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1 Introduction

Productivity often depends on acquired skills as much as on effort. Or, as the saying goes,

practice makes perfect. The importance of learning-by-doing has long been recognized in

the literature on human capital.1 Yet, its implications for agency problems remain largely

unexplored. Is it necessary to link wages more tightly to performances when the agent’s

action determines her future productivity? More generally, is human capital accumulation

reinforcing or weakening the power of incentives?

A formal treatment of these questions has been hindered by the fact that effort today

has an impact on the stock of human capital, and so matters for the distribution of output

in all future periods. When actions are hidden, a deviation will generate persistent private

information. Consider, for example, an agent that provides less effort than expected. Not

only will her productivity today be lower than anticipated by the principal, but she will

also carry less skills into next period. In other words, the agent will be less optimistic

about her future prospects.

This is why excluding one shot deviations is not enough to establish whether or not

a contract is incentive compatible. Due to the persistent effect of past actions, one also

has to exclude multiple deviations. A general treatment of the problem would therefore

involve keeping track of all the possible strategies. But more often than not, such a direct

approach is impractical as the state space quickly becomes unbounded.2

We circumvent these diffi culties by using a continuous time approach and by estab-

lishing full incentive compatibility. That is we focus on the conjectured equilibrium and

characterize the agent’s first-order condition. Then we derive a suffi cient condition under

which a contract that satisfies the first-order condition is also fully incentive compatible.

In other words, we identify a requirement such that multiple deviations are never prof-

itable when local deviations are suboptimal. The suffi ciency condition ensures that the

solution of the relaxed problem subject to the first-order constraint is also a solution of

the original incentive problem.

We characterize the necessary and suffi cient conditions for general time-separable pref-

erences. An action satisfies the first-order condition when its marginal cost is equal to

the current pay-performance sensitivity plus the appropriately discounted sum of future

1See the seminal work of Becker (1964).
2An exception is the framework proposed by Fernandes and Phelan (2000) where output is only

correlated from one period to the next, and the agent can take one of only two actions. Then the relevant
deviation is unique, and it is suffi cient to keep track of a single "threat keeping constraint".
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sensitivities. The first component is standard and corresponds to the solution in Sannikov

(2008), where the agent cannot accumulate human capital. Specific to our problem is the

addition of future sensitivities: A positive deviation in effort increases the stock of human

capital which raises expected output in all periods. From the principal’s standpoint, this

creates a series of output surprises whose returns in utils are by definition proportional to

the sensitivity coeffi cients. Since performance and pay are positively correlated, it follows

that the value of private information is also positive. Hence, learning-by-doing strengthens

the power of incentives by relaxing the incentive constraint. The agent adds the benefits

of higher skills in the future to the current returns, which makes her more eager to provide

effort.

In order to go further than the description of the incentive constraints, we analyze

the optimal contract when agents have CARA utility. This specification allows us to

solve for the optimal contract in closed form because it neutralizes the wealth effect.

The solution confirms the insights gathered from the analysis of the first-order condition:

Human capital accumulation lowers the cost of incentives provision, thereby reducing the

distance between the Pareto frontier and the first-best allocation. The principal is able

to offer better insurance so that wages becomes less tightly linked to performances when

the agent learns by doing.

Related literature. This paper is closely related to the companion paper by Jovanovic

and Prat (2013) which studies incentive contracts when the agent’s type is initially un-

known but gradually revealed over time.3 The learning process also leads to persistent

private information because the agent can manipulate the principal’s beliefs by providing

a different level of effort than expected. In contrast with learning-by-doing, the value of

private information is negative: Following a negative deviation from the recommended

action, the agent becomes more optimistic about her type than the principal. This is why

learning weakens the power of incentives whereas human capital strengthens it.

More generally, this paper belongs to a burgeoning strand of research that uses contin-

uous time techniques to study the design of dynamic incentives in environments featuring

persistent information. The seminal paper on the issue is Williams (2011). It studies a re-

porting problem with a persistent hidden state. Williams also uses a first-order approach

to derive the incentive constraints but our proof differs: Whereas his approach relies

3He et al. (2012) extends Jovanovic and Prat (2013) by introducing hidden savings and effort costs
which are convex instead of linear.
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on the stochastic maximum principle, we use instead a variational argument originally

proposed by Cvitaníc et al. (2009).

For concreteness, we are interpreting our source of persistency as arising from human

capital accumulation. But this is actually a restrictive interpretation. Given the partial

equilibrium nature of our analysis, nothing prevents reader from favoring alternative mech-

anism. For example, one may think of the long-run impact that CEO’s actions have on

firm performance. This is precisely the interpretation favored by Sannikov (2012) in its

recent paper about long-run incentives. Aside from deriving similar incentive constraints,

Sannikov proposes to replace the original state variables by their Lagrange multipliers.

He uses this method to characterize contracts when the agent’s utility is separable in con-

sumption and leisure. The model shows that optimal payments can be postponed beyond

the termination of the relationship.

Outline of the paper. The structure of the problem is described in Section 2. We

present the first-order approach in Section 3 where we derive both necessary and suffi cient

conditions. In Section 4, we restrict our attention to agents with CARA utility. We derive

the principal’s value function in closed-form and characterize the dynamics of wages.

Section 5 concludes whereas the proofs of the Propositions and Corollaries are relegated

to the Appendix.

2 The Contracting Problem

Technology.– The agent’s effort at ∈ A ⊂ R has two effects. First, it raises output in the
current period. This immediate benefit is followed by a permanent one, as agents learn

by doing. Effort adds to the stock of human capital h which evolves as follows

dht = (at − δht) dt , with δ ≥ 0.

This specification accounts for the natural obsolescence of skills as h decreases at the rate

δ. In order to offset the depreciation of her human capital, the agent has to provide some

effort whose return in units of human capital is assumed to be linear. Thus the cumulative
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output Yt produced by the agent up to time t obeys the following dynamic

Yt =

∫ t

0

(as + hs)ds+

∫ t

0

σdZs , (1)

where Zt is a standard Brownian Motion. Productivity is therefore given by the sum of

effort plus the stock of human capital. The agent knows both her action and skill level. By

contrast, the principal only observes output and the noisiness of the technology prevents

him from observing the action taken by the agent as well as her skill level.

Contract.–We analyze long-term contracts that last until date T and whose payments

wt can depend on the output history {Ys; s ∈ [0, T ]} in an arbitrary way. More formally,
let (Ω,F , P ) denote the probability space on which the Brownian motion Z is defined.

