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1 Introduction

We develop a nonparametric methodology for evaluating the effect of an endogenous binary variable

(referred to as treatment) in multiple outcomes periods where some outcomes are missing non-

randomly due to non-response and attrition (e.g. survey non-response or truncation by death).

Our identification strategy exploits an instrument (to control for treatment endogeneity), baseline

covariates, and short-term (or intermediate) post-treatment variables to tackle the dynamic nature

of the attrition problem. This in principle allows us to estimate the treatment effects also in later

periods where the attrition problem is typically particularly severe.

The proposed methods appear important in the light of two fundamental trends that are cur-

rently observed in applied research in social sciences: First, the increasing use of randomized ex-

periments and second, a growing interest in medium to long-term treatment effects of interven-

tions, in order to see whether effects are sustainable. Even randomized experiments, which are fre-

quently regarded as the gold standard for causal inference, are often plagued by imperfections such

as noncompliance with treatment assignment and outcome attrition due to loss to follow-up. The

noncompliance issue can be solved if it can be plausibly assumed that random treatment assign-

ment provides a credible instrument for (endogenous) treatment take-up. While this is common

practice for the identification of complier average causal effects (CACE) (also known as local aver-

age treatment effects, LATE) in experiments, see Imbens and Angrist (1994) and Angrist, Imbens,

and Rubin (1996), our approach also tackles the attrition problem. The latter appears particularly

relevant when noting the increasing importance of long-term evaluations of policy interventions,

as e.g. in the assessment of active labor market policies, e.g. Lechner, Miquel, and Wunsch (2011),

or of educational interventions, e.g. Angrist, Bettinger, and Kremer (2006).

To see the contribution of this paper, it appears useful to review previously suggested

approaches to correct for attrition. The very common missing at random (MAR) restriction

assumes non-response or attrition to be conditionally ignorable (i.e., independent of the potential

outcomes) given observed characteristics, see for instance Rubin (1976), Little and Rubin (1987),

Robins, Rotnitzky, and Zhao (1994), Robins, Rotnitzky, and Zhao (1995), Carroll, Ruppert, and

Stefanski (1995), Shah, Laird, and Schoenfeld (1997), Fitzgerald, Gottschalk, and Moffi tt (1998),

and Abowd, Crepon, and Kramarz (2001). Frangakis and Rubin (1999) suggest a relaxation of

MAR in experiments which they call latent ignorability (LI). Non-response is assumed to be

ignorable conditional on observed characteristics and the latent (compliance) type, characterizing
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how an individual’s treatment state reacts on some instrument. See Barnard, Frangakis, Hill, and

Rubin (2003), Frangakis, Brookmeyer, Varadhan, Safaeian, Vlahov, and Strathdee (2004), and

Mealli, Imbens, Ferro, and Biggeri (2004) for related applications.

Approaches other than MAR and LI, permitting attrition to be related to unobservables in a

general way, are referred to as non-ignorable non-response models. The earlier work, e.g. Heckman

(1976), Hausman and Wise (1979), Bollinger and David (2001), and Chen, Wong, Dominik, and

Steiner (2000), focussed on fully parameterized maximum likelihood estimation with identification

often achieved only via functional form restrictions, see Little (1995) for an intuitive example.

Instrumental variables for non-response and attrition offer an additional source of identification,

see DiNardo, McCrary, and Sanbonmatsu (2006) for an application in an experimental context.

In particular, such models allow for non-parametric identification and more flexible estimation,

including the series regression approach of Das, Newey, and Vella (2003) and inverse probability

weighting based on instruments for attrition as outlined in Huber (2012, 2013). While the standard

framework consists of just one follow-up period, panel data sample selection models as suggested

by Kyriazidou (1997, 2001) can be used to consider multiple periods as in this paper. In addition

to dynamic attrition, Semykina and Wooldridge (2006) even allow for endogenous regressors, given

that suffi ciently many instruments to control for attrition and endogeneity are available.

An alternative to the assumptions discussed so far are methods that do not require a fully

specified model for attrition, however, at the cost of sacrificing point identification. E.g., building

on the partial identification literature (Robins, 1989, Manski, 1989, 1990), Zhang and Rubin

(2003), Zhang, Rubin, and Mealli (2008), Imai (2008), and Lee (2009), among others, bound

treatment effects in the presence of non-response under comparably mild restrictions. Another

approach is multiple imputation of missing values, which goes back to Rubin (1977, 1978). Based

on Bayesian techniques, multiple attrition models are used to impute multiple sets of plausible

values for the missing data in order to obtain a probability interval for the parameter of interest.

Finally, Rotnitzky, Robins, and Scharfstein (1998), Scharfstein, Rotnitzky, and Robins (1999), and

Xie and Qian (2012) (who even allow for non-monotone non-response), among others, propose

sensitivity checks for violations of MAR related to unobservables by varying the nuisance term

causing non-ignorable attrition over a relevant range to examine the robustness of the results.

By not considering arguably implausible attrition mechanisms, this approach likely yields more

informative results than Manski-style bounds analysis and therefore provides a middle ground
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between the latter and point identification.

In this paper, we propose a new nonparametric approach for point identification of the av-

erage causal effect on the compliers (those who are responsive to the instrument). We rely on

pre-treatment covariates and (endogenous) post-treatment variables to control for attrition in a

panel data framework as well as a single instrument (e.g., random assignment in an experiment)

to tackle treatment endogeneity. (We only require a single instrument, which is important because

instrumental variables are often hard to find in applications.) Our method for the evaluation of

binary treatments provides three improvements compared to standard MAR. Firstly, we do not

control for pre-treatment covariates only. That would ignore information about the intermediate

variables, which presumably are important predictors of non-response in many empirical contexts.

Secondly, we allow for treatment endogeneity which has rarely been considered under MAR. Ex-

ceptions are Yau and Little (2001) and Ding and Lehrer (2010), who, however, rely on consid-

erably stronger functional form assumptions and in the latter case, on a difference-in-difference

strategy rather than an instrument. Thirdly, in our main identification theorem, we develop a

panel data extension of LI by permitting that attrition does not only depend on observables but

also on the latent types.

It is also interesting to compare our framework to the literature on dynamic treatment regimes,

e.g. Robins, Greenland, and Hu (1999), Murphy, van der Laan, and Robins (2001), and Lok, Gill,

van der Vaart, and Robins (2004). If one were to consider attrition as a dynamic treatment regime,

those methods could be adjusted to our situation. However, they are all based on a type of dynamic

ignorability condition, which would correspond to a MAR assumption in our context. In contrast,

we also allow for selection on the latent types and make use of an instrumental variable to overcome

the endogeneity problems.

Our framework is also more general than the original LI assumption of Frangakis and Rubin

(1999). Firstly, we permit two-sided noncompliance (i.e. the existence of never takers, who are

never treated irrespective of the instrument, and of always takers, who are always treated) and

extend LI to conditional LI given observables. Secondly, we consider multiple periods under

comparably weak assumptions, whereas the literature conventionally imposes more structure and

assesses only one outcome period, see for instance Peng, Little, and Raghunathan (2004). Note,

however, that the identification problem considered in this paper is distinct from non-ignorable

non-response and panel data sample selection models. I.e., we assume that conditional on
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observed characteristics and the latent type, there are no further unobservables that are jointly

related to attrition and the potential outcomes. Therefore, we do not require any additional

instruments for non-response, which are typically hard to find in applications, see the discussion

in Fitzgerald, Gottschalk, and Moffi tt (1998). All in all, the methods proposed in this paper

use less severe functional form and/or identifying assumptions than many non-response models

invoked in recent empirical applications, see the examples in Preisser, Galecki, Lohman, and

Wagenknecht (2000), Mattei and Mealli (2007), Shepherd, Redman, and Ankerst (2008), Zhang,

Rubin, and Mealli (2009), Frumento, Mealli, Pacini, and Rubin (2012), and Wang, Rotnitzky,

Lin, Millikan, and Thall (2012).

The remainder of this paper is organized as follows. Section 2 introduces a treatment effect

model with endogeneity and multiple outcome periods and shows nonparametric identification

under two distinct forms of attrition. For the ease of exposition, only two outcome periods are

considered in the main text. A simulation study is provided in Section 3. Section 4 presents an

application to a policy intervention aiming to increase college achievement previously analyzed

by Angrist, Lang, and Oreopoulos (2009). Section 5 concludes. The (separate) online appendix

presents identification in the more general case with several outcome periods along with the

identification proofs, discusses the implications of our identifying assumptions in a parametric

benchmark model, provides nonparametric and
√
n-consistent estimators based on kernel

regression along with the proofs of their asymptotic properties, and includes an extended range

of simulation studies.

