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1. Introduction

Does the spatial structure of a city affect labor markets outcomes? How do job-seekers organize

their search activity along the space dimension? What are the implications of this activity

on equilibrium unemployment and efficiency? These questions have already been studied in

monocentric cities (see Zenou, 2009, for an overview) or in the case of uniformly distributed

agents and jobs around the circle (see Marimon and Zilibotti, 1999; Hamilton, Thisse, and Zenou,

2000; Decreuse, 2008). Cities with similar population sizes are often believed to be comparable.

Fig. 1 illustrates that this is however not true for major cities.1 Paris and Shanghai have around

7.5 millions of people, yet Shanghai is 3.5 times more crowded than Paris. London and Moscow

seem to have a more uniform population distribution compared to Jakarta, Berlin or New York

which are more populated in the center. In the U.S. Los Angeles Metropolitan Statistical Area

(MSA) has twice the population density of Chicago MSA. Moreover for the U.S. the monocentric

view seems old-dated: “America changed from a nation of distinct cities separated by farmland,

to a place where employment and population density is far more continuous” according to Glaeser

(2007).

The aim of the paper is to better understand disparities in unemployment rates in metropoli-

tan areas, in particular in the U.S. We consider a densely populated city with two business dis-

tricts and a possibly non-uniform distribution of workers located along a line connecting them.

Each business district is a distinct labor market characterized by search-matching frictions. An

endogenous number of firms choose to set up in either of these centers. The unemployed use

their time endowment to look for vacant jobs in the business districts. Constrained by high

relocation costs, workers maintain their residence even if their employment status changes.2

Employed workers commute to the job center where they have been recruited until the match

is exogenously destroyed.

In equilibrium, unemployed workers specialize their search in only one job center. The closer

a job-seeker resides to a job center, the lower are the commuting costs, so the higher is the total

surplus created if a firm located in this job center matches with this job-seeker. As we assume

individual Nash bargaining over the wage, commuting costs are shared between the employer

and the employee. Moreover, the vacancies open in a job center are generic in the sense of being
1Figure 1 presents a three dimensional perspective where the boundaries of a city are the result of overlaying

population density and built-up areas. For instance, London is limited to its 52 boroughs, Shanghai to “the
city proper” and Paris to the municipal area and “la petite couronne.” Jakarta is represented by the Jabotabek
area which is Jakarta municipality plus Tangerang, Bekasi, and Bogor. Moscow is limited to the area within its
municipal boundary.

2Rupert and Wasmer (2009) provide evidence about the reasons for moving within the county. In the U.S.,
65.4% of the intra-county residential mobility is house related and only a small 5.6% move within a county for job
related reasons (other motives being family or personal reasons). High relocation costs have also been assumed
by Raphael and Riker (1999), Brueckner and Zenou (2003), Zenou (2006, 2009a,c, 2013).
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accessible to any job-seeker wherever she lives. The expected profit made in a job center is higher

when those seeking a job there are concentrated in the neighborhood of this center. When an

additional individual joins the queue of job-seekers in a center, she ignores the consequences of

this decision on expected profits and hence on vacancy creation. So doing, decentralized agents

overlook an externality their search decision imposes on all job-seekers in the same center. If

agents chose where they search in an efficient way (i.e. so as to maximize net output), the so-

called Hosios condition would be sufficient to internalize standard search-matching externalities.

This condition which is familiar in the search-matching literature expresses that agents’ shares of

the total surplus created by a match equal respectively the elasticities of the matching function

with respect to the stocks of buyers (vacant jobs) and sellers (job-seekers) in the labor market.

However, as search decisions have no reason to be optimal, the decentralized economy is typically

not efficient and so the equilibrium unemployment rates are typically inefficient as well, even if

the Hosios condition is met.

A numerical analysis provides orders of magnitude of the impacts of changes in the shape of

the workforce distribution on unemployment rates and on efficiency. A first exercise considers a

uniformly distributed workforce of mass lower than one and a complementary mass of workers

located in the central business district (CBD). Simulations show that letting this mass rise

lowers the unemployment rate everywhere. According to the size of the mass of workers in the

CBD, the decentralized value of net output can be up to 2% lower then its efficient counterpart.

Next, we consider Los Angeles and Chicago MSAs. We calibrate the model in both MSAs

with census data for the year 2000. Then, we develop several counterfactual exercises either

interchanging the two workforce distributions or replacing the actual ones by some standard

parametric distributions. The counterfactual assumptions we consider can cause changes in

unemployment rates up to about half a percentage point and in net output up to 5% when the

workforce is more concentrated far from the job centers. These are non-negligible effects.

Because of our focus on duo-centric cities, this article is mainly related to Coulson, Laing,

and Wang (2001).3 They show that, in the presence of heterogeneous commuting ability, the

unemployment rate will be higher in the region with the highest vacancy costs. Although we

are also interested in unemployment disparities we depart from their approach in the following

ways. First, while in Coulson et al. (2001) workers are located only in the job centers, we

spatially distribute the workforce between the job centers (with commuting costs increasing with

distances). This assumption seems to us more in accordance with the stylized fact described in
3In addition to the already-mentioned monocentric city and circular models, Rupert and Wasmer (2012) have

recently developed a new framework under the isotropy assumption according to which space looks the same
wherever an agent is located.
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Glaeser (2007)’s quote above. Second, we conduct a welfare analysis. Third, we provide orders

of magnitude of the importance of the shape of the population distribution thanks to a numerical

analysis. Regarding the composition externality at the origin of our inefficiency result, we are

close to the mechanism put forward by Decreuse (2008) in another context with search-matching

frictions.

Fig. 1. Spatial distribution of population in 7 major metropolis, represented at the same scale
Source: Bertaud (2008)

The next section presents the model and the welfare analysis. Section 4 discusses two nu-

merical analyses. We first study the decentralized economy versus the social optimum and as a

second step we calibrate the model for Los Angeles and Chicago MSAs and conduct counterfac-

tual simulations. Section 6 concludes.
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2. The model

A decentralization of jobs from the Central Business District (CBD) to the suburbs has occurred

in many countries (see e.g. Gobillon, Selod, and Zenou, 2007). This motivated the duo-centric

structure in Coulson et al. (2001) among others. There, individuals and jobs are located in

either a central city or a suburb. Instead, as Brueckner and Zenou (2003), we consider two job

centers (indexed by j = {A,B}) in a densely populated area where people are distributed along

a straight line joining the two centers. The workforce is normalized to unity and homogeneous

in every sense but their location, denoted x. The workforce is distributed according to an

exogenous and continuous density function f : x ∈ [0, 1] 7→ f(x) ∈ R+
0 , with CDF F .

We build a dynamic two-good model (a consumption good and labor) in continuous time

and in steady state. There are two types of economic agents: workers and firms. Risk-neutral

and infinitely-lived agents discount the future at a common rate r. Each job center presents

a distinct labor market where an endogenous number of firms choose to set up. Firms open

job-center specific vacancies. Workers supply inelastically one unit of labor and firms produce

under perfect competition and constant returns to scale the consumption good (the numéraire).

Individuals are either unemployed or employed. Job-seekers share their time endowment between

looking for a job in A and in B. If employed, they can be occupied in either of the job centers

and commute at a unit cost τ > 0.4

The matching process is represented by a standard differentiable matching functionMj (Vj , Uj)

specific to each job center j ∈ {A,B}. This function yields the number of matches per unit of

time in j, Mj , as a function of the number of vacant jobs in job center j, Vj , and the number

of active job-seekers, Uj , in market j.5 As is widely accepted, we assume Mj to be increasing

and concave in both of its arguments, exhibiting Constant Returns to Scale. The rate at which

a vacancy is filled in j is:

Mj

Vj
= Mj

(
1, Uj
Vj

)
= Mj

(
1, 1
θj

)
= µj(θj), with µ′j(θj) < 0

where θj ≡ Vj
Uj

is named the labor market tightness in j. A more tight labor market makes

it more difficult to recruit workers due to a congestion effect. Similarly, the rate at which a

job-seeker finds a vacancy in j is:

Mj

Uj
= θjµj(θj) = ψj(θj), with ψ′j(θj) > 0

A more tight labor market increases the rate at which job-seekers find a job (the so-called thick
4More precisely, τ denotes the pecuniary and time cost per unit of distance commuted to the job center.
5It should be noticed that by assumption firms in any center j do not open vacancies that are only accessible

to job-seekers in a specific location x. This realistic assumption plays a major role in the model.
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market externality). As is standard, we assume the following Inada conditions:

lim
θj→0

[ψj(θj)] = lim
θj→+∞

[µj(θj)] = 0

lim
θj→+∞

[ψj(θj)] = lim
θj→0

[µj(θj)] = +∞

When a match is formed in job center j, yj units of output are produced.6 In the presence of

search-matching frictions, when a vacancy and a job-seeker have matched, a surplus is created.

For, if they separate, each partner has to start again a new search process. Let Υ(x) denote the

present-discounted value of the expected utility of an unemployed worker located in x. Wj(x)

has the same meaning for a worker employed in job center j. Let Πj(x) be the present-discounted

value of expected profit from job in j occupied by a worker located in x. These functions verify

the Bellman equations introduced below. Two standard assumptions are made in the matching

literature (see Mortensen and Pissarides, 1999, and Pissarides, 2000). First, there is free entry

of vacancies. Second, the (ex-post) surplus created by a matched is shared. Under free entry,

the (total) surplus of a match in j with a worker located in x, denoted Sj(x), is defined by:

Sj (x) = Πj (x) +Wj (x)−Υ (x) .

2.1. Wage formation

If as will be assumed later the surplus Sj (x) is positive for all x and j, each contact between a

worker and a vacancy leads to a contractual relationship and workers have no incentive to quit.

These features are taken into account when writing the various Bellman equations.

Jobs are destroyed at an exogenous rate δj also called the separation rate. In that case, both

parties search for a new suitable partner. Under free entry, the present-discounted expected

profit made on a vacant position is nil. So, Πj(x) verifies the following Bellman equation:

rΠj(x) = yj − wj(x)− δj Πj(x) (1)

Let zj(x) denote the worker’s commuting distance to her workplace:

zj(x) =
{
x for j = A

1− x for j = B.

