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1 Introduction

Monte Carlo studies constitute a standard approach in econometrics and statistics to ex-

amining small-sample properties of various estimators whenever theoretical results are un-

available. Recent papers by Frölich (2004), Lunceford and Davidian (2004), Zhao (2004,

2008), Busso et al. (2009), Millimet and Tchernis (2009), Austin (2010), Abadie and Im-

bens (2011), Khwaja et al. (2011), Busso et al. (2013), Diamond and Sekhon (2013), and

Huber et al. (2013) carry out Monte Carlo experiments to assess the relative finite-sample

performance of a large number of estimators for various average treatment effects.1

Most of these recent papers use highly stylised data-generating processes (DGPs) which

only loosely correspond to any actual data sets (see, e.g., Frölich 2004, Busso et al. 2009).

This approach is criticised by Huber et al. (2013) on the grounds that Monte Carlo exper-

iments are design dependent so can only be useful when based on realistic DGPs. They

suggest that the conclusions of many Monte Carlo studies may be inapplicable to real-

world estimation problems, i.e. the external validity of these studies is low. Instead, they

propose an approach to generating artificial data sets which closely mimics the original

data of interest, which they term an “empirical Monte Carlo study” (EMCS). Similar sim-

ulation exercises are carried out by Abadie and Imbens (2011) and Busso et al. (2013),

who use a different procedure but again adapt it to the circumstance of interest.2

What is more, Busso et al. (2013) explicitly encourage empirical researchers to “conduct a

small-scale simulation study designed to mimic their empirical context” in order to choose

the appropriate estimator(s) for a given research question. This suggestion is based on the

premise that a carefully designed and empirically motivated Monte Carlo experiment is

capable of informing the empirical researcher of the actual ranking of various estimators

when applied to a given problem using a given data set. In other words, one must accept

a proposition that “the advantage [of an empirical Monte Carlo study] is that it is valid in

at least one relevant environment” (Huber et al. 2013), i.e. its internal validity is high by

construction. In this paper we evaluate this important premise.

Two different approaches to conducting empirical Monte Carlo simulations are proposed

in the literature. The first, which we term the “structured” design, is considered by both

Abadie and Imbens (2011) and Busso et al. (2013). Loosely speaking, in this setting treat-

1Blundell and Costa Dias (2009) and Imbens and Wooldridge (2009) provide recent reviews of
the treatment effects framework.

2As noted by Huber et al. (2013), the idea of using data to inform Monte Carlo studies goes
back at least as far as Stigler (1977).
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ment status and covariate values are drawn from a distribution similar to that in the data,

and then outcomes are generated using parameters estimated from the data. The second

approach, which we term the “placebo” design, is proposed by Huber et al. (2013). Here

both covariates and outcome are drawn jointly from the control data with replacement,

and treatment status is assigned using parameters estimated from the full data. Since all

observations come from the control data and the original outcomes are retained, the effect

of assigned treatment is known to be zero by construction.

We implement both of these approaches using the NSW-CPS and NSW-PSID data sets,

previously analysed by LaLonde (1986), Heckman and Hotz (1989), Dehejia and Wahba

(1999), Smith and Todd (2005), Abadie and Imbens (2011), Diamond and Sekhon (2013),

and many others.3 Since the NSW programme originally had an experimental control

group, an unbiased estimate of the effect of this programme can be computed. Following

LaLonde (1986) we use this true effect to calculate the bias (in these data) for a large set of

estimators. We can then compare these biases, and the ranking of the estimators, to those

we find from using the simulation designs considered. If empirical Monte Carlo methods

are internally valid, there should be a strong positive correlation between the biases found

in the data and those found in the simulations.

We find that the structured approach to empirical Monte Carlo studies is valid only under

the restrictive assumption that the treatment effect in the original data is equal to the

treatment effect implied by the simulation procedure. This result precludes the use of

this method in the practical choice of estimators: if we know that this assumption holds,

then we already know the true treatment effect, and if not, then the method can provide

severely misleading answers.

The placebo design is similarly problematic, but for an additional reason. As with the

structured design, the true effect in simulations is likely to be different than the actual

effect of a given programme. Additionally, the placebo design restricts the support of the

covariates to be equal to the support of the covariates amongst the control observations.

Where the support differs between treated and control groups in the original data, this

creates a further reason why the placebo procedure generates samples which differ from

the true data-generating process. Hence the conditions under which this procedure is

useful are even more stringent, although this latter issue is at least testable.

Hence we conclude that there is little support for the chief premise of the recent literature

3Also, the NSW data are the subject of several recent empirically motivated Monte Carlo ex-
periments (Lee and Whang 2009, Abadie and Imbens 2011, Diamond and Sekhon 2013, Busso
et al. 2013).
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on empirical Monte Carlo studies: that they are at least informative about the appropriate

choice of estimators for the data at hand. We caution researchers against seeing these

methods as a panacea which provides information about estimator choice, and to instead

continue using several different estimators as a form of a robustness check.

2 The National Supported Work (NSW) Data

The National Supported Work Demonstration (NSW) was a work experience programme

which operated in the mid-1970s at 15 locations in the United States (for a more detailed

description of the programme, see Smith and Todd 2005). It served several groups of dis-

advantaged workers, such as women with dependent children receiving welfare, former

drug addicts, ex-criminals, and school dropouts. Unlike many similar programmes, the

NSW programme selected its participants randomly, and such a method of selection into

the programme allowed for its straightforward evaluation via a comparison of mean out-

comes in the treatment and control groups.

In an influential paper, LaLonde (1986) suggests that one could use the design of this pro-

gramme to assess the performance of various nonexperimental estimators of the average

treatment effect. He discards the original control group from the NSW data and cre-

ates several alternative comparison groups using data from the Current Population Survey

(CPS) and the Panel Study of Income Dynamics (PSID), two standard data sets on the U.S.

population. LaLonde (1986) suggests that a reasonable estimator of the average treatment

effect should be able to closely replicate the experimental estimate of the effect of the

NSW programme on the outcomes of its participants, using data from the treatment group

and the nonexperimental comparison groups. He finds that very few of the estimates are

close to the experimental benchmark. This result has motivated a large number of rep-

lications and follow-ups, and established a testbed for new estimators for various average

treatment effects of interest (see, e.g., Heckman and Hotz 1989, Dehejia and Wahba 1999,

Smith and Todd 2005, Abadie and Imbens 2011, Diamond and Sekhon 2013).

The key insight of LaLonde (1986) is that a sensible estimator for the average treatment

effect should be able to closely replicate the “true” experimental estimate of this effect

using nonexperimental data. In this paper we suggest that a reasonable empirical Monte

Carlo study should be able to closely replicate the “true” ranking of nonexperimental

estimators, based on their ability to uncover this “true” estimate. In our analysis, we use

the subset of the treatment group (185 observations) from Dehejia and Wahba (1999) as

4



Table 1: Descriptive Statistics for the NSW-CPS and NSW-PSID Data Sets
NSW CPS PSID

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Number of observations 185 15,992 2,490
Outcome variable

Nonemployed ‘78 0.24 0.43 0.14 0.34 0.11 0.32
Control variables

Age 25.82 7.16 33.23 11.05 34.85 10.44
Black 0.84 0.36 0.07 0.26 0.25 0.43
Education 10.35 2.01 12.03 2.87 12.12 3.08
Married 0.19 0.39 0.71 0.45 0.87 0.34
‘Earnings ‘74’ 2,096 4,887 14,017 9,570 19,429 13,407
‘Nonemployed ‘74’ 0.71 0.46 0.12 0.32 0.09 0.28
Earnings ‘75 1,532 3,219 13,651 9,270 19,063 13,597
Nonemployed ‘75 0.60 0.49 0.11 0.31 0.10 0.30

NOTE: Earnings variables are all expressed in 1982 dollars.

well as the original CPS and PSID comparison groups (15,992 and 2,490 observations,

respectively) from LaLonde (1986), and we aim at creating a large number of data sets

mimicking these NSW-CPS and NSW-PSID sets. Descriptive statistics for these data are

presented in Table 1.

