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ABSTRACT 
 

A Theory for Ranking Distribution Functions 
 
When is one distribution (of income, consumption, or some other economic variable) more 
equal or better than another? This question has proven difficult to answer in situations where 
distribution functions intersect and no unambiguous ranking can be attained without 
introducing weaker criteria than second-degree stochastic dominance. The conventional 
approach in empirical work is to adopt some summary statistics, with no explicit reason being 
given for preferring one measure rather than another. In this paper, we develop a theory for 
ranking distribution functions. Our theory offers a general framework to unambiguously rank 
any set of distribution functions and quantify the social welfare level of a dominating 
distribution as compared to a dominated distribution. The framework is based on two 
complementary sequences of nested dominance criteria. The first (second) sequence 
extends second-degree stochastic dominance by placing more emphasis on differences that 
occur in the lower (upper) part of the distribution. These sequences of dominance criteria 
characterize two separate systems of nested subfamilies of social welfare functions. This 
allows us to identify the least restrictive social preferences that give an unambiguous ranking 
of any set of distribution functions. We also provide an axiomatization of the sequences of 
dominance criteria and the corresponding subfamilies of social welfare functions. To perform 
inference, we develop asymptotic distribution theory for empirical dominance criteria where it 
is demonstrated that the associated empirical processes converge in distribution to Gaussian 
processes. The usefulness of our framework is illustrated with two empirical applications; the 
first assesses the social welfare implications of changes in household income distributions 
over the business cycle, while the second ranks the actual and counterfactual outcome 
distributions from a policy experiment. 
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1 Introduction

How do we compare intersecting distribution functions? The answer to this question is impor-
tant for both descriptive analysis and policy evaluation. A key task of statistical offices and
government agencies is to compare distribution functions of economic variables across coun-
tries, subgroups and time. Much descriptive research is about analyzing changes in and differ-
ences between distributions of wages, income, consumption and wealth, as they are considered
important determinants of economic welfare as well as markers for what kind of activities are
rewarded in an economy. There is also a growing body of research on how to assess the dis-
tributional effects of policy changes: The literature has developed methods for estimating the
counterfactual outcome distribution in the absence of a policy intervention,1 but has generally
stopped short of establishing a framework for ranking the actual and counterfactual outcome
distributions.

In this paper, we develop a theory for ranking distribution functions. Our theory offers a
general framework to unambiguously rank any set of distribution functions and quantify the
social welfare level of a dominating distribution as compared to a dominated distribution. Since
the seminal contributions of Kolm (1969) and Atkinson (1970), second-degree stochastic dom-
inance has become a widely accepted criterion for ranking distribution functions. But in many
applications where the distribution functions intersect, a reasonable refinement of this criterion
is necessary to attain an unambiguous ranking.2 Although the theoretical literature offers dom-
inance criteria of third or higher degree,3 they are rarely used; the reason is that higher degree
dominance criteria are often viewed as difficult to interpret and hard to justify because they
rely on assumptions about third or higher order derivatives (see e.g. Atkinson, 2003, 2008).
Thus, most empirical studies consider a few moments or use a parametric social welfare func-
tion when ranking intersecting distribution functions. A natural concern is that the conclusions
reached in these studies are sensitive to the choice of moments or specification of social welfare
function.4

Our framework for comparing intersecting distribution functions is based on two comple-
mentary sequences of nested inverse stochastic dominance criteria.5 The first sequence includes

1For example, a number of papers have focused on identification and estimation of unconditional quantile
treatment effects under unconfoundedness (e.g. Firpo, 2007; Firpo, Fortin, and Lemieux, 2009) or with selection
on unobservables (e.g. Imbens and Newey, 2009; ?). See e.g. Bitler, Gelbach, and Hoynes (2006, 2008) for
empirical evaluations of the distributional effects of policy interventions.

2Several studies have demonstrated the limited practical scope for ranking income distributions according to
second-degree stochastic dominance (see e.g. Davies and Hoy, 1995; Atkinson, 2008).

3See e.g. Fishburn (1976), Fishburn (1980), Chew (1983), and Fishburn and Willig (1984) for extensions of
stochastic dominance to an arbitrary order.

4The challenge in ranking distribution functions by their moments is twofold. First, the moments of an un-
bounded distribution do not uniquely determine the distribution function. For example, there exists several distri-
butions with the same moments as the log-normal distribution (?). Second, it is not clear how to aggregate and
weigh the various moments of the distributions being compared.