The inter-temporal value of having a job, Wj(x), solves the following Bellman equation:

rWj(x) = wj(x)− τ zj(x)− δj [Wj(x)−Υ(x)] (2)
6We do not assume that commuting affects the productivity of workers. The average commuting time in the

U.S. is rather short according to Gobillon et al. (2007) and the latest American Community Survey by the U.S.
Census. If productivity was negatively affected by the time devoted to commuting (as suggested e.g. by van
Ommeren and i Puigarnau, 2011, for Germany), the model could be adapted by introducing a weakly decreasing
relationship between yj and the commuting distance x. The model developed below should then be adapted (in
particular Assumptions 1 and 2). However, the qualitative conclusions would remain unaffected.
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Using Eqs. (1) and (2), the surplus writes:

(r + δj) Sj (x) = yj − τ zj (x)− rΥ (x) (3)

Wages wj(x) are specific to each job center and depend on worker’s location. During the

negotiation, agents take tightness and Υ(x) as given. They are determined by a Nash bargaining

solution that satisfies:

wj (x) = arg max
w

[Wj (x)−Υ (x)]βj [Πj (x)]1−βj

where βj ∈ (0, 1) denotes the exogenous worker’s bargaining power. Then, the first-order con-

dition of this problem can be written as:

βj Πj(x) = (1− βj) [Wj (x)−Υ (x)] (4)

Hence, the surplus accruing to the worker (resp., the employer) verifies:

Wj (x)−Υ (x) = βj Sj(x) resp., Πj(x) = (1− βj) Sj(x) (5)

The wage equation is solved by plugging Eqs. (1) and (3) into Eq. (5):

wj (x) = βjyj + (1− βj) [τ zj (x) + rΥ(x)] (6)

2.2. The supply side

The unemployed only commute from time to time for an interview. Hence, they incur commuting

costs that we neglect.7 The inter-temporal value in unemployment Υ(x) solves the following

Bellman equation:

rΥ(x) = b+ max
{

0, max
ε(x)∈[0,1]

[
ε(x)ψA(θA)[WA(x)−Υ(x)]

+(1− ε(x))ψB(θB)[WB(x)−Υ(x)]
]}

(7)

where b is the instantaneous value in unemployment. Eq. (7) tells that an unemployed has first

to decide whether she searches for a job or not. If she does, as in Coulson et al. (2001), she

optimizes the use of her unit time endowment to search for work in A and B. The rate at which

a job offer is found in A (respectively, in B) is ε(x)ψA(θA) (respectively, (1 − ε(x))ψB(θB)).

These rates are multiplied by the job-center-specific gain of becoming employed, Wj(x)−Υ(x).
7Their main search activity is made from where they live or close to it via the reading of newspapers, surfing on

the web, visiting the nearest one-stop career center, sending out resumes, contacting friends and relatives and the
like (for descriptive evidence, see Kuhn and Mansour, 2011, for the U.S. and Longhi and Taylor, 2011, for Great
Britain). The assumption of absence of commuting cost can easily be relaxed to the case where the unemployed
commute a non negligible amount of time, but anyway less than employed individuals (see e.g. Zenou, 2009).
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Let the expected returns to search in location j for a worker located in x be defined by:

Σj(θj , x) = ψj(θj)
[
Wj(x)−Υ(x)

]
Using Eqs. (5) and (3), Σj(θj , x) can be expressed as:

Σj(θj , x) = βj ψj(θj)Sj (x) = βj ψj(θj)
yj − τ zj(x)− rΥ(x)

r + δj
(8)

Remembering Bellman Eq. (7), the optimal ε(x) = 1 if ΣA (θA, x) > ΣB (θB, x) (case (i)) and

conversely ε(x) = 0 if ΣA (θA, x) < ΣB (θB, x) (case (ii)). In addition, we need to consider the

possibility of no search at all (case (iii)). The analysis of these three cases will lead to the

following property:

Lemma 1. For any location x ∈ [0, 1],

∂ΣA

∂x
(θA, x) 6 0 6

∂ΣB

∂x
(θB, x) , (9)

with strict inequalities if the unemployed seek jobs, and

∂Σj

∂θj
> 0, j ∈ {A,B}.

Proof. Case (i)

If ΣA(θA, x) > ΣB(θB, x) and ΣA(θA, x) > 0, as ε(x) = 1, combining Eqs. (7) and (8) yields:

rΥ(x) = βA ψA(θA)(yA − τ x) + (r + δA)b
r + δA + βA ψA(θA)

which is decreasing in x conditional on tightness. Now, considering Eq. (8) in A leads to

ΣA (θA, x) = βA ψA(θA)SA(x) = βA ψA(θA) yA − τ x− b
r + δA + βA ψA(θA) (10)

which is decreasing in x (conditional on tightness) because the surplus of a match SA(x) is

decreasing. Then, substituting rΥ(x) into Eq. (8) evaluated in j = B yields:

ΣB (θB, x) = βB ψB(θB) (yB − τ(1− x)− b) (r + δA) + βAψA(θA)(yB − yA − τ)
(r + δB) (r + δA + βAψA(θA)) .

Therefore, in Case (i), we have the following property:

∂ΣA

∂x
(θA, x) < 0 < ∂ΣB

∂x
(θB, x) .

Case (ii)

If ΣB (θB, x) > ΣA (θA, x) and ΣB (θB, x) > 0, as ε(x) = 0, combining Eqs. (7) and (8)

yields:

rΥ (x) = βB ψB (θB) (yB − τ (1− x)) + (r + δB) b
r + δB + βB ψB (θB)

8



which is increasing in x conditional on tightness. Now, considering Eq. (8) in B leads to

ΣB (θB, x) = βB ψB(θB)SB(x) = βB ψB(θB) yB − τ (1− x)− b
r + δB + βB ψB(θB) (11)

which is increasing in x (conditional on tightness) because the surplus SB(x) is increasing. Then,

considering Eq. (8) also in A yields:

ΣA (θA, x) = βA ψA(θA) (yA − τx− b) (r + δB) + βBψB(θB)(yA − yB − 2τx− τ)
(r + δA) (r + δB + βBψB(θB)) .

Therefore, in Case (ii), we have the following property:

∂ΣA

∂x
(θA, x) < 0 < ∂ΣB

∂x
(θB, x) .

Case (iii)

If ΣA (θA, x) < 0 and ΣB (θB, x) < 0, then the unemployed workers do not search and

rΥ (x) = b, so (9) again applies.

Finally, from (10) (resp. 11), the partial derivative with respect to tightness can be written

as:
∂Σj

∂θj
= (1− ηj) (r + δj)
r + δj + βjψj (θj)

Σj

θj
> 0, j ∈ {A,B}

where ηj = ηj(θj) = − θjµ
′
j(θj)

µj(θj) ∈ (0, 1).

To guarantee that the surplus is positive for all x and j, we henceforth rule out Case (iii)

by fixing an upper-bound on τ :8

Assumption 1. τ < min{yA, yB} − b

Lemma 1 shows that conditional on the level of tightness in each center the expected return to

search in A (respectively, in B) shrinks (respectively, grows) as the distance to A rises (and hence

the one to B shrinks). These effects are entirely driven by the evolution of the surpluses, which

in turn vary as commuting costs do. Moreover, the relationships x 7→ Σj (θj , x) , j ∈ {A,B}, are

differentiable except at the threshold x̃ such that ΣA (θA, x̃) = ΣB (θB, x̃), if any.

Since by Assumption 1 all jobless individuals are searching for a job, Lemma 1 directly

implies the existence of a threshold location denoted x̃ that separates the pool of unemployed

in two groups defined by the center in which they are looking for an occupation.

Lemma 2. For any θA and θB, either
8Relaxing this assumption would somewhat complicate the model as there would be a reservation distance

above which surplus in A would become negative and hence matches in A would not be formed and there would
be a reservation distance below which matches in B would not be formed for the same reason. This would not
add much insight into our analysis.
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• there exists a unique x̃ ∈ [0, 1] such that

ΣA (θA, x̃) = ΣB (θB, x̃) (12)

• or ΣA (θA, 1) > ΣB (θB, 1) in which case all unemployed workers search in A

• or ΣA (θA, 0) < ΣB (θB, 0) in which case all unemployed workers search in B.

Henceforth, we concentrate on the case where x̃ ∈ [0, 1] verifies Eq. (12). Assumption 2

below will later guarantee such a configuration.

On the basis of these two lemmas, we can now return to wage formation by substituting

Υ(x) into (6). The wage-setting rule becomes:

wj (x) = βjyj + (1− βj) [b+ τ zj (x) + ψj (θj) βj Sj (x)] (13)

where Sj (x) = (yj−τ zj(x)−b)/(r+δj +βj ψj(θj)). In equilibrium, the relationship x 7→ wA(x)

exists below x̃ and x 7→ wB(x) above.

2.3. The labor demand side

We adopt a one-job-one-firm setting. Each vacancy can be either filled of vacant. As is standard

in the search-matching literature, opening a vacant job costs kj per unit of time. Under free-

entry of vacancies, firms open vacancies in j until the expected cost of hiring a worker equals the

expected profit made on a filled position. In job centers A and B, this condition is respectively:

kA
µA(θA) =

∫ x̃

0
max{ΠA(x), 0} f(x)

F (x̃)dx,
kB

µB(θB) =
∫ 1

x̃
max{ΠB(x), 0} f(x)

1− F (x̃)dx (14)

The LHS of Eqs. (14) is the expected cost of opening a vacancy respectively in A and B. The

RHS measures the expected profit from a new job respectively in A and B, conditional on having

met an applicant (i.e. an unemployed in respectively [0, x̃] and [x̃, 1]). By assumption 1 and the

surplus sharing rule (5), Πj(x) is always positive (j ∈ {A,B}). Let

ΓA (x̃) =
∫ x̃

0
x
f (x)
F (x̃) dx and ΓB (x̃) =

∫ 1

x̃
(1− x) f (x)

1− F (x̃) dx (15)

denote the conditional expected commuting distance respectively to job centers A and B. For

any density f(x), these functions verify the following properties:

0 6 ΓA (x̃) 6 x̃ and Γ′A (x̃) = f(x̃)
F (x̃) (x̃− ΓA (x̃)) > 0 (16)

0 6 ΓB (x̃) 6 1− x̃ and Γ′B (x̃) = − f(x̃)
1− F (x̃) (1− x̃− ΓB (x̃)) 6 0 (17)

10



Using Eqs. (5), (1) and the expressions for Sj(x) found in (10) and (11), the free entry

conditions (14) become:

kj
µj(θj)

= (1− βj)
yj − τ Γj (x̃)− b
r + δj + βj ψj (θj)

, j ∈ {A,B}

where conditional on x̃, tightness in job center j is only affected by parameters specific to this

center. After some rearrangement and recalling that ψj(θj) = θjµj(θj), the free-entry condition

can be rewritten in the following way:

r + δj
1− βj

θj
ψj (θj)

+ βj
1− βj

θj = yj − τ Γj (x̃)− b
kj

, j ∈ {A,B} (18)

Lemma 3. For any value of the threshold x̃, under Assumption 1, the equilibrium value of

tightness is unique. In j = A (respectively, j = B), tightness decreases (respectively, increases)

with the threshold x̃.