3 Empirical Monte Carlo Designs

3.1 The structured design

What we term a “structured” design is based on the Monte Carlo studies implemented by

Abadie and Imbens (2011) and Busso et al. (2013). We test both an “uncorrelated” and a

“correlated” version of this design.

First we generate a fixed number of 185 treated and either 2,490 (PSID) or 15,992 (CPS)

nontreated observations per replication. We then draw employment status in 1974 and

1975 jointly, with the probability of each joint employment status matching the observed

joint probability in the data for individuals with that treatment status. For individuals who

are employed in only one period, an income is drawn from a log normal distribution with

mean and variance that match those in the data for individuals with the same treatment and

employment status. Where individuals are employed in both periods a joint log normal

distribution is used. Also, whenever drawn income in a particular year lies outside the

support of income in that year observed in the data, the observation is replaced with the

limit point of the support, as suggested by Busso et al. (2013).

In our initial uncorrelated design we closely replicate Abadie and Imbens (2011), drawing
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all other covariates – black, married, education, and age – conditional only on treatment

status. Note that conditioning the distribution of covariates on treatment status means

that the probability of treatment conditional on covariates is defined implicitly by this

procedure. Black and married are binary outcomes, so draws are taken from a Bernoulli

with appropriate probability of success. Age is drawn from a log normal, with matched

conditional mean and conditional variance from the data. As with income, censoring is

performed, replacing any generated observations which lie outside the support with the

limit point of the support from the original data.

In the original data education is coded as the number of years of education completed,

taking integer values. Since the data do not follow any smooth distribution, Abadie and

Imbens (2011) use a discrete distribution with support at each integer from four to sixteen.

Unlike them, we collapse the discrete distribution into two indicator variables, one indic-

ating whether the individual has at least 12 years of education, and the other whether the

individual has at least 16 years. These points are chosen because of the large probability

masses observed at these points in the distribution. We can then match the probabilities

for each of these to those in the data, conditioning on treatment status. This reduction in

support is done for consistency with our correlated design, so that we could focus on the

importance of using a rich correlation structure in the data-generating process.4

In the correlated design we model the joint distribution of the covariates as a tree-structured

conditional probability distribution, where the conditional distributions are learned from

the data. This contrasts with the uncorrelated design where one imposes that the joint

distribution is the product of the marginals conditioned only on the treatment status. We

begin by deterministically assigning treatment status, and then generating employment

status and income as above. The process for generating other covariates is as follows:

1. The covariates are ordered: treatment status, employment statuses, income in each

period, whether black, whether married, whether received at least 12 years of edu-

cation, whether received at least 16 years of education, and age. This ordering

is chosen purely for convenience, with binary covariates listed before continuous

ones.

2. Using the original data, each covariate from “black” onwards is regressed on all

the covariates listed before it.5 These regressions are not to be interpreted causally;

4We also tested a version of the uncorrelated design using the same distribution as Abadie and
Imbens (2011), without any consequential effect on our results.

5One exception is “at least 16 years of education” which is regressed on the prior listed covari-
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they simply give the conditional mean of each variable given all preceding covari-

ates. Where coefficients are insignificantly different from zero, they are set to zero,

and the other coefficients are recorded.

3. In the new (Monte Carlo) data set, covariates are drawn sequentially in the same

order. For binary covariates a temporary value is drawn from a uni f (0,1) distri-

bution. Then the covariate is equal to one if the temporary value is less than the

conditional probability for that observation. The conditional probability is found

using the values of the existing generated covariates and the estimated coefficients

from (2). Age is drawn from a log normal whose mean depends on the other cov-

ariates and whose variance is allowed to depend on treatment status, and again we

replace extreme values with the limit of the support, as in the uncorrelated case.

In both designs (correlated and uncorrelated) the binary outcome, Yi, is then generated

in two steps. In the first step, a probability of employment is generated conditional on

the covariates, using the parameters of a logit model fitted from the original data (see

Table A.1). Each covariate is included linearly within the inverse logit function, except

for treatment status, which is interacted with all other covariates so that the coefficients

may differ depending on treatment status. Precisely, the estimated coefficients, γ0 and

γ1, from estimation using the control and treatment subsamples are used to calculate the

linear index, XXX iγd (for d = 0,1), from which we calculate pi = Pr(Yi = 1|XXX i, Di = d) =

eXXX iγd/(1+eXXX iγd ). In practice, this model is equivalent to a flexible parametric logit model

or – equivalently – to a logit version of the Oaxaca–Blinder decomposition (see, e.g.,

Fortin et al. 2011). In the second step, employment status is determined as a draw from a

Bernoulli distribution with the estimated conditional probability pi.

We approximate the sample-size selection rule in Huber et al. (2013), which suggests

how the number of generated samples should vary with the number of observations, by

generating 2,000 samples for NSW-PSID and 500 samples for NSW-CPS.

3.2 The placebo design

The “placebo” design follows the approach suggested by Huber et al. (2013), and applied

also by Lechner and Wunsch (2013). Covariates are drawn jointly with outcomes from

the empirical distribution, rather than a parametrised approximation. In particular, pairs

ates conditional on having at least 12 years of education, since it is clearly not possible to have at
least 16 years without having at least 12.
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(Yi, XXX i) are drawn with replacement from the sample of nontreated observations. The data

on the treated sample are used with the control data to parametrically (logit) estimate the

propensity score, i.e. the conditional probability of treatment.

We assign treatment status to observations in the sampled data using the estimated coef-

ficients, φφφ (see Table A.2); iid logistic errors, εi; and two parameters, λ and α , where λ

determines the degree of covariate overlap between the “placebo treated” and “nontreated”

observations and α determines the expected proportion of the “placebo treated”. Formally

Di = 1(D∗i > 0) where D∗i = α +λXXX iφφφ + εi. Since the original outcome, Yi, is drawn dir-

ectly from the data together with XXX i, we do not need to specify any DGP for the outcome.

Instead we know that by construction the effect of the assigned treatment status is zero.6

Hence we can judge estimators based on their ability to replicate this true effect of zero.

Of course, one should note that the conditional distribution of outcomes for placebo

treated individuals might differ significantly from the conditional distribution of outcomes

for treated individuals in the original data. This will affect the extent to which knowledge

about the relative performance of estimators in the generated samples is informative about

the relative performance of estimators in the original data.

This design requires some choice of α and λ . We choose α to ensure that the proportion

of the “placebo treated” in each simulated sample is as close as possible to the propor-

tion of treated in the corresponding original data set (1.14% in NSW-CPS and 6.92% in

NSW-PSID). Huber et al. (2013) suggest that choosing λ = 1 should guarantee “selection

[into treatment] that corresponds roughly to the one in our ‘population’”. However, this

is not necessarily true: it would be true only if the degree of overlap between the treated

and nontreated in the original data was roughly equal to the degree of overlap between

the placebo treated and placebo nontreated in the simulated samples. There is no reason

to expect such a relationship, so we conduct a small-scale calibration to determine the

“optimal” value of λ in these data.

We choose a search grid of possible values for λ , namely {0.01, 0.03, . . . , 0.99} for

NSW-CPS and {0.01, 0.02, . . . , 0.99} for the smaller NSW-PSID.7 For each value we

generate data and calculate “overlap” for each sample, which we define to be the propor-

tion of treated individuals for whom the estimated propensity score is larger than the min-

6A similar approach is developed by Bertrand et al. (2004) who study inference in difference-
in-differences (DiD) designs using simulations with randomly generated “placebo laws” in state-
level data, i.e. policy changes which never actually happened. For follow-up studies, see also
Hansen (2007), Cameron et al. (2008), and Brewer et al. (2013).

7On the basis of a presearch, we determined that for both data sets λ ∈ (0,1).
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imum and smaller than the maximum estimated propensity score among the nontreated.