2 Model and identification

Suppose we are interested in estimating the treatment effect of a binary variable D ∈ {0, 1} on an

outcome Yt, where the subscript t denotes the period (t = 1, 2, 3, ...) after the start of the treatment.

All variables observed prior to the treatment are indexed by period zero and are denoted as X0.

The potential outcomes Y 1
t and Y

0
t are the outcomes that would have been realized if D had been

set to 1 or 0, respectively, by external intervention. (To avoid confusion between subscripts and

superscripts we sometimes write Y 0
t=1 instead of Y

0
1 when referring to a specific time period.) In

our nonparametric identification framework, two major issues have to be dealt with: endogenous

treatment selection and missing outcome data due to attrition or non-response. The indicator

variable Rt will denote whether in time period t outcome data is observed (Rt = 1) or missing
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(Rt = 0). We assume that information on the treatment D and baseline covariates X0 is available

for all individuals, but that individuals may not respond or drop out at follow-up data collection.

In most applications, non-response increases at later follow-up periods.

2.1 Treatment endogeneity without attrition

Consider first the case without missing data. Imbens and Angrist (1994) and Angrist, Imbens,

and Rubin (1996) have shown that in the presence of an instrumental variable (denoted by Z)

satisfying particular assumptions, treatment effects are nonparametrically identified for a subset of

the population, the so-called compliers. Adhering to their terminology, let Dz
i denote the potential

treatment status of some individual i if Zi were hypothetically set to z. For ease of exposition

we will focus on a binary Z, which often occurs in experiments, even though the framework

could be extended easily to non-binary discrete instruments, see e.g. Frölich (2007). The two

binary potential treatment states D0
i and D

1
i partition the population into four different types of

individuals according to treatment behavior: the always takers (a) who are treated irrespective of

the instrument (D1
i = 1, D0

i = 1), the never takers (n) who are never treated (D1
i = 0, D0

i = 0), the

compliers (c) who only attend treatment if the instrument takes the value one (D1
i = 1, D0

i = 0),

and the defiers (d) who only attend treatment if the instrument takes the value zero (D1
i = 0, D0

i =

1). As shortcut notation we will henceforth use Ti for ‘type’with Ti ∈ {a, n, c, d}. Note that the

type of any individual is only partially observed, i.e. latent, because the observed D and Z do not

uniquely determine T , as discussed in the appendix.

Abadie (2003) shows the nonparametric identification of the CACE (or LATE)

E[Y 1
t − Y 0

t |T = c],

i.e. the effect for the compliers, under conditions implying conditional validity of the instrument

given observed baseline characteristics, which we denote by X0:

{Y d
t , T }⊥⊥Z|X0 for d ∈ {0, 1},

Pr(T = d|X0) = 0 Pr(T = c|X0) > 0.

The first line assumes independence between the instrument and the type and potential outcomes,

conditional on X0. (Note that ‘⊥⊥’denotes statistical independence). It thus assumes random

assignment of Z and an exclusion restriction with respect to the potential outcomes for given values
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of the baseline covariates X0. The second line states that the treatment is (weakly) monotonic in

the instrument conditional on X0 so that defiers are ruled out and compliers do exist.

In the subsequent sections, we extend the CACE framework to allow for missing values in the

outcome variables Yt. We focus on the case of attrition (i.e. missingness as an absorbing state),

which is the most frequent concern in empirical applications, particularly in impact evaluation.

However, our approach does also permit intermittent missingness, implying that intermediate out-

comes are missing while later ones are observed, but in this case does not exploit the information

from later waves. With this respect, it is interesting to note that several contributions consider-

ing parametric missing data models distinguish explicitly between attrition and intermittent miss-

ingness, see for instance Xie and Qian (2012). In those approaches, however, one either has to

additionally model the re-entry process after non-response or specify attrition and intermittent

missingness as two separate processes. Under additional assumptions, also our nonparametric ap-

proach could use information from the re-entrants in order to permit more precise estimates (given

that re-entry occurs suffi ciently often), but the identification expressions and estimators would be-

come less tractable. Since we aim at imposing as few restrictions as possible and do not make use

of additional instruments (other than for treatment), which are often not available in applications,

we therefore only model the non-response process and ignore any information after the first non-

response. Hence, we do permit that individuals have missing data in only one or several waves and

then re-enter the panel after periods of non-observability, but we do not exploit this information.

In the following, we denote by Xt the observed characteristics for any t > 0, i.e. after treat-

ment. Note that Xt usually also contains the outcome Yt. In contrast to X0, these variables Xt

may possibly already be causally affected by the treatment, and we refer to them as (endogenous)

post-treatment characteristics. (Note that whereas X0 is permitted to be endogenous in the sense

of Frölich (2008), i.e. that X0 may be correlated with baseline unobservables, X0 is not permitted

to be causally influenced by treatment D, e.g. due to anticipation.) Furthermore, define X
¯ t

=

{X1, ..., Xt} to be the history of the characteristics up to time t, where we do not include X0 here

in order to make the distinction between pre-treatment and endogenous post-treatment variables

explicit. Accordingly, Xd
t and X¯

d
t denote the potential values of the characteristics and of their

history, respectively, at time t, if the treatment had been set to d by external intervention. Fur-

thermore, let Rt be the response indicator in period t. I.e., Xt and Yt are only observed if Rt = 1.

Our setup permits that R1 is zero for some individuals, such that outcome data is completely miss-
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ing for those subjects. The history of response indicators over the post-treatment periods up to

t is denoted by R
¯ t

= {R1, ..., Rt}. The potential values of response and the response history are

denoted by Rdt and R¯
d
t , respectively.

The occurrence of attrition and non-response may have many reasons. In the simplest and

least realistic case, it is only triggered by random events happening after treatment, such that

outcomes are missing completely at random (MCAR), see e.g. Rubin (1976) and Heitjan and Basu

(1996). However, it is more likely that attrition depends also on observed and/or unobserved char-

acteristics of the individuals. In particular, attrition may depend on Yt−1, which is an endogenous

variable that has been causally affected by the treatment. In addition, attrition could also be di-

rectly causally affected by the treatment itself, e.g. due to side effects or adverse events of a drug

treatment in a medical intervention. Finally, attrition could also be caused directly by the instru-

mental variable Z.

Our identification strategy requires us to restrict the missing data process in two ways: First,

we assume that non-response in time t is not simultaneously related to the outcome variable in

time t. This implies that while any variables measured in the past may trigger non-response

today, current and future values of the outcome variable are not permitted to do so. Non-response

is thus considered to be predetermined. Second, we need to impose some restrictions on the

relationship between the instrument and non-response. In the following two subsections, we will

discuss two different identification assumptions. The first approach permits non-response to depend

on unobservables, but requires it to be ignorable given the observed characteristics and the latent

types (conditional LI ). The second approach assumes that non-response is missing at random

(MAR) given the observed pre- and post-treatment characteristics. While the first setup appears

to be more general in most applications than the second one, they are not strictly nested. I.e.

while the first approach is less restrictive with respect to the non-response process, the second one

imposes weaker (albeit only mildly weaker) assumptions on the instrument.

Our analysis covers four cases. First, it includes randomized experiments with full compliance.

Then, the exclusion restriction is valid with X0 being the empty set (i.e. not controlling for

any covariates) and using D as its own instrument, i.e. defining Zi ≡ Di. Second, under random

assignment but imperfect compliance, we may use the randomization Z as an instrumental variable

for the actual treatment receipt D. If the randomization probability is the same for everyone, X0

may again be the empty set. Third, the framework also includes observational studies, where the
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instrumental variable assumption is often plausible only after conditioning on some variables X0,

see Abadie (2003), Tan (2006), and Frölich (2007). Finally, when controlling for some X0 and using

D as its own instrument, i.e. defining Zi ≡ Di, we impose what is referred to in the literature as

the selection on observables, unconfoundedness, ignorable assignment, or conditional independence

assumption, see for instance Rosenbaum and Rubin (1983), Lechner (1999), and Imbens (2004).

Hence, although we focus on instrument-based identification, our identification results are also

directly applicable to the selection on observables framework with missing outcome data.

2.2 Non-response under conditional latent ignorability

This section presents the identifying assumptions for the case of conditional latent ignorability.

We permit that the response process at time Rt is related to all observed variables in the past

and that it is a function of the latent type T . Hence, the response process is supposed to be

predetermined, which means that past values of the outcomes and further observed characteristics

may affect the response behavior today. However, conditional on these past values, the instrument

and conditional on the latent type, current and future outcomes must be independent of non-

response in period t. This is, for instance, different to Xie and Qian (2012), who permit response

and contemporaneous outcomes to be related and propose various sensitivity checks. Assumption

1 formalizes predetermined non-response under conditional LI. As already mentioned, X
¯ t−1 may

contain both intermediate outcomes Y
¯ t−1 as well as other observed characteristics.