Proof. Under the matching functions’ Inada conditions, the LHS of Eq. (18) is increasing in θj
from 0 to +∞. By Assumption 1, the RHS is positive for all value of x̃. Hence, for any x̃ ∈ [0, 1]

and any j ∈ {A,B}, Eq. (18) implicitly defines a unique level of tightness θj = Θj (x̃) with

Θ′A (x̃) < 0 and Θ′B (x̃) > 0.

A rise in x̃ raises the conditional commuting distance to job center A and hence reduces the

expected surplus of a match. This induces a decline in the number of vacant jobs created per

job-seeker in A. A similar phenomenon applies in B with the opposite implication on tightness.

A composition effect is at work. When a firm decides whether to open a vacancy, it compares

the expected cost to the expected profit made when the position is filled. Since vacant jobs

are specific to the job center but accessible to individuals located anywhere, and as workers’

commuting costs are partly reimbursed by the employer,9 this expected profit shrinks when job-

seekers living further away enter the queue of unemployed in the job center. In other contexts,

similar composition effects have been emphasized by e.g. Decreuse (2008) and Albrecht, Navarro,

and Vroman (2010).

2.4. The equilibrium

The steady-state equilibrium can be defined recursively. First, we need to characterize the

3-tuple
{
θ̃A, θ̃B, x̃

}
. Second, the size of the population in unemployment and the number of

vacancies are then determined.

Definition 1. An equilibrium is 3-tuple
{
θ̃A, θ̃B, x̃

}
that verifies the free-entry condition (18)

on each labor market and search indifference condition (12).
9This compensation, which is well documented in the empirical literature (see Zenou, 2009, for an overview),

is an immediate consequence of Eq. (5).
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Existence and Uniqueness.

Let us define

Sj (x) = Σj (Θj (x) , x) ,

that is the expected return to search in j for someone located at any value of the threshold x,

once the effect of commuting distance on tightness is taken into account. Figure 2 illustrates

Lemma 4 and Proposition 1 introduced below.

Lemma 4. The expected return to search in market A decreases with the value of the threshold

x. The opposite is true in B.

Proof. From Lemmas 1 and 3,

∂Sj (x)
∂x

= ∂Σj (Θj (x) , x)
∂θj

∂Θj (x)
∂x

+ ∂Σj (Θj (x) , x)
∂x

< 0 if j = A,> 0 if j = B.

Taking the effect of the threshold on the level of tightness under free entry, Eq. (12) can

then be rewritten as

SA (x̃) = SB (x̃) (19)

which admits at most one solution. Hence, if an equilibrium exists, it is unique. To ensure

existence, one needs

SA (0) > SB (0) and SA (1) < SB (1) . (20)
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Fig. 2. The equilibrium
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Let us define ψ
A

= ψA (ΘA (1)) the exit rate to a job in CBD A when everybody on the

segment [0, 1] seeks a job there since x̃ = 1. At the other extreme, we denote ψA = ψA (ΘA (0)).

Obviously, we have 0 < ψ
A
< ψA. Similarly in B, let ψ

B
= ψB (ΘB (0)), ψB = ψB (ΘB (1)),

with 0 < ψ
B
< ψB. From the definition of S (.) and (8), Inequalities (20) are equivalent to the

following assumption:

Assumption 2. Parameter τ is such that:

τ > max
{
yA − b−

νB
νA

(yB − b), yB − b−
νA
νB

(yA − b)
}

where we define

νA = βAψA
r + δA + βA ψA

, νB = βBψB
r + δB + βB ψA

, νA =
βAψA

r + δA + βA ψA
, νB =

βBψB
r + δB + βB ψB

.

Assumption 2 puts a lower bound on the commuting cost τ . Intuitively, if τ is too low and

SA (1) > SB (1) (resp. SB (0) > SA (0)), even workers located very close to B (resp. A) are

better of searching a job in A (B). Search costs should then be high enough to prevent that a

single labor market exists. It can be checked that Assumptions 1 and 2 can be incompatible if

the two marginal products yA and yB are too different.10 In sum, a direct consequence of the

two previous lemmas, we conclude:

Proposition 1. An equilibrium exists and is unique under Assumptions 1 and 2.

Knowing the steady-state equilibrium
{
θ̃A, θ̃B, x̃

}
, the wage in any location x on the left of

x̃ is obtained by plugging θ̃A in Eq. (13) (resp. θ̃B on the right of x̃.)

The equilibrium population sizes in each state and the number of vacancies are also easily

computed. Let

Gj(x) =
{
F (x) for j = A

1− F (x) for j = B.

In job center j, the steady-state equilibrium numbers of unemployed Ũj , of employed L̃j , and of

vacancies are given by:

Ũj = δjGj(x̃)
δj + ψj(θ̃j)

, L̃j = Gj(x̃)− Ũj and Ṽj = θ̃j Ũj (21)

The equilibrium density of employed (respectively, unemployed) in any location x is:

LA(x̃) =
ψA
(
θ̃A
)
f(x)

δA + ψA
(
θ̃A
) , (

resp., UA(x̃) = δAf(x)
δA + ψA(θ̃A)

)
for x 6 x̃ (22)

LA(x̃) = 0, (resp., UA(x̃) = 0) for x > x̃

10For instance, one can imagine that yA is so low compared to yB , so that: 0 < yA− b < yB − b− νA
νB

(yA− b) <
yB − b. In this example, if the marginal commuting cost τ verifies Assumption 1 (i.e. is lower than yA − b), it
can obviously not be compatible with Assumption 2 at the same time. In this example, SA (0) < SB (0), which
amounts to saying that job-center A ceases to exist due to a lack of productivity compared to B. Henceforth, we
neglect such uninteresting cases where the two-center model collapses to a one-business-district setting.
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LB(x̃) =
ψB

(
θ̃B
)
f(x)

δB + ψB
(
θ̃B
) , (

resp., UB(x̃) = δBf(x)
δB + ψB(θ̃B)

)
for x > x̃ (23)

LB(x̃) = 0, (resp., UB(x̃) = 0) for x 6 x̃

In segment (0, x̃) (respectively,(x̃, 1)), the equilibrium unemployment rate is:

δA

δA + ψA(θ̃A)
,

(
resp., δB

δB + ψB(θ̃B)

)
. (24)

2.5. Comparative static analysis

Conditional on x̃, the comparative statics of the model is fully standard (see e.g. Pissarides,

2000). By looking at the free-entry conditions (18), it is easily seen that for a given value of

the threshold firms post less vacancies and hence equilibrium tightness falls in any job center

after a marginal rise in the cost of opening a vacancy, the job destruction rate or the workers’

bargaining power in this center. The same holds if the instantaneous value in unemployment or

the discount rate rises. Moreover, a rise in the marginal product yj increases θj .

Turning to the comparative statics on the threshold x̃, Appendix A shows that the partial

effect of a rise in kj , δj , b or r or a decline in yj on the expected return of search in j, Σj (θj , x),

reinforces the above-mentioned effect through equilibrium tightness (see the summary in Table

6 of this appendix). This is however not true for the bargaining power βj , for reasons explained

later on. Fig. 3 illustrates the total effect of parameter changes on the Σj (Θj(x), x) (i.e. Sj(x))

schedules for any value of the threshold x when this effect has a clear sign.
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Fig. 3. Comparative statics

In Fig. 3, when a rise in kA or in δA (or a decline in yA) shifts the whole curve ΣA (ΘA (x) , x)
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downwards without affecting the same curve in B, the equilibrium threshold declines (see x̃′).

The equilibrium value of θB then declines because Θ′B(x̃) > 0 and the ΘB(x) schedule is not

directly affected by changes in any of the parameters kA, δA or yA. On the contrary, the total

effect on equilibrium tightness in A is ambiguous for the direct effect of a rise in kA or in δA (or

a decline in yA) on tightness and the effect through the threshold x̃ go in opposite directions

(see Appendix A.3 for more explanations). The case where kB or δB rises (or yB declines)

is symmetric. It induces a rise in the equilibrium threshold value (see x̃′′ on Fig. 3). The

equilibrium value of θA then declines because Θ′A(x̃) < 0 and the ΘA(x) schedule is not directly

affected by changes in any of the parameters kB, δB or yB. Furthermore, opposite forces lead as

above to an ambiguous impact on equilibrium tightness in B.

We obtain ambiguous marginal impacts of the instantaneous value in unemployment and of

the interest rate on the equilibrium threshold value since both Σj (Θj(x), x) curves shift in the

same direction (namely downwards in Fig. 3). Then, the total effects on equilibrium tightness

levels are obviously ambiguous as well. The impacts of a change in the bargaining power depend

on the magnitude of this power. Rising the bargaining power in center j has a positive partial

effect on Σj (θj , x) but, as we have seen at the beginning of this subsection, it also has a negative

direct effect on tightness θj for any x and hence a negative effect on the expectation Σj . Appendix

A shows that a rise in any bargaining power βj does not affect the Σj (Θ(x), x) curve when the

Hosios condition (i.e. βj = ηj defined as −θjµ′j (θj) /µj (θj)11) is verified. In this particular

case, the positive partial effect and the negative induced effect through tightness cancel out.

Therefore, the threshold x̃ remains unaffected.12 Under the Hosios condition, a rise in workers’

bargaining power in center j has therefore only a direct negative effect on equilibrium tightness

in the same center along (18) (and no effect in the other one). If now the workers’ bargaining

powers are both “too high” (i.e. βj > ηj , j ∈ {A,B}), a rise in βA lowers x̃ and a rise in βB

increases x̃. This occurs because the negative direct effect of a rise in βj on tightness outweighs

the positive partial effect on the expected return of search Σj(Θj(x̃), x̃). So, the latter curve

shifts downwards. The opposite effects are observed when the workers’ bargaining powers are

both “too low”. The total impact of rise in the workers’ bargaining power can sometimes be

signed if the Hosios condition does not apply. See Table 1.
11ηj is also the elasticity of the matching function with respect to the stock of unemployment.
12Pissarides (2000) shows a related result in a setting without explicit spatial heterogeneity but endogenous

participation decisions. The participation rate reaches a maximum when the Hosios condition is met. Then, a
marginal rise in the workers’ bargaining power does not modify participation decisions.

15



Table 1
Comparative statics: The case of workers’ bargaining powers βj

ηA > βA ηA < βA ηB > βB ηB < βB

dx̃/dβA > 0 < 0 dx̃/dβB 6 0 > 0
dθA/dβA < 0 ? dθA/dβB > 0 < 0
dθB/dβA > 0 < 0 dθB/dβB < 0 ?