We perform 100 replications for each λ in NSW-CPS and 500 in NSW-PSID. We choose

this λ which minimises the root-mean-square deviation of our simulated overlap from

the one in the original data. This gives λ = 0.51 in the NSW-CPS and λ = 0.17 in the

NSW-PSID. As a comparison with Huber et al. (2013), however, we also perform simu-

lations with λ = 1, and we refer to these two versions of the placebo design as calibrated

and uncalibrated, respectively.

As before, we generate 2,000 samples for NSW-PSID and 500 samples for the larger

NSW-CPS.

4 Method

As mentioned above, in this paper we reverse the usual ordering, using a number of es-

timators to compare different types of empirical Monte Carlo designs, rather than using

the generated data to rank estimators. We implement many common estimators to see

how good the various designs are at replicating the true biases, absolute biases, and cor-

responding rankings. We discuss below the estimators which we use, and the metrics on

which we compare the EMCS methods.

4.1 Estimators

We consider treatment effect estimators which belong to one of five main classes: stand-

ard parametric (regression-based), flexible parametric (Oaxaca–Blinder), kernel-based

(matching, local linear regression, and local logit), nearest-neighbour matching, and in-

verse probability weighting estimators. In each case we estimate the average treatment

effect on the treated (ATT) using these estimators,8 and then calculate the bias for each

replication via a comparison to an “oracle” estimator which provides the true value. In

the placebo design, the true value in the population is equal to zero by construction. In the

structured design, we use our knowledge of both potential outcome equations to compute

the probability of success under both regimes for each individual. The true value is then

8Other statistics may also be selected in its place. Since the ATT only needs estimates of
the counterfactuals for the treated observations, it is less demanding than the average treatment
effect (ATE). Hence, if this method were to be generally useful for the ATE, it would also have to
be suitable for the ATT.
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obtained by averaging the difference between these two probabilities over the subsample

of treated individuals.

In particular, we use as regression-based methods the linear probability model (LPM) as

well as the logit, probit, and complementary log-log models. The complementary log-log

model uses an asymmetric binary link function, which makes it more appropriate when

the probability of success takes values close to zero or one (see Cameron and Trivedi 2005

for a textbook treatment), as is the case in our application.

We also follow Kline (2011) in using the Oaxaca–Blinder (OB) decomposition to com-

pute the ATT.9 Since we consider a binary outcome, we apply both linear and non-linear

OB estimators. The linear OB decomposition is equivalent to the LPM but with the treat-

ment dummy interacted with appropriately demeaned covariates. Similarly, the non-linear

OB decompositions impose either a logit or probit link function around the linear index,

separately for both subpopulations of interest (Yun 2004, Fairlie 2005).

Turning to more standard treatment effect estimators, we consider several kernel-based

methods, in particular kernel matching, local linear regression, and local logit. Kernel

matching estimators play a prominent role in the programme evaluation literature (see,

e.g., Heckman et al. 1997, Frölich 2004), and their asymptotic properties are established

by Heckman et al. (1998). Similarly, local linear regression is studied by Fan (1992,

1993), Heckman et al. (1998), and others. Because our outcome is binary, we also con-

sider local logit, as applied in Frölich and Melly (2010). Note that each of these estimators

requires estimating the propensity score in the first step (based on a logit model) as well

as choosing a bandwidth. For each of the methods, we select the bandwidth on the basis

of leave-one-out cross-validation (as in Busso et al. 2009 and Huber et al. 2013) from a

search grid 0.005× 1.25g−1 for g = 1,2, . . . ,15, and repeat this process in each replica-

tion.10

We also apply the popular nearest-neighbour matching estimators, including both match-

ing on covariates and on the estimated propensity score. Large-sample properties for some

9Kline (2011) shows that the OB decomposition is equivalent to a particular reweighting es-
timator and that it therefore satisfies the property of double robustness. See also Oaxaca (1973)
and Blinder (1973) for seminal formulations of this method as well as Fortin et al. (2011) for a
recent review of the decomposition framework.

10Note that the computation time is already quite large in the case of the NSW-PSID data, but
it is completely prohibitive for NSW-CPS. Consequently, in the case of the NSW-CPS data set,
we calculate optimal bandwidths only once, for the original data set, and use these values in our
simulations. We find qualitatively identical results for the NSW-CPS data set when we exclude all
the kernel-based estimators. These results are available on request.
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of these estimators are derived by Abadie and Imbens (2006). Since nearest-neighbour

matching estimators are shown not to be
√

n-consistent in general, we also consider the

bias-adjusted variant of both versions of matching (Abadie and Imbens 2011). Like

kernel-based methods, also nearest-neighbour matching estimators require choosing a

tuning parameter, N, the number of neighbours. We consider the workhorse case of N = 1

and also N = 40,11 so we apply eight nearest-neighbour matching estimators in total.

The last class of estimators includes three versions of inverse probability weighting (see

Busso et al. 2009 for a thorough discussion) as well as the so-called double robust re-

gression (Robins et al. 1994, Robins and Rotnitzky 1995, Busso et al. 2009). We con-

sider unnormalised reweighting, in which the sum of weights is stochastic; normalised

reweighting, in which the weights are rescaled to sum to 1; as well as (asymptotically)

efficient reweighting, which is a linear combination of normalised and unnormalised re-

weighting (Lunceford and Davidian 2004). Also, the double robust regression is in prac-

tice a combination of regression and reweighting, and the resulting estimator is consistent

if at least one of the two models is well-specified (see Imbens and Wooldridge 2009 for a

discussion).

Moreover, for regression-based, Oaxaca–Blinder, and inverse probability weighting es-

timators we also consider a separate case in which we restrict our estimation proced-

ures to those treated (or placebo treated) whose estimated propensity scores are larger

than the minimum and smaller than the maximum estimated propensity score among the

nontreated, i.e. to those who are located in the common support region.12 In consequence,

our total number of estimators is equal to 35, including 8 regression-based estimators, 6

Oaxaca–Blinder estimators, 5 kernel-based estimators, 8 nearest-neighbour matching es-

timators, and 8 inverse probability weighting estimators. We perform our simulations in

Stata and use several user-written commands in our estimation procedures: locreg (Frö-

lich and Melly 2010), nnmatch (Abadie et al. 2004), oaxaca (Jann 2008), and psmatch2

(Leuven and Sianesi 2003).

11While the latter number of matches is unusually big, results from the early stage of this project
suggested a negative monotonic relationship between N and the root-mean-square error (RMSE)
of an estimator (in the range 1–64).

12We do not consider such a variant of kernel-based and nearest-neighbour matching estimators
for two reasons. First, these estimators explicitly compute a counterfactual for each individual
using data from the closest neighbourhood of this individual. Second, these two classes of estim-
ators account for nearly 100% of our computation time, and therefore such an inclusion would be
prohibitive timewise. This is not problematic, since our interest is not in how well any particular
estimator performs, but rather in comparing the performance of estimators in the original data and
in the Monte Carlo samples.
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4.2 Metrics

Empirical Monte Carlo studies seek to persuade one of the benefits of using a particular

estimator, showing that it is preferred to many others in a particular circumstance. We

are able to test the internal validity of such a procedure by comparing the performance of

estimators in the original data with their performance using the Monte Carlo data.

Typically one would choose estimators on the basis of minimising either the RMSE or

the absolute mean bias between the true value of the statistic of interest and the estimate.

Since we know the true effects in the original data – the programme reduced nonemploy-

ment among its participants by 11.06 percentage points – and the generated data, we can

calculate biases in both circumstances.

Minimising the RMSE accounts for both the bias and variance of an estimator, so might be

preferred as a measure in many contexts. Unfortunately, from a single sample of original

data it is not possible to measure the variance of an estimator, only the bias. Hence

although one could calculate the RMSE in the Monte Carlo data, this is not possible in the

original data. However, a minimum condition for an EMCS to be able to reproduce the

appropriate RMSE is that it should produce the correct biases, and absolute biases. Hence

we focus on metrics based on bias.