Assumption 1: Predetermined non-response

Yt+s⊥⊥Rt|X0,X¯ t−1,R¯ t−1, Z, T , for s ≥ 0. (1)

The plausibility of predetermined non-response (not related to contemporaneous outcomes)

needs to be judged in the light of the application at hand. Some statistical support that

this may be an empirically relevant case comes from Hirano, Imbens, Ridder, and Rubin

(2001), who provide conditions implied by non-response related to (i) past information and (ii)

contemporaneous outcomes that can be tested if a refreshment sample is available. Applying their

test to a Dutch household survey, they reject attrition related to contemporaneous outcomes, but

do not reject predetermined non-response at any conventional level. Our assumption may for

instance appear plausible in the context of educational outcomes, where Yt denotes a measure

of cognitive skills (e.g. test scores or grades) at the end of some academic year t and Rt is
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an indicator for (not) having dropped out of school. Predetermined non-response is (closely)

satisfied if individuals decide to remain in or leave education (mainly) based on their academic

performance in the previous academic year, Yt−1, so that the drop-out decision Rt is taken shortly

after that, e.g. during or at the end of summer vacation.

In addition to Assumption 1, we invoke exclusion, monotonicity, and common support restric-

tions, as stated in Assumptions 2 and 3. The latter are similar to Abadie (2003), apart from that

we have to strengthen the instrumental exclusion restriction for the always and never takers.

Assumption 2: Exclusion restriction: For d ∈ {0, 1}

(Yt,X¯ t−1,R¯ t−1)⊥⊥Z|X0, T ∈ {a, n}

Y d
t ⊥⊥Z|X0, T = c

T ⊥⊥Z|X0.

Assumption 2 requires that conditional on the observed baseline characteristics, the instrumen-

tal variable Z affects neither the histories of characteristics (possibly including intermediate po-

tential outcomes) nor of responses of the always and never takers up to one period prior to the out-

come period considered. In the two outcome periods case for instance, only X1, R1 are restricted

in this way, but not R2. Furthermore, note that for the always takers, the exclusion restriction

only refers to the potential outcome under treatment, because (Yt,X¯ t−1,R¯ t−1) = (Y 1
t ,X¯

1
t−1,R¯

1
t−1)

for T = a, while (Y 0
t ,X¯

0
t−1,R¯

0
t−1) is not restricted. An analogous statement holds for the never

takers.

Assuming that Z does not affect the response behavior of always and never takers may appear

reasonable in double-blind randomized medical trials, where individuals are not even aware of

their treatment assignment. In non-blinded trials, this assumption seems generally less innocuous.

Consider e.g. a non-blinded randomized drug-trial, where a never taker does not take the new drug

irrespective of being assigned to treatment or control. Under assignment to treatment she actively

decides to not comply with the protocol, whereas she would comply when being assigned to the

control group. It is conceivable that the decision to not comply might affect response behavior.

In other cases it may however be less of a problem. E.g. assume the randomization of a school

voucher (for tuition fees) where the outcome of interest is some test score in the final grade and

non-response is characterized by dropping out from school. Here, it appears more reasonable that

mere voucher assignment does not affect the drop out decision of never takers, who would not use

the school voucher anyway.
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The stronger exclusion restriction is only required for the always and never takers, not for

the compliers. Concerning the latter, only the standard exclusion restriction Y d
t ⊥⊥Z|X0, T = c is

imposed (see second line of Assumption 2) such that non-response may be arbitrarily related to

and thus, affected by the instrument. This may happen either directly, e.g. when Z is treatment

assignment and the notification of having been assigned to the treatment or control group itself

changes the response behavior, or indirectly via treatment choice, e.g. due to the side effects or

adverse events of a drug treatment which influences attrition.

Assumption 3: Monotonicity and support restrictions

Existence of compliers: Pr(T = c) > 0

Monotonicity: Pr(T = d) = 0

Common support: 0 < Pr(Z = 1|X0) < 1.

Assumption 3 invokes weak monotonicity, i.e. the existence of compliers and the non-existence

of defiers (or vice versa). For nonparametric identification, common support in the baseline char-

acteristics X0 across the populations receiving and not receiving the instrument must also hold.

This is e.g. satisfied in randomized experiments, where Pr(Z = 1|X0) is often a constant.

Theorem 1 shows the identification of the mean potential outcomes of the compliers. For ease

of exposition, only two outcome periods are considered here, i.e. t ∈ {1, 2}, while the general result

for more than two periods is provided in the online appendix. For a concise exposition of the

results, we define the following conditional probabilities:

π = Pr (Z = 1|X0)

Pt = Pr (Z = 1|X0,X¯ t
,R
¯ t

= 1, D = 1)

P ′t = Pr
(
Z = 1|X0,X¯ t

,R
¯ t+1 = 1, D = 1

)
Ξt = Pr (Rt+1 = 1|X0,X¯ t

,R
¯ t

= 1, D = 1)

Ξt,Z=z = Pr (Rt+1 = 1|X0,X¯ t
,R
¯ t

= 1, D = 1, Z = z) .

Identification is based on a weighting representation in which four conditional probabilities enter

multiplicatively: The probability that Z takes the value one, conditional on three different sets of

regressors, and a time-varying conditional response probability. For identification, Ξt has to be

larger than zero, i.e. for each value of the covariates (X0,X¯ t
), the probability of attrition must not

be one. Then, the treatment effect on the compliers is identified as E
[
Y 1
t |T = c

]
−E

[
Y 0
t |T = c

]
.
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The intuition underlying Theorem 1 is as follows. By the independence of Z and T given X0

stated in Assumption 2, the proportions of compliers, always takers, and never takers in groups

defined by D and Z are identified. By Assumption 1, the first period potential outcomes are

independent of first period response conditional on X0, Z, and T , and in the second period,

independence of Y2 and R2 holds by additionally conditioning on X1 and R1. Together with the

exclusion restrictions on the compliers’potential outcomes as well as the potential outcomes and

pre-period responses (only relevant for the second period) of always and never takers postulated

in Assumption 2, this ultimately allows isolating the mean potential outcomes of compliers in the

mixed groups with (Z = 1, D = 1) and (Z = 0, D = 0), so that the CACE is identified. Finally,

it is worth noting that if there was no attrition, the CACE based on the expressions in Theorem

1 would simplify to equation (11) in Frölich (2007), which provides a representation of the CACE

based on inverse probability weighting in the absence of the missing outcomes problem.

Theorem 1 Under Assumptions 1, 2 and 3, the potential outcomes in periods t ∈ {1, 2} are

identified as

E
[
Y 1
t=1|T = c

]
= E

[
Yt=1Rt=1

D

π

Z − π
1− π

1

Ξ0

P0 − π
P ′0 − π

]
× 1

E
[
D
π
Z−π
1−π

]
E
[
Y 1
t=2|T = c

]
= E

[
Yt=2Rt=1Rt=2

D

π

Z − π
1− π

1

Ξ0Ξ1

P0 − π
P ′0 − π

P1 − π
P ′1 − π

]
× 1

E
[
D
π
Z−π
1−π

] . (2)

An equivalent expression for E
[
Y 0
t |T = c

]
is obtained by replacing D with 1−D and D = 1 with

D = 0 everywhere.

2.3 Non-response under the missing at random assumption

In this section we consider an alternative identification approach, where the response process is

assumed to be ignorable conditional on observed characteristics, which corresponds to a type of

MAR assumption. I.e., we do no longer permit that the unobserved type T is related to response

behavior. This implies that only unobservables that are not related to the potential outcomes

are allowed to affect attrition. Again, past values of Y may trigger non-response in the current

period, but neither present nor future values of Y . As stated in Assumption 1’, response behavior

might depend on all past values of X, which itself could be endogenous, i.e. causally affected by

the treatment.
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Assumption 1’: Predetermined non-response

Yt+s⊥⊥Rt|X0,X¯ t−1,R¯ t−1, Z,D for s ≥ 0. (3)

The key difference between Assumption 1’and Assumption 1 is that the latter permits the

response behavior to depend on the latent type T , while the former does not. Still, Assumption 1’

allows response to be a function of the received treatment, which is a relevant scenario e.g. if the

treatment leads to dissatisfaction and reduces the willingness to provide outcome data. On the

other hand, one can think of many frameworks where it is not the treatment receipt alone that

determines response behavior but rather the unobserved type T of an individual, as permitted

in Assumption 1. Consider e.g. an educational intervention as analyzed in Angrist, Lang, and

Oreopoulos (2009) where college students are randomly provided with services and/or financial

incentives to obtain better grades. In this context, never takers who do not comply when offered a

treatment might have a higher probability to drop out due to a lower commitment to this particular

college or to higher education in general. Assumption 1’therefore appears to be more restrictive

than Assumption 1 in many empirical applications.