Since output paths are random elements of the space Ω, w : [0, T ]×Ω→ R is a mapping
that associates a wage to any event ω ∈ Ω. The information available to the principal

does not include effort. It is therefore restricted to the filtration FYt , σ (Ys; 0 ≤ s ≤ t)

generated by Y , whose augmentation we denote FY ,
{
FYt
}
t≥0, and so the mapping w

must be FY−measurable.

Preferences.– The agent chooses her effort and receives the flow utility u (wt, at) in

return. We assume that the instantaneous utility function u (w, a) ∈ C2,2 (R×A). Prefer-

ences are time additive with discount rate ρ > 0 so that the agent’s preferences as of time

0 read

U0 ,
∫ T

0

e−ρtu (wt (ω) , at) dt+ e−ρTU (WT (ω)) , (2)

with terminal utility U (W ) ∈ C1 (R) . The principal is risk neutral and seeks to maximize

the discounted flow of output net of wages and terminal payment. The optimal contract

w and agent’s strategy a are therefore chosen so as to optimize the principal’s expected

profit

π0 , Ea

[∫ T

0

e−ρt (dYt − wt) dt− e−ρTWT (ω)

]
,

under the expectation Ea associated to the agent’s strategy. Maximization is performed

subject to the participation constraint at time 0, i.e., Ea [U0] ≥ U for an exogenously given
U ; and to the incentive constraint U ≥ E â [U0] for all feasible strategies â. The incentive
constraint is too general to be handled analytically. We explain in the following section

how it implies a necessary condition that can be used to characterize incentive compatible

strategies.
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3 Incentive Constraints

We use a first-order approach to determine whether strategies are incentive compatible.

We assume that the agent has not deviated in the past and derive a necessary condition

under which local deviations cannot be optimal. Then we generalize the analysis to

arbitrary strategies and obtain a suffi cient conditions which can be combined with the

necessary condition to establish optimality of the agent’s strategy, under both local and

global deviations. This second step is crucial because the stock of human capital depends

on past actions. Because of this persistence, excluding local deviation does not ensure

that agents will not use multiple deviations.

3.1 Necessary condition

The agent chooses her effort so as to maximize her continuation value

vt , max
a∈A

Ea
t

[∫ T

t

e−ρ(s−t)u (ws, as) ds+ e−ρ(T−t)U (WT )

]
, (3)

As explained before, the earning process wt depends on the whole output path and is

therefore non-Markovian. The optimal control of non Markovian processes can be ana-

lyzed using a martingale approach. Intuitively, one can think of the agent as controlling

the distribution of outputs, and consequently wages, through his choice of effort. This is

formally equivalent to choosing the probability measure over realizations of wt and has

the advantage that the Radon—Nikodym derivative associated to a given effort path is

Markovian, which renders the problem amenable to standard optimization techniques.

Proposition 1 There exists a unique decomposition of the agent’s continuation value

dvt = [ρvt − u (wt, at)] dt+ γtσdZt , (4)

vT = U (WT ) , (5)

where γ is a square integrable process. The necessary condition for at to be an optimal

control reads [
γt + Ea

t

[∫ T

t

e−(ρ+δ)(s−t)γsds

]
+ ua (wt, at)

]
(a− at) ≤ 0 , (6)

for all a ∈ A.
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When effort is positive and the necessary condition binds, (6) is equivalent to

−ua (wt, at) = γt + Ea
t

[∫ T

t

e−(ρ+δ)(s−t)γsds

]
, (7)

which basically ensures that marginal costs and marginal returns are identical. The mar-

ginal costs of an additional unit of effort is equal to −ua (wt, at) . Its benefits are twofold.

First, the technology of production is such that effort raises the output flow one for one.

The benefit in utils of such an increase is by definition equal to γt, since it measures the

sensitivity of the promised value with respect to output. There is also a second effect due

to the persistent impact that effort has on the stock of human capital. One more unit

of effort today raises the τ -periods ahead value of h, and thus output, by exp(−δτ). As

for the future benefits, their value in utils is obtained multiplying the output shift by the

expected value of γ. Discounting all these future gains at rate ρ and summing them, one

obtains the integral on the right hand side of (7).

To see that human capital strengthens the power of incentives, it is instructive to let

δ diverges to infinity. Then agents cannot accumulate any human capital because their

stock of knowledge immediately depreciates. The integral in (7) converges to zero and

we recover the standard incentive constraint in Sannikov (2008). The integral converges

to zero from above because incentives can be positive solely if γ > 0. It follows that

in order to implement a given effort at at a given wage wt, the sensitivity coeffi cient γt
with full depreciation must be higher. In other words, contracts without human capital

accumulation link pay more tightly to performance, which lowers the welfare of the risk-

averse agent.4

3.2 Suffi cient conditions

We focus on contracts that fulfill the necessary condition (6). The first-order approach

is justified solely if the resulting solution satisfies the general incentive constraints, that

is if it rules out both local and global deviations. However, this is not guaranteed in our

set-up because any departure from expected effort drives a permanent wedge between the

expectations of the agent and that of the principal. The following proposition provides a

suffi cient condition under which a contract satisfying the relaxed constraint (6) is indeed

fully incentive compatible.

4The argument is mostly heuristic because both wages and effort are endogenous. Yet, we will see that
its intuition is valid when we solve for the optimal contract under CARA utility.

7



Proposition 2 Let pt , E
[∫ T

t
e−(ρ+δ)(s−t)γsds

]
denote the value of private information.

It admits a unique decomposition

dpt = [(ρ+ δ) pt − γt] dt+ ϑtσdZt , (8)

pT = 0 , (9)

where ϑ is a square integrable process. A control at is incentive compatible if (6) and

2uaa (wt, at) ≥ ϑt (10)

are true for almost all t ∈ [0, T ] .

Condition (10) is suffi cient but not necessary: A contract might violate it and be

nonetheless fully incentive compatible. It cannot be checked before solving for the contract

since wt, at and ϑt are all endogenous. But one can use (10) ex-post, that is once a contract

satisfying the relaxed condition (6) has been identified. We show in the next section how

the whole procedure works when the agent’s utility function is CARA.

4 Incentive Contracts under CARA Utility

We assume that the agent’s per-period utility is CARA

u(w, a) = − exp(−θ (w − λa)) , with λ ∈ (0, 1) , θ > 0, (11)

and a ∈ A = (0, 1] . CARA utility functions have the advantage of ruling out wealth

effects. The parameter θ measures the degree of risk aversion exhibited by the agent,

while the requirement that λ < 1 ensures that maximal effort a = 1 is also the first best

action. In order to focus on incentive providing contracts, we exclude 0 from the set A of
implementable actions. We introduce later the possibility to retire the agent and derive

the condition under which it is optimal to terminate incentives provision.

