimator. This is often referred to as an em-

pirical Bayes approach, although the true empirical Bayes relies on GLS rather

than OLS7. The variance of the estimator for an individual teacher effect can dif-

fer from teacher to teacher because of differences in class size as well as other

sources of heteroskedasticity. In our simulation, we only evaluate the unshrunken

average residual measure, since we do not vary class size and there are no sources

of heteroskedasticity. In this special case, the unshrunken average residuals are

perfectly correlated with the shrunken estimates, since the shrinkage term is iden-

tical for every teacher. In our application of application of value-added models to

actual administrative data, we include both the AR (unshrunken) and the empirical

Bayes estimator based on GLS, which we abbreviate as EB.

As discussed in Guarino et al. (2012b) the decision not to include teacher

indicators in the regression can be costly when the assignment of teachers to stu-

dents is nonrandom because the correlation between the assignment mechanism

(say, prior test scores) and the teacher effects is not partialled out of the effect

estimates. Assuming a correct functional form and nonrandom assignment condi-

7See Guarino et al. (2012a) for a complete explanation and derivation of the empirical Bayes
estimator in its application to teacher evaluation.
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tional on the other covariates, then including teacher indicators can produce con-

sistent estimates of teacher effects. However, that is not the case when averaging

the residuals.

A type of omitted variable bias can result in the teacher effect estimates if we

are unable to control for the assignment mechanism. Under random assignment

of students to teachers, many omitted variable issues would be considerably mit-

igated. However, classroom assignments are not always random, and, indeed, it

is not necessarily desirable to do so. Random assignment deprives parents of the

ability to request teachers whom they believe to be best suited for their children,

and it deprives principals of one of their most important functions: to maximize

overall achievement by matching the individualized skills of teachers to those stu-

dents most likely to benefit from them. Thus random assignment—while helpful

from an evaluation standpoint—could result in sub-optimal learning conditions if

particular teacher characteristics interact in a beneficial way with student charac-

teristics in the learning process.

1.3.4 Colorado Growth Model under Nonrandom Assignment

Under random assignment of teachers to students, it is possible to attribute high

achievement in the conditional distribution of test scores (conditional on prior

scores) to strong instruction by the teacher. It is sensible to use the conditional

distribution, since students start off with different levels of knowledge. However,

under nonrandom assignment of teachers to student, it may no longer be possible

to attribute high achievement in the conditional distribution to good teaching.
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To illustrate the reason, consider a thought experiment in which the best stu-

dents are assigned to the best teachers and the worst students are assigned to the

worst teachers in a model school district with 4 teachers and 4 classrooms:

The four teachers have differing teacher abilities. Let teacher i have teaching

ability βi and

β1 < β2 < β3 < β4

Suppose that all students within a classroom are identical. Also, suppose that

classroom 1 and classroom 2 have identical initial achievement, A1,g−1 = A2,g−2

and classroom 3 and classroom 4 have identical initial achievement, A3,g−1 =

A4,g−2.

A1,g−1 = A2,g−2 < A3,g−1 = A4,g−2

Also, assume for simplicity that teachers are the only input into achievement.

In the Colorado Growth Model approach, students are compared to other stu-

dents with the same initial achievement levels. Since students in classrooms 1

and 2 are identical at the start of the year, students in classroom 1 and 2 will be

compared to one another. Students in classrooms 3 and 4 will be compared to one

another as well, since their initial achievement levels are the same. Also, since

β1 < β2 then all students in class 1 score below students in class 2. In this case,

the median conditional percentile of teacher 1’s students will be below the median

for teacher 2’s students. Likewise the median conditional percentile of teacher 3’s
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students will be below teacher 4’s.

Using the Colorado growth model approach, teachers 1 and 3 actually will

have the same median conditional percentile and so teachers 1 and 3 will have

the same ranking, even though β1 < β3. Teacher 3 is also rated below teacher 2,

even though β2 < β3. Finally, teachers 2 and 4 will have the same rankings, even

though β2 < β4. In this simple illustration, nonrandom assignment of teachers to

students can lead to the wrong conclusions in some cases.

1.3.5 Nearest Neighbor Matching under Nonrandom Assignment

Under nonrandom assignment of teachers to students, the nearest neighbor match-

ing method has issues similar to the Colorado growth model approach.