5While second-degree inverse stochastic dominance is equivalent to second-degree stochastic dominance
(Hardy, Littlewood, and Pólya, 1934; Kolm, 1969; Atkinson, 1970), the two types of dominance differ at the
third or higher degree. See e.g. Le Breton and Peluso (2009) for a discussion.
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the traditional inverse dominance criteria of third and higher degrees; it is called upward dom-

inance because it aggregates the inverse of the distribution function from below, and therefore
places more emphasis on differences that occur in the lower part of the distribution. The second
sequence is novel and complements the traditional criteria by placing more emphasis on differ-
ences that occur in the upper part of the distribution; we call it downward dominance because it
aggregates the integrated inverse distribution function from above. Since the sequences are hier-
archical, the sensitivity to differences in the lower (upper) part of the distribution increases with
the degree of upward (downward) dominance. The two sequences coincide at second-degree
dominance, and thus both satisfy the Pigou-Dalton transfer principle.

For each sequence, we show that dominance of any degree can be given a simple social
welfare interpretation. For example, ranking distribution functions according to third-degree
upward dominance is equivalent to employing the Gini social welfare function to compare the
welfare of individuals located in the lower tail of each quantile of the distributions.6 As a
consequence, we do not have to rely on assumptions about third and higher order derivatives to
interpret the sequences of dominance criteria. To make statistical inference about upward and
downward dominance of any degree, we develop asymptotic distribution theory for empirical
dominance criteria where it is demonstrated that the associated empirical processes converge in
distribution to Gaussian processes. Thus, the empirical dominance criteria are asymptotically
normally distributed both when considered as processes and for fixed ranks in the distribution.7

We next characterize the relation between upward and downward dominance and social wel-
fare functions in the ranking of distribution functions. For each sequence, we show equivalence
in the ranking of distributions according to the dominance criteria and a general family of rank-
dependent social welfare functions. The family of rank-dependent social welfare functions was
originally proposed by Yaari (1987; 1988), and can be represented as weighted averages of the
outcomes of interest where the weight decreases with the rank in the outcome distribution. The
functional form of the weighting function details the inequality aversion of a social planner
who employs the family of social welfare functions to compare intersecting distribution func-
tions. Because the sequences of dominance criteria are nested, our equivalence results allow us
to uniquely identify the largest subfamily of welfare functions – and thus the least restrictive
social preferences – that give an unambiguous ranking of any set of distribution functions.

We also provide a characterization of the largest subfamily of social welfare functions that
rank consistently with dominance of any given degree. Because of the equivalence result, this
characterization gives a normative justification not only for the social welfare functions, but
also for the use of higher degree dominance criteria when comparing distribution functions.
The subfamily associated with upward dominance is characterized by (generalizations of) the

6The Gini social welfare function was originally introduced by Sen (1974), and was given a complete axiomatic
justification by Aaberge (2001).

7We are not aware of asymptotic distribution theory for inverse stochastic dominance tests. See, for example,
Abadie (2002), Anderson (1996), Barrett and Donald (2003), Linton, Maasoumi, and Whang (2005), and Davidson
and Duclos (2000) for alternative approaches to testing for standard stochastic dominance.
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principle of downside positional transfer sensitivity (see Zoli, 1999; Aaberge, 2000; 2009),
while the subfamily associated with downward dominance is characterized by (generalizations
of) the principle of upside positional transfer sensitivity (see Aaberge, 2009). The two principles
differ in the sensitivity to differences in the lower versus upper part of the distribution.

To not only answer whether one distribution is better than another distribution, but also get
an estimate of by how much, it is convenient to work with parametric social welfare functions.
We show that the members of two alternative parametric families of social welfare functions
can be divided into subfamilies according to their relationship with the nested inverse stochastic
dominance criteria. The parametric family that ranks consistently with upward (downward)
dominance criteria exhibits successively higher aversion to differences in the lower (upper)
part of the distribution. The parametric families are well known, easily implementable and
the estimated social welfare can be given a money metric interpretation. Since each family
uniquely determines the distribution function, no information is lost by restricting focus to these
parametric social welfare functions.