For a researcher comparing the performance of estimators, absolute bias is typically a

more relevant metric than bias. We therefore prefer absolute bias to bias as a performance

measure which indicates the quality of an EMCS procedure, and in our results we focus

on the correlation in absolute (mean) bias between the original data and the Monte Carlo

samples (“Abs. bias–Abs. mean bias” in Tables 2–4) as well as on the correlation between

(ordinal) rankings of estimators based on absolute (mean) bias (“Rank–Rank”). We also,

however, report the correlations for bias.

5 Results

In this section we discuss the performance of various EMCS designs. For each EMCS

procedure we implement various nonexperimental estimators for the ATT. We then study

the correlation in bias, absolute bias, and ranking, comparing the estimates in the gener-

ated data and in the original data.13

13In order to reduce the impact of outliers on our final results, we discard all the estimates
whose absolute value is larger than 10. Note that the outcome in our application is binary, so the
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5.1 The structured design

The baseline correlations in the NSW-PSID design are shown in the first and third columns

of Table 2.14 Mean biases are positively and significantly correlated with the true biases,

whilst absolute mean biases are significantly negatively correlated with the true absolute

biases. The second and fourth columns test for robustness of this result to the exclusion of

all the Oaxaca–Blinder estimators, since the logit OB decomposition can be regarded as

the “true” model for the structured design (see Section 3), which might improve the per-

formance of various OB decompositions in such designs in an artificial way. Although the

correlations generally get weaker, and in some cases become insignificant as the number

of estimators falls, the signs are unchanged.15

The positive correlation in bias implies that estimators which have relatively high biases

in the original data continue to have relatively high biases in the simulations. Since bias is

calculated as the difference between the estimate and the true effect in a given replication

– which does not vary significantly across replications – this positive correlation in biases

simply reflects a positive correlation in the underlying estimates.

However, as noted previously, for a researcher performing an empirical Monte Carlo study

the appropriate decision criterion for choosing estimators is typically absolute bias, and

on this criterion the researcher would choose the wrong estimators. This result differs

from the result on bias, because when taking absolute values it becomes important what

value is used as the “true” value against which the bias is calculated.

With the NSW-PSID data, the structured design generates true values equal to –0.2551

and –0.2596, on average, in the uncorrelated and correlated versions, respectively. These

true effect cannot deviate from the [−1,1] interval. Our rule should not therefore be viewed as
particularly restrictive. This leads us to dropping at most 1.8% (0.2%) of the observations for an
estimator-design pair in the NSW-PSID (NSW-CPS) data. The only exception is unnormalised
reweighting in the correlated structured design for NSW-PSID. In this case we drop up to 8.3% of
the observations. We find qualitatively identical results for all the designs when we do not discard
any outliers, but instead remove these estimators for which we detect more than 1% of outliers in
the first place. These results are available on request.

14Tables B.1 and B.2 present “true” biases and rankings of these estimators. Table B.3 provides
evidence on their relative performance in the uncorrelated structured design, when the DGP at-
tempts to mimic the NSW-CPS data-generating process; similarly Table B.4 provides the results
for the NSW-PSID case. Tables B.5 and B.6 present simulation results for the correlated structured
design.

15We also perform additional robustness checks, such as reweighting the effect of each
estimator-observation on our correlations in a way which would guarantee an equal impact of
each of the classes of estimators. These additional robustness checks never have an effect on our
conclusions. These results are available on request.
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Table 2: Correlations Between the Biases in the Uncorrelated and Correlated Structured Designs and in the Original NSW-PSID Data Set
“True biases” “Hypothetical biases”

Uncorrelated Correlated Uncorrelated Correlated
(1) (2) (3) (4) (5) (6) (7) (8)

Correlations
Bias–Mean bias 0.369** 0.254 0.625*** 0.532*** 0.369** 0.254 0.625*** 0.532***

(0.032) (0.192) (0.000) (0.003) (0.032) (0.192) (0.000) (0.003)
Abs. bias–Abs. mean bias –0.401** –0.280 –0.447*** –0.236 0.397** 0.286 0.686*** 0.603***

(0.019) (0.149) (0.007) (0.217) (0.020) (0.140) (0.000) (0.001)
Rank–Rank –0.360** –0.194 –0.386** –0.178 0.395** 0.236 0.656*** 0.571***

(0.036) (0.320) (0.022) (0.356) (0.021) (0.226) (0.000) (0.001)
Sample restrictions

Exclude outliers Y Y Y Y Y Y Y Y
Exclude Oaxaca–Blinder N Y N Y N Y N Y

Number of estimators 34 28 35 29 34 28 35 29

NOTE: P-values are in parentheses. Stars indicate significance: *at the 10% level; **at the 5% level; ***at the 1% level.
Columns (1)–(4) correlate biases and rankings in the simulations with biases and rankings in the original data, as measured against the true

effect. Columns (5)–(8) correlate biases and rankings in the simulations with hypothetical biases and hypothetical rankings in the original data,
as measured against the effect estimated in the original data with the logit OB decomposition. Columns (1), (2), (5), and (6) are based on a DGP
which allows covariates to be drawn conditional only on treatment status, whilst in the remaining columns the correlation structure is matched to
the data. Odd-numbered columns use all the estimators, whilst even-numbered columns drop OB-based estimators. Outliers are defined as those
estimators whose mean biases are more than three standard deviations away from the average mean bias of all the estimators. In columns (1), (2),
(5), and (6) unnormalised reweighting with the common support restriction is treated as an outlier.

are far from the true value of –0.1106 in the original data, since they are in effect based

on the logit Oaxaca–Blinder decomposition, which estimates a true effect of –0.2568.

In the fifth to eighth columns of Table 2 we test the hypothesis that the structured design is

informative about the ability of estimators to replicate the estimate from the model, rather

than the true effect in the data. To do this we replace the “true effect” in the original NSW

data with the effect suggested by the model, which we term the “hypothetical effect”,

and use this to compute the corresponding hypothetical biases. Hence this transformation

provides some evidence on what the results would be if the model generated the correct

treatment effect.

These results are striking. Indeed, all the correlations turn positive, and most of them

highly statistically significant. The results are stronger for the correlated structured design,

and in that case remain significant even upon the exclusion of a number of estimators.

We further test our hypothesis that a structured empirical Monte Carlo design is inform-

ative only when the implied treatment effect is correct by applying the method to the

NSW-CPS data. Here the estimated effect is equal to –0.1174, close to the true value of

–0.1106.

The results in Table 3 are supportive of our interpretation. We find similar results on

absolute bias in the first to fourth columns (“true biases”) and in the fifth to eighth columns

(“hypothetical biases”), since the true effect is already close to the estimated one, and

correlations are generally positive. Again the relationships get weaker, and sometimes

14



Table 3: Correlations Between the Biases in the Uncorrelated and Correlated Structured Designs and in the Original NSW-CPS Data Set
“True biases” “Hypothetical biases”

Uncorrelated Correlated Uncorrelated Correlated
(1) (2) (3) (4) (5) (6) (7) (8)

Correlations
Bias–Mean bias 0.389** 0.227 0.547*** 0.379** 0.389** 0.227 0.547*** 0.379**

(0.023) (0.245) (0.001) (0.043) (0.023) (0.245) (0.001) (0.043)
Abs. bias–Abs. mean bias 0.618*** 0.599*** 0.375** 0.295 0.467*** 0.491*** 0.293* 0.270

(0.000) (0.001) (0.027) (0.120) (0.005) (0.008) (0.087) (0.156)
Rank–Rank 0.554*** 0.524*** 0.435*** 0.345* 0.388** 0.417** 0.406** 0.357*

(0.001) (0.004) (0.009) (0.067) (0.023) (0.027) (0.016) (0.058)
Sample restrictions

Exclude outliers Y Y Y Y Y Y Y Y
Exclude Oaxaca–Blinder N Y N Y N Y N Y

Number of estimators 34 28 35 29 34 28 35 29

NOTE: P-values are in parentheses. Stars indicate significance: *at the 10% level; **at the 5% level; ***at the 1% level.
Columns (1)–(4) correlate biases and rankings in the simulations with biases and rankings in the original data, as measured against the true effect.

