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1 Introduction

Di�erence-in-di�erences (DiD) designs are extremely common as a way of estimating the

e�ects of policies or programs (henceforth `treatment e�ects'). A recent literature has high-

lighted that failure to appropriately quantify the uncertainty surrounding DiD estimates can

lead to dramatically misleading inference (e.g. Bertrand et al, 2004; Cameron and Miller,

2013). In particular, researchers will tend to reject true null hypotheses with a probability

that is far higher than the nominal size of the hypothesis test. The literature has suggested

that obtaining tests that are close to the correct size requires non-standard techniques, and

that it may not be possible with a small number of groups (Angrist and Pischke, 2009;

Bertrand et al, 2004; Cameron et al, 2008).

In this paper we report evidence from Monte Carlo simulations that emphasises a di�er-

ent conclusion. We make three main points. First, in many typical DiD settings tests of the

correct size can be obtained with very straightforward methods that are trivial to implement

with standard statistical software (in fact, STATA's cluster-robust inference implements

these methods by default); and in settings where this works less well, a bootstrap-based

approach highlighted by other authors (e.g. Cameron et al, 2008; Webb, 2013) provides a

reliable alternative. All this is true even with few groups. Second, these techniques have

very low power to detect real treatment e�ects. Thus the real challenge for inference with

DiD designs is power rather than size. Third, we show that substantial gains in power can

be achieved using feasible GLS. Moreover, if feasible GLS is combined with robust infer-

ence, test size can still be controlled if the parametric assumptions about the error process

implicit in FGLS estimation are violated, even with few groups. We therefore recommend

that applied researchers using DiD designs pay careful attention not just to consistency and

test size, but also to the e�ciency of their estimators.

DiD designs often use micro-data but estimate the e�ects of a treatment which varies

only at a group level at any point in time (e.g. variation in policy across US states). A

consequence is that within-group correlation of errors can substantially increase the true level

of uncertainty surrounding the treatment e�ect (e.g. Angrist and Pischke, 2009; Cameron

and Miller, 2013; Donald and Lang, 2007; Moulton, 1990; Wooldridge, 2003). Furthermore,

treatment status is typically highly serially correlated. In fact, in the most common case

which we focus on in this paper, treatment is an `absorbing state': once a group is treated,

it remains treated in all subsequent periods. This means that serially correlated error terms

are likely to have a large impact on the true level of precision with which treatment e�ects

are estimated. In a well-cited Monte Carlo study using US earnings data, Bertrand et al

(2004) show that accounting only for grouped errors at the state-time level whilst ignoring

serial correlation led to a 44% probability of rejecting a true null hypothesis using a nominal

5% level test. So, for example, when evaluating a labor market policy implemented in certain

regions from a particular point in time onwards, a researcher should worry both that people

2



in the same region at the same time are a�ected by common labor market shocks (unrelated

to the policy) and that these regional shocks are serially correlated.

A simple approach to deal with both cross-sectional and serial correlation in within-

group errors would be to use the formula for a cluster-robust variance matrix due to Liang

and Zeger (1986). This is consistent and Wald statistics which use it are asymptotically

normal, but the asymptotics apply as the number of clusters tends to in�nity. By clustering

at the group level rather than the group-time level to account for serial correlation, one

is often left with few clusters. The �nite sample (i.e. few-clusters) performance of this

approach - an empirical question - then becomes crucial, and the literature to date has

come to pessimistic conclusions about it. Bertrand et al (2004) and Cameron et al (2008)

use US earnings data and generate placebo state-level treatments before estimating their

`e�ects'. Forming t-statistics using cluster-robust standard errors (CRSEs), they obtain 9%

and 11% rejection rates using nominal 5% level tests with samples from 10 and 6 US states

respectively.1 This is a considerable improvement over using OLS standard errors, when

rejection rates are more than 40%. But it is still approximately double the nominal test

size.

The crucial �nding of Bertrand et al and others - that inference can go badly wrong

in DiD unless one is very careful - is con�rmed once again here. But we also show that

a simple modi�cation to the standard cluster-robust inference procedure described above

can dramatically improve test size with few clusters. One can apply a scaling factor to the

OLS residuals that are plugged into the CRSE formula, and use critical values from a t

distribution with degrees of freedom equal to the number of groups minus one, rather than

a standard normal. When this is done, our simulations show that true test size is within

about one percentage point of nominal test size with 50, 20, 10 or 6 groups. We further

show that this holds under a wide range of error processes. The key situation in which the

method is unreliable is when there is a large imbalance between the numbers of treatment

and control groups.

Various alternative techniques for achieving correct test size have been proposed and/or

tested (Bertrand et al, 2004; Cameron et al, 2008; Donald and Lang, 2007; Bester et al,

2011). Of these, only a wild cluster bootstrap-t procedure has been shown to produce

tests of approximately the right size in the typical DiD setup considered in this paper (see

Section 2) when the number of groups is as small as six (Cameron et al, 2008). Like using

CRSEs, this is theoretically robust to heteroscedasticity and arbitrary patterns of error

correlation within clusters, and to variation in error processes across clusters. It has also

1Both papers �rst account for cross-sectional within-group error correlation by aggregating to the group-
time level, taking mean residuals within each group-time cell from a regression of earnings on individual-level
characteristics. This is a straightforward way to deal with this problem and is appropriate in typical DiD
settings where the number of observations per group-time cell is large. (It will also be the approach taken
in this paper.) The remaining issues for inference are dealing with a �nite number of groups and any serial
correlation in group-time shocks.
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been shown to be quite robust to large imbalances between the numbers of treatment and

control groups (Mackinnon and Webb, 2013), and hence provides an important alternative

to the simpler method described above in such situations. But it is less trivial to implement

and computationally more intensive.

Our second point is that, while it is generally not di�cult to obtain the correct size, power

to detect real e�ects is a serious concern. When we use the methods above to implement

correctly sized hypothesis tests, we �nd that DiD designs have very low power. This problem

is very severe with few groups. For example, with a large 30-year panel of US earnings data

from 6 states, a policy implemented by half of the states that raised earnings by 5% would

be detected with only 17% probability (using a test of size 0.05). The policy would have to

increase earnings by 16% if the null of no policy e�ect is to be rejected with 80% probability.

Finally, we show that substantial gains in power can be achieved using feasible GLS.

In particular, with a moderate time series dimension of at least about 10 time periods,

one will often be able to increase power by modeling the serial correlation of unobservables

inherent in typical DiD designs. Test size can still be controlled in a way that is robust to

having small numbers of groups, and to violations of the parametric assumptions about the

error process implicit in FGLS estimation, using the straightforward cluster-robust inference

technique described above. We therefore recommend the use of the combination of FGLS

and cluster-robust techniques in DiD applications. We also con�rm that, in the absence of

robust inference, test size can be signi�cantly improved using a bias correction for the OLS

estimates of the parameters of an AR process derived in Hansen (2007).

The paper proceeds as follows. Section 2 describes the standard econometric setup in

DiD designs that we consider, and discusses possible solutions to the inference problems

that can arise in this setting. Section 3 details the Monte Carlo design we use to test

di�erent inference methods. Section 4 presents and discusses the results of our Monte Carlo

simulations. Section 5 summarizes and concludes.

2 Approaches to inference in a di�erence-in-di�erences

design

We consider the standard linear DiD model

yigt = αg + δt + βTgt + γwigt + υigt, (1)

where αg and δt capture group (state) and time (year) �xed e�ects, β is the treatment

e�ect of interest for a treatment which varies at the group-time level only, wigt are individual-

level control variables, and υigt is the unobserved individual-level earnings shock.

Our interest lies in the performance of di�erent methods for performing inference about
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β, both in terms of type 1 and type 2 error (i.e. test size and power to detect real ef-

fects). Hence we assume that the OLS DiD estimator based on equation 1 is unbiased, i.e.

E(vigt|αg, δt, Tgt, wigt) = 0 so that E(β̂OLS) = β. (This is ensured in our Monte Carlo

simulations because we generate placebo treatments randomly.)