Assume again that the best students are assigned to the best teachers in each

school. For simplicity, also assume that there are 10 identical schools with 2

teachers and 2 classrooms within each school.

Assume teacher 1 is a worse teacher than teacher 2 in every school, so:

β1 < β2

Also, that all students in classroom 1 have lower prior achievement than those

in classroom 2, so:

A1,g−1 < A2,g−1

Using the nearest neighbor matching method, students in classroom 1 will be
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matched to students in classroom 1 in the other schools. Students in classroom 2

will be matched to other students in classroom 2 in the other schools.

In this case, assuming that the teachers numbered 1 in all schools have the

same effects and that teachers numbered 2 in all schools are also the same and for

simplicity that teachers are the only input into education, teacher 1 and 2 in every

school will be evaluated as being identical, even though β1 < β2. This is true

since classroom 1 students are only compared with classroom 1 students in other

schools who also get the low ability teacher. Similarly for classroom 2 students.

This simple example is meant to illustrate the main point that matching similar

students to one another is not enough to guarantee an accurate ranking of teachers

under nonrandom assignment in which the best (or worst) teachers are assigned

to the best students. If principals are tracking students by ability and assigning

the gifted class to the best teacher, then nearest neighbor matching may not work

effectively. No partialling out between teachers and students takes place, as it does

in the DOLS estimator for instance.

2 Simulation

Our data are constructed to represent one elementary grade that normally under-

goes standardized testing in a hypothetical district. To mirror the basic structural

conditions of an elementary school system for, say, grade 3, we create data sets

that contain students nested within teachers nested within schools. Our simple

baseline data generating process is as follows:
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Ai3 = λAi2 + βi3 + ci + ui3

whereAi2 is a baseline score reflecting the subject-specific knowledge of child

i entering third grade, Ai3 is the achievement score of child i at the end of third

grade, λ is a time constant persistence parameter, βi3 is the teacher-specific con-

tribution to growth (the true teacher value-added effect), ci is a time-invariant

child-specific effect, and ui3 is a random deviation for each student. We assume

independence of ui3. We assume that the time-invariant child-specific heterogene-

ity ci is correlated at about 0.5 with the baseline test score Ai2. In the simulations

reported in this paper, the random variables Ai2, βi3, ci, and ui3 are drawn from

normal distributions. The standard deviation of the teacher effect is .25, while

that of the student fixed effect is .5, and that of the random noise component is 1,

each representing approximately 5, 19, and 76 percent of the total variance in gain

scores, respectively8.

Our data structure has the following characteristics that do not vary across

simulation scenarios:

• 10 schools

• 1 grade (3rd grade), with a base score in 2nd grade

• 4 teachers per grade and school (thus 40 teachers overall)

8These relativeeffect sizes are based on prior research (e.g. Nye et al. (2004), McCaffrey et al.
(2004), and Lockwood et al. (2007)). We changed the relative effect sizes as sensitivity checks
and found no substantive differences.
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• 20 students per classroom

• 4 cohorts of students

• No crossover of students to other schools

To create different scenarios, we vary certain key features: the grouping of stu-

dents into classes, the assignment of classes of students to teachers within schools,

and the amount of decay in prior learning from one period to the next. Students

are grouped either randomly or dynamically. In the case of dynamic grouping, stu-

dents are ordered by their prior year achievement scores and grouped into class-

rooms. In this scenario, the students with the lowest prior year scores tend to

be grouped in classes together, and students with the highest scores tend to be

grouped together 9. Also, there is random assignment and nonrandom assignment

of teachers to the classrooms. There are two nonrandom assignment scenarios.

The first is positive assignment, where the best teachers are assigned to the high-

est performing classrooms. The second is negative assignment, where the worst

teachers are assigned to the highest performing classes. We vary the amount of

persistence in past test scores, λ, in the data generating process. We consider a

case with full persistence, λ = 1, and partial persistence, λ = .5. 100 simulation

replications are performed for each grouping-assignment-persistence rate com-

bination. Finally, we perform the estimation using achievement scores that are

vertically scaled and also using scores that are standardized within grade, which

artificially breaks the vertical scaling.