Columns (5)–(8) correlate biases and rankings in the simulations with hypothetical biases and hypothetical rankings in the original data, as measured
against the effect estimated in the original data with the logit OB decomposition. Columns (1), (2), (5), and (6) are based on a DGP which allows
covariates to be drawn conditional only on treatment status, whilst in the remaining columns the correlation structure is matched to the data. Odd-
numbered columns use all the estimators, whilst even-numbered columns drop OB-based estimators. Outliers are defined as those estimators whose
mean biases are more than three standard deviations away from the average mean bias of all the estimators. In columns (1), (2), (5), and (6)
unnormalised reweighting with the common support restriction is treated as an outlier.

insignificant, when we exclude all the OB estimators, but the broad picture does not seem

to change.

Hence a structured Monte Carlo design is able to be informative about the absolute bias of

an estimator only under the assumption that the true effect is equal to the estimated effect

which is implicitly used in the data-generating process. However, this assumption is not

testable. Further, if one were to take this assumption seriously, then there would be no

reason to use any Monte Carlo procedure, since the true effect would already be known.

5.2 The placebo design

The results in Table 4 show that the placebo design is unable to even generally replicate

the biases from the true data, with significant negative correlations in many cases, and

no correlation in absolute bias.16 Hence, this procedure, as with the structured design,

remains unable to provide useful guidance on the choice of estimators.17

Although the placebo design avoids the problem of needing to correctly specify a para-

metric model for the outcome,18 the treatment effect is now clearly different from that in

16This design has no “optimal estimator”, so we do not include the additional columns we had
in the earlier tables.

17Simulation results are presented in Tables B.7 and B.8 for the uncalibrated placebo design,
and Tables B.9 and B.10 for the calibrated placebo design.

18Instead the assumption is made that the distribution of the outcome, conditional on covariates,
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Table 4: Correlations Between the Biases in the Uncalibrated and Calibrated Placebo
Designs and in the Original NSW-CPS and NSW-PSID Data Sets

Uncalibrated Calibrated
NSW-PSID NSW-CPS NSW-PSID NSW-CPS

Correlations
Bias–Mean bias –0.383** –0.422** –0.439*** 0.470***

(0.023) (0.013) (0.009) (0.004)
Abs. bias–Abs. mean bias –0.101 0.269 0.122 0.094

(0.564) (0.124) (0.492) (0.593)
Rank–Rank 0.016 0.189 0.213 –0.036

(0.929) (0.284) (0.225) (0.837)
Sample restrictions

Exclude outliers Y Y Y Y
Number of estimators 35 34 34 35

NOTE: P-values are in parentheses. Stars indicate significance: *at the 10% level; **at the 5%
level; ***at the 1% level.
Columns with the heading “Uncalibrated” use a DGP which draws observations without adjust-

ment to match the covariate overlap between the samples and the original data, whilst columns
with the heading “Calibrated” correct for this. Columns with the heading “NSW-PSID”
(“NSW-CPS”) use data drawn from the PSID (CPS) sample. Outliers are defined as those
estimators whose mean biases are more than three standard deviations away from the average
mean bias of all the estimators. The following estimators are treated as outliers: matching on
the propensity score (N = 40) in the second column and bias-adjusted matching on covariates
(N = 40) in the third column.

the original data. Additionally, only a subset of the original data is used. To the extent

that the distribution of these control observations differs from that of the treated ones, this

will create a second difference between the original data and our simulations.

This effect is important as demonstrated by the results in Table 4. With this design it is

generally not possible to match either the mean bias or the absolute mean bias. Although it

is sometimes improved through the use of calibration to better match the overlap between

treated and control observations, this remains insufficient to generally solve the problem.

Hence the results of this procedure are also not informative about the performance of

estimators in finding the treatment effect in the original data.

6 Conclusions

In this paper we investigate the internal validity of empirical Monte Carlo studies, which

we define as the ability of such simulation exercises to replicate the “true ranking” of

various nonexperimental estimators for the average treatment effect on the treated. This

problem is of high practical relevance, since several recent papers have put forward the

idea that empirical Monte Carlo studies might provide a solution to the oft-cited design

dependence of simulation exercises and their reliance on unrealistic DGPs. For example,

is the same for the treated observations as for controls.
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Busso et al. (2013) suggest that empirical researchers should “conduct a small-scale sim-

ulation study designed to mimic their empirical context” in order to choose the estimator

with best properties.

We consider two different empirical Monte Carlo designs. The first, which we term the

“structured” design, is based on Abadie and Imbens (2011) and Busso et al. (2013). Here

we generate new data which match particular features of the original data set, and then

generate outcomes using parameters estimated from the original data.

We show that this method can only be informative about the true ranking of the estimators

if the treatment effect in the original data is the same as that implied by the data-generating

process. This is clearly untestable, and if it were to be true, then one would already know

the treatment effect of interest, precluding the need for a simulation process. This severely

limits the practical usefulness of the structured design.

We also consider the “placebo” design, as suggested by Huber et al. (2013). Here a sample

of observations is drawn from the control data, and a placebo treatment is assigned using

the propensity score from the full data. The treatment effect in the sample is therefore

zero by construction.

Our results show that this method is even more problematic than the structured design.

The treatment effect in simulations is still likely to be different than the true effect in

the original data. Additionally, since only the control observations are used, the simu-

lated data may differ significantly from the original data, depending on the overlap in

the original data. This can partly be corrected by adjusting the overlap between treated

and control observations, but the support of the covariates and outcome may still be very

different.

Our results are unfortunately very negative, although in line with a long-standing literat-

ure: there is unfortunately no silver bullet for researchers when choosing which estimat-

ors to use in a particular circumstance. The finite-sample performance of these estimators

continues to be an important issue and finding grounds on which to judge their suitability

remains an open research question. For now empirical researchers would be best advised

to continue using several different approaches, as Busso et al. (2013) also suggest, and

reporting these potentially varying estimates as an important robustness check.
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A Potential Outcome and Treatment Equations

Table A.1 presents potential outcome equations which are used in the uncorrelated and

correlated structured designs, separately for the NSW-CPS and NSW-PSID data sets as

well as for the treated and nontreated subsamples (γ1 and γ0, respectively). These equa-

tions are based on the logit coefficients estimated using the original data sets.

Table A.1: Potential Outcome Equations in the Structured Design
NSW-CPS NSW-PSID

γ1 γ0 γ1 γ0
Age –0.0068 0.0461 –0.0068 0.0335
Black 1.5818 0.0937 1.5818 –0.2514
Education-12 –0.3608 0.5363 –0.3608 –0.0056
Education-16 (omitted) –0.0675 (omitted) –0.1078
Married –0.6001 0.2558 –0.6001 –0.2182
‘Earnings ‘74’ 0.000010 –0.000034 0.000010 0.000010
‘Nonemployed ‘74’ –1.7371 0.5564 –1.7371 1.8915
Earnings ‘75 –0.000145 –0.000060 –0.000145 –0.000068
Nonemployed ‘75 1.3457 1.2479 1.3457 1.3282
Intercept –1.6669 –3.2891 –1.6669 –2.8314

Similarly, Table A.2 presents treatment equations which are used in the uncalibrated and

calibrated placebo designs, separately for the NSW-CPS and NSW-PSID data sets. Again,

the coefficients are taken from logit models estimated using the original data sets.