For tractability, we let the contracting horizon T diverges to infinity.5 The principal’s

5The solution of the infinite horizon problem is also the limit of a sequence of finite horizons problems.
Following the same steps as in Jovanovic and Prat (2013), one can show that, when the terminal utility
ρU(WT ) = − exp (−θρWT ), the profits derived from incentives contracts with horizon T converge as
T →∞ to the solution of the infinite horizon problem. This constructive approach circumvents the lack
of mutually absolutely continuous measure in the limit.
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problem reads

πt = max
{a,w,γ,ϑ}

Ea
t

[∫ ∞
t

e−ρ(s−t) (as + hs − ws) ds
]
,

subject to the incentive constraint

−ua (wt, at) = γt + pt ,

and the laws of motion of the state variable

dvt = [ρvt − u (wt, at)] dt+ γtσdZt,

dpt = [(ρ+ δ) pt − γt] dt+ ϑtσdZt, (12)

along with their transversality conditions, lims→∞Et [e−ρsvs] = lims→∞Et
[
e−(ρ+δ)sps

]
=

0. We relegate the derivations to the Appendix and report the expression of the expected

wage bill in the following Proposition.

Proposition 3 It is optimal to set at = 1 for all t. The expected wage bill of the optimal

contract can be expressed as a function of the promised value v only. It reads

ρB (v) , ρEa
t

[∫ ∞
t

e−ρ(s−t)wsds

]
= λ− ln (−ρv)

θ
− C . (13)

The constant C is equal to

C =
ln(k/ρ)

θ
+
ρ− k
ρθ
− (σλ)2 θ

2ρ

[
k

(
k + δ

k + δ + 1

)]2
,

where k is the unique positive root of the cubic equation

k3 (θλσ)2 + k2
[
(θλσ)2 δ + 1

]
+ k (δ + 1− ρ)− ρ (δ + 1) = 0 . (14)

To see why the expected wage bill does not depend on p, replace the incentive con-

straint into the law of motion (12) to obtain

dpt = [(ρ+ δ + 1) pt + ua (wt, at)] dt+ ϑtσdZt .
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The state variable p is therefore equivalent to

pt = −Ea
t

[∫ ∞
t

e−(ρ+δ+1)(s−t)ua (ws, as) ds

]
.

Under our CARA specification, marginal and total utilities are proportional as ua (·) =

θλu (·). We show in the proof of Proposition 3 that this property ensures that the ratio
pt/vt remains constant over time. This is why the promised value encapsulates all the

relevant information.

Expected profits π directly follow from the wage bill as

ρπ (ht, vt) = ρEa
t

[∫ ∞
t

e−ρ(s−t) (hs + as − ws) ds
]

=
ρht + 1

ρ+ δ
+ 1− ρB (vt) . (15)

Given that effort remains equal to 1, the stock of human capital ht =
(
1− e−δt

)
/δ is

deterministic and gradually converges to its steady-state level h̄ , limt→∞ ht = 1/δ.

By contrast, the expected wage bill evolves stochastically so as to satisfy the promise

keeping constraint. To understand the intuition behind (13), consider first the term in-

volving the promised value: λ − ln (−ρv) /θ. Given the specification (11) of the utility

function, the cost of delivering value v through a constant income stream is equal to

− ln (−ρv) /θ, whereas λ compensates the disutility incurred by the agent for providing

full effort. Hence, λ− ln (−ρv) /θ is equal to wages in first best environments where the

principal is able to perfectly insure the agent. But this implies that C measures the per-

period costs of incentive provision or, in other words, the loss induced by the information

problem. Perhaps surprisingly, the loss does not depend on the level of the promised

value. This feature is due to the CARA specification and its lack of wealth effect, which

implies that incentives provision does not become costlier as the agent gets richer.

It is not immediately clear how the constant C varies with the model’s parameters,

mostly because it depends on the root of a cubic equation. We show in the Appendix that

the root k always exists, is unique and decreasing in the rate of decay of human capital

δ. As C is increasing in k, Corollary 1 immediately follows.

Corollary 1 The expected wage bill B (v) is increasing in δ.

The less persistent human capital is, the higher the costs of motivating the agent.

In particular, it is always more expensive to induce full effort when there is no human

capital accumulation, i.e., when δ diverges to infinity. This is in line with our discussion

of the first order condition (7) at the end of Section 3.2: Learning-by-doing relaxes the
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Figure 1: Costs of Incentive Provision. Parameters: ρ = 0.1, λ = 0.5, σ = 1, θ = 10.

incentive constraint because agents add future output gains to the immediate benefit of

effort provision.

Figure 1 illustrates our finding. It depicts the per-period costs C of incentive provision

as a function of δ and σ. The costs are increasing in output volatility σ because it lowers

the signal/noise ratio. This makes it more diffi cult to identify shirkers which raises the

costs of eliciting effort. The information problem vanishes as σ goes to zero because the

the principal can perfectly infer the actual level of effort. Since C measures the distance

from the first best contract, its value converges to zero with σ. Turning our attention to δ,

we see that Corollary 1 is indeed confirmed by the simulation: Losses are unambiguously

increasing in δ.

Wage dynamics.– It is instructive to analyze how wages evolve over time in order

to understand why the cost of delivering a given promised value is decreasing in the

persistence of human capital. It is shown in the proof of Proposition 3 that the sensitivity

of the promised value reads6

γt = − 1

θλσ2

(ρ
k
− 1
)
vt .

Since ∂k/∂δ < 0, it is clear that ∂γ/∂δ > 0. The less persistent human capital is, the

6The sensitivity coeffi cient γ is unambiguously positive because v is negative and, as shown in the
proof of Corollary 1, ρ > k.
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more volatile the continuation value. This is why the expected wage bill has to be higher

in order to compensate the agent for her greater exposure to risk.

We can also characterize the effect that δ has on the drift of v. Reinserting optimal

wages w(v) = − ln(−kv)/θ + λ into (4), we find that

dvt = vt (ρ− k) dt+ γtσdZt .