9There is a small amount of noise built into the assignment process
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2.1 Results

We will begin with the results in which vertically scaled test scores are used

to compute the measures. As mentioned before, when test scores are vertically

scaled, VAMs have the advantage of being able to estimate how much the average

student gained with a given teacher and how much they could have gained with

another teacher. This information is not available with the Colorado growth model

(CGM) approach or with nearest neighbor matching (NNM) approach. We will

present Spearman rank correlations of the estimated teacher effects with the true

teacher effects as a measure of performance, since all estimators of teacher per-

formance are capable of ranking teachers. In addition, we will present a measure

of misclassification. The measure we choose is the percent of teachers that have

a true teacher effect above the 25th percentile that are rated in the bottom 25%

using a teacher quality measure.

In the random grouping and random assignment scenario (RG-RA) all of the

estimators perform fairly well. The results for λ set to .5 and for λ set to 1 are

similar. All three VAMs outperform the growth percentile models, but these latter

models still perform reasonably well, with rank correlations around .82 and .85.

The misclassification rates are best for DOLS, AR, and OLS-Gain as well, with

rates of 6%, 8%, and 8%. The CGM and NNM estimators have a slightly larger

misclassification rate of 10% and 9% respectively in the lambda 1 case.

In the case of dynamic grouping coupled with random assignment of groups

to teachers (DG-RA) the results are quite similar. The rank correlations for DOLS

and AR drop slightly to .87, and the rank correlation for OLS-Gain drops to .83.
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The CGM and NNM rank correlations are nearly identical and actually slightly

higher for the CGM estimator. The misclassificaiton rates are fairly stable as well.

Once assignment of teachers to students is nonrandom the results change con-

siderably. In the DG-PA scenario, in which students with the highest prior year

achievement level tend to be assigned to teachers with the highest value added, the

growth percentile estimators perform far worse than DOLS. The DOLS estimator

has a rank correlation of .88, whereas the CGM and NNM estimators have rank

correlations of .71 and .75 respectively in the λ = 1 and λ = .5 cases. The rank

correlation also decreases for AR, which also fails to properly partial out the rela-

tionship between teacher and student quality, with a correlation of .78. OLS-Gain

performs well in the DG-PA scenario, but poorly in the DG-NA scenario, when

lambda is 1. The pattern reverses when lambda is .5. This is due to biases some-

times amplifying the teacher effects, making the teachers with the good teacher

effects look even better than they actually are and those that are worse look worse.

This has the effect of making the rank correlations strong, even though there is

substantial bias. The misclassification rates show a pattern as the rank correla-

tions. DOLS does the best in terms of misclassification, while the CGM and

NNM estimators have misclassification rates that increase roughly 2-3 percentage

points compared to the random assignment scenarios.

The results for the dynamic grouping with negative assignment (DG-NA) case

look similar to those for the DG-PA scenario. DOLS outperforms the AR, CGM,

and NNM estimators that do not partial out.

In the case of the standardized test scores, the patterns are largely the same.
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In the RG-RA and DG-RA scenarios, DOLS, AR, CGM, and NNM estimators

perform similarly with rank correlations in the .82-.87 range. The results in the

DG-PA and DG-NA look nearly identical to those in the vertically scaled test

scores scenario. DOLS still outperforms the estimators that fail to partial out.

One estimator that is particularly harmed is the OLS-Gain estimator. When

scores are standardized, the OLS-Gain estimator, which consists of a regression

of gain scores on teacher indicators, performs very poorly under nonrandom as-

signment.

2.2 Simulation with Random Noise Component Drawn from t

Distribution with 3 d.f.

One claim that could be made about the Colorado growth model is that the teacher

rankings may be more robust to outliers, since the quantile regression estimators

used in the ranking method are themselves less affected by outliers. If the distri-

bution is thicker tailed, the Colorado growth model may perform better than the

estimators based on OLS. As a robustness check, therefore, we examine the per-

formance of the estimators when the idiosyncratic error term ui3 is drawn from a

t distribution with three degrees of freedom. The t distribution with three d.f. has

much thicker tails than the normal distribution. Figure 1 in the appendix shows

the pdf of the Normal(0,1) pdf and the t(3) pdf.

Results are reported in table 3. Only results using the vertically scaled test

scores are reported. Under random grouping and random assignment (RG-RA)
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the CGM and NNM estimators slightly outperform the value-added estimators.