On the other hand, since we need no longer condition on the latent type, the restrictions on

the instrument can be relaxed somewhat. The following Assumption 2’is thus a little weaker than

Assumption 2 because exclusion restrictions of the instrument on the response behavior do not

have to be imposed for any type. This may be of practical relevance in randomized trials e.g.

if those always takers who were not randomized into the treatment (Z = 0) are less inclined to

respond than those with Z = 1 due to their discontent about having to organize the treatment

receipt through alternative means. In this case, Assumption 2 is violated while Assumption 2’may

still hold.

Assumption 2’: Exclusion restriction: For d ∈ {0, 1}

(Y d
t , T )⊥⊥Z|X0.

Theorem 2 gives the identification results for the compliers under MAR for the case of two

outcome periods, while the general result for more outcome periods is provided in the appendix.

Theorem 2 Under Assumptions 1’, 2’ and 3, the potential outcomes in periods t ∈ {1, 2} are

12



identified as

E
[
Y 1
t=1|T = c

]
= E

[
Yt=1Rt=1DZ

πΞ0,Z=1
− Yt=1Rt=1D(1− Z)

(1− π)Ξ0,Z=0

]
× 1

E
[
D
π
Z−π
1−π

] ,
E
[
Y 1
t=2|T = c

]
= E

[
Yt=2Rt=1Rt=2DZ

πΞ0,Z=1Ξ1,Z=1
− Yt=2Rt=1Rt=2D(1− Z)

(1− π)Ξ0,Z=0Ξ1,Z=0

]
× 1

E
[
D
π
Z−π
1−π

] . (4)

The expression for E
[
Y 0
t |T = c

]
is obtained by replacing D with 1 − D and D = 1 with D = 0

everywhere.

Note that the assumptions underlying Theorems 1 and 2 are partly testable. Consider first the

case that attrition is zero in some outcome period (e.g. zero attrition in the first follow-up period).

Our setup then collapses to the standard LATE assumptions, for which tests have been proposed

by Huber and Mellace (2013) and Kitagawa (2013). Similar tests could be derived for the case

with attrition. By straightforward modifications of Theorems 1 and 2 the distribution functions

of the potential outcomes among compliers are identified and therefore, also the density functions.

As in Kitagawa (2013), a testable implication is that the estimated potential outcome densities

of compliers must not be significantly negative at any point in the outcome support, because

this would indicate the failure of our identifying assumptions. As a further possibility to validate

the MAR assumptions underlying Theorem 2, one may consider the approach of Hirano, Imbens,

Ridder, and Rubin (2001) for testing MAR models in the presence of a refreshment sample. We

leave the detailed derivations and analyses of such tests for future research.

3 Finite sample properties

To illustrate the behavior of the proposed estimators in finite samples we examine a small simula-

tion study in this section. We consider the following data generating process (DGP) with, for the

sake of simplicity, parsimonious specifications of the instrument, treatment, covariate, response,

and outcome equations that nevertheless give an idea about which forms of attrition can be con-

trolled for based on our identification results:
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X0 ∼ uniform(0, 1), Z = I{0.25X0 +W > 0}, D = I{αZ − 0.25X0 + U0 > 0.5},

Y1 = 0.5X0 + 0.5D + κDU0 + U1,

X1 = 0.5Y1 + 0.5Q,

R1 = I{0.25X0 + 0.25D + βZ + γI{0.5− α < U0 − 0.25X0 ≤ 0.5}+ δY1 + V > 0},

Y2 = 0.5X0 +X1 +D + κDU0 + U2,

R2 = R1I{0.25X0 + 0.25X1 + 0.25D + βZ + γI{0.5− α < U0 − 0.25X0 ≤ 0.5} − δY2 + ε > 0},

each of Q,V,W, ε ∼ N(0, 1), independent of each other,

and


U0

U1

U2

 ∼ N(µ, σ), where µ =


0

0

0

 and σ =


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 .
α, β, γ, δ, κ are parameters of the DGP that will be varied later. I{·} denotes the indicator

function which is one if its argument is true and zero otherwise. Q,V,W, ε are random nuisance

variables that are standard normal with zero correlation. U0, U1, U2 are unobserved terms in the

treatment and outcome equations in various periods. Correlation among these variables causes the

endogeneity problem we have to deal with: Endogeneity is caused by the fact that U0 affects the

treatment D and is also associated with the outcomes Y1, Y2 through its correlation with U1 and

U2. The response indicators R1, R2 are equal to one if the outcome is observed in the respective

period. Attrition is modeled as an absorbing state, i.e., R2 is necessarily zero if R1 = 0. X0,

X1 are observed covariates. The uniformly distributed X0 confounds the instrument because of

its impact on Z and Y1 and Y2. Therefore, the instrument is only conditionally valid given X0.

The latter also affects response in both periods, thus causing attrition bias if not controlled for.

Similarly, X1 jointly influences R2 and Y2, creating further bias in the second period. Note that

X1 is a function of Y1, which incorporates the idea that previous outcomes or functions thereof

might be used to model attrition in the current period.

Our set up contains several tuning parameters: α, β, γ, δ, κ. In the treatment equation, α

determines the strength of the instrument and thus the share of compliers. The compliers are those

individuals with values of U0 and X0 such that 0.5−α < U0−0.25X0 ≤ 0.5. The larger α, the more

individuals react to a change in the instrument by switching their treatment status. We consider

two values of α: α=0.68 and α=1.35, resulting in complier shares of roughly 25% and 50% under

effect homogeneity, respectively. β in the response equations gauges the effect of the instrument

on R1 and R2. If β 6= 0, the exclusion restriction of Z on response as postulated in Assumption
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2 is violated and estimators based on Theorem 1 are inconsistent. γ defines the extent to which

the compliers’response behavior differs from the remainder of the population (i.e., the never and

always takers). To see this, remember that I{0.5 − α < U0 − 0.25X0 ≤ 0.5} is an indicator for

being a complier. For γ 6= 0, Assumption 1’ is violated because response then depends on the

latent types. In this case, estimators based on Theorem 2 are inconsistent. δ determines whether

response is related to the outcomes of the current period, as for instance considered in Xie and

Qian (2012). I.e., if δ 6= 0, then Rt depends on Yt such that neither Assumption 1 nor Assumption

1’ are satisfied. Hence, estimators based on Theorems 1 or 2 are all inconsistent. Finally, κ

determines whether the treatment effects are homogeneous or heterogeneous as a function of the

unobservables U0. For κ = 0, the treatment effects are homogeneous, i.e. identical for everyone. In

this case, the treatment effect is 0.5 for everyone in the first period and 1.25 in the second period.

(The effect of 1.25 consists of the direct effect of D on Y2, which is 1.00, and the indirect effect

of 0.5 · 0.5 = 0.25 running through X1.) For κ 6= 0, the treatment effects differ depending on the

values of U0. Therefore, the CACE differs from the average effect in the total population because

of different distributions of U0.

We simulate the DGP 1000 times with a sample size of 5000 observations, which is representa-

tive for many recently conducted field experiments in social sciences, see for instance Angrist, Bet-

tinger, and Kremer (2006) and Bertrand and Mullainathan (2004). (The separate online appendix

also examines other sample sizes.) We investigate the performance of the following estimators:

(i) naive estimation based on mean differences in observed treated and non-treated outcomes that

ignores both treatment endogeneity and attrition, (ii) CACE estimation based on equation (11) in

Tan (2006) or equation (12) in Frölich (2007) that controls for endogeneity, but ignores attrition

(denoted by ω̂), (iii) CACE estimation using expression (2) of Theorem 1 (denoted by θ̂), and (iv)

CACE estimation using expression (4) of Theorem 2 (denoted by φ̂). The propensity scores in

ω̂, θ̂, and φ̂ are estimated by local constant kernel regression (with Gaussian kernel). The band-

widths were chosen according to the nearest-neighbor-based default smoothing parameter in the

R-package ’locfit’, which was 0.7. (The results were similar when using a different kernel function

such as the Epanechnikov kernel and/or when using other bandwidth values such as 0.6 and 0.8.

However, values smaller than 0.6 considerably increased the variance of θ̂, whereas the estimates

and standard errors were fairly robust for larger bandwidth values, e.g. 1.0 or larger.)