The problem we seek to address is that the υigt may not be iid within groups. Some of the

variation in υigt may occur at the group-time level, i.e. υigt = εgt+ ξigt. The DiD estimator

is therefore e�ectively attempting to distinguish between the e�ects of a group-time level

treatment and between-group di�erences in the evolution of group-time shocks. In addition,

the group-time shocks may be serially correlated. The net result is both cross-sectional and

serial correlation in within-group shocks. This is highly likely in many DiD applications,

including the primary example used in this paper (and much of the previous literature)

where groups are US states and the outcome of interest is earnings. The challenge, then, is

to quantify accurately the additional uncertainty about β that this causes.

Given the setup described, the computation of β̂OLS from a micro-data regression using

equation 1 is equivalent to a two-step procedure. First, run a regression using the micro-

data of yigt on wigt, and take the mean residual within each group-time cell. Denote these

estimated covariate-adjusted group-time means as Ŷgt.
2 Then, since

Ŷgt = αg + δt + βTgt + εgt + (Ŷgt − Ygt), (2)

β̂OLS can be obtained from a second-stage regression of Ŷgt on group e�ects, time ef-

fects and the (group-time level) treatment indicator. If state-time cell sizes are large, then

estimation error in Ŷgt can essentially be ignored: the composite error term in equation 2 is

approximately equal to εgt, the group-time shock. Equation 2 highlights that, in that case,

the true precision of β̂OLS depends almost entirely on the number of group-time cells rather

than the number of individual-level observations.3

As we explain fully in the next section, we �rst aggregate the data to the state-time level

in this way and ignore any estimation error (i.e. we proceed as though Ŷgt = Ygt). We then

estimate equation 2 and perform inference about β. As the �rst-stage aggregation accounts

for cross-sectional error correlation within states, the key remaining issues for inference are

the fact that the state-time shocks may be serially correlated and that there are a �nite

number of states. A number of methods have been proposed to account for these two issues.

We describe them below, as well as some modest proposals of our own.

2Equivalently, one could include a full set of group-time dummies in this �rst regression (and omit the

constant). The Ŷgt are the estimated coe�cients on those dummies.
3If one is unsure whether this grouped error problem exists, Wooldridge (2006) points out that one could

test for it. If the error term is dropped from equation 2, this imposes a set of (GT-1) restrictions on the data
which can be used to compute a minimum distance estimator of β. One can then test the over-identifying
restrictions. This is asymptotically valid as group-time cell sizes tend to in�nity.
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Standard cluster-robust inference

Our starting point is the standard OLS estimator of the standard error of β̂, comparing the

resulting t-statistic to standard normal critical values. This e�ectively assumes that the εgt

in equation 2 are iid, i.e. it ignores serial correlation.

We then look at several ways of performing inference based on variants of Liang and

Zeger's (1986) cluster-robust standard error (CRSE) estimator. Their formula for a cluster-

robust variance matrix is

V̂CR = (X ′X)−1(

G∑
g=1

Xgugu
′

gX
′

g)(X
′X)−1, (3)

where X is the regressor matrix, Xg is the regressor matrix for group g, and ug is the

vector of regression residuals for group g. This estimator is consistent, and Wald statistics

based on it are asymptotically normal, as G → ∞. But it is biased, and the bias can be

substantial when G is small. Intuitively, model over-�tting means that residuals will tend

to be smaller in magnitude and less correlated within clusters than the true errors, meaning

that CRSEs calculated using equation 3 will tend to be biased downwards. Any small-G bias

is larger when the distribution of regressors is skewed: in the DiD context considered here,

this is when there is an imbalance between the numbers of treatment and control groups

(see Mackinnon and Webb, 2013).

Bias corrections for cluster-robust inference with few clusters

A typical way of attempting to reduce small-G bias (or, under special circumstances, to

eliminate it) is e�ectively to scale up the residuals before plugging them into equation 3. The

default in STATA is to scale by
√

G(N−1)
(G−1)(N−K) , where N is the total number of observations

and k is the number of parameters.4 With large N , this is approximately equivalent to√
G/(G− 1): the additional

√
(N − 1)/(N − k) is a degrees of freedom correction which

makes a negligible di�erence in large samples (for brevity we refer to residuals scaled in this

way simply as
√
G/(G− 1) residuals, but we use the additional

√
(N − 1)/(N − k) degrees

of freedom adjustment so that our results can be taken as an exact test of how STATA's

default performs). This scaling of residuals leads to an unbiased CRSE estimator only

under very special circumstances (see Bell and McCa�rey, 2002) and so should be viewed

generally as a bias-reducing correction. The same applies to a second, data-dependent

scaling of ug proposed in Bell and McCa�rey (2002),5 and extended in Imbens and Kolesár

(2012); Cameron and Miller (2013) investigate the Imbens and Kolesár (2012) adjustment

in a set-up that is very similar to the one in this paper, and they show that the DOF

4When one uses the �vce(cluster clustvar)� option in a regression.
5This minimizes the expected sum of squared di�erences between the scaled residuals and the true errors

in the baseline case where errors are iid.
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adjustment is of minimal importance in balanced DiD designs.

For CRSEs formed using unscaled and
√
G/(G− 1) residuals, we show rejection rates

when comparing the resulting t-statistics against critical values from both a standard normal

and a t distribution with G − 1 degrees of freedom. The former reference distribution is

correct asymptotically as G → ∞, so the implicit assumption when using it is that G is

large enough for the asymptotics to be a reliable guide. The latter is a common small-G

correction, again used by STATA for Wald tests and con�dence intervals. As one expects

with �nite sample methods, in general it does not have an exact theoretical justi�cation.6

However, recent work by Bester et al (2011) provides theoretical justi�cation in certain

small-G settings for the combination of CRSEs using
√
G/(G− 1)-scaled residuals and

tG−1 critical values. Their asymptotics apply as group size tends to in�nity, holding the

number of groups �xed. Despite the familiar result that a CRSE estimator is not consistent

with �xed G, they show that plugging
√
G/(G− 1)-scaled residuals into the CRSE formula

nevertheless produces a covariance matrix which converges to a limiting random variable

under certain conditions. Crucially, the resulting t-statistic turns out to have an asymptotic

tG−1 distribution.7 This result relies on homogeneity requirements, including the need for

regressor matrices to converge to the same limit within each group. This would be violated

in the canonical DiD setup with a binary treatment indicator where some control groups are

never treated.8 But the results we present in the following section suggest that, in practice,

the Bester et al approach extends well (in terms of getting the test size right) to the standard

DiD case.

Bootstraps

With few groups, an alternative to relying on asymptotic results (such as normality of the

t-statistic) or on small sample corrections is to recover the distribution of the test statistic

empirically via a bootstrap. Following Cameron et al (2008), we consider the wild cluster

bootstrap-t procedure.9 Those authors found this to be the best (in terms of test size) of

6Donald and Lang (2007) show that a similar reference distribution - tG−2 - would provide tests of exactly
the right size in the special case where the εgt were normal, homoscedastic and independent (i.e. serially
uncorrelated).

7This result is also robust to violations of the assumption of no inter-cluster correlation, as long as
data are weakly dependent and some regularity conditions are satis�ed. In the context of spatial data where
clusters are geographic regions, this implies robustness to the fact that there will be some clustering between
observations which are spatially close but put into di�erent clusters by the researcher. The intuition is that
cluster size tending to in�nity would mean that most observations per cluster are far from other clusters,
and hence cluster averages will be approximately independent.

8The asymptotic variance of the score also needs to be the same across groups.
9We follow those authors in resampling clusters of residuals obtained from regressions which impose

the null hypothesis, and scaling the resampled residuals by a constant drawn from a 2-point distribution:
1 and -1, each with probability 0.5. See Cameron et al (2008) for full details. We use 199 bootstrap
replications, which is su�cient in this context as bootstrap simulation error will average out across Monte
Carlo replications. We note that, as pointed out recently by Webb (2013), p-values are not point identi�ed
when the number of groups is very small. For example, with G = 6 there are only 2G = 64 potential unique
bootstrap samples and 2G−1 = 32 possible t-statistics (in absolute value).
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a large number of inference techniques in settings with few groups. It outperformed other

bootstrap-based approaches, as well as inference based upon t-statistics formed with CRSEs.