3. The social optimum and its decentralization

The social planner chooses the market tightness levels and the allocation of workers in j ∈ {A,B}

subject to the available matching technology. As is often the case in this literature, we limit the

analysis to the case where r 7→ 0.13 Then, the social welfare function maximizes aggregate net

output in steady state (ignoring the transitional dynamics). Aggregate net output, Ω, is defined

as output produced net of commuting costs plus the value of time in unemployment minus the

cost of creating vacant jobs. Using (15) and (21), Ω can be written as:

Ω (θA, θB, x) =
∑

j∈{A,B}
(yj − τΓj(x)) ψj(θj)Gj(x)

δj + ψj(θj)
+ b

δjGj(x)
δj + ψj(θj)

− kj Vj (25)

= b +
∑

j∈{A,B}
Gj (x) Wj (θj , x) (26)

where

Wj (θj , x) = ψj (θj)
δj + ψj (θj)

(yj − τ Γj (x)− b)− θj δj
δj + ψj (θj)

kj , (27)

designates the net aggregate surplus created in job center j. We proceed in two steps. First,

for each level of x, we determine the optimal values of tightness, θ∗A(x) and θ∗B(x), in each job

center. Second, we choose x to maximize b+
∑
j∈{A,B}Gj (x) Wj

(
θ∗j (x), x

)
The first-order condition with respect to θj is:

δj
1− ηj(θ∗j (x))

θ∗j (x)
ψj(θ∗j (x)) +

ηj(θ∗j (x))
1− ηj(θ∗j (x))θ

∗
j (x) = yj − τ Γj (x)− b

kj
(28)

In the standard matching literature, if the worker’s bargaining power βj happens to be

equal to the above-defined elasticity ηj , the surplus sharing rule (5) internalizes search-matching

externalities. This equality is the already mentioned Hosios condition (see Hosios, 1990, and
13As explained e.g. by Cahuc and Zylberberg (2004) in the case of the basic matching model, the social planner

problem can be studied in two ways. First, in the more general approach, the planner solves a dynamic optimal
control problem subject to the law of motion of the unemployment rate. The second approach sets aside the
problem of dynamic optimization by looking directly at the maximization of net output in a steady state subject
to the equation characterizing the steady-state unemployment rate. Both approaches lead to the same equation
characterizing optimal tightness in steady state when r 7→ 0. In our setting, optimal control techniques cannot
be applied since we would have a continuum of law of motions (namely, one in each location x). So, we adopt the
second approach and assume r 7→ 0.
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Pissarides, 1990). Put differently, the decentralized economy is efficient (i.e. maximizes net

output) despite the presence of these externalities. In the present setting, the next lemma shows

that the Hosios condition is necessary and the following discussion will show that this condition

is typically not sufficient.

Lemma 5. The Hosios condition βj = ηj(θ∗j (x∗)), ∀j ∈ {A,B}, is necessary to decentralize the

optimal level of tightness, i.e. to guarantee that θ̃j = θ∗j .

Proof. The right-hand sides of Eqs. (18) and (28) are identical provided that x̃ = x∗ and

the Hosios condition holds. This threshold being given, they are moreover not a function of

tightness. So, let these right-hand sides be equal and take any positive value. Then, the unique

decentralized level of tightness θ̃j and the unique optimal one θ∗j can only be equal if the left-

hand sides of Eqs. (18) and (28) are identical when r 7→ 0. This equality however can only hold

if the Hosios condition is met. So, this condition is needed to decentralize the optimal level of

tightness.

The intuition for the partial optimality result of the Hosios condition is straightforward (See

also Decreuse, 2008). When the decision of where to search x is fixed, the average commuting

cost Γj(x) in each job center is fixed. The problem of determining the optimal tightness in each

market takes the same form as in the basic matching model, with an additional cost that is

exogenous. Therefore, as in the basic matching model, the Hosios condition ensures that the

decentralized equilibrium generates the social optimal allocation. In the present setting however,

the Hosios condition is only necessary and sufficient if the decentralized value of the threshold

x̃ is the efficient one x∗. Otherwise, the right-hand-sides of (28) and of (18) are different.

Consequently, we may have θ̃j 6= θ∗j despite the Hosios condition is met.

We now turn to the optimality condition with respect to x. To this end, we get using (28):

kj = (yj − τ Γj (x)− b)
(1− ηj(θ∗j (x))) µj

(
θ∗j (x)

)
δj + ηj(θ∗j (x)) ψj

(
θ∗j (x)

)
so, from Eq. (25)

Wj

(
θ∗j (x), x

)
= (yj − τ Γj (x)− b)

ηj(θ∗j (x)) ψj
(
θ∗j (x)

)
δj + ηj(θ∗j (x)) ψj

(
θ∗j (x)

) (29)

Remembering (7) and (10), this way of expressing Wj makes clear that under the Hosios condi-

tion, βj = ηj
(
θ∗j (x)

)
, the product Gj(x)

(
b+Wj

(
θ∗j (x), x

))
is the expected discounted utility

of an unemployed searching in j. The optimal x therefore maximizes the expected utility of an
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unemployed,14 namely:

Ω (θ∗A(x), θ∗B(x), x) = b +
∫ x

0
(yA − τ ζ − b)

ηA (θ∗A(x)) ψA (θ∗A(x))
δA + ηA (θ∗A(x)) ψA (θ∗A(x)) f(ζ) dζ

+
∫ 1

x
(yB − τ (1− ζ)− b) ηB (θ∗B(x)) ψB (θ∗B(x))

δB + ηB (θ∗B(x)) ψB (θ∗B(x)) f(ζ) dζ

Let us define

Ej(θ) = δj

(δj + ηj(θ) ψj(θ))2
∂(η(θ) ψ(θ))

∂θ

∂θj
∂Γj

∣∣∣∣∣
Eq. (28)

< 0 (30)

the marginal change of ηj(θ∗j (x)) ψj(θ∗j (x))
δj+ηj(θ∗j (x)) ψj(θ∗j (x)) when Γj increases by one unit along Eq. (28). This

term is negative as a rise in average transportation cost Γ decreases tightness. The first-order

condition with respect to x writes:

(yA − τx− b)
ηA (θ∗A(x)) ψA (θ∗A(x))

δA + ηA (θ∗A(x)) ψA (θ∗A(x)) + F (x)
f(x) Γ′A(x) IA (x, θ∗A(x)) (31)

= (yB − τ(1− x)− b) ηB (θ∗B(x)) ψB (θ∗B(x))
δB + ηB (θ∗B(x)) ψB (θ∗B(x)) −

1− F (x)
f(x) Γ′B(x) IB (x, θ∗B(x))

in which Ij

(
x, θ∗j (x)

)
= (yj − τΓj(x)− b) Ej

(
θ∗j (x)

)
. Under the Hosios condition, the first

terms on both sides of Eq. (31) equal Σj

(
θ∗j (x), x

)
. Remembering the value of the derivatives

Γ′j(x) in (16) and (17), the first-order condition (31) can be rewritten as:

ΣA (θ∗A(x), x)+(x− ΓA(x)) IA (x, θ∗A(x)) = ΣB (θ∗B(x), x)+(1− x− ΓB(x)) IB (x, θ∗B(x)) (32)

Let us define Ij(x) = (zj(x)− Γj(x)) Ij

(
x, θ∗j (x)

)
j ∈ {A,B}.

Under the Hosios condition βj = ηj (θj(x∗)), the optimal threshold x∗ then verifies:

ΣA(θ∗A(x∗), x∗) + IA(x∗) = ΣB(θ∗B(x∗), x∗) + IB(x∗) (33)

Each expression Ij(x∗), henceforth Ij for short, has no reason to be nil unless ηj 7→ 0,15 which is

a degenerate case where the number of vacancies has no influence the number of hirings. If IA
and IB happen to be equal, the Hosios condition is sufficient to guarantee the equality between

the decentralized and the optimal triple (θA, θB, x). This would be the case if the two job centers

were identical and the distribution of the population was uniform on [0, 1]. In general, IA and IB
have however no reason to be equal and hence the Hosios condition is not sufficient to guarantee

that the steady-state equilibrium is efficient.

The negative effects Ij omitted by decentralized agents have a clear interpretation. In the

decentralized economy, the threshold location verifies Eq. (19), which expresses that the private
14As r 7→ 0, this is also the expected utility of a member of the labor force.
15When η 7→ 0 the term ∂(η(θ)ψ(θ))

∂θ
7→ 0 (see (30)), hence Ej(θ) 7→ 0 and Ij (x, θj(x)) 7→ 0.
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marginal gains Σj (Θj(x), x) of searching in A and in B are equal in equilibrium. This indif-

ference condition (19) overlooks that a change in the threshold affects the conditional expected

commuting distance, Γj , of all workers and thereby the expected surplus accruing to employ-

ers. This in turn modifies the number of vacancies created in both job centers under free entry

and eventually the levels of tightness. Finally, this induced change in both levels of tightness

has an impact on the expected utility of all job-seekers. This externality is different from the

standard search-matching externalities that are internalized under the Hosios condition. At the

root of this additional externality, one finds the composition effect introduced in Subsection 2.3.

Since vacant jobs are specific to the job center but accessible to individuals located anywhere

and as workers’ commuting costs are shared through the wage bargain, the expected profit of

opening a vacancy shrinks when job-seekers further away enter the queue of unemployed seeking

an occupation in the job center. We henceforth talk about the composition externality. This

externality is made of two opposite effects IA < 0 and IB < 0. If IA < IB, Eq. (33) implies

that at a social optimum, the return to search of the pivotal job-seeker (i.e. someone located in

x∗) is higher in job center A than in B: ΣA(θ∗A(x∗), x∗) > ΣB(θ∗B(x∗), x∗). Therefore, the social

optimum needs to instruct some job seekers to search in market B rather than in A. In other

words, in the decentralized economy too many job-seekers are searching for a job in business

district A.

With a Cobb-Douglas matching function on each labor market, a popular functional form

used in the numerical analysis below, ηj(.) becomes a parameter. Then, differentiating Eq. (28)

gives:
∂θj
∂Γj

∣∣∣∣∣
Eq. (28)

= − τ

kj

1− ηj
ηj

ψj(θj)
δj + ψj(θj)

Using Eq. (28):

(yj − τΓj(x)− b)) ∂θj
∂Γj

∣∣∣∣∣
Eq. (28)

= −τ θj
ηj

δj + ηj ψj(θj)
δj + ψj(θj)

Hence, by (30), Ij(x, θ∗j (x)) can be rewritten as:

−τ
(1− ηj)δjψj(θ∗j (x))(

δj + ηjψj(θ∗j (x))
) (
δj + ψj(θ∗j (x))

) = −τ
[

ψj(θ∗j (x))
δj + ψj(θ∗j (x)) −

ηjψj(θ∗j (x))
δj + ηjψj(θ∗j (x))

]
.