We also consider trimmed versions of θ̂ and φ̂ in order to prevent denominators from being
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Table 1: Simulation 1 - treatment endogeneity and conditional LI
Homogeneous effects

α=0.68, β=0, γ=0.5, δ=0, κ=0 α=1.35, β=0, γ=0.5, δ=0, κ=0

time period 1 time period 2 time period 1 time period 2

bias stddev rmse bias stddev rmse bias stddev rmse bias stddev rmse

naive 0.70 0.03 0.70 0.92 0.06 0.92 0.56 0.03 0.56 0.69 0.06 0.69

ω̂ 0.05 0.11 0.13 0.12 0.16 0.20 0.03 0.06 0.07 0.07 0.08 0.11

θ̂ 0.01 0.12 0.12 -0.03 0.17 0.17 0.01 0.06 0.06 -0.01 0.09 0.09

θ̂trim (0.15) 0.01 0.12 0.12 -0.03 0.17 0.17 0.01 0.06 0.06 -0.01 0.09 0.09

θ̂trim (0.01) 0.01 0.12 0.12 -0.03 0.17 0.17 0.01 0.06 0.06 -0.01 0.09 0.09

φ̂ -0.14 0.14 0.20 -0.41 0.23 0.47 -0.09 0.07 0.12 -0.25 0.11 0.27

φ̂trim (0.15) -0.14 0.14 0.20 -0.41 0.23 0.47 -0.09 0.07 0.12 -0.25 0.11 0.27

φ̂trim (0.01) -0.14 0.14 0.20 -0.41 0.23 0.47 -0.09 0.07 0.12 -0.25 0.11 0.27

MAR G-comp. 0.71 0.03 0.71 0.94 0.06 0.94 0.56 0.03 0.56 0.70 0.06 0.70

Heckman 0.36 1.59 1.63 0.03 1.61 1.61 0.33 3.30 3.32 -0.22 2.63 2.64

true CACE 0.50 1.25 0.50 1.25

mean response 0.63 0.41 0.69 0.49

Heterogeneous effects

α=0.68, β=0, γ=0.5, δ=0, κ=0.5 α=1.35, β=0, γ=0.5, δ=0, κ=0.5

time period 1 time period 2 time period 1 time period 2

bias stddev rmse bias stddev rmse bias stddev rmse bias stddev rmse

naive 0.99 0.04 0.99 1.34 0.06 1.34 0.83 0.04 0.83 1.10 0.06 1.10

ω̂ 0.05 0.13 0.14 0.12 0.18 0.22 0.03 0.07 0.08 0.08 0.10 0.13

θ̂ 0.01 0.13 0.13 -0.03 0.20 0.20 0.01 0.07 0.07 -0.01 0.10 0.10

θ̂trim (0.15) 0.01 0.13 0.13 -0.03 0.20 0.20 0.01 0.07 0.07 -0.01 0.10 0.10

θ̂trim (0.01) 0.01 0.13 0.13 -0.03 0.20 0.20 0.01 0.07 0.07 -0.01 0.10 0.10

φ̂ -0.20 0.16 0.25 -0.52 0.26 0.58 -0.14 0.08 0.16 -0.35 0.13 0.37

φ̂trim (0.15) -0.20 0.16 0.25 -0.52 0.26 0.58 -0.14 0.08 0.16 -0.35 0.13 0.37

φ̂trim (0.01) -0.20 0.16 0.25 -0.52 0.26 0.58 -0.14 0.08 0.16 -0.35 0.13 0.37

MAR G-comp. 1.00 0.04 1.00 1.36 0.06 1.37 0.84 0.04 0.84 1.10 0.06 1.10

Heckman 0.63 2.27 2.36 0.25 2.07 2.09 0.41 5.04 5.06 -0.18 2.85 2.86

true CACE 0.64 1.45 0.48 1.22

mean response 0.63 0.43 0.69 0.50
Note: Results are based on 1000 simulations and 5000 observations.
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close to zero, which may imply arbitrarily large weights for some observations. Propensity score

trimming is discussed e.g. in Frölich (2004), Heckman, Ichimura, and Todd (1997), Dehejia and

Wahba (1999), Busso, DiNardo, and McCrary (2009), and Crump, Hotz, Imbens, and Mitnik

(2009). Yet, a trimming rule that is optimal in the sense that it minimizes the mean square error

of the estimator does not appear to be available in the literature. Here, we follow Huber, Lechner,

and Wunsch (2013) and discard observations whose relative weights within subgroups defined by

Z and D exceed a particular threshold. As trimming thresholds we consider relative weights of 15

and 1%, resulting in the trimmed estimators θ̂trim(0.15), φ̂trim(0.15), θ̂trim(0.01), φ̂trim(0.01). The

appendix provides additional results for further trimming levels (10, 5, and 2%).

We also consider an estimator that controls for attrition under the assumption of MAR but

ignores treatment endogeneity due to U0, U1, U2, while controlling for confounding related to X0.

To be specific, we use the MLE-based G-computation procedure of Robins (1986), in which the

outcomes and response processes are modeled parametrically by linear and logit specifications,

respectively. The appendix also provides the results for estimation based on targeted MLE, see

van der Laan and Rubin (2006), inverse probability weighting (see e.g. Horvitz and Thompson

(1952) and Hirano, Imbens, and Ridder (2003)), and augmented IPW (AIPW) (as in Robins,

Rotnitzky, and Zhao (1995) and Scharfstein, Rotnitzky, and Robins (1999)) which yield very

similar results. Finally, parametric Heckman (1976) MLE estimation of sample selection models

assuming jointly normally distributed unobserved terms in the response and the outcome equations

is also considered. The latter estimator controls for X0, D, and Z in the estimation of response

and can therefore account for attrition related to unobservables if R1 and R2 are functions of Z

and if Z does not have a direct effect on the outcomes conditional on X0 and D. However, it does

not allow for treatment endogeneity related to U0, U1, U2 and additionally presumes treatment

effects to be homogeneous.

Table 1 provides the bias, standard deviation and root mean squared error (rmse) of the various

estimators in periods 1 and 2 under treatment endogeneity and conditional LI with γ = 0.5, and

β, δ equal to zero. θ̂, which is consistent in this scenario, performs very well in terms of bias

and rmse irrespective of the period, share of compliers and effect homogeneity or heterogeneity.

In contrast, the naive approach, the MAR-based G-computation procedure not controlling for

treatment endogeneity, and the Heckman estimator are severely biased in any specification. Also

φ̂ (and its trimmed versions) and ω̂ are prone to non-negligible bias, even though the latter performs
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Table 2: Simulation 2 - treatment endogeneity and MAR (with the instrument affecting response)

Homogeneous effects

α=0.68, β=0.5, γ=0, δ=0, κ=0 α=1.35, β=0.5, γ=0, δ=0, κ=0

time period 1 time period 2 time period 1 time period 2

bias stddev rmse bias stddev rmse bias stddev rmse bias stddev rmse

naive 0.75 0.03 0.75 1.08 0.06 1.09 0.64 0.03 0.64 0.93 0.06 0.93

ω̂ 0.21 0.09 0.23 0.47 0.12 0.48 0.12 0.05 0.13 0.28 0.07 0.29

θ̂ -0.37 41.34 41.34 307.31 9507.59 9512.56 -0.05 0.08 0.10 -0.40 4.80 4.82

θ̂trim (0.15) -0.93 5.08 5.17 1.76 32.97 33.02 -0.05 0.08 0.10 -0.49 0.64 0.81

θ̂trim (0.01) -0.86 4.30 4.38 2.10 41.21 41.26 -0.05 0.08 0.10 -0.43 0.84 0.95

φ̂ 0.02 0.14 0.14 -0.09 0.23 0.25 0.01 0.07 0.07 -0.05 0.12 0.13

φ̂trim (0.15) 0.02 0.14 0.14 -0.09 0.23 0.25 0.01 0.07 0.07 -0.05 0.12 0.13

φ̂trim (0.01) 0.02 0.14 0.14 -0.09 0.23 0.25 0.01 0.07 0.07 -0.05 0.12 0.13

MAR G-comp. 0.76 0.03 0.77 1.11 0.05 1.11 0.65 0.03 0.65 0.95 0.06 0.95

Heckman 0.86 0.04 0.86 1.30 0.06 1.30 0.83 0.04 0.83 1.26 0.09 1.26

true CACE 0.50 1.25 0.50 1.25

mean response 0.68 0.49 0.69 0.51

Heterogeneous effects

α=0.68, β=0.5, γ=0, δ=0, κ=0.5 α=1.35, β=0.5, γ=0, δ=0, κ=0.5

time period 1 time period 2 time period 1 time period 2

bias stddev rmse bias stddev rmse bias stddev rmse bias stddev rmse

naive 1.05 0.04 1.05 1.54 0.06 1.54 0.94 0.04 0.94 1.39 0.06 1.39

ω̂ 0.29 0.10 0.31 0.65 0.13 0.67 0.18 0.06 0.19 0.43 0.09 0.44

θ̂ -0.28 41.34 41.34 307.47 9507.59 9512.56 0.01 0.09 0.09 -0.27 4.80 4.81

θ̂trim (0.15) -0.85 5.08 5.15 1.92 32.97 33.03 0.01 0.09 0.09 -0.36 0.65 0.74

θ̂trim (0.01) -0.77 4.23 4.37 2.26 41.21 41.27 0.01 0.09 0.09 -0.30 0.84 0.89

φ̂ 0.02 0.15 0.15 -0.08 0.25 0.26 0.01 0.08 0.08 -0.04 0.13 0.14

φ̂trim (0.15) 0.02 0.15 0.15 -0.08 0.25 0.26 0.01 0.08 0.08 -0.04 0.13 0.14

φ̂trim (0.01) 0.02 0.15 0.15 -0.08 0.25 0.26 0.01 0.08 0.08 -0.04 0.13 0.14

MAR G-comp. 1.07 0.04 1.07 1.57 0.06 1.58 0.95 0.04 0.95 1.41 0.06 1.41

Heckman 1.21 0.04 1.21 1.88 0.07 1.88 1.19 0.04 1.19 2.02 0.44 2.06

true CACE 0.64 1.45 0.48 1.22

mean response 0.68 0.49 0.69 0.51
Note: Results are based on 1000 simulations and 5000 observations.
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comparably well in the first time period. Note that trimming does neither affect θ̂, nor φ̂, implying

that large relative weights do not occur.