Table A.2: Treatment Equations in the Placebo
Design

NSW-CPS NSW-PSID
Age –0.0266 –0.1136
Black 3.8887 2.1466
Education –0.1072 –0.1366
Married –0.9979 –1.6143
‘Earnings ‘74’ 0.000063 0.000024
‘Nonemployed ‘74’ 1.6595 3.1840
Earnings ‘75 –0.000180 –0.000276
Nonemployed ‘75 0.1821 –1.2951
Intercept –3.8391 2.7444
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B The Performance of Individual Estimators

B.1 The true ranking

Table B.1 presents nonexperimental estimates of the effect of the NSW programme using

the NSW-CPS data set and 35 various nonexperimental estimators. Generally, the estim-

ators perform very well, with the average bias being slightly smaller than 0.01 (less than

9% of the absolute value of the “true effect”). Several regression-based estimators per-

form best, especially the complementary log-log and logit models. Also, the logit OB de-

composition performs very well, as do selected bias-adjusted nearest-neighbour matching

estimators. Inverse probability weighting and kernel-based estimators (especially local

linear regression and local logit) perform relatively badly, although the corresponding

biases can still be regarded as quite low.

Similarly, Table B.2 presents estimates and rankings on the basis of the NSW-PSID data

set. The average bias is now much larger than in the previous case (and equal to –0.044),

and many estimators, especially all variants of the OB decomposition, suffer from large

(absolute) biases in the order of 0.08–0.17. On the other hand, unnormalised reweighting

as well as selected nearest-neighbour matching and kernel-based estimators (especially

matching with the Gaussian kernel and local logit) perform best. Note that the correlation

between the rankings in Tables B.1 and B.2 is insignificant and close to zero.
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Table B.1: Nonexperimental Estimates for the NSW-CPS Data
Comsup? Estimate Bias Rank

Regression-based
Linear probability –0.1331 –0.0225 23
Linear probability X –0.1293 –0.0187 16
Logit –0.1076 0.0030 3
Logit X –0.1060 0.0047 5
Probit –0.1002 0.0104 9
Probit X –0.0978 0.0128 12
Complementary log-log –0.1125 –0.0019 2
Complementary log-log X –0.1117 –0.0011 1

Oaxaca–Blinder
Linear probability –0.1358 –0.0252 26
Linear probability X –0.1317 –0.0211 22
Logit –0.1174 –0.0068 6
Logit X –0.1152 –0.0046 4
Probit –0.1249 –0.0143 13
Probit X –0.1222 –0.0116 10

Kernel-based
Kernel matching, uniform –0.0962 0.0144 14
Kernel matching, Gaussian –0.0912 0.0194 19
Kernel matching, Epan. –0.0876 0.0230 24
Local linear regression –0.0719 0.0387 34
Local logit –0.0709 0.0397 35

Matching
On pscore, N = 1 –0.0805 0.0302 28
On pscore, N = 40 –0.0859 0.0247 25
On pscore, N = 1, bias-adj. –0.1208 –0.0102 8
On pscore, N = 40, bias-adj. –0.0897 0.0209 21
On covs, N = 1 –0.1277 –0.0171 15
On covs, N = 40 –0.0749 0.0357 33
On covs, N = 1, bias-adj. –0.1223 –0.0117 11
On covs, N = 40, bias-adj. –0.1019 0.0087 7

Weighting
Unnormalised –0.0826 0.0280 27
Unnormalised X –0.0905 0.0201 20
Normalised –0.0793 0.0313 29
Normalised X –0.0781 0.0325 31
Efficient –0.0793 0.0313 30
Efficient X –0.0780 0.0326 32
Double robust –0.0913 0.0193 18
Double robust X –0.0914 0.0192 17

NOTE: “Comsup?” denotes the estimates which are obtained after removing all
the treated observations from outside the common support region. “Rank” is based
on absolute bias.
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Table B.2: Nonexperimental Estimates for the NSW-PSID Data
Comsup? Estimate Bias Rank

Regression-based
Linear probability –0.2030 –0.0924 25
Linear probability X –0.2017 –0.0911 24
Logit –0.1941 –0.0835 22
Logit X –0.1944 –0.0838 23
Probit –0.1527 –0.0421 15
Probit X –0.1525 –0.0419 14
Complementary log-log –0.1900 –0.0794 19
Complementary log-log X –0.1909 –0.0803 20

Oaxaca–Blinder
Linear probability –0.2721 –0.1615 34
Linear probability X –0.2701 –0.1595 33
Logit –0.2568 –0.1462 30
Logit X –0.2553 –0.1447 28
Probit –0.2590 –0.1484 32
Probit X –0.2576 –0.1470 31

Kernel-based
Kernel matching, uniform –0.1507 –0.0401 12
Kernel matching, Gaussian –0.0957 0.0149 4
Kernel matching, Epan. –0.1504 –0.0398 11
Local linear regression –0.2811 –0.1705 35
Local logit –0.0842 0.0264 7

Matching
On pscore, N = 1 –0.0703 0.0403 13
On pscore, N = 40 –0.0878 0.0228 6
On pscore, N = 1, bias-adj. –0.1381 –0.0275 10
On pscore, N = 40, bias-adj. –0.1914 –0.0808 21
On covs, N = 1 –0.1279 –0.0173 5
On covs, N = 40 –0.2554 –0.1448 29
On covs, N = 1, bias-adj. –0.1240 –0.0134 3
On covs, N = 40, bias-adj. –0.1789 –0.0683 18

Weighting
Unnormalised –0.1110 –0.0004 1
Unnormalised X –0.1129 –0.0023 2
Normalised –0.0142 0.0964 26
Normalised X –0.0102 0.1004 27
Efficient –0.0839 0.0267 9
Efficient X –0.0841 0.0266 8
Double robust –0.0531 0.0575 16
Double robust X –0.0518 0.0588 17

NOTE: “Comsup?” denotes the estimates which are obtained after removing all
the treated observations from outside the common support region. “Rank” is based
on absolute bias.
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B.2 The structured design

Table B.3: Simulation Results for the Uncorrelated Structured Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0457 0.0551 0.0353 31
Linear probability X –0.0422 0.0550 0.0397 28
Logit 0.0066 0.0280 0.0305 10
Logit X 0.0034 0.0274 0.0306 7
Probit 0.0126 0.0308 0.0320 19
Probit X 0.0134 0.0325 0.0334 20
Complementary log-log 0.0118 0.0271 0.0265 16
Complementary log-log X 0.0066 0.0242 0.0255 9

Oaxaca–Blinder
Linear probability –0.0474 0.0568 0.0357 32
Linear probability X –0.0428 0.0557 0.0402 29
Logit 0.0007 0.0347 0.0383 3
Logit X –0.0079 0.0388 0.0420 13
Probit –0.0098 0.0351 0.0376 14
Probit X –0.0155 0.0404 0.0414 21

Kernel-based
Kernel matching, uniform 0.0010 0.1126 0.1141 5
Kernel matching, Gaussian 0.0364 0.1862 0.1850 26
Kernel matching, Epan. 0.0009 0.1130 0.1145 4
Local linear regression –0.0636 0.6594 0.6572 34
Local logit 0.0306 0.1883 0.1883 22

Matching
On pscore, N = 1 0.0326 0.1881 0.1877 24
On pscore, N = 40 0.0448 0.0772 0.0643 30
On pscore, N = 1, bias-adj. 0.0043 0.1710 0.1733 8
On pscore, N = 40, bias-adj. 0.0006 0.0964 0.0978 1
On covs, N = 1 –0.0076 0.1562 0.1564 12
On covs, N = 40 –0.0633 0.0796 0.0508 33
On covs, N = 1, bias-adj. 0.0119 0.1775 0.1782 17
On covs, N = 40, bias-adj. –0.0007 0.0947 0.0957 2

Weighting
Unnormalised –0.0074 0.4344 0.4361 11
Unnormalised X –0.1355 0.4658 0.4476 35
Normalised 0.0365 0.1806 0.1784 27
Normalised X 0.0116 0.1794 0.1807 15
Efficient 0.0350 0.1578 0.1557 25
Efficient X 0.0119 0.1202 0.1215 18
Double robust 0.0318 0.1476 0.1459 23
Double robust X –0.0017 0.1393 0.1413 6