The CGM estimator has a rank correlation of .72, and the NNM estimator has

a rank correlation of .73 in the λ = 1 case. The value-added estimators have a

slightly lower but very similar rank correlation of .71.

Under the dynamic grouping and nonrandom assignment (DG-PA and DG-

NA) scenarios, DOLS again outperforms the CGM and NNM estimators that do

not properly partial out the relationship between the covariates and the teacher’s

value-added. The rank correlation for DOLS is .70 and .71 for the DG-PA and

DG-NA scenarios in the λ = 1 case. The rank correlation for the CGM estimator

is .57 and .59 for the DG-PA and DG-NA scenarios, and the rank correlation is

.60 and .59 for the NNM estimator.

An important takeaway from this analysis is that there may be cases were

using the CGM or NNM estimators is preferable. One case may be when the

distribution is thick tailed and there is random grouping and assignment. However,

as the simulations show, even in the thick tailed case, nonrandom grouping and

assignment still poses a threat to the CGM and NNM estimators.

3 Empirical Analysis

In the next section, we examine the correlations between the estimators using

real data. A main finding from the simulations was that value-added estimators

such as DOLS and the CGM estimator provide similar rankings under random

assignment, but somewhat different rankings under nonrandom assignment.
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Using real data, we find patterns suggesting a similar relationship between

DOLS and the Colorado estimator when we compare correlations and classifica-

tion rates for teachers in schools with little evidence of nonrandom grouping with

those using teachers in schools with evidence of nonrandom grouping.

3.1 Data

The data come from an administrative data set in large and diverse anonymous

school district. It consists of 215,411 usable student year observations from years

2002-2007 and grades 5 and 6. Student-teacher links are available for value-

added estimation. Also, basic student information, such as demographic, socio-

economic, and special education status, are available. The data include vertically

scaled achievement scores in reading and math on a state criterion referenced test.

The analysis will focus on value-added for mathematics teachers.

We imposed some restrictions on the data in order to accurately identify the

parameters of interest. Students who cannot be linked to a teacher are dropped, as

are students linked to more than one teacher in a school year in the same subject.

Students in schools with fewer than 20 students are dropped, and students in class-

rooms with fewer than 12 students are dropped. Students in charter schools are

not included in this analysis, since charter schools may employ a set of teachers

who are somewhat different from those typically found in public schools. Char-

acteristics of the final data set are reported in Tables 4 and 5.
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3.2 Analysis

The nearest neighbor matching estimator was dropped from the analysis using real

data due to computational limitations and because the issues this estimator faces

are mirrored in the CGM estimator. Matching each student to 9 other students

cannot be done quickly when the data set is large10, as far as we are aware. Also

we use an empirical Bayes estimator of value-added instead of a more simple

average residual estimator, since class size does vary substantially in the real data

set. In the following only estimates from the DOLS, EB-Lag, OLS-Gain, and

Colorado growth model estimators are reported.

The simulation results indicated that in situations where students were dynam-

ically grouped based on prior year test scores and were nonrandomly assigned to

teachers the DOLS estimator maintained a strong correlation with the true teacher

effect, while the Colorado Growth estimator performed less well. In order to ex-

amine whether the Colorado growth model may perform less well in actual data,

we performed the test of nonrandom grouping that was performed in Dieterle et al.

(2012). The test involved a multinomial logit regression of each student’s class-

room assignment on the student’s prior year test score for each school-grade-year

combination in the data. Finding that students’ prior year test scores significantly

predict their classroom assignment is taken as evidence that nonrandom grouping

based on prior test scores occurs in that particular school-grade-year. Since non-

random grouping is a precondition for nonrandom grouping and assignment, we

10It will take approximately 76 days to calculate teacher quality measures using the NNM esti-
mator in just one large in the state we examine using a high performance computer.
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focus on teachers in schools that reject the test of random grouping and compare

them with teachers in schools that fail to reject. Results are reported in tables 6,

7, and 8.

All value-added models include the student’s free-and-reduced price lunch sta-

tus, English learner status, gender, and indicators for whether the student is black

or hispanic. Value-added estimates and the estimates for the Colorado growth

model are computed using one year of data11. DOLS and the EB-Lag estimator

include two prior years mathematics scores as controls. In the EB-Lag and EB-

Gain estimator, the student’s class average prior year test score is included as a

control for peer effects. The Colorado growth model estimates only include two

prior year mathematics scores as controls in the quantile regressions, since this is

how the estimator is described in Betebenner (2011)12.