But that paper did not consider the
√
G/(G− 1) residual correction, and it took critical

values from the standard normal distribution, rather than from the t distribution; as we show

in the next section, both of these can be useful small-G modi�cations to standard cluster-

robust inference such that, when implemented in combination, they produce hypothesis tests

of the correct size in most settings.

Modeling the error process using GLS

The �nal approach to dealing with the serial correlation in the group-time shocks is to use

feasible Generalized Least Squares (GLS): this e�ectively exploits knowledge of this feature

of the data to increase e�ciency. A natural way to proceed is to assume an AR(k) process

for the group-time shocks. FGLS can then be implemented by estimating equation 2 using

OLS, as before; estimating the k AR parameters using the OLS regression residuals; using

those estimates to apply the standard GLS linear transformations to the variables entering

equation 2; and estimating the analog of equation 2 on the transformed variables via OLS.

Two issues arise. First, estimates of the AR(k) parameters obtained by regressing OLS

residuals on k lags are inconsistent with T �xed, due to the presence of �xed group e�ects

(Nickell, 1981; Solon, 1984). Hansen (2007) derives a bias correction which is consistent

as G → ∞, and develops the asymptotic properties of a FGLS estimator which uses it.

But this correction may not work well with small G. Second, one may be worried about

mis-speci�cation of the error process.

However, neither of these issues a�ect the unbiasedness or consistency of the FGLS

estimator. And it is likely that FGLS would still be more e�cient than OLS: a weighting

matrix based on an incorrect parametrization of the serial correlation process will often still

be closer to the optimal GLS weighting matrix than the identity matrix used by standard

OLS.

On the other hand, test size will generally be compromised, because the ordinary formula

for the FGLS standard error depends upon the weighting matrix. But robust inference

may o�er a way to control test size. As noted more generally by Wooldridge (2006), the

combination of FGLS estimation and robust inference is used relatively little in practice,

but will often be a sensible way of realizing e�ciency gains without compromising test size.

One simply plugs the FGLS residuals, rather than OLS residuals, into the formula for a

cluster-robust variance matrix.

Hansen (2007) considers this approach in the context of his FGLS procedure using bias-

corrected estimates of the AR(k) parameters underlying the group-time error process, for

the case where G = 50. The prevailing view is that the limitation of using cluster-robust

inference is that its validity depends on having lots of groups. But one of the contributions
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of this paper is to show that simple modi�cations to standard cluster-robust inference enable

test size to be controlled, even with few groups. This suggests that it may be possible -

and indeed straightforward - to use FGLS to improve power in DiD, whilst maintaining

correctly sized tests, in a way that is robust to mis-speci�cation (or mis-estimation) of the

error process, even with a small number of groups. Our simulations con�rm this.

3 Experimental design

We follow Bertrand et al (2004), Cameron et al (2008) and Hansen (2007) in using data

on women aged 25 to 50 in their fourth interview month in the Merged Outgoing Rotation

Group of the Current Population Survey. Our data include all 50 US states and the period

1979 to 2008 inclusive (i.e. G = 50 and T = 30). We focus primarily on log(earnings) as

the dependent variable. We also consider the case where a binary employment indicator

is the dependent variable in a linear probability model.10 This covers the two most com-

mon outcomes of interest in DiD studies, according to a survey of the applied literature in

Bertrand at al (2004). Our control variables are a quartic in age. As in the aforementioned

papers, we �rst aggregate the data to the state-time level in the way just described and

ignore any estimation error from this procedure (i.e. we proceed as though Ŷgt = Ygt).
11

We then estimate equation 2. As the �rst-stage aggregation accounts for cross-sectional

error correlation within states, the key remaining issues for inference are the fact that the

state-time shocks may be serially correlated and that there are a �nite number of states.12

In our �rst set of Monte Carlo simulations, we repeatedly resample states with replace-

ment from the CPS data and randomly choose half of the states to be `treated'.1314 For

all treated states in each Monte Carlo replication, the placebo treatment is applied in the

10This gives us samples based upon the 750,127 women with strictly positive earnings and the 1,170,522
women with non-missing employment status respectively.

11Given large state-time cell sizes, aggregation should average out the individual-level shock component
precisely. Mean cell sizes are 500 and 780 when the dependent variables are log(earnings) and employment
status respectively.

12We recommend the �rst-step aggregation not only to make the estimation simpler computationally. We
�nd that, even with moderate numbers of groups, test size can not be reliably controlled if one attempts
to conduct cluster-robust inference straight from the micro-data (i.e. if one tries to account for all cross-
sectional and serial correlation in within-group errors in a single step). This issue was also evident in the
results of Cameron et al (2008) and is noted in Hansen (2007).

13In treating exactly half of the states, we follow the main approach in Bertrand et al (2004) and Cameron
et al (2008). This is the most favorable possible choice in terms of the resulting precision of treatment e�ect
estimates, as it maximizes between-group variation in treatment status.

14In the particular example we use here where groups are geographical units, the assumption of no inter-
group error correlation is not likely to be reasonable close to the groups' boundaries. This is an advantage of
generating placebo treatments randomly in the experiment: Barrios et al (2012) show that, as long as there
is no cross-cluster spatial correlation in treatment status, correct test size is robust to some correlation in
the error terms across clusters, as long as the data are weakly dependent so that error correlation decays
with distance. Hence, we will not be confusing the impacts on test size of inadequately accounting for
grouped errors with the impacts of (incorrectly) assuming that the earnings shocks of people in geographical
proximity but in di�erent states are independent.
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same randomly chosen year and in all subsequent years.15 We estimate the `e�ect' of this

placebo treatment by estimating equation 2. We initially use OLS, and later feasible GLS,

for estimation. Our interest lies in the performance of di�erent methods for performing

inference about β, both in terms of type 1 and type 2 error (i.e. test size and power to

detect real e�ects). To examine the e�ects of having di�ering numbers of groups, we run

variants where we resample 50, 20, 10 and 6 states.

We �rst report how often the null hypothesis of no treatment e�ect is rejected using tests

of nominal size 0.05 when using di�erent inference methods. We show that tests of correct

size can be achieved, even with as few as six groups, by forming a t-statistic using a simple

variant of Liang and Zeger's (1986) cluster-robust standard error estimator and comparing

it to critical values from a tG−1 distribution.

We check the robustness of this result in two ways. First, we repeat the same Monte

Carlo experiment but use simulated state-time shocks rather than those from the CPS,

allowing them to evolve according to an AR(1) process where we vary both the amount of

serial correlation and the degree of non-normality in the white noise. Second, we vary the

fraction of groups that are treated, to explore robustness to unbalanced designs.

We then look at power by reporting how often the null of no e�ect is rejected when there

are real treatment e�ects of various sizes, when using correctly sized tests. And we compute

minimum detectable e�ects (MDEs) as �rst de�ned in Bloom (1995): the smallest e�ects

that would lead to a rejection of the null hypothesis (of no e�ect) with given probabilities.

To do this, we use the same Monte Carlo procedures as described above to simulate the

distribution of the t-statistic under the null hypothesis.16 For power of x%, the MDE

depends only on the (100-x)th centile of this distribution, the critical values from the tG−1

distribution, and the standard error (see later). We therefore recover the entire relationship

between power and MDEs. We do this for DiD designs with varying numbers of groups.

Finally, we show how power can be improved by using FGLS rather than OLS estimation.

We rerun the Monte Carlo simulations, this time implementing FGLS (rather than OLS).