In the second simulation (Table 2), γ = 0 such that the assumptions underlying φ̂ hold.

At the same time β = 0.5, implying a direct effect of the instrument on the response process

and a violation of Assumption 2 required for the consistency of θ̂. Hence, estimators based on

Theorem 2 are consistent, whereas the assumptions for Theorem 1 are not met. As expected,

φ̂ now dominates any other estimator with respect to bias and low rmse and is unchanged by

trimming. The naive approach, θ̂, G-computation, the Heckman estimator, and (to a lesser extent)

ω̂ are substantially biased in most cases. θ̂ performs particularly poorly under the smaller complier

share (α = 0.68) due to a large increase of the variance. Yet, already moderate trimming using

the 15% threshold (θ̂trim(0.15)) reduces the variance (and the rmse) considerably, even though it

remains at comparably high levels. More trimming further decreases the rmse in the first period,

but increases it in the second one. In the latter case, the rmse is relatively stable for 15% and

10%, but grows more strongly for 2% and 1%.

In the third simulation (Table 3) we consider a scenario where all estimators are inconsistent:

γ is set to zero, while β = 0.5 and δ = 0.25, implying that the instrument directly affects non-

response, which in addition is also related to the outcomes of the current period. θ̂ and φ̂ are biased

because they ignore attrition related to contemporaneous outcomes, while G-computation ignores

both treatment endogeneity and attrition related to contemporaneous outcomes, and the Heckman

estimator does not account for treatment endogeneity. Trimming again reduces the variance of θ̂

in several cases, but smaller threshold values tend to increase the rmse relative to larger thresholds

when α=0.68. All in all, no method performs convincingly in this last set-up considered.

4 Application to a policy intervention in college

In this section, we apply our methods to data from the Student Achievement and Retention Project

assessed in Angrist, Lang, and Oreopoulos (2009), a randomized program providing academic

services and financial incentives to first year students at a Canadian campus which aimed at

improving the academic performance. To this end, all students who entered in September 2005

and had a high school grade point average (GPA) lower than the upper quartile were randomly

assigned either to one of three different treatments provided in the first year, namely academic

support services, financial incentives, or both, or otherwise to a control group. The services
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Table 3: Simulation 3 - treatment endogeneity and selection on current outcomes
Homogeneous effects

α=0.68, β=0.5, γ=0, δ=0.25, κ=0 α=1.35, β=0.5, γ=0, δ=0.25, κ=0

time period 1 time period 2 time period 1 time period 2

bias stddev rmse bias stddev rmse bias stddev rmse bias stddev rmse

naive 0.68 0.03 0.68 0.85 0.05 0.85 0.57 0.03 0.57 0.67 0.06 0.67

ω̂ 0.10 0.10 0.13 0.36 0.11 0.37 0.05 0.05 0.07 0.19 0.07 0.20

θ̂ -1.55 5.09 5.32 1.48 572.82 572.82 -0.19 0.08 0.21 -0.68 0.47 0.83

θ̂trim (0.15) -1.18 4.65 4.80 -1.21 20.30 20.34 -0.19 0.08 0.21 -0.67 0.24 0.71

θ̂trim (0.01) -1.21 4.90 5.05 -0.45 24.37 24.37 -0.19 0.08 0.21 -0.65 0.20 0.69

φ̂ -0.23 0.14 0.27 -0.59 0.22 0.63 -0.13 0.07 0.15 -0.36 0.11 0.37

φ̂trim (0.15) -0.23 0.14 0.27 -0.59 0.22 0.63 -0.13 0.07 0.15 -0.36 0.11 0.37

φ̂trim (0.01) -0.23 0.14 0.27 -0.59 0.22 0.63 -0.13 0.07 0.15 -0.36 0.11 0.37

MAR G-comp. 0.70 0.03 0.70 0.89 0.05 0.89 0.58 0.03 0.58 0.70 0.05 0.70

Heckman 0.87 0.04 0.88 1.23 0.09 1.23 0.84 0.07 0.84 2.11 1.02 2.34

true CACE 0.50 1.25 0.50 1.25

mean response 0.71 0.55 0.72 0.57

Heterogeneous effects

α=0.68, β=0.5, γ=0, δ=0.25, κ=0.5 α=1.35, β=0.5, γ=0, δ=0.25, κ=0.5

time period 1 time period 2 time period 1 time period 2

bias stddev rmse bias stddev rmse bias stddev rmse bias stddev rmse

naive 1.00 0.03 1.00 1.33 0.06 1.33 0.89 0.04 0.89 1.18 0.06 1.18

ω̂ 0.13 0.11 0.17 0.43 0.14 0.45 0.09 0.06 0.11 0.28 0.09 0.29

θ̂ -1.51 5.09 5.31 1.55 572.82 572.82 -0.15 0.09 0.18 -0.60 0.47 0.76

θ̂trim (0.15) -1.14 4.65 4.79 -1.13 20.30 20.33 -0.15 0.09 0.18 -0.59 0.25 0.64

θ̂trim (0.01) -1.16 4.90 5.04 -0.38 24.37 24.37 -0.15 0.09 0.18 -0.57 0.21 0.61

φ̂ -0.22 0.15 0.27 -0.56 0.24 0.61 -0.11 0.08 0.13 -0.29 0.12 0.31

φ̂trim (0.15) -0.22 0.15 0.27 -0.56 0.24 0.61 -0.11 0.08 0.13 -0.29 0.12 0.31

φ̂trim (0.01) -0.22 0.15 0.27 -0.56 0.24 0.61 -0.11 0.08 0.13 -0.29 0.12 0.31

MAR G-comp. 1.02 0.03 1.02 1.37 0.06 1.37 0.90 0.04 0.90 1.21 0.06 1.21

Heckman 1.30 0.04 1.30 1.95 0.27 1.97 1.67 0.57 1.77 2.65 1.27 2.94

true CACE 0.64 1.45 0.48 1.22

mean response 0.72 0.56 0.73 0.59
Note: Results are based on 1000 simulations and 5000 observations.
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contained both access to peer advisors, i.e., trained upper-class students supposed to provide

academic support, and class-specific sessions targeted at improving study habits without focusing

on specific course content. The financial incentives consisted of cash payments between 1,000

and 5,000 dollars that were conditional on attaining particular GPA targets in college, where the

targets were a function of the high school GPA.

While the intervention appeared to be generally ineffective for males, Angrist, Lang, and Ore-

opoulos (2009) found positive effects of the combined treatment (academic support and financial

incentives) on the college performance of females in the first and second year. For this reason,

we will only focus on the subsample of 948 female students in the subsequent discussion. As the

number of observations assigned to a particular treatment arm is rather low, we aggregate the

academic services and financial incentives to a binary treatment that takes the value one if any

form of intervention took place and zero otherwise in order to avoid small sample problems. For

the same reason, we use (parametric) probit regressions (rather than nonparametric methods) to

estimate the conditional probabilities involved in the identification results, which entails semipara-

metric estimators of the CACE. Inference is based on the bootstrap.

Albeit treatment assignment was random, identification may be flawed by both endogeneity

and attrition. The endogeneity issue stems from the fact that only 274 (or 73%) of the 374 students

who were offered any treatment actually signed up for it, which gives rise to potential selection bias

into treatment. Furthermore, GPA scores, one of the outcomes measuring college success, are not

observed for all students. Whereas they are missing for only 56 students (or 6%) in the first year,

non-response amounts to a non-negligible 169 (or 18%) in the second year. If attrition is selective so

that e.g. the probability to drop out decreased in both the treatment state and unobserved ability,

the treatment effect is biased due to positive selection into observed GPA scores. Angrist, Lang,

and Oreopoulos (2009) use instrumental variable estimation to control for endogeneity, where the

random assignment indicator serves as instrument. They, however, do not correct for attrition in

the GPA outcomes, but merely base their analysis on all those observations without missing GPAs,

see the note underneath Table 6 in their paper. Here, we apply the methods outlined in Sections

2.2 and 2.3 to control for both endogeneity and attrition.