The correlation between DOLS and the CGM using one year of data13 is .713

in the real data. This correlation is appreciably smaller than the correlation be-

tween DOLS and the EB-Lag (.96), OLS-Gain (.87), and EB-Gain (.94) estima-

tors.

When the sample of teachers is broken into those teachers in school-grade-

years where we find evidence of nonrandom grouping and those in school-grade-

11We have also examined the correlations when we pool across years. All correlations across
estimators are higher than when only one year of data is used. We speculate that this is driven by
greater precision using pooled data.

12As a sensitivity check we also estimate the CGM rankings by also including the other student
demographics. In another sensitivity check, we also estimate the value-added models using only
previous test scores as controls. This somewhat alters the correlations, but the main patterns
described below still hold

13Two prior years of test scores are included. We mean that each teacher quality measure is
estimated cohort by cohort.
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years where we do not, we see a pattern that accords with the pattern seen in the

simulation. The correlation between DOLS and the CGM estimator, found in table

7, is .695 in school-grade-years with nonrandom grouping and .746 in school-

grade-years where we can’t reject the hypothesis of random grouping, in table

8. The correlations between DOLS and OLS-Gain, as well as the EB estimators,

changes slightly when comparing the nonrandom and random grouping school-

grade-years, rising from .842 to .917 for OLS-Gain and from .953 to .973 for

EB-Lag. This again is similar to what took place in the simulations.

As another check we examine a measure of disagreement between the esti-

mators in terms of who is classified in the bottom 25% of teachers. We calculate

the fraction of teachers rated in the bottom 25% using one estimator that are not

rated in the bottom 25% using the other estimators. Results are reported in tables

9 to 11. Similar to the pattern indicated by the rank correlations, there is less

disagreement between the estimators in the cases of schools with little evident of

nonrandom grouping. The fraction of teachers rated in the bottom 25% using the

DOLS estimator not rated in the bottom 25% using the CGM estimator is .36 in

nonrandom grouping schools and .32 in random grouping schools.

4 Conclusions

In this paper, we compare commonly used value-added estimators to two alter-

native estimators that have been proposed: the Colorado growth model approach

and the nearest neighbor matching estimator.
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Simulation evidence indicates that the performance of these estimators de-

pends on how students are grouped and assigned to teachers. In cases where stu-

dents are nonrandomly grouped based on prior year test scores and nonrandomly

assigned to teachers, the Colorado growth model and nearest neighbor estimators

perform poorly compared with the DOLS estimator, which partials out the re-

lationship between student’s prior year achievement and the teacher assignment.

The DOLS estimator is also robust to the case where vertically scaled test scores

are not used.

The performance of the estimators also depends to some extent on the distri-

bution of the error term in the achievement model. When a fatter tailed t distri-

bution with 3 d.f. is used for the error term, DOLS and the other value-added

estimators perform worse than the Colorado growth model and nearest neighbor

matching approacher, but only slightly so. In this case, DOLS still outperforms

the Colorado growth model and nearest neighbor matching estimators when there

is nonrandom grouping and assignment.

Additionally, we compare the estimators using actual data. The patterns of

divergence between DOLS and the growth model approach when there is non-

random grouping and assignment uncovered in the simulations are also detected

when we divide the sample into teacher in schools with evidence of nonrandom

grouping versus teachers in schools in which grouping is fairly random.

This paper provides evidence that nonrandom grouping and assignment can

negatively affect the popular Colorado growth modeling approach, as well as

other growth percentile models such as the nearest neighbor matching approach.
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Care should be used by practitioners and researchers in evaluating teachers using

these approaches when nonrandom grouping and assignment occurs in the school

system. More generally, estimators that do not partial out teacher effects–not

only growth models, but also value-added models that are relatively descriptive

in nature–are less equipped to disentangle true teacher contributions to student

achievement from other source of achievement than those that partial out these

effects.
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5 Appendix of Tables and Figures
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Table 1: Results from 100 replications. Normal(0,1) Errors. Row 1: Average
rank correlation Row 2: Percentage of teachers above bottom 25% in true effect
misclassified in bottom 25%