So,

Ij(x) = −τ (zj(x)− Γj(x))
[

ψj(θ∗j (x))
δj + ψj(θ∗j (x)) −

ηj ψj(θ∗j (x))
δj + ηj ψj(θ∗j (x))

]
< 0. (34)

The Ij terms capture the effects of the composition externality. Recalling Eq. (31), Ij does

not only depend on how sensitive the conditional expected commuting distance Γj(x) is to the

value of the threshold x, but also on the mass of individuals F (x) (respectively, 1 − F (x)).
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Given (16) and (17), Ij is also the product of the positive difference between the marginal com-

muting cost τ zj(x) and the (conditional) average one τ Γj(x) and a second positive difference,[
ψj(θ∗j (x))

δj+ψj(θ∗j (x)) −
ηj ψj(θ∗j (x))

δj+ηj ψj(θ∗j (x))

]
, which depends on tightness θ∗j (x) only. The latter difference is

increasing in tightness if and only if √ηjψj(θ∗j (x)) < δj ,16 which corresponds to an unemploy-

ment rate lower than
√
ηj

1+√ηj . For ηj = 0.1, this corresponds to an unemployment rate of 24%,

while for ηj = 0.9, it corresponds to an unemployment rate of 48%. Therefore, as most empir-

ical analyses find a value of η ∈ [0.4, 0.7], we can take for granted that the latter difference is

increasing in tightness.

This section can be summarized as follows:

Proposition 2. The Hosios condition is necessary but typically not sufficient to guarantee that

the decentralized equilibrium is efficient. The decentralized threshold x̃ can be lower or above the

efficient one x∗ depending on the relative importance of the composition externalities in the two

job centers on the expected utility of job-seekers searching in A and in B.

As explained above, a typical counter-example, where the Hosios condition is sufficient, is

the case where the two centers are symmetric and the population is uniformly distributed.

4. Numerical analyses

These analyses aim at illustrating how the shape of distribution of the workforce influences the

decentralized allocation, in particular in terms of equilibrium (un)employment levels. They also

intend to provide orders of magnitude about the gap between the efficient and the decentralized

allocations. The first numerical analysis compares the decentralized equilibrium and the optimal

allocation for a uniform distribution combined with a parametrized mass of workers. Second,

we look at two U.S. Metropolitan Statistical Areas (MSA), Los Angeles and Chicago, and after

calibrating the model for two major job centers of these MSAs we develop a counterfactual

analysis with respect to the distribution of the workforce.

This section assumes the following Cobb Douglas matching functions:

Mj = mjV
1−ηj
j U

ηj
j j ∈ {A,B},

where mj is the matching function scale parameter. The job finding rate and the rate of filling

a vacancy respectively are:

ψj (θj) = mjθ
1−ηj
j (35)

µj (θj) = mjθ
−ηj
j (36)

16The derivative of ψ
δ+ψ −

η ψ
δ+η ψ with respect to ψ is δ

(δ+ψ)2 − η δ

(δ+η ψ)2 . This term is positive whenever
(δ + η ψ)2 > η (δ + ψ)2 or √ηψ < δ.
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4.1. A numerical illustration

In the first exercise we take symmetric job centers and we set the discount rate to zero. In both

business districts, productivity yj is normalized to 1, the value of leisure is normalized to b = 0.4

(Shimer, 2005), the quarterly separation rate in 200017 is δA = δB = 0.03 (Shimer, 2012) and we

set mA = mB = 1. The vacancy costs kj are set to match an unemployment rate of 4% in the

U.S. in 2000. Finally, we take τ = 0.4 (Zenou, 2009b, p. 40). The Hosios condition is assumed

by imposing βj = ηj = 0.5. The labor force is distributed according to a uniform distribution

whose total mass is 1 − αA and a mass point of αA ∈ [0, 1) is located at x = 0. So, the CDF

is F (x) = αA + (1 − αA)x, implying that as αA tends to 1, the population becomes more and

more concentrated at x = 0. The model is calibrated for αA = 0. The average commuting costs

towards job centers A and B for x ∈ (0, 1) respectively are,

ΓA(x) =
(1− αA)x2

2
αA + (1− αA)x, with ∂ΓA(x)

∂αA
< 0, and ΓB(x) = 1− x

2 .

The simulation results in Fig. 4 depicts how the allocation at the decentralized equilibrium

(blue solid curves) and the optimal one (red dashed curves) are modified when αA increases

from 0 to 1. The two allocations coincide when αA = 0 as the two job centers are symmetric

and the workforce is uniformly distributed. Then, we know from the previous section that the

Hosios condition guarantees efficiency. When the mass point αA increases, vacant jobs in A

have a larger probability of meeting job-seekers close to them. So, for any threshold value x the

conditional expected commuting distance ΓA(x) decreases. Therefore, the schedule ΘA(x) shifts

upwards when αA rises and so does the expected returns to search in A, SA(x) or equivalently

ΣA (ΘA(x), x). On the contrary, the schedule ΘB(x) and hence ΣB (ΘB(x), x) are unaffected by

αA. From (19) and Fig. 3, x̃ has to rise with αA. The bottom left panel of Fig. 4 quantifies

this effect. On the contrary, notice that the optimal threshold x∗ slightly declines with α.

To see why, we need to understand how changes in αA modify the Ij terms (34) in both job

centers. Notice first that because the schedule ΓA(x) shifts downwards when αA increases, the

difference between the marginal and the average commuting distance to job center A, x−ΓA(x),

increases whatever the value of x, while the corresponding term in B is not a function of αA.

Furthermore, the last term defining Ij shifts upwards for any x when α increases (because the

schedule ΘA(x) shifts upwards) while, again the corresponding term in B remains unaffected.

For these two reasons, as αA rises, the schedule IA(x) shifts downwards while nothing changes

in B. So, compared to the decentralized equilibrium, the efficient threshold will be lower (more

job-seekers should search in B instead of A). This does not however explain why the efficient
17 This data was constructed by Robert Shimer. For additional details, see Shimer (2007) and his webpage

http://sites.google.com/site/robertshimer/research/flows.
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x∗ shrinks with αA. Two opposite movements affect the left-hand side of (33): the one we have

just explained and the upward shift of the schedule ΣA (ΘA(x), x) discussed earlier. From the

profile of x∗ in the bottom left panel of Fig. 4, we deduct that the former slightly outweighs the

latter.

As far as the decentralized equilibrium value of θ̃A is concerned, two forces are here also at

work. First, when αA rises, for the reason explained earlier, the ΘA(x) schedule shifts upwards,

inducing a rise in θ̃A for any threshold x. However, the decentralized x̃ increases as well. This in

turn induces a decline in the decentralized value θ̃A since Θ′A(x̃) < 0. Fig. 4 shows that the former

effect dominates. Because the efficient x∗ shrinks with αA, the schedule αA 7→ θ∗A dominates the

corresponding one in the decentralized equilibrium.18 In job center B, only one mechanism is

at work since the conditional expected commuting distance to B, ΓB(x), is not affected by αA.

As x̃ rises with αA, ΓB(x̃) declines and hence the decentralized value θ̃B increases as well. For

the same reason, the efficient value θ∗B somewhat declines because x∗ slightly declines with αA.

Both the decentralized and the efficient levels of total employment increase, changes in A being

naturally dominant when the population gets concentrated around this job center. Similarly,

the aggregate unemployment level decreases with αA, from 4% when αA = 0 to 3.65% when

αA = 1. The largest difference between the decentralized and the efficient unemployment rates

amounts to 0.031 percentage points when αA = 0.69.

Finally, the gap in social welfare between the efficient and the decentralized economy has an

inversed U-shaped profile and is nil at the two extreme values of αA. At the lower bound, this

is obvious under the Hosios condition. When αA tends to 1, as explained above, θ̃A tends to the

efficient value, commuting costs tend to disappear and the model converges towards the standard

Mortensen-Pissarides setting without explicit geographical dispersion. For intermediate values

of αA, we know that the gap in social welfare level is positive. On Fig. 4, the largest relative

welfare loss of 1.93% is observed at αA = 0.69.

4.2. Los Angeles and Chicago MSAs

4.2.1. The data

In the second part of the numerical exercise we calibrate our model with data on MSAs in the

U.S. The leading MSAs, ranked by population, are also those with the highest mean travel time

to work i.e. New York (34 minutes), Los Angeles (29 minutes) and Chicago (31 minutes) (see

McGuckin and Srinivasan, 2003; Rapino, McKenzie, and Marlay, 2011). We calibrate the model

using data from the U.S. 2000 census.
18When αA tends to 1, ΓA(x) tends to zero whatever the value of x. So, wherever the marginal worker is

located, the decentralized and the efficient θA’s must converge to each other.
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Fig. 4. Decentralized versus Optimal allocation
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We have access to data of the total workforce, the number of employed, unemployed and

commuters at the zip code and county levels on the basis of the location of residence. Average

wages and the number of employees are available only at the county level on the basis of the

location of the job. We collect information for Los Angeles and Chicago MSAs,19 which we

respectively take as representative of “new” and “old” cities.20

(a) California
(b) Illinois

Fig. 5. Paid employees by county, 2000
(Thousands per sq mi)

Source: U.S. Census Bureau, Department of commerce.

We assume there is one job center per county and determine its size by the number of paid

employees per square mile.21 Fig. 5 depicts the states of California and Illinois by county and

each county’s size is measured by the height on the map. According to the U.S. 2000 census

definition, Los Angeles MSA sprawls over the counties of Los Angeles, Orange, Riverside and

San Bernardino, that are colored on Fig. 5a. Two job centers exceed the others in size: Los

Angeles county (in red) and Orange county (in yellow) respectively account for 63% and 23% of

the total paid employees in Los Angeles MSA. Chicago MSA is made of a number of counties

that are colored on Fig. 5b.22 The largest job centers in Chicago MSA, see Fig. 5b, are in Cook

county (in red) with a share of 60% and DuPage county (in yellow) with 14% of paid employees.
19New York MSA’s configuration is out of the scope of this model since it presents four important job centers

on a row: New York, Queens, Nassau and Suffolk counties. San Francisco MSA is a multicentric MSA and hence
out of the scope of our model.

20Old cities used to be the ten most populated in 1900, i.e. New York, Chicago, Philadelphia, Detroit, Boston
and San Francisco. In contrast, new cities like Los Angeles, Atlanta, Houston, Dallas, Miami and Nassau-Suffolk
had much smaller populations during that century.

21Data available only at the county level. Source: U.S. Census Bureau, Department of Commerce, 2000 and
the National Association of Counties.

22Chicago MSA spreads over the states of Illinois, Indiana (Lake and Porter counties) and Wisconsin (Kenosha
county). The counties included from the state of Illinois are: Cook, DeKalb, DuPage, Grundy, Kane, Kendall,
Lake, McHenry, Will and Kankakee. Metropolitan areas defined by the Office of Management and Budget, June
30th, 1999. Source: Population division, U.S. Census Bureau. Released online on July 1999.
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Interestingly for our study the highway Route 5 links Los Angeles and Orange counties, see

Fig. 6. We only take into account the active population with residence along this highway. In

most cases Route 5 passes through a zip code, while in others it is at the border of two zip

code areas, in which case we average their populations. Job center A or CBD is assumed to be

located in Los Angeles city center and job center B or SBD in Santa Ana city center. They are

separated by 33.9 miles. In Chicago MSA, we only consider the active population with residence

along Routes 290 and 88, which connect Cook and DuPage counties, see Fig. 7. The CBD is

assumed to be located in Chicago city center and the SBD in Naperville city center. They are

separated by 33.6 miles.