We assume an AR(2) process for the group-time shocks. We estimate the 2 AR parameters

in two ways. First, we simply regress the residuals from OLS estimation of equation 2 on

two lags. With �xed T and �xed group e�ects, this produces inconsistent estimates of the

AR parameters. Second, we apply to these estimates the bias correction derived by Hansen

(2007). This correction is consistent as G goes to in�nity. We label these �FGLS� and

�BC-FGLS� respectively. In both cases, we explore what happens when the estimator is

used with and without cluster-robust inference. We use the cluster-robust technique that

we have shown to work well even when G is small: using CRSEs with
√
G/(G− 1) residuals

and tG−1 critical values.

15The treatment year is chosen from a uniform distribution between 1988 and 2002.
16This is necessary because, with few clusters, the t-statistic generally has an unknown distribution.
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4 Results

4.1 Rejection rates when the null is true

Table 1 contains results from our �rst Monte Carlo simulations, using the CPS log(earnings)

data. It shows the rate with which the null of no e�ect is rejected when generating placebo

treatments, estimating equation 2 by OLS, and using methods to perform inference about β.

All hypothesis tests are of nominal size 0.05. Hence, rejection rates that deviate signi�cantly

from 0.05 indicate incorrect test size. We use 5000 replications. Simulation standard errors

are shown in parentheses. The standard error for an estimated rejection rate r̂ is se(r̂) =√
r̂(1− r̂)/4999.
The �rst row of table 1 shows the rejection rates obtained assuming iid errors, i.e. by

simply forming a t-statistic using the OLS standard error and comparing to standard normal

critical values. Rejection rates exceed 40%, more than eight times the nominal test size.

This essentially replicates the result in Bertrand et al (2004).

Forming CRSEs using unscaled OLS residuals and comparing the resulting t-statistic to

standard normal critical values results in rejection rates that are too high, particularly with

small G. Using tG−1 rather than the standard normal as the reference distribution is enough

to achieve approximately the correct test size when G ≥ 20, but not with 6 or 10 groups.

The
√
G/(G− 1) residual correction, combined with tG−1 critical values, achieves a

test size that deviates by less than 1 percentage point from the nominal test size when G

ranges between 6 and 50. The same residual correction combined with standard normal

critical values also works well for moderate G but, as expected, these critical values result

in over-rejection when G is small.

The �nal row of table 1 shows rejection rates obtained using the wild cluster bootstrap-t

procedure. We essentially replicate previous �ndings: it also performs very well relative to

most tested alternatives.

In summary, table 1 suggests that tests of the correct size can be obtained using very

straightforward methods even with very few groups. In particular, this is achieved by com-

puting a t-statistic with CRSEs that use residuals scaled by
√

G(N−1)
(G−1)(N−K) ≈

√
G/(G− 1)

, and using critical values from a t distribution with (G − 1) degrees of freedom. This is

trivial to implement with statistical software. In fact, if one uses a cluster-robust variance

matrix in STATA by specifying the �vce(cluster clustvar)� option, the con�dence intervals

and p-values returned are based upon precisely this procedure by default.17

In table 2 we present results from an analogous set of Monte Carlo simulations using

employment status rather than earnings as the dependent variable.18 The performance of

di�erent inference methods in data containing varying numbers of groups is essentially the

17This is true at the time of writing (STATA version 12.1) and has been the case since at least STATA 6.
18Given that we collapse the data to the state-time level in a �rst stage, this means that Ygt now represents

state-time employment rates rather than mean state-time earnings.
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same as in Table 1. In particular, CRSEs formed using the
√
G/(G− 1) residual correc-

tion combined with tG−1 critical values perform best, with rejection rates always within 1

percentage point of the nominal test size. Again, the wild cluster bootstrap-t also performs

well relative to most alternatives.

Table 1: Rejection rates for tests of nominal 5% size with placebo treatments in log-earnings
data

G=50 G=20 G=10 G=6
Assume iid 0.429 0.424 0.422 0.413

(0.007) (0.007) (0.007) (0.007)

CRSE, N(0,1) critical values 0.059 0.073 0.110 0.175
(0.003) (0.004) (0.004) (0.005)

CRSE, t(G-1) critical values 0.053 0.056 0.066 0.095
(0.003) (0.003) (0.004) (0.004)√

G/(G− 1) residuals, N(0,1) critical values 0.049 0.056 0.071 0.113
(0.003) (0.003) (0.004) (0.004)√

G/(G− 1) residuals, t(G-1) critical values 0.045 0.041 0.042 0.052
(0.003) (0.003) (0.003) (0.003)

Wild cluster bootstrap-t 0.044 0.041 0.048 0.059
(0.003) (0.003) (0.003) (0.003)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of zero. G is the number of sampled states. Data from 1979 to 2008
inclusive are sampled (i.e. T = 30). Regressions are run on aggregated state-year data.
The di�erent inference methods used are discussed in the text.

We have shown so far that our conclusions apply both when the outcome of interest is

earnings and when it is a binary employment status indicator. But one might still worry

about the generality of these �ndings. We now explore two variants of the experiment:

unbalanced designs where the numbers of treatment and control groups are not equal; and

experiments where the error terms are simulated from various data generating processes

rather than from the CPS data.

Variant 1: unbalanced designs

The accuracy of robust variance matrix estimators in �nite samples depends on the skewness

of the distribution of regressors as well as sample size (as illustrated in Monte Carlo work
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Table 2: Rejection rates for tests of nominal 5% size with placebo treatments in employment
data

G=50 G=20 G=10 G=6
Assume iid 0.376 0.360 0.378 0.364

(0.007) (0.007) (0.007) (0.007)

CRSE, N(0,1) critical values 0.062 0.076 0.119 0.184
(0.003) (0.004) (0.005) (0.005)

CRSE, t(G-1) critical values 0.056 0.059 0.078 0.097
(0.003) (0.003) (0.004) (0.004)√

G/(G− 1) residuals, N(0,1) critical values 0.052 0.058 0.085 0.114
(0.003) (0.003) (0.004) (0.004)√

G/(G− 1) residuals, t(G-1) critical values 0.046 0.044 0.056 0.058
(0.003) (0.003) (0.003) (0.003)

Wild cluster bootstrap-t 0.048 0.039 0.056 0.064
(0.003) (0.003) (0.003) (0.003)

Notes as for Table 1.

by Imbens and Kolesár, 2012). With cluster-robust standard errors in the DiD context

considered here, a researcher should pay attention not only to the number of groups but

also to whether treatment status is skewed, i.e. whether the number of treated groups is

similar to the number of controls.

With unbalanced designs, inference based on cluster-robust standard errors should pro-

duce tests of correct size less reliably than when the numbers of treatment and control

groups are equal (as in the Monte Carlo experiments up to now). This has been illustrated

recently by Mackinnon and Webb (2013). Scaling the residuals that are plugged into the

standard CRSE formula by
√
G/(G− 1) (and using a tG−1 reference distribution) may not

be a su�cient small-G correction in the presence of this imbalance.

Tables 3 and 4 repeat the simulations presented in Table 1 but with varying degrees

of imbalance, for the cases with 10 and 50 groups respectively. G1 denotes the number

of treated groups. The �rst columns repeat the results for the balanced designs shown in

Table 1, and subsequent columns reduce the number of treated groups. When G = 10, the

simple method that works well under a wide a wide range of balanced designs - using CRSEs

with
√
G/(G− 1) -scaled residuals and a tG−1 reference distribution - continues to achieve

correct test size with G1 = 4, but over-rejects a little when G1 drops to 3, and more severely

when it drops to 2. The wild cluster bootstrap-t continues to work well with G1 = 3 but

also performs poorly with G1 = 2 (with signi�cant under -rejection). When G = 50, both
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methods continue to produce tests of the close to the right size when G1 drops as low as 10.

With G1 = 5 the bootstrap is needed to conduct approximately accurate inference, while

the simpler method over-rejects.