Estimator DOLS AR/EB-Lag OLS-Gain CGM NNM Corr DOLS/CGM

Assign Mech λ = 1 Vertically Scaled Test Scores

RG-RA 0.88 0.88 0.87 0.82 0.85 .93
6% 8% 8% 10% 9%

DG-RA 0.87 0.87 0.83 0.83 0.85 .93
7% 8% 9% 9% 9%

DG-PA 0.88 0.78 0.91 0.71 0.75 .87
7% 11% 7% 12% 12%

DG-NA 0.87 0.77 0.52 0.71 0.72 .87
8% 10% 16% 12% 12%

λ = 1 Standardized Test Scores

RG-RA 0.88 0.88 0.86 0.82 0.85 .93
8% 8% 8% 9% 9%

DG-RA 0.87 0.87 0.76 0.83 0.85 .93
7% 8% 10% 9% 9%

DG-PA 0.88 0.78 -0.11 0.71 0.75 .87
8% 11% 27% 12% 12%

DG-NA 0.87 0.77 0.91 0.71 0.72 .87
7% 10% 7% 12% 12%
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Table 2: Results from 100 replications. Normal(0,1) errors. Row 1: Average
rank correlation Row 2: Percentage of teachers above bottom 25% in true effect
misclassified in bottom 25%

Estimator DOLS AR/EB-Lag OLS-Gain CGM NNM Corr DOLS/CGM

Assign Mech λ = .5 Vertically Scaled Test Scores

RG-RA 0.88 0.88 0.87 0.82 0.85 .93
8% 8% 8% 10% 9%

DG-RA 0.87 0.87 0.83 0.83 0.85 .93
7% 8% 9% 9% 9%

DG-PA 0.88 0.78 0.53 0.71 0.75 .87
8% 11% 17% 12% 12%

DG-NA 0.87 0.77 0.91 0.71 0.72 .87
7% 10% 7% 12% 12%

λ = .5 Standardized Test Scores

RG-RA 0.88 0.88 0.85 0.82 0.85 .93
8% 8% 9% 9% 9%

DG-RA 0.87 0.87 0.69 0.83 0.85 .93
7% 7% 12% 9% 9%

DG-PA 0.88 0.78 -0.33 0.71 0.75 .87
8% 11% 30% 12% 12%

DG-NA 0.88 0.77 0.89 0.72 0.73 .87
7% 10% 8% 12% 12%
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Table 3: Results from 100 replications. Errors have t distribution with 3 d.f. Row
1: Average rank correlation Row 2: Percentage of teachers above bottom 25% in
true effect misclassified in bottom 25%

Estimator DOLS AR/EB-Lag OLS-Gain CGM NNM Corr DOLS/CGM

Assign Mech λ = 1 Vertically Scaled Test Scores

RG-RA 0.71 0.71 0.71 0.72 0.73 .85
10% 10% 10% 12% 11%

DG-RA 0.72 0.72 0.67 0.71 0.72 .84
11% 11% 13% 12% 11%

DG-PA 0.70 0.58 0.84 0.57 0.60 .80
11% 13% 08% 14% 14%

DG-NA 0.71 0.59 0.16 0.59 0.59 .80
11% 14% 23% 15% 15%

λ = .5 Vertically Scaled Test Scores

RG-RA 0.71 0.71 0.71 0.71 0.73 .85
9% 9% 10% 12% 11%

DG-RA 0.72 0.72 0.71 0.71 0.72 .84
11% 11% 11% 12% 11%

DG-PA 0.70 0.58 0.57 0.57 0.59 .80
11% 13% 14% 14% 14%

DG-NA 0.71 0.59 0.78 0.59 0.59 .80
11% 14% 9% 15% 15%

36



Table 4: Summary statistics

Grade 5

Student Level Characteristics

Variable Mean Std. Dev. Min. Max.
Math Scale Score 1630.033 239.368 569 2456
Reading Scale Score 1552.276 321.701 474 2713
Math Scale Standardized Score -0.081 1.009 -5.149 3.705
Reading Scale Standardized Score -0.149 0.986 -4.020 3.605
Black 0.281 0.45 0 1
Hispanic 0.597 0.491 0 1
Free and Reduced Price Lunch 0.703 0.457 0 1
Limited English Proficiency 0.507 0.5 0 1