Fig. 6. California, job centers connected through Route 5
Source: http://www.zipmap.net/California.htm

Fig. 7. Chicago, job centers connected through Route 88 and 290
Source: http://www.zipmap.net/Illinois.htm

The labor force in each zip code area located between the specified job centers forms a

discrete workforce distribution, which we transform into a continuous density f(x) and CDF

F (x) on the segment [0, 1]. For this purpose, for both MSAs, we use the Kernel procedure, with

smoothing factor 5 which yields a bandwidth of 0.27 and 0.31 for Los Angeles and Chicago MSA,

respectively.23 The densities are displayed in Fig. 8. We denote x0 as the geographical boundary
23We use a quadratic Kernel (Epanechnikov) k2(x) = 3

4

(
1− x2). We calculate the bandwidth using the

Silverman rule-of-thumb: h = 5 · σ̂2 · Cν(k) · N−1/(2ν+1) where the bandwidth h, equals the product of the
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Fig. 8. Kernel distributions of the labor force

between the two counties. Now that we have the continuous distribution F of the workforce with

residence along the selected routes, we can fix x0 such that F (x0) matches the observed share of

the workforce living in the county on the left (“LC” for short). Then of course, 1−F (x0) matches

the share in the county to the right (“RC” for short). In Los Angeles MSA, Los Angeles (resp.

Orange) county spreads over the segment [0, 0.51] (resp. (0.51, 1]). In Chicago MSA, Cook (resp.

DuPage) county spreads over the segment [0, 0.53] (resp. (0.53, 1]). In Los Angeles MSA, see

Fig. 8a, the population density is at its highest level on the border between counties, whereas at

the extremes, i.e. x = 0 and x = 1, we observe the lowest densities. In Chicago MSA, however,

Fig. 8b, the distributed is skewed to the right. We also observe an inverted-U-shape density

within DuPage county. To summarize these differences by two numbers, F (x0) = 0.5 in Los

Angeles MSA while it is close to 0.4 in the other one.

4.2.2. The calibration

The parameters of the model are: yj , δj , ηj , βj , mj for j = {A,B} and r, b and τ , the unknowns

being θ̃j and x̃. The reference year is 2000. We match the means of the unemployment rates in

the selected zip codes along the indicated connecting routes respectively within the left and the

right counties. Since average wages are only available for the year 2000 at the county level, we

also match the average wages respectively in the left and the right counties.24 We use a quarter

as the unit of time. The real interest rate in the U.S. in 2000 was 4%,25 thus we take r = 0.98%.

Following Petrongolo and Pissarides (2001) we choose an elasticity of the matching function

ηA = ηB = 0.5, and as common practice we assume the Hosios condition, βA = βB = 0.5. Due

smoothing factor 5, times the sample standard deviation, σ̂2, a constant, Cν(k) = 2.34, the sample N and the
order of the kernel ν = 2.

24Wage estimates are calculated from data collected from employers in all industry divisions by Occupational
Employer Statistics (OES), Bureau of Labor Statistics. The information. Source for California: Employment
Development Department. Source for Illinois: The Workforce Information center.

25Source: Federal Reserve, Daily Treasury Real Long-Term Rates in 2000 (average).
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to the small gap between unemployment rates in Los Angeles MSA we assume the scale factor

of the matching function to be equal across job centers (see Table 2). Indeed, along Route 5, the

average unemployment rate of the zip codes areas that belong to Los Angeles (resp. Orange)

county is 8% (resp. 7%). For Chicago MSA, however, we assume mA < mB due to an average

unemployment rate gap of 6 percentage points (see Table 3). The Unemployment insurance (UI)

replacement rate in the states of California and Illinois is around 0.5 (Taylor, 2011).

As we observe different unemployment rates across counties, it is natural to think that

different separation rates δj ’s might be part of the explanation. We do not have this information

at the county level for the year 2000. However, we have found more recent data about the

number of initial claims for UI at the county level (this includes new, additional and transitional

claims).26 We select the year 200727 and compute the ratio between these initial claims in 2007

and employment in the same year for the counties under scrutiny. This proxy for separation

rates is not exactly what we need to calibrate separation rates. So, we don’t use their levels in

each MSA. We only use the ratio between these proxies for the county to the right (RC) and the

county to the left (LC). We set the separation rate to 0.036 (Pissarides, 2009) for the LCs (Los

Angeles and Cook counties) and this ratio is only used to scale the separation rate in the RCs

(Orange and DuPage counties). In both MSAs, this leads to δB < δA (see Table 2 and Table 3).

Due to the importance of commuting by car,28 to calibrate τ we first use the mileage re-

imbursement rate for privately owned automobile (POA). This information is provided by the

U.S. General Service administration (GSA) and for the year 2000 it was calculated to be 0.325

USD/mile.29 Second, τ takes into account the opportunity cost of time spent commuting. We

find that the commuting times during peak hours between the two job centers are 60 and 53

minutes, respectively in Los Angeles and Chicago MSA. Since in Los Angeles (Chicago) MSA

the average hourly wage is 16 USD (21 USD), the opportunity cost component of the commuting

costs equals 27 USD (29 USD respectively). For the final commuting cost parameter we add the

mileage reimbursement and the opportunity cost, double it to take into account a round trip
26This data is provided by the State of California Employment Development Department and the Illinois

Department of Employment Security. A “new claim” is the first claim for a benefit year period (e.g., for the
regular UI program it is 52 weeks). An individual would only have one new claim during a benefit year period.
An “additional claim” is when another claim is filed during the same benefit year and there is intervening work
between the first claim and the second claim. An individual can have multiple additional claims during the same
benefit year if she meets the eligibility requirements. A “transitional claim” is when a claimant is still collecting
benefits at the end of their benefit year period and had sufficient wage earnings during that year to start up a
new claim once the first benefit year period ends.

27This is the first year where the relevant information is available. Moreover the years 2000 and 2007 share
similar economic conditions, both being characterized by an unemployment rate reaching a local minimum.

28In 2000, in Los Angeles MSA around 86% of the labor force resident in the zip code zones around Route 5
commuted by car. In Chicago MSA, for the same year, 80% of the labor force resident in zip code zones around
Route 88 and 290 were car-commuters.

29It includes (i) gasoline and oil (excluding taxes), (ii) depreciation of original vehicle cost, (iii) maintenance,
accessories, parts, and tires, (iv) insurance and (v) state and Federal taxes.
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and multiply it by 66 working days in a quarter.

Recall that for each MSA we aim to match in 2000 the average unemployment rates of the

zip codes areas that belong to a county to the left and to the right, denoted ūLC and ūRC , and

the corresponding average wages, denoted w̄LC and w̄RC .

Hence, for a given value of the threshold x̃, we have four unknowns: yA, yB, θ̃A and θ̃B. We

define a system of four equations according to the relative position of the boundary of the two

counties (x0) and the threshold (x̃). We equate the observed share30 of employed workers in LC

and respectively RC and the formulas coming from the model:

eLC = ψA
δA + ψA

F (x) + ψB
δB + ψB

(F (x0)− F (x)) (37)

eRC = ψA
δA + ψA

(F (x)− F (x0)) + ψB
δB + ψB

(1− F (x)) (38)

where ψj stands for ψj(θj), x = min{x0, x̃} and x = max{x0, x̃}. The system of four equations

is then:

w̄LC =
∫ x

0
wA(x) ψA

δA + ψA

f(x)
eLC

dx+
∫ x0

x
wB(x) ψB

δB + ψB

f(x)
eLC

dx (39)

w̄RC =
∫ x

x0
wA(x) ψA

δA + ψA

f(x)
eRC

dx+
∫ 1

x
wB(x) ψB

δB + ψB

f(x)
eRC

dx (40)

ūLC = ψA
δA + ψA

F (x)
F (x0) + ψB

δB + ψB

(F (x0)− F (x))
F (x0) (41)

ūRC = ψA
δA + ψA

(F (x)− F (x0))
1− F (x0) + ψB

δB + ψB

(1− F (x))
1− F (x0) (42)

where ψA
δA+ψA

f(x)
eLC

and ψB
δB+ψB

f(x)
eRC

are the conditional employed population density in LC and

RC, respectively. Then, Eq. (13) is used to express wj(x) in terms of unknowns and parameters

(see Appendix B for more details).

We set the initial condition x̃ = x0
31 and then solve Eqs. (39) to (42). Next, we compute

the two expected returns to search Σj(θ̃j , x̃) respectively locations A and B and according to the

sign and the magnitude of the difference between the two Σj ’s, a new value of x̃ is computed and

the system Eqs. (39) to (42) is solved again. This iterative procedure is applied until equality

(12) is verified. Finally, we compute the cost of opening a vacancy, kj , using the free entry

condition (18).

From the calibration in Table 2, the threshold x̃ separating job seekers in two groups is very

close to the boundary, x0, between the two counties. We do not have data about commuters

for the zip codes we consider. Still, information at the county level is worth to look at. Accord-

ing to the U.S. Census Bureau, 97% of work-commuters in Los Angeles and Orange counties
30Since in the model the total labor force is normalized to one, we match the share and not the level of

employment.
31We have however checked that the calibration is robust to changes in this initial condition.
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travel within and between these counties.32 In line with the calibration property x̃ ≈ x0, the

commuters’ flow within each of these two counties is much higher than between them. The

share of inner-county commuters in Los Angeles and Orange counties in 2000 was 96% and 85%,

respectively. The higher average unemployment rate in Los Angeles county compared to Orange

county is the consequence of a bigger separation rate, despite a slightly higher productivity level

and lower unit cost of opening vacancies in job center A. All in all, tightness is higher in job

center A than in the job center B.