In summary these simulations con�rm that, if the imbalance between treatment and

control groups is large enough, using CRSEs with
√
G/(G− 1) -scaled residuals and a tG−1

reference distribution can lead to over-rejection. But as emphasised in Mackinnon and Webb

(2013), the wild cluster bootstrap-t is relatively robust in this regard. Hence, although a

slightly less trivial procedure is necessary to get test size right with very unbalanced designs,

it can be done even with few groups.19

Table 3: Rejection rates for tests of nominal 5% size with placebo treatments in log-earnings
data with 10 groups

G1 = 5 G1 = 4 G1 = 3 G1 = 2
Assume iid 0.422 0.408 0.409 0.405

(0.007) (0.007) (0.007) (0.007)

CRSE, N(0,1) critical values 0.110 0.125 0.150 0.241
(0.004) (0.005) (0.005) (0.006)

CRSE, t(G-1) critical values 0.066 0.079 0.105 0.191
(0.004) (0.004) (0.004) (0.006)√

G/(G− 1) residuals, N(0,1) critical values 0.071 0.084 0.113 0.199
(0.004) (0.004) (0.004) (0.006)√

G/(G− 1) residuals, t(G-1) critical values 0.042 0.051 0.074 0.150
(0.003) (0.003) (0.004) (0.005)

Wild cluster bootstrap-t 0.048 0.054 0.052 0.018
(0.003) (0.003) (0.003) (0.002)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of zero. G1 denotes the number of groups that are treated. Data from 1979
to 2008 inclusive are sampled (i.e. T = 30). Regressions are run on aggregated state-year
data. The di�erent inference methods used are discussed in the text.

19For the extreme case - not considered here - where there is just one treated group, see Conley and Tabler
(2011). They develop a method for inference which is valid in this design when there are lots of control
groups.
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Table 4: Rejection rates for tests of nominal 5% size with placebo treatments in log-earnings
data with 50 groups

G1 = 25 G1 = 15 G1 = 10 G1 = 5
Assume iid 0.429 0.418 0.425 0.413

(0.007) (0.007) (0.007) (0.007)

CRSE, N(0,1) critical values 0.059 0.067 0.077 0.136
(0.003) (0.004) (0.004) (0.005)

CRSE, t(G-1) critical values 0.053 0.060 0.068 0.128
(0.003) (0.003) (0.004) (0.005)√

G/(G− 1) residuals, N(0,1) critical values 0.049 0.058 0.065 0.126
(0.003) (0.003) (0.003) (0.005)√

G/(G− 1) residuals, t(G-1) critical values 0.045 0.052 0.060 0.119
(0.003) (0.003) (0.003) (0.005)

Wild cluster bootstrap-t 0.044 0.051 0.046 0.060
(0.003) (0.003) (0.003) (0.003)

Notes as for Table 3.

Variant 2: alternative data generating processes

We now conduct our Monte Carlo experiments using simulated data (returning to a balanced

design). The earnings generating process still conforms with equation 2, but we now simulate

the state-time shocks ourselves. In doing so we vary their degree of serial correlation and

non-normality. The state-time shocks for each state evolve according to the AR(1) process

εgt = ρεg,t−1 +

√
0.004(1− 0.42)(d− 2)

d
ωgt, t = 2, ..., 30

εg1 =

√
0.004d

d− 2
ωg1,

where ωgt is iid across groups and time and is drawn from a t distribution with d degrees

of freedom. To control the degree of non-normality in the white noise, we vary d between 4

(very high non-normality) and 120 (at which point the t distribution is essentially standard

normal). To control the degree of serial correlation, we vary ρ. We also examine a scenario

in which the data generating process is heterogeneous, by drawing ρ separately for each

state from a uniform distribution between 0 and 1. The scaling applied to ωgt ensures that,
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when ρ = 0.4, the variance of εgt is equal to 0.004 - approximately the empirical variance

of the residuals in the CPS data. This means that the degree of serial correlation is allowed

to a�ect the stationary variance of εgt, but the distribution of the white noise is not. We

generate the initial condition (εg1) such that its variance matches the stationary variance

of state-time shocks in other time periods.

In each Monte Carlo replication, we �rst resample states with replacement from the CPS

data and randomly choose treated states and the year in which the placebo treatment begins,

just as before. We then regress Ygt on state and year �xed e�ects only. For each state-time

combination, we simulate the outcome variable by summing the relevant (estimated) state

e�ect, the relevant (estimated) year e�ect, and the random state-year shock generated as

above. We then estimate the DiD model using the transformed outcome and conduct the

hypothesis test on β. We use 10,000 replications.

Tables 5 to 8 report rejection rates for various combinations of ρ and d, when varying

the number of groups between 50 and 6. They show that our �nding is robust to a very

wide range of error processes. Rejection rates remain within about a percentage point of

the nominal test size under all of the tested combinations of degrees of serial correlation,

non-normality in the white noise, and number of groups.

4.2 Power to detect real e�ects

Our �ndings in the previous section indicate that controlling test size need not be a major

concern in DiD designs. However, we now show that power to detect real treatment e�ects

with tests of correct size can be extremely low.

Rejection rates in table 9 indicate power to detect treatment e�ects on earnings of

approximately 2% (precisely, 0.02 log-points), 5%, 10% and 15%. This is based upon the

same Monte Carlo replications as table 1, except we transform the dependent variable: for

example, to look at power to detect a 5% e�ect we add 0.05Tgt to Ygt.

We focus on the two methods that we have shown to produce approximately correctly

sized hypothesis tests even when the number of groups is small: the
√
G/(G− 1) residual

scaling combined with tG−1 critical values, and the wild cluster bootstrap-t. Nevertheless,

to ensure that we are comparing the power of hypothesis tests which have exactly the same

size, we adopt the useful procedure suggested by Davidson and Mackinnon (1998). The

nominal signi�cance level used to determine whether to reject the null hypothesis is that

which gives a test of true size 0.05. This nominal signi�cance level is obtained from the 5th

percentile of the empirical distribution of p-values from Monte Carlo simulations under a

true null (i.e. the simulations underlying the results in table 1). As the results in Table 1

suggest, for both of these methods this is a number very close (but not generally identical)

to 0.05. All results reported in Table 9 use this 'size-adjusted' measure of power.

The results indicate that power is a serious issue in these designs. A 2% e�ect would be
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Table 5: Rejection rates for tests of nominal 5% size using
√
G/(G− 1)-CRSEs and tG−1

critical values with 50 groups (simulated data)

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=4 0.041 0.045 0.047 0.048 0.048 0.044

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.049 0.045 0.046 0.044 0.046 0.043
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.043 0.047 0.047 0.046 0.046 0.049
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.046 0.047 0.047 0.048 0.049 0.045
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 10000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of zero. Data from 1979 to 2008 inclusive are sampled (i.e. T = 30).
Regressions are run on aggregated state-year data. Simulated log-earnings are generated
by e�ectively replacing the empirical regression residuals with a simulated error term
generated according to an AR(1) process. Each cell in the table represents a di�erent
AR(1) process. ρ denotes the AR(1) parameter. In the �nal column the AR(1) parameter
is drawn separately for each group, from a uniform distribution between 0 and 1. d
denotes the degrees of freedom of the scaled t distribution from which the white noise is
drawn (hence it controls the degree of non-normality). See text for full details.

Table 6: Rejection rates for tests of nominal 5% size using
√
G/(G− 1)-CRSEs and tG−1

critical values with 20 groups (simulated data)

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=4 0.048 0.047 0.049 0.045 0.045 0.050

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.049 0.045 0.050 0.044 0.047 0.047
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.049 0.048 0.050 0.050 0.044 0.047
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.049 0.043 0.049 0.044 0.046 0.048
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Notes as for Table 5.
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Table 7: Rejection rates for tests of nominal 5% size using
√
G/(G− 1)-CRSEs and tG−1

critical values with 10 groups (simulated data)

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=4 0.054 0.052 0.049 0.051 0.056 0.053

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.051 0.050 0.050 0.049 0.049 0.051
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.053 0.050 0.050 0.047 0.053 0.053
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.052 0.051 0.053 0.053 0.054 0.055
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Notes as for Table 5.