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.4: Simulation Results for the Uncorrelated Structured Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0489 0.0636 0.0460 15
Linear probability X 0.0574 0.1261 0.1128 19
Logit 0.0361 0.0627 0.0540 11
Logit X 0.1043 0.1294 0.0761 28
Probit 0.0674 0.0841 0.0536 22
Probit X 0.1205 0.1454 0.0811 31
Complementary log-log 0.0440 0.0646 0.0477 13
Complementary log-log X 0.1139 0.1296 0.0604 30

Oaxaca–Blinder
Linear probability –0.0008 0.0415 0.0468 1
Linear probability X 0.0514 0.1243 0.1136 16
Logit 0.0018 0.0633 0.0664 3
Logit X 0.0561 0.1147 0.1004 18
Probit –0.0009 0.0577 0.0613 2
Probit X 0.0555 0.1138 0.0996 17

Kernel-based
Kernel matching, uniform 0.0603 0.3644 0.3598 21
Kernel matching, Gaussian 0.1034 0.3808 0.3672 27
Kernel matching, Epan. 0.0599 0.3662 0.3614 20
Local linear regression 0.0911 0.9063 0.9018 24
Local logit 0.0889 0.4500 0.4413 23

Matching
On pscore, N = 1 0.0971 0.4537 0.4433 26
On pscore, N = 40 0.2051 0.2241 0.0903 33
On pscore, N = 1, bias-adj. 0.0394 1.5065 1.5065 12
On pscore, N = 40, bias-adj. 0.0108 0.3700 0.3699 7
On covs, N = 1 –0.0112 0.1538 0.1551 8
On covs, N = 40 0.0069 0.0465 0.0504 5
On covs, N = 1, bias-adj. –0.0102 0.4737 0.4739 6
On covs, N = 40, bias-adj. 0.0034 0.1556 0.1562 4

Weighting
Unnormalised 0.2557 0.7785 0.7358 34
Unnormalised X –0.5432 1.4081 1.2997 35
Normalised 0.1071 0.3325 0.3151 29
Normalised X 0.0241 0.3218 0.3209 10
Efficient 0.0961 0.3866 0.3749 25
Efficient X 0.0487 0.2514 0.2469 14
Double robust 0.2019 0.4794 0.4348 32
Double robust X 0.0143 0.2748 0.2741 9

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.5: Simulation Results for the Correlated Structured Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0228 0.0375 0.0346 31
Linear probability X –0.0224 0.0373 0.0348 30
Logit 0.0080 0.0261 0.0290 17
Logit X 0.0076 0.0260 0.0291 16
Probit 0.0207 0.0336 0.0310 28
Probit X 0.0209 0.0338 0.0311 29
Complementary log-log 0.0076 0.0223 0.0237 15
Complementary log-log X 0.0072 0.0221 0.0238 13

Oaxaca–Blinder
Linear probability –0.0255 0.0395 0.0350 35
Linear probability X –0.0249 0.0392 0.0352 34
Logit –0.0010 0.0319 0.0365 3
Logit X –0.0016 0.0321 0.0368 6
Probit –0.0068 0.0322 0.0361 11
Probit X –0.0071 0.0324 0.0364 12

Kernel-based
Kernel matching, uniform 0.0149 0.0505 0.0516 26
Kernel matching, Gaussian 0.0185 0.0606 0.0601 27
Kernel matching, Epan. 0.0144 0.0511 0.0523 25
Local linear regression 0.0234 0.6576 0.6571 33
Local logit 0.0132 0.0637 0.0649 23

Matching
On pscore, N = 1 0.0116 0.0671 0.0681 22
On pscore, N = 40 0.0109 0.0454 0.0476 21
On pscore, N = 1, bias-adj. 0.0037 0.0651 0.0671 9
On pscore, N = 40, bias-adj. 0.0005 0.0460 0.0490 2
On covs, N = 1 –0.0016 0.0696 0.0717 5
On covs, N = 40 –0.0231 0.0474 0.0457 32
On covs, N = 1, bias-adj. –0.0001 0.0727 0.0746 1
On covs, N = 40, bias-adj. –0.0020 0.0483 0.0516 8

Weighting
Unnormalised –0.0061 0.0731 0.0748 10
Unnormalised X –0.0143 0.0728 0.0736 24
Normalised 0.0095 0.0618 0.0636 19
Normalised X 0.0075 0.0616 0.0637 14
Efficient 0.0096 0.0521 0.0542 20
Efficient X 0.0085 0.0509 0.0533 18
Double robust 0.0018 0.0559 0.0589 7
Double robust X –0.0012 0.0557 0.0588 4

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.6: Simulation Results for the Correlated Structured Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0741 0.0847 0.0492 14
Linear probability X 0.1061 0.1383 0.0920 17
Logit 0.0921 0.1094 0.0641 16
Logit X 0.1268 0.1480 0.0789 21
Probit 0.1310 0.1425 0.0615 22
Probit X 0.1601 0.1760 0.0754 24
Complementary log-log 0.0845 0.0994 0.0550 15
Complementary log-log X 0.1180 0.1322 0.0601 20

Oaxaca–Blinder
Linear probability –0.0118 0.0431 0.0489 5
Linear probability X 0.0666 0.1227 0.1059 11
Logit 0.0039 0.0660 0.0701 3
Logit X 0.0718 0.1202 0.0993 13
Probit –0.0008 0.0597 0.0645 1
Probit X 0.0695 0.1181 0.0985 12

Kernel-based
Kernel matching, uniform 0.2686 0.4319 0.3388 32
Kernel matching, Gaussian 0.2437 0.3812 0.2938 27
Kernel matching, Epan. 0.2676 0.4324 0.3405 31
Local linear regression 0.1117 1.0116 1.0060 18
Local logit 0.2669 0.4341 0.3429 30

Matching
On pscore, N = 1 0.2715 0.4354 0.3409 33
On pscore, N = 40 0.2218 0.2359 0.0810 26
On pscore, N = 1, bias-adj. 0.0577 1.1959 1.1950 10
On pscore, N = 40, bias-adj. 0.0106 0.3046 0.3058 4
On covs, N = 1 –0.0251 0.1446 0.1452 8
On covs, N = 40 0.0219 0.0478 0.0498 7
On covs, N = 1, bias-adj. –0.0119 0.4454 0.4461 6
On covs, N = 40, bias-adj. –0.0022 0.1350 0.1379 2

Weighting
Unnormalised 0.2746 0.8834 0.8395 34
Unnormalised X –0.0342 1.1470 1.1472 9
Normalised 0.2949 0.4438 0.3322 35
Normalised X 0.2618 0.4310 0.3429 29
Efficient 0.2606 0.5470 0.4812 28
Efficient X 0.2083 0.5358 0.4938 25
Double robust 0.1553 0.3374 0.3014 23
Double robust X 0.1168 0.2861 0.2625 19

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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B.3 The placebo design

Table B.7: Simulation Results for the Uncalibrated Placebo Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0130 0.0370 0.0347 27
Linear probability X 0.0005 0.0387 0.0388 2
Logit 0.0027 0.0366 0.0365 7
Logit X 0.0091 0.0398 0.0388 23
Probit 0.0028 0.0364 0.0363 8
Probit X 0.0104 0.0404 0.0391 26
Complementary log-log 0.0038 0.0363 0.0361 10
Complementary log-log X 0.0083 0.0384 0.0375 19

Oaxaca–Blinder
Linear probability –0.0138 0.0374 0.0348 28
Linear probability X 0.0006 0.0391 0.0392 3
Logit 0.0017 0.0367 0.0367 6
Logit X 0.0089 0.0401 0.0391 22
Probit –0.0008 0.0360 0.0360 5
Probit X 0.0085 0.0398 0.0389 20

Kernel-based
Kernel matching, uniform –0.0049 0.0692 0.0691 12
Kernel matching, Gaussian –0.0040 0.1094 0.1095 11
Kernel matching, Epan. –0.0050 0.0692 0.0691 13
Local linear regression –0.0310 0.4111 0.4104 31
Local logit –0.0071 0.1122 0.1121 16