In the calibration for Chicago MSA, Table 3, the threshold x̃ separating job seekers in two

groups is again close to the boundary, x0, between the two counties. With the same caveat as

in LA, let us look at the commuting patterns at the county level. According to the U.S. Census

Bureau in 2000, 94% of work-commuters in Cook and DuPage counties travel within and between

these counties. A 93% of work-commuters in Cook county are inner-county commuters. This is

higher than in DuPage county where 65% of commuters travel to work within the county and

the rest go to work in Cook county. The average unemployment rate is considerably higher in

Cook county. This is first due to a higher separation rate. Next, a lower scale factor of the

matching function in the CBD and a much higher vacancy cost lead to lower tightness and lower

probability of being recruited in the CBD despite a higher productivity than in the SBD.
32Data of commuting patterns in the state of California, at the county level (U.S. Census Bureau).
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Table 2
Calibration of Los Angeles MSA, quarterly data

Value Description Source/Target

1. Parameters

1.1. From the literature, data and assumptions
r 0.98 Interest rate (%) Federal Reserve
ηA = ηB 0.5 Matching fn. Elasticity Petrongolo and Pissarides (2001)
βA = βB 0.5 Workers’ bargaining power Hosios condition ηj = βj
b 4, 452 Unemployment Insurance Bureau of Labor Statistics
δA 0.036 Separation rate LC Pissarides (2009)
δB 0.023 Separation rate RC Data
mA = mB 0.5 Matching fn. scale factor of Unemployment rates

LC and RC
τ 3, 542 Commuting cost U.S. General Service Administration

(USD per unit of scaled distance) and hourly wage
x0 0.51 Boundary between Los Angeles - Orange counties Data
F (x0) 0.51 CDF for Los Angeles county Data
1.2. Computed by the model (USD/quarter)
yA 9, 322 Labor productivity LC Eqs. (39) - (42)
yB 9, 190 Labor productivity RC Eqs. (39) - (42)
kA 4, 825 Vacancy cost LC Eqs. (39) - (42)
kB 9, 340 Vacancy cost RC Eqs. (39) - (42)
2. Outcomes

2.1. Matched labor market outcomes
w̄LC 8, 964 Average wages Los Angeles county (USD/quarter) State of California EDD b

w̄RC 8, 843 Average wages Orange county (USD/quarter) State of California EDD b

ūLC 8.18 Average unempl. rate Los Angeles county (%) U.S. 2000 census
ūRC 7.31 Average unempl. rate Orange county (%) U.S. 2000 census
2.2. Endogenous variables computed by the model a

x̃ 0.52 Location of the marginal worker Eq. (12)
θ̃A 0.65 Market tightness LC Eq. (18)
θ̃B 0.33 Market tightness RC Eq. (18)
ψA
(
θ̃A
)

0.40 Exit rate of unempl. LC Eq. (35)
ψB
(
θ̃B
)

0.29 Exit rate of unempl. RC Eq. (35)
µA
(
θ̃A
)

0.62 Vacancy filling rate LC Eq. (36)
µB
(
θ̃B
)

0.87 Vacancy filling rate RC Eq. (36)
kA/µA

(
θ̃A
)

7, 801 Exp. cost of opening a vacancy in LC
kB/µB

(
θ̃B
)

10, 770 Exp. cost of opening a vacancy in RC
a Different initial values for x̃ do not affect the calibrated results.
b Employment Development Department. www.ca.gov
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Table 3
Calibration of Chicago MSA, quarterly data

Value Description Source/Target

1. Parameters

1.1. From the literature, data and assumptions
r 0.98 Interest rate (%) Federal Reserve
ηA = ηB 0.5 Matching fn. Elasticity Petrongolo and Pissarides (2001)
βA = βB 0.5 Workers’ bargaining power Hosios condition ηj = βj
b 5, 438 Unemployment Insurance Bureau of Labor Statistics
δA 0.036 Separation rate LC Pissarides (2009)
δB 0.024 Separation rate RC Data
mA 0.6 Matching fn. scale factor of Unemployment rate Cook county
mB 0.8 LC and RC Unemployment rate DuPage county
τ 3, 890 Commuting cost U.S. General Service Administration

(USD per unit of scaled distance) and hourly wage
x0 0.53 Boundary between Cook - DuPage counties Data
F (x0) 0.42 CDF for Cook county Data
1.2. Computed by the model (USD/quarter)
yA 11, 686 Labor productivity LC Eqs. (39) - (42)
yB 10, 841 Labor productivity RC Eqs. (39) - (42)
kA 11, 056 Vacancy cost LC Eqs. (39) - (42)
kB 4, 671 Vacancy cost RC Eqs. (39) - (42)
2. Outcomes

2.1. Matched labor market outcomes
w̄LC 11, 686 Average wage Cook county (USD/quarter) IDES b

w̄RC 10, 841 Average wage DuPage county (USD/quarter) IDES b

ūLC 8.96 Unemployment rate Cook county (%) U.S. 2000 census
ūRC 3.19 Unemployment rate DuPage county (%) U.S. 2000 census
2.2. Endogenous variables computed by the model a

x̃ 0.54 Location of the marginal worker Eq. (12)
θ̃A 0.37 Market tightness LC Eq. (18)
θ̃B 0.89 Market tightness RC Eq. (18)
ψA
(
θ̃A
)

0.37 Exit rate of unempl. LC Eq. (35)
ψB
(
θ̃B
)

0.75 Exit rate of unempl. RC Eq. (35)
µA
(
θ̃A
)

0.98 Vacancy filling rate LC Eq. (36)
µB
(
θ̃B
)

0.85 Vacancy filling rate RC Eq. (36)
kA/µA

(
θ̃A
)

11, 233 Exp. cost of opening a vacancy in LC
kB/µB

(
θ̃B
)

5, 506 Exp. cost of opening a vacancy in RC
a Different initial values for x̃ do not affect the calibrated values.
b Illinois Department of Employment Security. www.illinois.gov

4.2.3. The counterfactual simulations

In Table 4 (resp., 5) we take the calibrated parameters of Tables 2 (resp., 3) and simulate the

implications of substituting counterfactual distributions of the workforce. In Table 4 (resp., 5),

column (1) reproduces the key endogenous indicators of Table 2 (resp., 3). In column (2), we

swap the active population distribution between MSAs. Next, we look at the consequences of

a uniform distribution in column (3). Finally, in columns (4) to (6) we do the same for three

truncated normal distributions on a support [0, 1]: A symmetric density (N (0.5, 0.15)), a normal

distribution positively skewed because of the truncation (N (0.25, 0.5)), and a negatively skewed

(N (0.75, 0.5)). The latter density functions are illustrated in Fig. 9.
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Table 4
Simulations for Los Angeles MSA, quarterly data

Counterfactual population distributions

Los Angeles MSA a Chicago MSA Uniform Normal N (mean, st.dev.) truncated at (0, 1)b

(From Table 2) unif(0, 1) N (0.5, 0.15) N (0.25, 0.5) N (0.75, 0.5)
(1) (2) (3) (4) (5) (6)

x0 0.51 0.51 0.51 0.51 0.51 0.51
F (x0) 0.51 0.40 0.51 0.53 0.63 0.40

w̄LC 8, 964 8, 964 8, 961 8, 988 8, 962 8, 969
w̄RC 8, 843 8, 837 8, 839 8, 865 8, 847 8, 838
ūLC 8.18 8.15 8.10 8.65 8.10 8.26
ūRC 7.31 7.21 7.23 7.72 7.36 7.23
eRC + eLC 92.25 92.41 92.32 91.78 92.18 92.36

x̃ 0.518 0.518 0.518 0.582 0.520 0.517
τ ΓA (x̃) 1, 002 967 918 1, 388 918 1, 062
τ ΓB (x̃) 933 833 853 1, 307 983 858
θ̃A 0.65 0.66 0.67 0.58 0.67 0.64
θ̃B 0.33 0.34 0.34 0.30 0.33 0.34
ψA
(
θ̃A
)

0.40 0.41 0.41 0.38 0.41 0.40
ψB
(
θ̃B
)

0.29 0.29 0.29 0.27 0.29 0.29
µA
(
θ̃A
)

0.62 0.62 0.61 0.66 0.61 0.62
µB
(
θ̃B
)

0.87 0.85 0.86 0.92 0.87 0.86
kA/µA

(
θ̃A
)

7, 801 7, 840 7, 894 7, 361 7, 895 7, 727
kB/µB

(
θ̃B
)

10, 770 10, 925 10, 894 10, 173 10, 692 10, 877

Ω
(
θ̃A, θ̃B , x̃

)
7, 749 7, 818 7, 825 7, 398 7, 781 7, 769

a Different initial values for x̃ do not affect the final results of the calibration.
b A normal distribution that is truncated at 0 on the left and at 1 on the right is defined in density form as f(x) = φ(x)I(x)

Φ(1)−Φ(0)
where φ (resp. Φ designates the Normal density (resp. cumulative density) function and I(0,1)(x) = 1 if 0 6 x 6 1,
I(0,1)(x) = 0 otherwise.

0.2 0.4 0.6 0.8 1.0
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Fig. 9. Distributions for simulations
Columns (4) to (6)

Substituting the counterfactual distribution of the workforce in Chicago into Los Angeles

MSA consists of concentrating more population around job center B. Comparing columns (1)

and (2) of Table 4 we observe that the threshold location does not change at the two-digit
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level. Tightness turns out to be higher in both job centers and net output is 1% higher when

we take the workforce distribution of Chicago MSA. This is due to a lower average commuting

cost towards both job centers (see Table 4). Therefore, firms get a higher surplus from a match

and are induced to post more vacancies. This explains 0.16 percentage points rise in the MSA’s

employment rate and a decline in both average unemployment rates, especially ūRC in Orange

county.

Since the actual distribution of Los Angeles MSA’s workforce is not too far from uniform

(see Fig. 8a), it is natural to consider this assumption in column (3) of Table 4. The same

mechanisms as in column (2) are at work. Eventually, net output is 1% higher than in column

(1). The most dramatic change appears in column (4) where we assume that the labor force

is concentrated around the boundary between the two counties (N (0.5, 0.15)). The substantial

increase in τ Γj(x̃) in both counties eventually leads to a drop in tightness levels by more than

10% and of net output by 4.5%. Lower tightness levels cause a decline in the total employment

rate and a rise of both unemployment rates by nearly half a percentage point. Finally, the

distribution N (0.75, 0.5) is interesting because it looks similar to the actual distribution in

Chicago MSA. However, even if F (x0) is the same in both cases, the workforce near the CBD is

less important (e.g. F [0.25] = 0.18 in column (2) versus 0.15 in column (6)). In addition in the

RC (Orange county), the inversed-U shape profile of the workforce in the RC is more pronounced

in column (2) than in column (6). These differences are sufficient to induce that, compared to

the actual distribution in column (1), τ ΓA(x̃) rises in column (6) while it decreases in column

(2). In column (6), τ ΓB(x̃) is lower than in column (1) but the decline is less pronounced than

in column (2). These differences lead to lower tightness in job center A under the assumption

N (0.75, 0.5) while it rises with the counterfactual distribution of Chicago MSA. Additionally,

the average unemployment rate in the left county, ūLC , is higher than in column (1) while it was

lower with the Chicago distribution. So, limited differences in the distribution of the workforce

turn out to have opposite effects on the average unemployment rates in the LC.