Table 8: Rejection rates for tests of nominal 5% size using
√
G/(G− 1)-CRSEs and tG−1

critical values with 6 groups (simulated data)

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=4 0.056 0.064 0.063 0.057 0.060 0.061

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.061 0.062 0.064 0.060 0.061 0.060
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.062 0.063 0.061 0.064 0.064 0.064
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.060 0.067 0.065 0.063 0.063 0.060
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Notes as for Table 5.
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detected with a probability of less than 1 in 4, even with data from all 50 US states. To

detect a 5% e�ect with a probability of about 80% - a conventional benchmark for power

- one would need data on all 50 US states. Power declines much further with G. With 6

states, a researcher would have less than a 50-50 chance of detecting even a 10% e�ect, a

17% chance of detecting a 5% e�ect, and a 7% chance of detecting a 2% e�ect (power barely

greater than the size of the test). In other words, it is unlikely that one would detect e�ects

of a typically realistic magnitude using a correctly sized test, and highly unlikely when the

number of groups is small.

A comparison of the two inference methods suggests that their power is similar for

all combinations of number of groups and size of treatment e�ect. If anything, the simpler√
G/(G− 1) residual scaling combined with tG−1 critical values tends to have slightly higher

size-adjusted power than the wild cluster bootstrap-t.

Figures 1 and 2 document power more comprehensively by showing the minimum e�ects

that would be detected (i.e. that would lead to a rejection of the null of no e�ect) with given

probabilities - a way of assessing statistical power �rst outlined by Bloom (1995). We vary

power between 1% and 99% and compute the minimum detectable e�ects (MDEs) in each

case. We continue just with the hypothesis test that uses CRSEs with
√
G/(G− 1)-scaled

residuals and tG−1 critical values.

For a given level of power, x, the MDE is

MDE(x) =
ˆ

se(β̂)
[
cu − pt1−x

]
, (4)

where
ˆ

se(β̂) is the
√
G/(G− 1)-corrected CRSE estimate, cu is the upper critical value

(the 97.5th percentile of the tG−1 distribution), and pt1−x is the (1− x)th percentile of the

t-statistic under the null hypothesis of no treatment e�ect.

We proceed with the same Monte Carlo design underlying the results in Table 1. Monte

Carlo replications provide us with an estimate of the distribution of the t-statistic under

the null. They also provide repeated estimates of the
√
G/(G− 1)-corrected CRSE: we

plug each of those estimates into equation 4 in turn, and take the average. Due to the low

computational intensity of this approach, we are able to use 100,000 Monte Carlo replications

so that simulation error is negligible. We use equation 4 to compute MDEs for power ranging

from 1% to 99%.

Figure 1 plots MDEs against power when the number of groups is 50, 20, 10 and 6. With

earnings data on the entire US population (50 states), one would need a treatment e�ect of

about 3.5% to have even a 50-50 chance of detecting it. With a sample from 6 US states - by

no means an extreme example in the applied DiD literature - the MDE on earnings is about

16% for 80% power and 11% for 50% power. Figure 2 shows the analagous results using a

binary employment indicator as the dependent variable. This leads to similar conclusions.

For 80% power, the MDE on the employment rate with data from all 50 states is about 2
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Table 9: Rejection rates for tests of true 5% size with di�erent treatment e�ects (β) in
log-earnings data

G=50 G=20 G=10 G=6

β = 0.02:
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.238 0.134 0.088 0.074

(0.006) (0.005) (0.004) (0.004)

β = 0.02: wild cluster bootstrap-t 0.225 0.125 0.093 0.074
(0.006) (0.005) (0.004) (0.004)

β = 0.05:
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.822 0.513 0.273 0.168

(0.005) (0.007) (0.006) (0.005)

β = 0.05: wild cluster bootstrap-t 0.799 0.490 0.283 0.167
(0.006) (0.007) (0.006) (0.005)

β = 0.10:
√
G/(G− 1)-CRSEs, t(G-1) critical values 1.000 0.919 0.718 0.448

(0.000) (0.004) (0.006) (0.007)

β = 0.10: wild cluster bootstrap-t 0.999 0.898 0.712 0.429
(0.000) (0.004) (0.006) (0.007)

β = 0.15:
√
G/(G− 1)-CRSEs, t(G-1) critical values 1.000 0.995 0.904 0.755

(.) (0.001) (0.004) (0.006)

β = 0.15: wild cluster bootstrap-t 1.000 0.992 0.896 0.700
(.) (0.001) (0.004) (0.006)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample states from CPS-MORG data, having imposed the
sampling restrictions described in the text. β is the true value of the treatment parameter.
G is the number of sampled states. Data from 1979 to 2008 inclusive are sampled (i.e. T
= 30). Regressions are run on aggregated state-year data. The inference methods used are
discussed in the text. We adjust for test size when making power comparisons using the
procedure outlined by Davidson and Mackinnon (1998). See text for details.
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percentage points, rising to 6.5 percentage points with 6 states.20

4.3 Increasing power with feasible GLS

The previous subsection argued that lack of power is a key problem in typical DiD designs.

This suggests that there may be large gains from e�orts to improve the e�ciency of estima-

tion. The serial correlation problem inherent in a typical DiD study also suggests one way

to go about this: exploit knowledge of this feature of the data using feasible GLS. Here we

implement the FGLS estimation procedure suggested by Hansen (2007), with and without

the straightforward robust inference procedure that we have shown to produce correctly

sized tests even with few groups (see Section 2 for details). We show that, in combination

with our recommended robust inference technique, FGLS can improve power considerably

whilst maintaining correctly sized tests, in a way that is robust to mis-speci�cation (or

mis-estimation) of the error process, even with few groups.

Table 10 shows rejection rates under a true null hypothesis (no treatment e�ect). The

�rst row reiterates the good size properties of OLS estimation combined with CRSEs that

use
√
G/(G− 1)-scaled residuals and tG−1 critical values (i.e. it repeats row four of Table 1).

The second row shows that FGLS without the bias correction and without robust inference

gives tests at least double the nominal size. Note, however, that even this size distortion is

considerably smaller than with OLS without robust inference. Hansen's bias correction for

the estimated parameters of the AR process reduces this size distortion, though still returns

rejection rates greater than the nominal test size without robust inference (fourth row),

particularly when G is small. This is what we would expect, because the bias correction is

consistent as G→∞. But, as with OLS, the size of the test can be controlled using robust

inference, even with few groups, using the methods described earlier in this paper: when

doing this, the rejection rate remains within about 1 percentage point of the nominal test

size. This is true both for FGLS and BC-FGLS (third and �fth rows).

Table 11 turns attention to power, showing rejection rates when there is a 5% treatment

e�ect on earnings. Again, the �rst row reiterates the earlier �nding that OLS estimation

combined with a correctly sized test provides low power (i.e. it repeats row four of Table

??), particularly with few groups . As Hansen (2007) showed in the case where G = 50,

the FGLS procedures deliver substantial improvements in power. Combined with robust

inference which delivers the correct test size, BC-FGLS detects the treatment e�ect with

96% probability, whereas OLS detects it with 80% probability. Table 11 shows that FGLS

also delivers very substantial proportionate power gains relative to OLS with smaller G:

with G = 6, power is 18% using OLS and 29% using FGLS. Using Hansen's bias correction

delivers a little more power than `ordinary' FGLS.

Figure 3 illustrates the power gains more comprehensively, plotting MDEs against power

20The baseline employment rate in the sample is 67%.
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Figure 1: Minimum detectable e�ects on log-earnings using
√
G/(G− 1)-CRSEs and tG−1

critical values and tests of size 0.05

The Figure shows the proportion of the time that the null hypothesis of no treatment
e�ect is rejected when the treatment parameter has a true coe�cient ranging from 0 to
0.3. Numbers are computed using the results of 100000 Monte Carlo simulations combined
with equation 4, as described in the text. The simulations resample states from
CPS-MORG data, having imposed the sampling restrictions described in the text. Data
from 1979 to 2008 inclusive are sampled (i.e. T = 30). Regressions are run on aggregated
state-year data.
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Figure 2: Minimum detectable e�ects on employment rates using
√
G/(G− 1)-CRSEs and

tG−1 critical values and tests of size 0.05

The Figure shows the proportion of the time that the null hypothesis of no treatment
e�ect is rejected when the treatment parameter has a true coe�cient ranging from 0 to
0.15. Numbers are computed using the results of 100000 Monte Carlo simulations
combined with equation 4, as described in the text. The simulations resample states from
CPS-MORG data, having imposed the sampling restrictions described in the text. Data
from 1979 to 2008 inclusive are sampled (i.e. T = 30). Regressions are run on aggregated
state-year data.
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and comparing the results for OLS and BC-FGLS estimation with varying numbers of groups

(always combined with cluster-robust inference, so that test size is correct). The power gains

from BC-FGLS are substantial.