The trend is negative7 which shows that the principal finds it optimal to frontload trans-

fers. This process of immiserization is common in models of full commitment with CARA

utility. More interestingly, the drift coeffi cient is decreasing in δ as ∂k/∂δ < 0. Learning-

by-doing counteracts the agent’s immiserization. It become more profitable to backload

payments when actions have a persistent effect because agents take these future benefits

into account, which relax the incentive constraint. However, since ρ is superior to k even

when δ = 0, the immiserization channel always dominates.8

In order to derive similar insights for wages, we apply Ito’s lemma tow(v) = − ln(−kv)/θ+

λ and find that wt obeys

dwt =
1

θ

[(
k − ρ+

1

2 (θλσ)2

(ρ
k
− 1
)2)

dt+
1

θλσ

(ρ
k
− 1
)
dZt

]
.

As expected, wages fluctuate more when v is volatile, that is when δ is higher. By

contrast, the impact of δ on the deterministic component of the wage schedule turns out

to be ambiguous. As discussed above, human capital persistence creates some backloading

which directly raises the coeffi cient of the drift. But it also lowers the volatility of v and,

since wages are convex in v, this puts some downward pressure on wages. The simulation

reported in Figure 2 illustrates that, for some parameter values, the drift of w can be

increasing in δ because of the volatility channel.

Full Incentive Compatibility.– We have used the relaxed incentive problem to derive

optimal contracts. We still have to establish that they satisfy, not only the first order

condition, but also the global incentive constraint. As stated in the following Corollary,

this is indeed the case.

7We show in Corollary 1 that ρ > k, whereas v < 0 follows from the specification (11) of the utility
function.

8This will not necessarily be true if we allowed effort to have a cumulative effect, i.e., if we let δ be
negative. Then persistence may even lead to backloaded transfers.

12



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

­3

­2.5

­2

­1.5
x 10­3

δ
dw

/d
t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02

δ

V
ol

(w
)

Figure 2: Drift and Volatility of Wages as a function of δ.
Parameters: ρ = 0.1, λ = 0.5, σ = 1, θ = 10.

Corollary 2 The contract described in Proposition 3 is fully incentive compatible because
it satisfies both necessary and suffi cient conditions, (7) and (10) respectively.

One should expect that full incentive compatibility is ensured for high enough δ be-

cause the model converges to a standard contracting problem without persistence. Then

we know from the work of Schättler and Sung (1993) that, as long as the first order

condition is fulfilled, global optimality in continuous time settings without persistence is

not an issue. Recent papers by Williams (2011) or Jovanovic and Prat (2013) show that

this is not anymore true when actions have a lasting effect. One usually has to impose a

bound on the degree of persistence in order to exclude multiple deviations. Interestingly

enough, such restrictions are not required in our model, at least when δ is restricted to

positive values so that the effect of effort do not cumulate over time. Determining whether

this result is due to the particular structure of our model, or to a more general property

arising from the complementarity between effort and persistence, is an interesting issue

whose resolution we leave for further research.

Retirement.– The principal may decide to retire the agent instead of paying the

compensation required to extract effort. Retirement is profitable when the condition

below is satisfied.

Corollary 3 When 1 + 1/ (ρ+ δ) < λ − C, it is optimal to retire the agent. Otherwise,
the contract described in Proposition 3 dominates retirement.
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When the condition holds with equality, the cost of compensating the agent for an

additional unit of effort equals the expected return. To see why, observe that the cheapest

way to deliver the promised value is to pay the constant stream − ln (−ρv) /θ. It follows

from the expression in Proposition 3 that the flow cost of incentive provision with respect

to retirement is equal to C + λ. It is measured against the discounted return of one unit

of effort 1 + 1/ (ρ+ δ). But Corollary 3 is not solely static: It also excludes stopping

times, so that the principal will never require effort exertion for a while and then retire

the agent.

As one should expect, learning-by-doing renders retirement less attractive. The noise

parameter σ has the opposite effect because it raises |C|. Actually, since C diverges with
σ, there always exists an output variance above which retirement dominates. By contrast,

the effect of δ on C is bounded from below by the solution prevailing in the absence of

human capital accumulation.

5 Conclusion

We have derived the necessary condition that any dynamic contract has to satisfy when

agents learn by doing. A significant benefit of using a continuous time approach is that

it also delivers a suffi cient condition which ensures that the contract is fully incentive

compatible. We showed that, when the agent’s utility is CARA, suffi ciency is not an issue

as long as the impact of effort does not build up over time.

This paper contributes to the burgeoning literature on dynamic contracts with persis-

tent information. Research on such problems is still at an early development stage, but

recent breakthroughs suggest that it may soon become useful for the analysis of empiri-

cal data. For example, our model predicts that income volatility increases when human

capital accumulation becomes more diffi cult or less relevant. Hence, introducing a finite

lifetime or a concave learning technology leads to rising wage volatility over the lifecycle,

as documented in, e.g., Gibbons and Murphy (1992).

Enriching the model proposed in this paper also promises to improve our understand-

ing of actual contracts. An interesting but demanding extension would combine hidden

types with learning-by-doing. In such an environment, actions serve two purposes: Apart

from building up future skills, effort establishes the agent’s reputation. Both motives

are particularly important for young workers. But the companion paper Jovanovic and
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Prat (2013) shows that reputational concerns and learning-by-doing have opposite effects

on the power of incentives. The tension is likely to differ across occupations and could

therefore helps explaining the variety of contractual arrangements observed in reality.

APPENDIX

Proof. Proposition 1: Consider the Brownian motion Z0 under some probabil-
ity space with probability measure Q, and let FZ0 ,

{
FZ0t

}
0≤t≤T

denote the suitably

augmented filtration generated by Z0. Let

Yt =

∫ t

0

σdZ0s ,

so that Yt is also a Brownian motion under Q. Since expected output is linear in cumu-

lative output, the exponential local martingale

Λa
t,τ , exp

(∫ τ

t

(
hs + as
σ

)
dZ0s −

1

2

∫ τ

t

∣∣∣∣hs + as
σ

∣∣∣∣2 ds
)
,

for t ≤ τ ≤ T, is a martingale, i.e., Et
[
Λa
t,T

]
= 1. Hence Girsanov theorem holds and

ensures that

Za
t , Z0t −

∫ t

0

hs + as
σ

ds

is a Brownian motion under the new probability measure dQa/dQ , Λa
0,T . Given that

both measures are equivalent, the triple (Y, Za, Qa) is a weak solution of the SDE

Yt =

∫ t

0

(hs + as) ds+

∫ t

0

σdZa
s .