Matching
On pscore, N = 1 –0.0092 0.1115 0.1112 25
On pscore, N = 40 –0.0633 0.0867 0.0593 35
On pscore, N = 1, bias-adj. –0.0054 0.1033 0.1033 14
On pscore, N = 40, bias-adj. –0.0401 0.0796 0.0688 32
On covs, N = 1 –0.0007 0.0954 0.0955 4
On covs, N = 40 –0.0413 0.0632 0.0479 33
On covs, N = 1, bias-adj. 0.0088 0.0995 0.0992 21
On covs, N = 40, bias-adj. –0.0242 0.0679 0.0636 30

Weighting
Unnormalised –0.0082 0.1034 0.1032 18
Unnormalised X –0.0413 0.1150 0.1075 34
Normalised –0.0080 0.0939 0.0937 17
Normalised X 0.0003 0.0936 0.0936 1
Efficient –0.0092 0.0958 0.0955 24
Efficient X –0.0031 0.0824 0.0824 9
Double robust –0.0061 0.0898 0.0897 15
Double robust X –0.0168 0.0882 0.0866 29

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.8: Simulation Results for the Uncalibrated Placebo Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0233 0.0391 0.0315 18
Linear probability X 0.0354 0.0495 0.0346 26
Logit 0.0313 0.0487 0.0373 23
Logit X 0.0367 0.0532 0.0385 28
Probit 0.0399 0.0537 0.0361 29
Probit X 0.0449 0.0586 0.0377 32
Complementary log-log 0.0276 0.0452 0.0358 19
Complementary log-log X 0.0303 0.0461 0.0348 21

Oaxaca–Blinder
Linear probability 0.0130 0.0356 0.0331 14
Linear probability X 0.0358 0.0503 0.0353 27
Logit 0.0152 0.0407 0.0378 15
Logit X 0.0347 0.0506 0.0368 25
Probit 0.0228 0.0426 0.0359 17
Probit X 0.0410 0.0546 0.0360 30

Kernel-based
Kernel matching, uniform –0.0015 0.0725 0.0725 2
Kernel matching, Gaussian –0.0067 0.1596 0.1595 7
Kernel matching, Epan. –0.0026 0.0706 0.0705 3
Local linear regression 0.0039 0.4893 0.4894 4
Local logit –0.0126 0.1636 0.1631 12

Matching
On pscore, N = 1 –0.0113 0.1631 0.1628 11
On pscore, N = 40 –0.0339 0.0691 0.0603 24
On pscore, N = 1, bias-adj. –0.0311 0.1358 0.1322 22
On pscore, N = 40, bias-adj. –0.0435 0.0912 0.0802 31
On covs, N = 1 –0.0292 0.0636 0.0565 20
On covs, N = 40 0.0184 0.0387 0.0341 16
On covs, N = 1, bias-adj. –0.0553 0.1098 0.0949 33
On covs, N = 40, bias-adj. –0.0918 0.1059 0.0528 35

Weighting
Unnormalised 0.0130 0.2109 0.2105 13
Unnormalised X –0.0861 0.2434 0.2278 34
Normalised –0.0064 0.1287 0.1285 6
Normalised X 0.0041 0.1275 0.1275 5
Efficient –0.0090 0.1253 0.1250 9
Efficient X 0.0007 0.0852 0.0853 1
Double robust 0.0102 0.1114 0.1110 10
Double robust X –0.0083 0.1079 0.1076 8

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.9: Simulation Results for the Calibrated Placebo Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0226 0.0388 0.0315 31
Linear probability X –0.0230 0.0390 0.0316 33
Logit –0.0064 0.0322 0.0316 19
Logit X –0.0072 0.0322 0.0315 21
Probit –0.0083 0.0328 0.0318 23
Probit X –0.0091 0.0330 0.0317 25
Complementary log-log –0.0033 0.0305 0.0304 13
Complementary log-log X –0.0039 0.0305 0.0303 14

Oaxaca–Blinder
Linear probability –0.0229 0.0392 0.0319 32
Linear probability X –0.0233 0.0395 0.0319 34
Logit –0.0068 0.0330 0.0323 20
Logit X –0.0077 0.0332 0.0323 22
Probit –0.0102 0.0340 0.0325 27
Probit X –0.0110 0.0342 0.0324 28

Kernel-based
Kernel matching, uniform 0.0083 0.0408 0.0400 24
Kernel matching, Gaussian 0.0171 0.0442 0.0408 30
Kernel matching, Epan. 0.0063 0.0401 0.0397 18
Local linear regression –0.0049 0.3984 0.3988 15
Local logit 0.0101 0.0440 0.0429 26

Matching
On pscore, N = 1 0.0001 0.0403 0.0404 2
On pscore, N = 40 –0.0126 0.0409 0.0389 29
On pscore, N = 1, bias-adj. 0.0019 0.0380 0.0380 12
On pscore, N = 40, bias-adj. 0.0004 0.0376 0.0376 4
On covs, N = 1 0.0058 0.0379 0.0375 17
On covs, N = 40 –0.0236 0.0432 0.0362 35
On covs, N = 1, bias-adj. 0.0054 0.0381 0.0378 16
On covs, N = 40, bias-adj. 0.0000 0.0356 0.0356 1

Weighting
Unnormalised 0.0016 0.0393 0.0393 7
Unnormalised X –0.0018 0.0389 0.0389 9
Normalised 0.0019 0.0386 0.0386 11
Normalised X 0.0011 0.0383 0.0383 5
Efficient 0.0018 0.0386 0.0386 10
Efficient X 0.0013 0.0381 0.0381 6
Double robust 0.0017 0.0381 0.0381 8
Double robust X –0.0002 0.0375 0.0376 3

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.

32



Table B.10: Simulation Results for the Calibrated Placebo Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0037 0.0251 0.0248 25
Linear probability X 0.0056 0.0253 0.0246 32
Logit 0.0031 0.0264 0.0262 22
Logit X 0.0048 0.0265 0.0261 27
Probit 0.0053 0.0263 0.0258 28
Probit X 0.0068 0.0265 0.0257 33
Complementary log-log 0.0015 0.0246 0.0246 11
Complementary log-log X 0.0028 0.0245 0.0243 20

Oaxaca–Blinder
Linear probability 0.0023 0.0258 0.0257 16
Linear probability X 0.0048 0.0259 0.0255 26
Logit 0.0006 0.0261 0.0261 4
Logit X 0.0029 0.0259 0.0257 21
Probit 0.0031 0.0261 0.0259 23
Probit X 0.0054 0.0261 0.0256 29

Kernel-based
Kernel matching, uniform 0.0008 0.0275 0.0275 5
Kernel matching, Gaussian –0.0001 0.0289 0.0289 1
Kernel matching, Epan. 0.0001 0.0276 0.0276 2
Local linear regression 0.0023 0.1148 0.1148 17
Local logit 0.0056 0.0305 0.0300 30

Matching
On pscore, N = 1 –0.0056 0.0314 0.0309 31
On pscore, N = 40 –0.0033 0.0279 0.0277 24
On pscore, N = 1, bias-adj. –0.0019 0.0259 0.0259 13
On pscore, N = 40, bias-adj. –0.0099 0.0289 0.0271 34
On covs, N = 1 0.0027 0.0250 0.0248 19
On covs, N = 40 0.0021 0.0257 0.0256 14
On covs, N = 1, bias-adj. 0.0022 0.0251 0.0250 15
On covs, N = 40, bias-adj. –0.0143 0.0300 0.0264 35

Weighting
Unnormalised –0.0010 0.0268 0.0268 7
Unnormalised X –0.0025 0.0272 0.0270 18
Normalised –0.0011 0.0269 0.0269 9
Normalised X –0.0009 0.0268 0.0268 6
Efficient –0.0012 0.0270 0.0270 10
Efficient X –0.0001 0.0267 0.0267 3
Double robust –0.0011 0.0267 0.0267 8
Double robust X –0.0018 0.0268 0.0268 12

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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