Comparing columns (1) and (2) of Table 5 we observe that differences of the outcomes of the

model are small at the two-digit level (see x̃ and θ̃A). Substituting Los Angeles MSA workforce

distribution implies however a drop in average wages (4.3% for the LC and 1.6% for the RC)

and a rise in average unemployment rates (+0.15 percentage points in the LC and +0.08 in

the RC). Moreover, total employment rate falls by 0.8 percentage points and net output is

reduced by 0.6%. The more concentrated distribution around the boundary between counties

explains these differences. Hence, higher average commuting costs towards both job centers

diminish welfare. Comparing a uniform distribution with Chicago MSA’s actual distribution
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of the active population, see Fig. 8b, one can expect a stronger effect in job center A since

the workforce density of DuPage county is strictly below one. With equal density all along the

MSA the average commuting costs to job center A (B) fall (rise) by 5.6% (1.6%). However,

total employment rate and net output drop by 0.7 percentage points and 0.3%, respectively.

We observe larger differences particularly in unemployment rates once we introduce a normal

distribution positively or negatively skewed. The normal distribution of column (4) is specially

worth considering since commuting costs to both job centers rise substantially. Consequently,

net output shrinks by 4% and the average unemployment rate in the LC (resp., RC) is 0.6 (resp.

0.3) percentage points higher than in column (1). Finally, in column (6) net output drops by

0.6%.

Table 5
Simulations for Chicago MSA, quarterly data

Counterfactual population distributions

Chicago MSAa Los Angeles MSA Uniform Normal N (mean, st.dev.) truncated at (0, 1)b

(From Table 2) unif (0, 1) N (0.5, 0.15) N (0.25, 0.5) N (0.75, 0.5)
(1) (2) (3) (4) (5) (6)

x0 0.53 0.53 0.53 0.53 0.53 0.53
F (x0) 0.42 0.53 0.53 0.58 0.65 0.42

w̄LC 11, 686 11, 184 11, 177 11, 213 11, 176 11, 189
w̄RC 10, 841 10, 670 10, 666 10, 687 10, 676 10, 664
ūLC 8.96 9.11 9.01 9.57 9.00 9.19
ūRC 3.19 3.27 3.22 3.53 3.34 3.20
eRC + eLC 94.38 93.62 93.70 92.95 92.99 94.27

x̃ 0.540 0.540 0.541 0.537 0.542 0.539
τ ΓA (x̃) 1, 114 1, 146 1, 052 1, 569 1, 046 1, 220
τ ΓB (x̃) 879 979 893 1, 384 1, 028 902
θ̃A 0.37 0.37 0.38 0.34 0.38 0.36
θ̃B 0.89 0.87 0.89 0.79 0.86 0.88
ψA
(
θ̃A
)

0.37 0.36 0.37 0.35 0.37 0.36
ψB
(
θ̃B
)

0.75 0.75 0.75 0.71 0.74 0.75
µA
(
θ̃A
)

0.98 0.99 0.98 1.04 0.98 1.00
µB
(
θ̃B
)

0.85 0.86 0.85 0.90 0.86 0.85
kA/µA

(
θ̃A
)

11, 233 11, 193 11, 308 10, 667 11, 315 11, 103
kB/µB

(
θ̃B
)

5, 506 5, 442 5, 497 5, 176 5, 411 5, 491

Ω
(
θ̃A, θ̃B , x̃

)
9, 714 9, 660 9, 744 9, 278 9, 718 9, 660

a Different initial values for x̃ do not affect the final results of the calibration.
b A normal distribution that is truncated at 0 on the left and at 1 on the right is defined in density form as f(x) = φ(x)I(x)

Φ(1)−Φ(0)
where φ (resp. Φ designates the Normal density (resp. cumulative density) function and I(0,1)(x) = 1 if 0 6 x 6 1,
I(0,1)(x) = 0 otherwise.

5. Conclusions

Urban development and more specifically the way the population is distributed within metropoli-

tan areas generate various externalities. Glaeser and Kahn (2010) emphasize environmental

externalities through the emission of greenhouse gases. Part of them are due to car usage and

commuting. This paper emphasizes another externality due to commuters, namely on job cre-
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ation. For this purpose, we develop a stylized representation of a densely populated metropolitan

area where the workforce lives between two job centers characterized by search-matching fric-

tions. Because wages compensate partly for commuting costs, the expected value of opening

a vacancy in a job center shrinks when the pool of job-seekers spreads over longer distances.

When jobless people decide where to seek jobs, they do not internalize that their decision affects

job creation and hence has an impact on all the unemployed. Because of this composition exter-

nality, we show that the regional unemployment rates are typically inefficient even if the Hosios

condition is met. In addition to this normative statement, this paper measures how changes in

the distribution of the workforce affects net output and equilibrium unemployment rates.

We conduct a numerical analysis to see how the shape of the population distribution affects

unemployment rates, average wages and efficiency. In a first step, we measure the gap between

the efficient and the decentralized allocations when a mass of workers located in the CBD grows

while the mass of workers uniformly spread along the rest of the line joining the CBD to the SBD

shrinks. In this illustrative example, we conclude that the gap in unemployment rates is at most

0.03 percentage point (the unemployment averaging 4%) while net output is more affected (the

gap reaching here 2%). In a second step, we calibrate the model for Los Angeles and Chicago

MSAs. We simulate the impacts of substituting counterfactual distributions of the workforce.

It turns out that the location of the population has non-negligible effects on unemployment and

net output. Within the range of distributions we have considered for Los Angeles, changes in

unemployment rates (respectively, in net output) can reach 0.6 percentage points (resp., 4%).

The order of magnitude in Chicago is the same.

Considering the role of public policies (subsidies to job creation, reductions in commuting

costs and the like) is a natural complement to this paper. A useful extension would be to develop

the same analysis in a two-dimensional space with a larger number of job centers.
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A. Comparative statics

We define ψ′j (θj) = (1− ηj (θj))ψj (θj) /θj , where ηj is the elasticity of the matching rate µj(θj)

(i.e. ψj (θj) /θj) with respect to tightness.

A.1. Equilibrium tightness for a given level of the threshold x̃

For j ∈ {A,B} we can rewrite Eq. (18) as Fj (θj , x̃) = 0 where we define

Fj (θj , x̃) = θjkj
ψj(θj)

− (1− βj)
yj − τ Γj (x̃)− b
r + δj + βj ψj (θj)

Let ζj denote any of the parameters in {kj , δj , yj , βj , b, r}. Using the implicit function theorem,

∂θj
∂ζj

= −∂Fj/∂ζj
∂Fj/∂θj

(A.1)

where ∂θj/∂ζj can also be written ∂Θj (x̃) /∂ζj (see the proof of Lemma 3) and in which

∂Fj
∂θj

= kj
ψj (θj)

ηj (θj) (r + δj) + βjψj (θj)
r + δj + βjψj (θj)

> 0.

The sign of ∂θj/∂ζj is therefore given by the one of ∂Fj/∂ζj . So, along Fj (θj , x̃) = 0,

• ∂θj
∂kj

< 0, because ∂Fj
∂kj

= θj
ψj(θj) > 0.

• ∂θj
∂δj

= ∂θj
∂r < 0, because ∂Fj

∂δj
= 1

r+δj+βjψj(θj)
kjθj
ψj(θj) > 0.

• ∂θj
∂yj

> 0 > ∂θj
∂b , because

∂Fj
∂yj

= −∂Fj
∂b = − 1−βj

r+δj+βjψj(θj) < 0.

• ∂θj
∂βj

< 0, because ∂Fj
∂βj

= r+δj+ψj(θj)
(1−βj)(r+δj+βjψj(θj))

kjθj
ψj(θj) > 0.

A.2. Equilibrium threshold

By totally differentiating Eq. (19), on gets:

dx̃

dζj
=

dSB(x̃)
dζj

− dSA(x̃)
∂ζj

dSA(x̃)
dx̃ − dSB(x̃)

dx̃

(A.2)

where ζj denotes any of the parameters in job center j. By Lemma 4 the denominator of Eq.

(A.2) is negative, and

dSj
dζj′

= ∂Σj (Θj (x̃) , x̃)
∂θj

∂Θj (x̃)
∂ζj′

+ ∂Σj (Θj (x̃) , x̃)
∂ζj′

(A.3)

is nil when j 6= j′ except for ζj′ ∈ {r, b}. By Lemma 1, we know that ∂Σj/∂θj > 0. So, in

order to study the sign of the numerator of Eq. (A.2) we need to sign the second term on the

right-hand side of (A.3):

• ∂Σj
∂kj

= 0.
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• ∂Σj
∂δj

= ∂Σj
∂r = −Σj (Θj (x̃) , x̃) 1

r+δj+βj ψj(θj) < 0.

• ∂Σj
∂yj

= −∂Σj
∂b = βj ψj(θj)

r+δj+βj ψj(θj) > 0.

• ∂Σj
∂βj

= Σj (Θj (x̃) , x̃) r+δj
βj [r+δj+βj ψj(θj)] > 0.

The comparative static analysis is summarized in Table 6.

Table 6
Comparative statics

ζj′
∂SB
∂ζj′

= ∂ΣB(ΘB(x̃),x̃)
∂θB

∂ΘB(x̃)
∂ζj′

+ ∂ΣB(ΘB(x̃),x̃)
∂ζj′

∂SA
∂ζj′

= ∂ΣA(ΘA(x̃),x̃)
∂θA

∂ΘA(x̃)
∂ζj′

+ ∂ΣA(ΘA(x̃),x̃)
∂ζj′

∂SB(x̃)
∂ζj

− ∂SA(x̃)
∂ζj

dx̃
dζj

kA 0 + 0 0 − + − 0 + −
δA 0 + 0 0 − + − − + −
yA 0 + 0 0 + + + + − +
βA 0 + 0 0 ?† + − + ? ?
b − + − − − + − − ? ?
r − + − − − + − − ? ?
kB − + − 0 0 + 0 0 − +
δB − + − − 0 + 0 0 − +
yB + + + + 0 + 0 0 + −
βB ?† + − + 0 + 0 0 ? ?

† It can be checked that ∂Sj

∂βj
T 0⇔ ηj T βj .

Given that ∂Sj
∂βj

T 0 ⇔ ηj T βj , the signs of the partial derivatives with respect to the

workers’ bargaining power verify:

dx̃

dβA
T 0⇔ ηA T βA and dx̃

dβB
T 0⇔ ηB S βB.

So, an ambiguity remains for dx̃/db and dx̃/dr only.

A.3. Equilibrium tightness

The total effect of a marginal change in parameter ζj on equilibrium tightness in j is

dθj
dζj

= ∂θj
∂ζj

+ ∂θj
∂x̃

dx̃

dζj
, j ∈ {A,B} (A.4)

where on the right-hand side, the first term is given by (A.1), the second one equals− (∂Fj/∂x̃) / (∂Fj/∂θj)

(negative for j = A and positive for j = B), while the third one is given by by (A.2). This total

effect (A.4) has an ambiguous sign for all parameters.
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