We are interested in the effect of having signed up for any of the three treatments (D = 1) vs.

no treatment (D = 0) on the GPA scores at the end of the first and second year. We estimate the

CACE based on Theorem 1 to allow attrition to be related to the latent types, as compliers with

21



the treatment assignment may be more motivated to stay in college than the never takers, whose

reluctance to take the treatment even when offered may be associated with a higher inclination

to drop out of college. This motivates our higher confidence in Assumption 1 rather than the

stronger Assumption 1’(which does not permit LI conditional on observables). At the same time,

it seems likely that mere assignment does not affect the drop out decision of never takers, who

would not take advantage of the treatment anyway. We therefore suspect Assumption 2 to be

satisfied, albeit somewhat stronger than Assumption 2’. Nevertheless, we also consider estimation

based on Theorem 2 imposing MAR given the observed variables and the treatment, which allows

checking the sensitivity of the results to the presumed form of attrition. If one obtains similar

results under both methods, this may imply that (the respective stronger assumption of) both

sets of assumptions are satisfied, i.e. Assumption 1’and Assumption 2. We use both untrimmed

and trimmed versions of the respective estimators. As in the simulations, trimming discards

observations whose relative weights in subgroups defined by Z and D exceed a certain threshold,

which is set to 10% in the application.

The data set contains a range of pre-treatment variables measuring performance and ambition

as well as socioeconomic characteristics that allow us to model the response process in the first

year. E.g., we observe the GPA score in high school, the fall grade of the first year, and the

attempted maths and science courses, which are most likely correlated with both GPA scores

in later periods and the probability to drop out. Indeed, the empirical relevance of academic

performance in high school and in the first semester of college as a predictor for attrition is well

documented in the literature on higher education, see e.g. Leppel (2002), Herzog (2005), and Tinto

(1997). Furthermore, the data includes self-assessed measures of effort and ambition, e.g., whether

the student wants to finish in four years, or strives for a higher degree than a BA. Learning habits

are reflected by the information on how often a student leaves studying until the last minute. The

data also comprises important characteristics reflecting the socioeconomic background, such as

age, parents’education, and indicators for living at home and English mother tongue. Finally, it

contains dummies for whether the student is at the first choice college and whether she completed

the base line survey which may be correlated with the likelihood to be observed in later periods.

Table 4 gives the results of a probit regression of first year response on the baseline covariates

X0 and the treatment indicator D in order to estimate Ξ0 = Pr(R1 = 1|X0, D = 1). The main

specification (1) contains all regressors, and is used for the estimation of the CACE. Specification
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Table 4: Probit coeffi cients and marginal effects of the model for 1st year response
Coeffi cients Marginal effects

(1) (2) (3) (1) (2) (3)

Constant 5.495 6.196 1.445

(2.896) (2.721) (0.072)

Treatment D 0.335 0.529 0.571 0.003 0.004 0.052

(0.265) (0.262) (0.184) (0.002) (0.003) (0.013)

High school GPA ≤ 75.2 -0.574 -0.503 -0.008 -0.007

(0.312) (0.300) (0.008) (0.007)

High school GPA -0.078 -0.076 -0.001 -0.001

(0.036) (0.034) (0.001) (0.001)

Fall grade 0.028 0.029 0.000 0.000

(0.003) (0.003) (0.000) (0.000)

Attempted math/science credits 0.878 0.970 0.008 0.009

(0.239) (0.247) (0.004) (0.005)

Wants more than B.A. 0.235 0.002

(0.223) (0.003)

Last minute learning (usual/often) -0.054 -0.000

(0.244) (0.002)

Age < 20 0.311 0.004

(0.396) (0.008)

Father has college degree -0.129 -0.001

(0.230) (0.002)

At first choice college 0.208 0.002

(0.258) (0.002)

Completed baseline survey 0.778 0.018

(0.269) (0.016)

Pseudo R2 0.494 0.452 0.027 0.494 0.452 0.027

Note: (1)-(3) give the probit coeffi cients and marginal effects, respectively, when estimating Ξ0 = Pr(R1 = 1|X0, D = 1)

under different specifications: (1) is the main specification with all regressors, (2) contains a subset of regressors, (3) contains

only D and a constant. The marginal effects are evaluated at the means of all other regressors. Standard errors are given in

brackets. The sample size is 948.
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(2) presents a more parsimonious model consisting of D and pre-treatment outcomes (high school

GPA, fall grade, attempted math/science credits). Finally, specification (3) only contains D and

a constant as regressors. Comparing the results for the different specifications, we find that the

pre-treatment outcomes and the dummy for survey completed clearly have the highest predictive

power, whereas socioeconomic variables are less important.

For modeling response in the second period, we use in addition to the covariates X0 of spec-

ification (1) three intermediate outcomes (X1) at the end of the first year: the GPA as well as

the number of credits earned in the first year and an indicator for good standing, all of which are

highly correlated with response in the second year.

Table 5 provides descriptive statistics (means and standard deviations) of the variables used

in our analysis for all females, as well as for subsamples with D = 1 and D = 0. The variables

measured after the first or second year are only observed if R1 = 1 and R2 = 1, respectively. Note

that treated females have on average higher pre-treatment outcomes (high school GPA and fall

grade) and higher aspirations (wanting more than a B.A.) than the non-treated. This points to

selectivity and motivates the use of random treatment assignment Z as an instrument for actual

treatment take-up D.

Table 5: Descriptive statistics
total sample (948 obs.) D = 1 (274 obs.) D = 0 (674 obs.)

Regressor mean std. dev mean std. dev mean std. dev

High school GPA (multi-valued) 78.88 4.29 79.10 4.30 78.80 4.28

Fall grade (multi-valued) 53.69 25.71 58.55 23.04 51.71 26.48

Attempted math/science credits (multi-valued) 1.00 1.16 1.05 1.19 0.97 1.15

Wants more than B.A. (binary) 0.52 0.50 0.58 0.49 0.49 0.50

Last minute learning (binary) 0.28 0.45 0.30 0.46 0.28 0.45

At first choice college (binary) 0.24 0.43 0.26 0.44 0.23 0.42

Age < 20 (binary) 0.97 0.17 0.99 0.12 0.97 0.18

Father has college degree (binary) 0.37 0.48 0.40 0.49 0.36 0.48

Completed baseline survey (binary) 0.90 0.30 0.95 0.23 0.89 0.32

First year response R1 (binary) 0.94 0.24 0.98 0.15 0.93 0.26

First year GPA Y1 (multi-valued) 1.76 0.90 1.81 0.88 1.74 0.91

First year good standing for R1 = 1 (binary) 0.48 0.50 0.54 0.50 0.46 0.50

First year credits earned for R1 = 1 (multi-valued) 2.36 0.93 2.47 0.94 2.32 0.92

Second year response R2 (binary) 0.82 0.38 0.83 0.37 0.82 0.39

Second year GPA Y2 for R2 = 1 (multi-valued) 2.07 0.87 2.19 0.86 2.01 0.87
Note: Descriptive statistics for baseline covariates X0, response indicators R1 and R2 and outcomes Y1 and Y2, if observed.

Table 6 presents the estimated treatment effects of the intervention on the GPA one and two
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years later. The top panel provides the estimates for the full sample. The subsequent panels

show the results for various subsamples defined by age and parental background. In each panel,

the first line gives the CACE estimates, the second line the bootstrap standard errors, and the

third line the bootstrap p-values based on the quantiles of the resampled distribution of the CACE

estimates, see equation (6) in MacKinnon (2006). We provide the quantile-based p-values (rather

than those based on the t-statistic) to account for the problem that in finite samples the moments

of instrumental variable estimators may not exist such that t-statistics may be misleading, which

might even be aggravated by attrition. The first and sixth columns labelled "Wald" show the Wald

estimates, i.e. the instrumental variable estimator without any covariates. The estimates based

on Theorem 1 are denoted by θ̂ and θ̂trim , where the latter represents the trimmed version. The

estimates based on Theorem 2 are denoted by φ̂ and φ̂trim . We find that large weights rarely occur

such that the trimmed and untrimmed point estimates are always very similar, if not the same.

Note, however, that trimming reduces the standard errors of the estimates based on Theorem 1

by disciplining outliers in the bootstrap samples.