N 110970

Teach Level Characteristics

Avg. Lag Math Score 1456.094 152.644 806.769 1986.808
Prop. FRL 0.718 0.249 0 1
Prop. LEP 0.508 0.259 0 1
Prop. Hispanic 0.584 0.322 0 1
Prop. Black 0.3 0.341 0 1
Class Size 24.019 7.929 12 145
Teacher Experience 9.374 10.101 0 47

N 4620
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Table 5: Summary statistics

Grade 6

Student Level Characteristics

Variable Mean Std. Dev. Min. Max.
Math Scale Score 1641.693 247.982 770 2492
Reading Scale Score 1618.179 311.402 539 2758
Math Scale Standardized Score -0.14 0.971 -3.707 3.354
Reading Scale Standardized Score -0.192 0.969 -4.049 3.526
Black 0.288 0.453 0 1
Hispanic 0.6 0.49 0 1
Free and Reduced Price Lunch 0.705 0.456 0 1
Limited English Proficiency 0.511 0.5 0 1

N 104441

Teach Level Characteristics

Variable Mean Std. Dev. Min. Max.
Avg. Lag Math Score 1608.182 143.225 903.733 2053.576
Prop. FRL 0.727 0.218 0 1
Prop. LEP 0.515 0.238 0 1
Prop. Hispanic 0.589 0.31 0 1
Prop. Black 0.307 0.33 0 1
Class Size 65.113 42.807 12 216
Teacher Experience 7.668 8.978 0 40

N 1604
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Table 6: Correlations across Estimators

Variables DOLS EB-Lag OLS-Gain EB-Gain CGM
DOLS 1.00
EB-Lag 0.96 1.00
OLS-Gain 0.87 0.91 1.00
EB-Gain 0.94 0.98 0.93 1.00
CGM 0.71 0.68 0.60 0.69 1.00

Teacher/Year Obs 5666 5666 5666 5666 5666

Table 7: Correlations across Estimators - Nonrandom Grouping Schools

Variables DOLS EB-Lag OLS-Gain EB-Gain CGM

DOLS 1.00
EB-Lag 0.95 1.00
OLS-Gain 0.84 0.89 1.00
EB-Gain 0.94 0.98 0.91 1.00
CGM 0.70 0.65 0.56 0.67 1.00

Teacher/Year Obs 3672 3672 3672 3672 3672

Table 8: Correlations across Estimators - Random Grouping Schools

Variables DOLS EB-Lag OLS-Gain EB-Gain CGM

DOLS 1.00
EB-Lag 0.97 1.00
OLS-Gain 0.92 0.94 1.00
EB-Gain 0.96 0.99 0.96 1.00
CGM 0.75 0.72 0.68 0.73 1.00

Teacher/Year Obs 1876 1876 1876 1876 1876

39



Table 9: Fraction of Teachers Rated in Bottom 25% in the Initial Estimator Who
are Not Rated in Bottom 25% in Another

Not Rated Bottom 25%
Initial Estimator DOLS EB-Lag OLS-Gain EB-Gain CGM

DOLS 0
Rated EB-Lag .14 0
Bottom OLS-Gain .26 .22 0
25% EB-Gain .17 .10 .21 0

CGM .34 .38 .42 .38 0

Teacher/Year Obs 5666 5666 5666 5666 5666

Table 10: Fraction of Teachers Rated in Bottom 25% in the Initial Estimator Who
are Not Rated in Bottom 25% in Another - Nonrandom Grouping Schools

Not Rated Bottom 25%
Initial Estimator DOLS EB-Lag OLS-Gain EB-Gain CGM

DOLS 0
Rated EB-Lag .15 0
Bottom OLS-Gain .27 .23 0
25% EB-Gain .17 .09 .21 0

CGM .36 .40 .44 .39 0

Teacher/Year Obs 3672 3672 3672 3672 3672

Table 11: Fraction of Teachers Rated in Bottom 25% in the Initial Estimator Who
are Not Rated in Bottom 25% in Another - Random Grouping Schools

Not Rated Bottom 25%
Initial Estimator DOLS EB-Lag OLS-Gain EB-Gain CGM

DOLS 0
Rated EB-Lag .12 0
Bottom OLS-Gain .23 .20 0
25% EB-Gain .17 .11 .17 0

CGM .32 .35 .38 .35 0

Teacher/Year Obs 1876 1876 1876 1876 1876
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