Adopting a weak formulation allows us to view the choice of control a as determining the

probability measure Qa. In order to define the agent’s optimization problem, let Ra (t)

denote the reward from time t onwards so that

Ra (t) , eρt
[∫ T

t

u (s, Y·, as) ds+ U (T, Y·)

]
,

where the output path is denoted by Y· and, with a slight abuse of notation, u (s, Y·, as) ,
e−ρsu (w (Y·) , as) and U (T, Y·) , e−ρTU (Y·) are utilities at time t discounted from time 0.
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The agent’s objective is to find an admissible control process that maximizes the expected

reward Ea [Ra (0)] over all admissible controls a ∈ A. In other words, the agent solves
the following problem

vt = sup
a∈A

V a(t) , sup
a∈A

Ea
t [Ra (t)] , for all 0 ≤ t ≤ T .

The objective function can be recast as

V a(t) = Ea
t [Ra (t)] = Et

[
Λa
t,TR

a (t)
]
, (16)

where the operator Ea [·] and E [·] are expectations under the probability measure Qa and

Q, respectively. One can see from (16) that varying a is indeed equivalent to changing

the probability measure. The key advantage of the weak formulation is that, under the

reference measure Q, the output process does not depend on a. Hence, we can treat it as

fixed which enables us to solve our problem in spite of its non-Markovian structure.

Our derivation of the necessary conditions builds on the variational argument in Cvi-

taníc et al. (2009). Define the control perturbation

aε , a+ ε∆a ,

We assume that there exists an ε0 > 0 for which any ε ∈ [0, ε0) satisfy |aε|4 ,
∣∣uaε∣∣4 , ∣∣uaεa ∣∣4 , ∣∣Λaε

t,τ

∣∣4,(
Uaεt,τ
)2
and

(
∂aUa

ε

t,τ

)2
being uniformly integrable in L1 (Q) where

Uat,τ ,
∫ τ

t

u (s, Y·, as) ds .

We introduce the following shorthand notations for “variations”

∇Uat,τ ,
∫ τ

t

ua (s, Y·, as) ∆asds , (17)

∇ht ,
∫ t

0

e−δ(t−s)∆asds , (18)

∇Λa
t,τ ,

Λa
t,τ

σ

[∫ τ

t

(∇hs + ∆as) dZ
0
s −

∫ τ

t

(ht + as) (∇hs + ∆as) ds

]
=

Λa
t,τ

σ

∫ τ

t

(∇hs + ∆as) dZ
a
s . (19)
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Step 1: We first characterize the variations of the agent’s objective with respect to ε

V aε(t)− V a(t)

ε
= E

[
Λaε

t,TR
aε (t)− Λa

t,TR
a (t)

]
= E

[(
Λaε

t,T − Λa
t,T

ε

)
Raε (t) + Λa

t,T

(
Raε (t)−Ra (t)

ε

)]

= E

[
∇Λaε

t,TR
aε (t) + Λa

t,T

(
Raε (t)−Ra (t)

ε

)]
.

To obtain the limit of the first term as ε goes to zero, observe that

∇Λaε

t,TR
aε (t)−∇Λa

t,TR
a (t) =

[
∇Λaε

t,T − Λa
t,T

]
Ra (t) +∇Λaε

t,T

[
Raε (t)−Ra (t)

]
.

As shown in Cvitaníc et al. (2009), for any ε ∈ [0, ε0), this expression is integrable

uniformly with respect to ε and so

lim
ε→0

E
[
∇Λaε

t,TR
aε (t)

]
= E

[
∇Λa

t,TR
a (t)

]
.

The limit of the second term reads

lim
ε→0

Raε (t)−Ra (t)

ε
= eρt∇Uat,T .

Due to the uniform integrability of Λa
t,T

(
Raε (t)−Ra (t)

)
/ε, the expectation is also well

defined. Combining the two expressions above, we finally obtain

lim
ε→0

V aε(t)− V a(t)

ε
= E

[
∇Λa

t,TR
a (t) + Λa

t,T e
ρt∇Uat,T

]
, ∇V a(t) . (20)

Step 2: We are now in a position to derive the necessary condition. Consider total
earnings as of date 0

Ia(t) , Ea
t

[∫ T

0

u (s, Y·, as) ds+ U (T, Y·)

]
=

∫ t

0

u (s, Y·, as) ds+ e−ρtV a(t) . (21)

By definition, it is a Qa−martingale. According to the extended Martingale Represen-
tation Theorem9 of Fujisaki et al. (1972), all square integrable Qa−martingales are sto-

9We cannot directly apply the standard Martingale Representation theorem because we are considering
weak solutions, so that {Zat } does not necessarily generate

{
FYt
}
.
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chastic integrals of {Za
t } and there exists a unique process ζ in L2 (Qa) such that

Ia(T ) = Ia(t) +

∫ T

t

ζsσdZ
a
s . (22)

This decomposition allows us to solve for ∇V a(t). Reinserting (17), (18) and (19) into

(20) yields10

∇V a(t) = Et

[
Ra (t)

Λa
t,T

σ

∫ T

t

(∇hs + ∆as) dZ
a
s + Λa

t,T e
ρt

∫ T

t

ua (·) ∆asds

]
= eρtEa

t

[
Ia(T )

σ

∫ T

t

(∇hs + ∆as) dZ
a
s+

∫ T

t

ua (·) ∆asds

]
.

where subscripts denote derivatives and arguments are omitted for brevity. Given the law

of motion (22), applying Ito’s rule to the first term yields

d

(
Ia(τ)

σ

∫ τ

t

(∇hs + ∆as) dZ
a
s

)
= [ζτ (∇hτ + ∆aτ )] dτ

+

[
ζτ

∫ τ

t

(∇hs + ∆as) dZ
a
s + Iat (τ) (∇hτ + ∆aτ )

]
dZa

τ .

Hence ∇V a(t) can be represented as

e−ρt∇V a(t) = Ea
t

[∫ T

t

Γ1sds+

∫ T

t

Γ2sdZ
a
s

]
,

where

Γ1s , ζs

[∫ s

0

e−δ(s−τ)∆aτdτ + ∆as

]
+ ua (s, Y·, as) ∆as ,

Γ2s , ζs

[∫ s

t

(∫ τ

0

e−δ(τ−r)∆ardr + ∆aτ

)
dZa

τ

]
+ Iat (s)

(∫ s

0

e−δ(s−τ)∆aτdτ + ∆as

)
.

Given that Γ2s is square integrable,
11 we have Ea

t

[∫ T
t

Γ2sdZ
a
s

]
= 0. As for the deterministic

10The additional expectation term vanishes because both ∇As and ∆as are bounded and so(∫ t

0

U (τ , Y·, aτ ) dτ

)
Eat

[∫ T

t

(∇As + ∆as) dZ
a
s

]
= 0 .