Both θ̂ and θ̂trim are nevertheless less precise than φ̂ and φ̂trim . We would generally (and

specifically in moderate samples) expect this to be the case at least if both theorems are (closely)

satisfied, because Theorem 1 contains more conditional probabilities to be estimated, e.g. P ′0 − π

and P ′1 − π in the denominator, which may potentially decrease precision in small samples. In

particular, if the latter differences are small (which likely occurs if Z only weakly shifts D so

that few compliers exist) the variance might be large. Furthermore, in the current application,

φ̂ and φ̂trim appear to rest on stronger assumptions than θ̂ and θ̂trim , which again suggests lower

standard errors of the former: Whereas we argued in Section 2 that Assumption 2’ is generally

weaker than Assumption 2, they are, however, very similar in the application at hand. This is

because Assumption 2 only restricts the response process in time period 1, where we have in

fact very little non-response. (Non-response is larger in time period 2, but this does not enter

Assumption 2.) On the other hand, Assumption 1’ is clearly much stronger than Assumption

1. The former imposes independence within each stratum defined by Z and D (and other pre-

determined observables), whereas the latter additionally requires conditioning on the (unobserved)

type. Therefore, estimators based on Assumption 1’exploit more restrictions and can (figuratively

speaking) use coarser strata with more information than methods relying on Assumption 1, which

have to operate within finer strata additionally defined upon the type. Therefore, φ̂ and φ̂trim can
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exploit more information.

Examining first the estimates for the whole population, we do not find any significant effects

in the first year. In contrast, the simple Wald estimates for the second year are significant (at the

5% level) and suggest that the GPA of compliers increases by 0.164 points. However, when using

the attrition corrected estimators, the effect shrinks considerably to 0.077 or 0.071, respectively,

and becomes insignificant. Therefore, our results suggest that attrition, if ignored, may lead to an

overestimation of the effects in education experiments.

In the remainder of Table 6, we investigate effect heterogeneity for subsamples stratified by

age, prior academic achievement and parental background. E.g., we separately consider students

in the lower and the upper half of the high school GPA distribution (median: 78.5 points) to

see whether high or low achievers particularly benefit from the intervention. Indeed, the Wald

estimate for the second year GPA of low achievers amounts to 0.225 points, indicating that the

less capable students benefit most when taking advantage of the services and incentives. However,

after controlling for attrition, the effect becomes much smaller and insignificant, irrespective of

trimming. When we split the sample by age groups (17 & 18 years versus older than 18), we also

cannot draw reliable conclusions as the estimates are generally rather noisy.

Finally, we examine whether the effects differ by parents’education, which might be regarded

as a proxy for family background. Interestingly, the second year Wald estimate in the subsample

with mothers that have a college degree is negative and large. When controlling for attrition,

the estimate shrinks in magnitude (in the case of θ̂, θ̂trim quite considerably) and becomes even

less significant. In contrast, for those students whose mother has no degree, the Wald estimate is

significantly positive (at the 5% level) in both periods. Furthermore, correcting for attrition does

not substantially reduce the estimate in the second year, even though the precision decreases. The

estimates φ̂ and φ̂trim remain significant at the 5% level. A similar pattern appears when stratifying

on the father’s degree status. While the Wald estimate in the second year is insignificant in the

subpopulation with fathers having a degree, it is large and significant in the subsample without

college degree. Furthermore, the effect is almost the same when using θ̂, albeit less precisely

estimated, and θ̂trim , φ̂, φ̂trim are significant at the 10% and 5% levels, respectively.

In summary, our findings suggest that the empirical evidence about the effectiveness of the

intervention considered by Angrist, Lang, and Oreopoulos (2009) is much weaker once attrition is

acknowledged. Nevertheless, female students with a less favorable family background seem to gain
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Table 6: Effectiveness of the school intervention on GPA: all females and subsamples
1st year effect of intervention on GPA 2nd year effect of intervention on GPA

Wald estimate θ̂ θ̂trim φ̂ φ̂trim Wald estimate θ̂ θ̂trim φ̂ φ̂trim

(no covariates) (Theorem 1) (Theorem 2) (no covariates) (Theorem 1) (Theorem 2)

Full sample: all females (948 obs.)

effect 0.074 0.022 0.022 -0.047 -0.047 0.164 0.077 0.077 0.071 0.071

s.e. 0.079 0.291 0.129 0.075 0.076 0.083 8.694 0.214 0.090 0.093

p-val 0.399 0.709 0.679 0.517 0.577 0.040 0.817 0.770 0.419 0.340

Subsample: high school GPA ≤ 78.5 (467 obs.)

effect 0.156 0.107 0.107 0.057 0.057 0.225 0.143 0.143 0.043 0.043

s.e. 0.110 2.340 0.274 0.112 0.112 0.128 10.937 0.378 0.130 0.131

p-val 0.149 0.502 0.456 0.595 0.565 0.069 0.451 0.382 0.698 0.669

Subsample: high school GPA > 78.5 (481 obs.)

effect 0.023 -0.093 -0.093 -0.170 -0.170 0.099 0.036 -0.066 -0.001 -0.122

s.e. 0.106 36.995 0.382 0.135 0.128 0.098 24.073 0.968 0.180 0.156

p-val 0.812 0.668 0.712 0.220 0.382 0.300 0.941 0.670 0.816 0.456

Subsample: 17 and 18 years old (741 obs.)

effect 0.042 -0.024 -0.024 -0.050 -0.050 0.132 0.093 0.093 0.043 0.043

s.e. 0.090 2.472 0.310 0.089 0.088 0.092 28.780 0.322 0.103 0.103

p-val 0.632 0.816 0.848 0.547 0.556 0.145 0.573 0.469 0.680 0.668

Subsample: 19-23 years old (207 obs.)

effect 0.131 0.064 0.002 -0.051 -0.059 0.226 0.275 0.171 0.125 -0.021

s.e. 0.192 1530.530 0.627 0.194 0.195 0.218 733.224 0.889 0.379 0.306

p-val 0.484 0.822 0.776 0.772 0.939 0.259 0.615 0.448 0.656 0.703

Subsample: mother has college degree (304 obs.)

effect -0.178 -0.171 -0.249 -0.201 -0.201 -0.253 -0.085 -0.197 -0.211 -0.211

s.e. 0.143 2.745 0.329 0.167 0.135 0.155 64.916 0.481 0.193 0.157

p-val 0.212 0.388 0.148 0.157 0.224 0.105 0.936 0.675 0.208 0.281

Subsample: mother has no college degree (644 obs.)

effect 0.197 0.135 0.135 0.080 0.080 0.383 0.345 0.345 0.259 0.259

s.e. 0.097 5.960 0.098 0.111 0.098 0.099 5.095 0.271 0.155 0.131

p-val 0.034 0.130 0.117 0.366 0.290 0.000 0.147 0.096 0.050 0.018

Subsample: father has college degree (355 obs.)

effect 0.035 -0.029 -0.029 -0.038 -0.038 -0.078 0.065 0.065 -0.127 -0.127

s.e. 0.133 58.422 0.216 0.187 0.123 0.141 37.131 0.406 0.206 0.134

p-val 0.827 0.839 0.886 0.717 0.833 0.566 0.457 0.212 0.342 0.443

Subsample: father has no college degree (593 obs.)

effect 0.092 0.066 0.066 -0.008 -0.008 0.317 0.307 0.307 0.250 0.250

s.e. 0.101 8.636 0.133 0.099 0.101 0.108 6.418 0.225 0.140 0.143

p-val 0.371 0.491 0.479 0.979 0.904 0.002 0.150 0.085 0.063 0.029

Note: Treatment effects of the intervention (support and/or financial services) on GPA outcomes one and two years later,

respectively. The top panel displays the results for the full sample (on the left, the effect after one year; on the right, the

effect after two years). The subsequent panels show estimates for subpopulations stratified by age, parental background, and

prior academic achievement. P-values are given in brackets and are based on 1999 bootstrap replications. Trimming in θ̂trim

and φ̂trim is based on dropping observations that have a relative weight larger than 10%.27



from the services and financial incentives.

5 Conclusions

In this paper, we proposed a novel approach for the identification and estimation of local average

treatment effects in multiple outcome periods which controls for both treatment endogeneity and

outcome attrition. We showed how pre-treatment information can be combined with intermediate

outcomes in order to correct more plausibly for non-response bias in later periods, while an in-

strument was used to tackle endogenous treatment selection. Two sets of identifying assumptions

were presented. The first one, which we call conditional latent ignorability, permits attrition to

depend on observables and the latent treatment compliance type, which may be related to unob-

servables. The second one imposes randomness given observed variables only, which amounts to

a dynamic missing at random assumption. The proposed methods were applied to a policy inter-

vention aimed at increasing academic performance in college, where ignoring attrition was found

to lead to upwardly biased estimates.
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