Tables 12 and 13 and Figure 4 repeat this analysis for the case where the outcome of

interest is a binary employment status indicator. This con�rms that these conclusions all

hold in that case: FGLS delivers substantial power gains over OLS, and this can be done

whilst controlling test size, even with few groups.

We now further explore the robustness of these results to di�erent data settings. Of

particular interest are cases where the parametric assumptions about the serial correlation

process inherent in the FGLS procedure are incorrect. In such cases, can test size still be

reliably controlled (even with few groups), and what power gains (if any) can FGLS o�er?

We continue to use FGLS estimation based on the assumption of an AR(2) process for

the state-time shocks which is the same for all states. We explore its properties under two

forms of mis-speci�cation of the error process. First, we simulate an AR(2) process which is

heterogeneous across states. Second, we simulate an MA(1) process with parameter 0.5.21

In each case, we e�ectively replace the empirical log-earnings residuals in the CPS (from a

regression of state-year earnings on state and year �xed e�ects) with our simulated error

terms, as in the robustness checks underlying tables 5 to 8.

Table 14 shows the results of these simulations under the null hypothesis of no treatment

e�ect using tests of nominal size 0.05, for the case where G = 10. The �rst column re-iterates

the rate at which the null hypothesis is rejected when using the empirical CPS error process

(i.e. it repeats column 3 of table 10). The next two columns report the same statistics under

the simulated error processes described above. The results show that the previous results

on test size hold under these alternative processes: without robust inference, Hansen's bias

correction for the AR parameter estimates brings true test size closer to the nominal size

when using FGLS estimation (although there is still some over-rejection); but test size can

be controlled reliably using our suggested robust inference technique, whether estimation is

carried out using OLS, FGLS or BC-FGLS.22

Table 15 reports power to detect a treatment e�ect of 0.05 log-points on earnings, again

for the case where G = 10.23 The second column shows that, using correctly sized hypothesis

21For the heterogeneous AR(2) process, the coe�cient on the �rst lag (αg
1) is drawn from a uniform

distribution between zero and one for each state. The coe�cient on the second lag is set equal to 0.5 ∗
min(αg

1, 1− αg
1), which ensures stationarity. For both the heterogeneous AR(2) and (homogeneous) MA(1)

processes, the white noise in the process is normally distributed. Its variance is chosen so that the stationary
variance of the simulated error term matches the empirical variance of the log-earnings residuals in the CPS
(0.04).

22We showed in Section 4.1 that this inference technique is not reliable if there is a large imbalance between
the numbers of treatment and control groups; but that the wild cluster boostrap-t procedure is relatively
robust in such settings. FGLS estimation combined with bootstrap-based inference would be a sensible
alternative in those situations.

23We have also conducted this analysis with G = 50. Conclusions are qualitatively the same, although of
course the power of all procedures is higher with more groups.
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tests (i.e. those that use our suggested robust inference technique), FGLS estimation does

o�er substantial power gains over OLS even when based upon the incorrect assumption

that the AR(2) error process is homogeneous across states.24The third column shows that,

where the true error process is MA(1) rather than AR(2), there is no power gain from

FGLS. Intuitively this makes sense: where the parametric assumptions about the serial

correlation in the error terms are a very poor approximation to the true process, FGLS does

not o�er e�ciency gains; where the assumptions are a better approximation, FGLS does

o�er e�ciency gains over the OLS estimator, which does not exploit any knowledge of the

nature of the error process.

Finally, we show how these results vary with the number of time periods available. This is

an important dimension to explore, because we would expect the gains from modeling serial

correlation to be more signi�cant when T is large. Tables 16 and 17 repeat the simulations

with G = 10 using CPS log-earnings as the outcome variable in cases where T = 20 and

T = 10. This shows that test size can still be controlled using our recommended robust

inference approach with few time periods, whether estimation is based on OLS or FGLS. It

also shows, however, that the power gains from FGLS diminish with T, and with T = 10 the

power of OLS and FGLS (when combined with inference which provides a correctly sized

test) are essentially the same.

An interesting feature of Table 17 is that with OLS and robust inference, power actually

declines with T.25 Further inspection of the underlying simulations suggests that there is a

genuine increase in the precision of OLS estimation as T falls: the estimated policy e�ects

become more tightly distributed around their true value.

The reason why this is possible in this context is as follows.26 DiD regressions e�ectively

estimate the di�erence in mean outcomes between post-treatment periods and pre-treatment

periods (and then compare these di�erences across treatment and control groups). The

variance of this di�erence is decreasing in the covariance between the error terms pre and

post treatment (intuitively, if error terms pre and post treatment covaried perfectly then

they would not add any noise to the di�erence between pre and post treatment outcomes

because they would cancel out). If serial correlation between observations decays with time,

then the error term from an additional time period pre (post) treatment will covary less

strongly with error terms in the post (pre) treatment period than the error terms already

present. Hence the `covariance e�ect' acts to increase the variance of the DiD estimate of

the treatment e�ect when you add another time period to the data. On the other hand,

of course, the variance is also increasing in the variance of the average error terms both

24We also re-ran the earlier robustness checks where state-time earnings shocks evolve according to an
AR(1) process, with varying degrees of serial correlation and varying degrees of non-normality in the white
noise. The same qualitative conclusions about the size and power of FGLS and OLS combined with robust
inference continued to hold. These results are available from the authors on request.

25The same qualitative result is reported without comment in Tables 3 to 5 of Hansen (2007).
26We are extremely grateful to Joao Santos Silva for pointing out this mechanism to us.
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pre and post treatment, and adding more time periods will reduce this variance. But this

reduction will be small if serial correlation is high, and hence it can be dominated by the

covariance e�ect.

An additional lesson, then, is that researchers who use OLS to perform DiD estimation

should be very cautious about blindly using as many time periods as possible. With serially

correlated error terms, this can result in a reduction in power. This issue does not arise with

FGLS, which e�ectively transforms the data in a way that removes the serial correlation

from the error terms.

In summary, as long as the number of time periods is not too small (approximately 10

or less), FGLS combined with robust inference is likely to o�er substantial power gains; and

even if it does not - because the error process is badly mis-speci�ed - test size can still be

reliably controlled, even with few groups. We therefore recommend this approach is used

more routinely by applied researchers doing DiD estimation.

Table 10: Rejection rates for tests of nominal 5% size with placebo treatments in log-earnings
data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.045 0.041 0.042 0.052

(0.003) (0.003) (0.003) (0.003)

FGLS 0.106 0.101 0.120 0.124
(0.004) (0.004) (0.005) (0.005)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.049 0.045 0.054 0.061

(0.003) (0.003) (0.003) (0.003)

BC-FGLS 0.073 0.070 0.087 0.096
(0.004) (0.004) (0.004) (0.004)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.049 0.045 0.058 0.065

(0.003) (0.003) (0.003) (0.003)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of zero. G is the number of sampled states. Data from 1979 to 2008
inclusive are sampled (i.e. T = 30). Regressions are run on aggregated state-year data.
The di�erent inference methods used are discussed in the text.
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Table 11: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.05 in
log-earnings data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.810 0.467 0.252 0.168

(0.006) (0.007) (0.006) (0.005)

FGLS 0.985 0.799 0.573 0.434
(0.002) (0.006) (0.007) (0.007)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.957 0.670 0.401 0.255

(0.003) (0.007) (0.007) (0.006)

BC-FGLS 0.978 0.763 0.513 0.384
(0.002) (0.006) (0.007) (0.007)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.955 0.696 0.423 0.286

(0.003) (0.007) (0.007) (0.006)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of +0.05. G is the number of sampled states. Data from 1979 to 2008
inclusive are sampled (i.e. T = 30). Regressions are run on aggregated state-year data.
The di�erent inference methods used are discussed in the text.