11Square integrability of Γ2s can be established for any ε ∈ [0, ε0) following the same steps as in Lemma
7.3 of Cvitaníc et al. (2009).
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term, collecting the effect of each perturbation ∆as yields

e−ρt∇V a(t) = Ea
t

[∫ T

t

(∫ T

s

e−δ(τ−s)ζτdτ + ζs + ua (s, Y·, as)

)
∆asds

]
.

Finally, noticing that ∆as was arbitrary, optimality of at requires that(
Ea
t

[∫ T

t

e−δ(s−t)ζsds

]
+ ζt + ua (t, Y·, at)

)
(a− at) ≤ 0 . (23)

We now rewrite the necessary condition as a function of the volatility γ of the promised

value vt. Differentiating (21) with respect to time yields

dIa(t) = e−ρt [dvt − ρvt + u (Y·, at)] = ζtσdZ
a
t ,

so that

dvt = (ρvt − u (Y·, at)) dt+ eρtζtσdZ
a
t .

Replacing γt = eρtζt into (23) and collecting the exponential terms, one obtains the

necessary condition (6).

Proof. Proposition 2: We wish to compare rewards along the equilibrium path

{a∗t}
T
t=0 with those derived following an arbitrary strategy {at}

T
t=0. As in the proof of

Proposition 1 let ∆at , at − a∗t denote the local effort deviation. Similarly, let

∇ht , ht − h∗t =

∫ t

0

e−δ(t−s)∆asds ,

denote the resulting differences in human capital at each date. The Brownian motions

generated by the two effort policies satisfy

σdZ
a∗

t = σdZa
t + [at + ht − (a∗t + h∗t )] dt = σdZa

t + (∆at +∇ht) dt .

The total rewards Ia
∗
(t) from strategy a as of date 0 can therefore be decomposed as

follows

Ia
∗

(T ) =

∫ T

0

e−ρtu (Y·, at) dt+ e−ρTU (Y·) = V a∗ (0) +

∫ T

0

e−ρtγ∗tσdZ
a∗

t

= V a∗ (0) +

∫ T

0

e−ρtγ∗t (∆at +∇ht) dt+

∫ T

0

e−ρtγ∗tσdZ
a
t .
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Hence, the total reward from the arbitrary policy is given by

Ia (T ) =

∫ T

0

e−ρt [u (Y·, at)− u (Y·, a
∗
t )] dt+ Ia

∗
(T )

=

∫ T

0

e−ρt [u (Y·, at)− u (Y·, a
∗
t )] dt+ V a∗ (0) +

∫ T

0

e−ρtγ∗t (∆at +∇ht) dt+

∫ T

0

e−ρtγ∗tσdZ
a
t .

Let us focus on the third term on the right hand side∫ T

0

e−ρtγ∗t∇htdt =

∫ T

0

e−ρtγ∗t

(∫ t

0

e−δ(t−s)∆asds

)
dt =

∫ T

0

eδt∆at

(∫ T

t

e−(δ+ρ)sγ∗sds

)
dt

=

∫ T

0

eδt∆at

[
e−(δ+ρ)tp∗t +

∫ T

t

e−(δ+ρ)sϑ∗sσdZ
a∗

s

]
dt .

where the last equality follows from the definition of p and ϑ. Changing the Brownian

motion in the last term on the RHS and taking expectation yields

Ea
0

[∫ T

0

eδt∆at

(∫ T

t

e−(δ+ρ)sϑ∗sσdZ
a∗

s

)
dt

]
= Ea

0

[∫ T

0

eδt∆at

(∫ T

t

e−(δ+ρ)sϑ∗s (∆as +∇hs) ds
)
dt

]
= Ea

0

[∫ T

0

e−ρtϑ∗t (∆at +∇ht)
(∫ t

0

e−δ(t−s)∆as

)
dt

]
= Ea

0

[∫ T

0

e−ρtϑ∗t (∆at +∇ht)∇htdt
]
.

Hence we have

V a (0)−V a∗ (0) = Ea
0

[∫ T

0

e−ρt (u (wt, at)− u (wt, a
∗
t ) + (γ∗t + p∗t ) ∆at + ϑ∗t (∆at +∇ht)∇ht) dt

]
.

We know from the optimization property of a∗t that the first expectation term is at most

equal to zero. On the other hand, the sign of the second expectation term is ambiguous.

In order to bound it, we introduce the predictable process12 χ∗t , γ∗t − ϑ∗th∗t and define
the function

H (a, h;χ∗, ϑ∗, p∗) , u (w, a) + (χ∗ + ϑ∗h) a+ ϑ∗h2 + p∗a .

12χ∗ is predictable since both ξ∗ and h∗ are FY−predictable.
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Taking a linear approximation of H (·) around A∗ yields

H (at, ht)−H (a∗t , h
∗
t )−

∂H (a∗t , h
∗
t )

∂h
∇ht

= u (wt, at)− u (wt, a
∗
t ) + (χ∗t + ϑ∗th

∗
t ) ∆at + atϑ

∗
t (ht − h∗t )

+ϑ∗t
(
h2t − h∗2t

)
+ p∗t∆at − [ϑ∗ta

∗
t + 2ϑ∗th

∗
t ]∇ht

= u (wt, at)− u (wt, a
∗
t ) + (γ∗t + p∗t ) ∆at + ϑ∗t∇ht (at − a∗t ) + ϑ∗t

(
h2t − h∗2t − 2∆th

∗
t

)
= u (wt, at)− u (wt, a

∗
t ) + (γ∗t + p∗t ) ∆at + ϑ∗t∇ht (∆at +∇ht) .

The expected benefits of following an alternative strategy can therefore be written as

V a (0)− V a∗ (0) = Ea
0

[∫ T

0

e−ρt
(
H (at, ht)−H (a∗t , h

∗
t )−

∂H (a∗t , h
∗
t )

∂h
∇ht

)
dt

]
,

which is negative when H (·) is jointly concave. Given that the agent seeks to maximize
expected returns, imposing concavity ensures that a∗ dominates any alternative effort

path. Concavity is established considering the Hessian matrix of H (·)

H (t, a, h) =

(
uaa (wt, at) ϑt

ϑt 2ϑt

)
,

which is negative semi-definite when 2uaa (wt, at) ≥ ϑt, as stated in (10).

Proof. Proposition 3: In order to simplify the algebra, we start by focusing on
contracts which extract full effort. Then we can omit actions a from the list of control

and recast the principal’s optimization problem as

Bt = min
{w,γ,ϑ}

Et

[∫ ∞
t

e−ρ(s−t)wsds

]
,

subject to

dvt = [ρvt − u (wt, 1)] dt+ γtσdZt , (24)

dpt = [(ρ+ δ) pt − γt] dt+ ϑtσdZt , (25)

γt = −ua (wt, 1)− pt , (26)

i.e., the two promise-keeping constraints and the necessary condition under which income

volatility is minimized.
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The Hamilton-Jacobi-Bellman (HJB hereafter) equation associated to the principal’s

optimal control problem reads13

ρB (v, p) = min
{w,ϑ}

{
w + ∂B

∂v
(ρv − u (w, 1)) + ∂B

∂p
((ρ+ δ) p− γ)

+σ2

2

[
∂2B
∂v2

γ (p, w)2 + ∂2B
∂p2

ϑ2 + 2 ∂2B
∂v∂p

γ (p, w)ϑ
] } , (27)

where we have used (26) to express γ as a function of p and w. We seek a solution to the

HJB equation of the following form

ρB (v) = λ− ln (−ρv)

θ
− C , (28)

and guess that the optimal wage schedule is equal to

w(v) = − ln(−kv)

θ
+ λ⇒ u(w(v), 1) = kv , (29)

while the value of private information is given by

p (v) = −θλ k

k + δ + 1
v . (30)

Under our premise that p is equal to v times a constant, we can eliminate p from the HJB

equation and rewrite it as follows

ρB (v) = min
w

{
w +B′ (v) (ρv − u (w, 1)) +

σ2

2
B′′ (v) γ (v, w)2

}
. (31)

The FOC with respect to wages reads

1−B′ (v)uw (w, 1) + σ2B′′ (v) γ (v, w)
∂γ (v, w)

∂w
= 0 . (32)

In order to obtain the expression of ∂γ/∂w, we replace our guess into (26) to obtain

γ = −ua (w(v), 1)− p = −θλ
(
k − k

k + δ + 1

)
v = −θλk

(
k + δ

k + δ + 1

)
v .

13In our particular problem, switching from a weak formulation of the agent’s problem, to a strong
formulation of the principal’s problem, does not raise measurability issues because the agent’s action is
constant over time, and so does not directly depends on the Brownian motion.
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Differentiating this expression with respect to wages yields

∂γ (v, w)

∂w
= −uaw (w(v), 1) = −θγ + θ2λ

k

k + δ + 1
v .

The FOC (32) for wages is therefore equivalent to

1+B′ (v) θvk−σ2B′′ (v) θ3 (λv)2
[(

k − k

k + δ + 1

)2
+

(
k − k

k + δ + 1

)
k

k + δ + 1

]
= 0 ,

or

ρ− k − (θλσ)2
[
k

(
k − k

k + δ + 1

)]
= ρ− k − (θλσ)2 k2

(
k + δ

k + δ + 1

)
= 0 .

This equivalent to the following cubic equation for k

k3 (θλσ)2 + k2
[
(θλσ)2 δ + 1

]
+ k (δ + 1− ρ)− ρ (δ + 1) = 0 . (33)

Notice that the relevant solution is given by the positive root because wages are not

defined when k is negative. The existence and uniqueness of k are established below, in

the proof of Corollary 1.

We now verify that the dynamic programming equation is indeed satisfied

ρB (v) = w +B′ (v) (ρv − u (w (v) , 1)) +B′′ (v)
σ2

2
γ2

= λ− ln(−kv)

θ
− ρ− k

ρθ
+

(σλ)2 θ

2ρ

[
k

(
k + δ

k + δ + 1

)]2
.

Replacing our guess for B (v) on the left hand side, one finds that the HJB holds true for

all promised value v as long as

C =
ρ− k
ρθ
− (σλ)2 θ

2ρ

[
k

(
k + δ

k + δ + 1

)]2
. (34)

We still have to verify our guess (30) for p. Reinserting the Incentive Constraint (26)

into the law of motion of p, we find that

dpt = [(ρ+ δ + 1) pt + ua (wt, 1)] dt+ ϑtσdZt,
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Integrating this expression with respect to time yields

pt = −E
[∫ ∞

t

e−(ρ+δ+1)(s−t)ua (ws, 1) ds

]
,

which, using our specification (11) of the utility function and wage function (29), yields

pt = −θλEt
[∫ ∞

t

e−(ρ+δ+1)(s−t)u (ws, 1) ds

]
= −θλ

∫ ∞
t

e−(ρ+δ+1)(s−t)kEt [vs] ds . (35)

The expression of Et [vs] follows from the law of motion of v

dvt = [ρvt − u (wt, 1)] dt+ γtσdZt = vt (ρ− k) dt+ γtσdZt .

Since γt is square integrable, we have Et [vs] = vt exp ((ρ− k) (s− t)) . Replacing this
expression into (35), we finally obtain

pt = −θλkvt
∫ ∞
t

e−(k+δ+1)(s−t)ds = −θλ k

k + δ + 1
vt ,

as conjectured in (30) .

We still have to establish that the contract maximizes the principal’s profit. First

notice that the profit function π can be rewritten as follows

π (ht , vt) = max
{a,w,γ,ϑ}

E

[∫ ∞
t

e−ρ(s−t) (as + hs − ws) ds
]

= ht

∫ ∞
t

e−(ρ+δ)(s−t)ds+ max
{a,w,γ,ϑ}

E

[∫ ∞
t

e−ρ(s−t)
(
as +

∫ s

t

e−δ(s−τ)aτdτ − ws
)
ds

]
=

ht
ρ+ δ

+ π (0, vt) .

Since the agent’s incentive constraint is independent of the level of human capital, neither

the principal’s objective function nor its constraint depend on h, and Bellman’s principle

of optimality implies that it is equivalent to maximize π (0, vt) or π (ht, vt). We can

therefore rewrite the principal problem as

π (vt) = max
{a,w,γ,ϑ}

E

[∫ ∞
t

e−ρ(s−t)
(
as

[
1 +

1

ρ+ δ

]
− ws

)
ds

]
.

subject to (24) , (25) and (26) . According to the steps above, our guess for the value
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function

ρπ (v) = 1 +
1

ρ+ δ
− ρB (v) ,

is a solution of the dynamic programming equation

ρπ (v) = sup
{a,w}

{
a

(
1 +

1

ρ+ δ

)
− w + π′ (v) (ρv − u (w, a)) + π′′ (v)

σ2

2
γ (v, w, a)2

}
.