Table 12: Rejection rates for tests of nominal 5% size with placebo treatments in employment
data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.046 0.044 0.056 0.058

(0.003) (0.003) (0.003) (0.003)

FGLS 0.182 0.171 0.202 0.201
(0.005) (0.005) (0.006) (0.006)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.046 0.043 0.057 0.058

(0.003) (0.003) (0.003) (0.003)

BC-FGLS 0.140 0.130 0.160 0.171
(0.005) (0.005) (0.005) (0.005)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.047 0.046 0.058 0.062

(0.003) (0.003) (0.003) (0.003)

Notes as for Table 10.
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Figure 3: Minimum detectable e�ects on log-earnings using
√
G/(G− 1)-CRSEs and tG−1

critical values and tests of size 0.05

The Figure shows the proportion of the time that the null hypothesis of no treatment
e�ect is rejected when the treatment parameter has a true coe�cient ranging from 0 to
0.3. Numbers are computed using the results of 100000 Monte Carlo simulations combined
with equation 4, as described in the text. The simulations resample groups (US states)
from CPS-MORG data, having imposed the sampling restrictions described in the text.
Data from 1979 to 2008 inclusive are sampled (i.e. T = 30). Estimation of the treatment
e�ect is conducted on aggregated state-year data either by OLS (reproducing part of
Figure 1), or by feasible GLS assuming a AR(2) error process (homogeneous across states)
and using bias-corrected AR parameter estimates as in Hansen, 2007 (denoted
"BC-FGLS"). See text for full details.
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Table 13: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.05 in
employment data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 1.000 0.992 0.819 0.562

(.) (0.001) (0.005) (0.007)

FGLS 1.000 1.000 0.988 0.934
(.) (0.000) (0.002) (0.004)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 1.000 0.999 0.903 0.662

(.) (0.000) (0.004) (0.007)

BC-FGLS 1.000 1.000 0.986 0.922
(.) (0.000) (0.002) (0.004)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 1.000 0.999 0.916 0.684

(.) (0.000) (0.004) (0.007)

Notes as for Table 11.

Table 14: Rejection rates for tests of nominal 5% size with placebo treatments and 10 groups
in log-earnings data (simulated)

CPS residuals Heterogeneous AR(2) MA(1)

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.049 0.040 0.052

(0.003) (0.002) (0.002)

FGLS 0.114 0.101 0.088
(0.004) (0.003) (0.003)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.054 0.055 0.051

(0.003) (0.002) (0.002)

BC-FGLS 0.081 0.072 0.072
(0.004) (0.003) (0.003)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.056 0.059 0.052

(0.003) (0.002) (0.002)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 10000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of zero. Data from 1979 to 2008 inclusive are sampled (i.e. T = 30).
Regressions are run on aggregated state-year data. The �rst column reproduces column 3
of table 10. Columns 2 and 3 show results after e�ectively replacing the empirical
regression residuals with a simulated error term, generated according to an AR(2) process
which varies across groups and an MA(1) process respectively. See text for full details.
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Figure 4: Minimum detectable e�ects on employment rates using
√
G/(G− 1)-CRSEs and

tG−1 critical values and tests of size 0.05

The Figure shows the proportion of the time that the null hypothesis of no treatment
e�ect is rejected when the treatment parameter has a true coe�cient ranging from 0 to
0.15. Numbers are computed using the results of 100000 Monte Carlo simulations
combined with equation 4, as described in the text. The simulations resample groups (US
states) from CPS-MORG data, having imposed the sampling restrictions described in the
text. Data from 1979 to 2008 inclusive are sampled (i.e. T = 30). Estimation of the
treatment e�ect is conducted on aggregated state-year data either by OLS (reproducing
part of Figure 2), or by feasible GLS assuming a AR(2) error process (homogeneous across
states) and using bias-corrected AR parameter estimates as in Hansen, 2007 (denoted
"BC-FGLS"). See text for full details.
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Table 15: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.05 and
10 groups in log-earnings data (simulated)

CPS residuals Heterogeneous AR(2) MA(1)

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.254 0.510 0.604

(0.006) (0.005) (0.005)

FGLS 0.572 0.864 0.767
(0.007) (0.003) (0.004)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.399 0.723 0.591

(0.007) (0.004) (0.005)

BC-FGLS 0.518 0.843 0.736
(0.007) (0.004) (0.004)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.423 0.741 0.593

(0.007) (0.004) (0.005)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 10000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of +0.05. Data from 1979 to 2008 inclusive are sampled (i.e. T = 30).
Regressions are run on aggregated state-year data. The �rst column reproduces column 3
of table 11. Columns 2 and 3 show results after e�ectively replacing the empirical
regression residuals with a simulated error term, generated according to an AR(2) process
which varies across groups and an MA(1) process respectively. See text for full details.

31



Table 16: Rejection rates for tests of nominal 5% size with placebo treatments and 10 groups
in log-earnings data

T=30 T=20 T=10

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.042 0.050 0.041

(0.003) (0.003) (0.003)

FGLS 0.120 0.131 0.107
(0.005) (0.005) (0.004)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.054 0.053 0.042

(0.003) (0.003) (0.003)

BC-FGLS 0.087 0.096 0.094
(0.004) (0.004) (0.004)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.058 0.054 0.045

(0.003) (0.003) (0.003)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of zero. T is the number of (consecutive) time periods (years). The �rst
year of data is chosen from a uniform distribution between 1979 and (2009-T) in each
Monte Carlo simulation. Regressions are run on aggregated state-year data. The di�erent
inference methods used are discussed in the text.
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Table 17: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.05 and
10 groups in log-earnings data

T=30 T=20 T=10

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.252 0.274 0.310

(0.006) (0.006) (0.007)

FGLS 0.573 0.545 0.460
(0.007) (0.007) (0.007)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.401 0.362 0.307

(0.007) (0.007) (0.007)

BC-FGLS 0.513 0.492 0.434
(0.007) (0.007) (0.007)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.423 0.388 0.316

(0.007) (0.007) (0.007)

The Table shows the proportion of the time that the null hypothesis of no treatment e�ect
was rejected in 5000 Monte Carlo simulations. Simulation standard errors are reported in
parentheses. The simulations resample groups (US states) from CPS-MORG data, having
imposed the sampling restrictions described in the text. The treatment parameter has a
true coe�cient of +0.05. T is the number of (consecutive) time periods (years). The �rst
year of data is chosen from a uniform distribution between 1979 and (2009-T) in each
Monte Carlo simulation. Regressions are run on aggregated state-year data. The di�erent
inference methods used are discussed in the text.
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5 Summary and Conclusion

This paper contributes to a growing literature on inference in di�erence-in-di�erences designs

with grouped errors. The literature has emphasized di�culties in obtaining correctly sized

hypothesis tests, particularly with few groups, but our results suggest this is not the key

challenge.

Using Monte Carlo evidence, we have made three main points. First, it is possible to

obtain tests of the correct size, even with few groups, and in many settings this is possible

using methods that are very straightforward to implement. Second, the main problem

in di�erence-in-di�erences designs with grouped errors is instead low power to detect real

e�ects. Third, feasible GLS estimation combined with robust inference methods can increase

power considerably whilst maintaining correct test size - again, even with few groups. These

�ndings have proven robust to a wide range of data generating processes.

We therefore recommend that applied researchers adopt GLS estimation combined with

robust inference methods in practice. We also suggest that future research could usefully

focus on improving power, as well as on getting test size correct, when using di�erence-in-

di�erence designs.
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