(36)

Furthermore, for each fixed v ∈ R, the supremum with respect to wages is attained when
w(v) = − ln(−kv)/θ + λ. For optimal effort to be equal to one, we must have

1 +
1

ρ+ δ
+B′(v)ua (w, 1)−B′′(v)σ2γ (v, w, 1)

∂γ (v, w, 1)

∂a
≥ 0 . (37)

To see that the inequality is indeed satisfied, differentiate the incentive constraint (26)

to obtain ∂γ/∂a = −λ∂γ/∂w. Reinserting this equality along with ua (·) = −λuw (·) into
the FOC (32) for wages, we find that (37) is strictly positive. Hence the supremum with

respect to effort is attained when a = 1, which completes the verification argument.

Proof. Corollary 1: The first step consists in characterizing the cubic equation
defining k

k3 (θλσ)2 + k2
[
(θλσ)2 δ + 1

]
+ k (δ + 1− ρ)− ρ (δ + 1) = 0 . (38)

Observe that it can be rewritten as follows

(θλσ)2 k2 − ρ︸ ︷︷ ︸
,L(k)

=
k2
[
(θλσ)2 − 1

]
− (δ + 1) k

k + δ + 1︸ ︷︷ ︸
,R(k)

(39)

We distinguish two cases:

1. θλσ ≤ 1 : The function R(k) on the RHS of (39) is decreasing for all k ∈ R+ and
R(0) = 0. By contrast, the function L (k) on the LHS of (39) is always increasing for all

k ∈ R+. Furthermore, since L (0) = −ρ and limk→∞L (k) = ∞, (39) always admits a

unique positive real solution.

2. θλσ > 1 : The function R(k) on the RHS of (39) is not anymore decreasing for all

k ∈ R+. However, R(0) > L (0) still holds true and since limk→∞R (k) < limk→∞L (k),

(39) always admits a positive real solution. Furthermore, these two inequalities imply

that the number of positive solutions of (39) cannot be equal to two. This means that
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Figure 3: Positive root of the cubic equation (39) for different values of δ.

either one root or all three of them are positive real numbers. But the last possibility

being impossible too,14 the only remaining option is that (39) has a unique positive real

solution.

Having established the uniqueness of k, we proceed by showing that ∂k/∂δ < 0.

Again, this is most easily established considering (39). Given that ∂L (k) /∂δ = 0 while

∂R (k) /∂δ = −k2 (θλσ)2 (k + δ + 1)−2 < 0, the solution to (39) must be decreasing in δ.

Figure 3 illustrates the comparative statics exercise.

Finally it will prove useful to show that k < ρ. Let k̄ denote the positive root of (38)

when δ = 0, i.e.,

k̄3 (θλσ)2 + k̄2 + k̄ (1− ρ)− ρ = 0 . (40)

Since ∂k/∂δ < 0 and δ ≥ 0, we have k < k̄. Assume for the sake of contradiction that

k̄ > ρ, then k̄2 − k̄ρ > 0 and k̄3 (θλσ)2 + k̄2 + k̄ (1− ρ) > k̄3 (θλσ)2 + k̄ > ρ, which

contradicts the definition in (40) of k̄. Hence it holds true that ρ > k̄ > k for all δ ≥ 0.

We can finally prove Corollary 1. Differentiating the incentive costs C with respect to

14To establish this claim analytically, one can differentiate L (k) and R (k) to obtain: L′′ (k) = (θλσ)
2

and R′′ (k) = 2 [θλσ (δ + 1)]
2

(k + δ + 1)
−3
. Hence there exists a unique k̂ such that L′′ (k) ≷ R′′ (k) for

all k ≷ k̂, which rules out the possibility that R (k) intersects twice L (k) from above.
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k, we get15

∂C

∂k
=

1

θk
− 1

θρ
− (σλ)2 θ

2ρ
2

[
k

(
k + δ

k + δ + 1

)]
∂

∂k

[
k

(
k + δ

k + δ + 1

)]
=

1

θ

[
1

k
− 1

ρ

]
+

(σλ)2 θ

2ρ
2

1

(θλσ)2

[ρ
k
− 1
] 1

(θλσ)2
ρ

k2
> 0 .

The positive sign follows from k < ρ, and the corollary holds true since

∂C

∂δ
=
∂C

∂k︸︷︷︸
+

∂k

∂δ︸︷︷︸
−

− (σλ)2 θ

2ρ
k22

(
k + δ

k + δ + 1

)
1

(k + δ + 1)2
< 0 .

Proof. Corollary 2: The suffi ciency condition derived in Proposition 2 reads

2uaa (wt, 1) ≥ ϑt. In order to derive the volatility coeffi cient ϑ of p, we use our finding in

the proof of Proposition 3 according to which pt = −vtθλk/ (k + δ + 1), to conclude that

ϑt = −θλ k

k + δ + 1
γt =

(
θλk

k + δ + 1

)2
(k + δ) vt .

We have also shown that u (wt, 1) = kvt. Given that uaa (wt, 1) = (θλ)2 u (wt, 1), the

suffi cient condition is equivalent to

2uaa (wt, 1) ≥ ϑt ⇐⇒ 2 ≥ k (k + δ)

(k + δ + 1)2
,

which is obviously true for all δ ≥ 0.

Proof. Corollary 3: We first show that it is optimal to retire the agent when

1 + 1/ (ρ+ δ) < λ − C. Let R (v) denote the discounted cost of retiring an agent with

promised value v. Since there is no need to motivate the agent, the principal perfectly

insures her; in other words γt = 0 and dvt/dt = ρ (vt) − u(wt, 0) = 0 for all t ≥ 0.

15The second equality below follows from the definition of k as

k

(
k + δ

k + δ + 1

)
=

ρ− k
(θλσ)

2
k
.
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Evaluating the principal’s value function R associated to retirement yields

ρR (vt) = −ρ
∫ ∞
t

e−ρ(s−t)w (vt) ds = −w (vt) =
ln (−ρv)

θ
.

Retirement at date 0 dominates incentive provision when

R (v)− π (0, v) = −1− 1

ρ+ δ
− C + λ > 0 , (41)

as stated in Corollary 3. We still have to prove that there is no optimal stopping rule
such that retirement follows a period with effort exertion. We have shown in the proof of

Proposition 3 that

πt (v) =
ht

δ (ρ+ δ)
+ π0 (v) =

1− e−δt
δ (ρ+ δ)

+ π0 (v) ,

where we have used the fact that h is deterministic to substitute it with t. Thus, if the

agent is not immediately retired at date 0, we must have 0 > R (v)−π0 (v) > R (v)−πt (v),

showing that it can never be optimal to retire the agent at a future date.
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