We show the usefulness of our framework using two empirical applications. The first appli-
cation uses data from the UK to study how the distribution of household income evolved over a
boom and a bust era in the British economy. We show how our framework can be used to make
unambiguous statements about the social welfare implications of the changes in the household
income distribution over the business cycle. The second application uses random-assignment
data to evaluate the distributional effects of Connecticut’s Jobs First program, which involved
generous earnings disregard and strict time limits.8 We use our framework to infer the least
restrictive social preferences that allow an unambiguous conclusion of whether this program
was an overall success. In both applications, we find that third-degree downward dominance is
a particularly powerful refinement of second-degree dominance, providing an almost complete
ranking of the distribution functions. By comparison, the traditional criterion of third-degree
upward dominance resolves few of the comparisons that were ambiguous under second-degree
dominance.

Our paper is related to a growing literature on refinements of second-degree dominance
in the comparison of distribution functions. In particular, much work has been done on third-
degree dominance and its relationship to social welfare and inequality (for reviews, see Lambert,
1993; Le Breton and Peluso, 2009). One strand of the literature is influenced by expected utility
theory and explores third-degree stochastic dominance as a criterion for ranking distributions.
For example, Shorrocks and Foster (1987) consider third-degree stochastic dominance in the
case of a single intersection of the Lorenz curves; Davies and Hoy (1995) study the general
case of Lorenz curves with multiple intersections and show that for distributions with the same
mean, third-degree stochastic dominance is equivalent to the comparison of variances for ap-

8Our choice to use the Jobs First program is not incidental: As shown in Bitler, Gelbach, and Hoynes (2006),
the estimated quantile treatment effects exhibit the substantial heterogeneity predicted by labor supply theory. As
a consequence, the distributions of income with and without the Jobs First program intersect.
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propriate truncated income distributions.9 Another strand of the literature exploits the ideas and
techniques of non-expected utility theory to examine third-degree inverse stochastic dominance
as a criterion for ranking distributions (see e.g. Muliere and Scarsini, 1989; Zoli, 1999; Zoli,
2002; Aaberge, 2009). Our paper contributes by exploring the relation between upward and
downward inverse stochastic dominance of any degree and a general family of rank-dependent
social welfare functions. Taken together, our results provide a general framework to unam-
biguously rank any set of distribution functions and to quantify the social welfare level of a
dominating distribution as compared to a dominated distribution.

The remainder of the paper proceeds as follows. Section 2 characterizes the relationship
between inverse stochastic dominance and social welfare functions as criteria for ranking dis-
tribution functions. Section 3 identifies and describes the parametric families that rank distri-
butions consistent with upward and downward dominance. Section 4 presents the asymptotic
distribution theory. Section 5 provides the empirical applications, before Section 6 concludes.

2 Inverse stochastic dominance and social welfare

This section begins by reviewing the relationship between second-degree dominance and the
general family of social welfare functions. We next introduce upward and downward dominance
of third degree as criteria for ranking distribution functions, and characterize their relationship
to social welfare functions. Finally, we introduce the full hierarchical sequences of nested
inverse stochastic dominance criteria, and show how they allow us to uniquely identify the
largest subfamily of social welfare functions required to reach an unambiguous ranking of any
set of distribution functions.

2.1 Second-degree dominance and rank-dependent welfare functions

Let F be a member of the set F of cumulative distribution functions with mean µF and left
inverse defined by

F−1(t) = inf{x : F(x)≥ t}

Note that both discrete and continuous distribution functions are allowed in F , and though
the former is what we actually observe, the latter often allows simpler derivation of theoretical
results and is a valid large sample approximation. Thus, in most cases below, F will be assumed
to be a continuous distribution function, but the assumption of a discrete distribution function
will be used where appropriate. To fix ideas, we will refer to F as the income distribution,
although our framework can be applied to any type of distribution function.

9See also Shorrocks (1983), Atkinson (2008), Chiu (2007), Davies and Hoy (1994), Dardanoni and Lambert
(1988), Le Breton and Peluso (2009), and Le Breton, Michelangeli, and Peluso (2012).
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Second degree dominance

Since the seminal contributions of Kolm (1969) and Atkinson (1970), second-degree dominance
has become a widely accepted criterion for ranking distribution functions.10

Definition 2.1. A distribution function F1 is said to second-degree dominate a distribution func-
tion F0 if and only if

uˆ

0

F−1
1 (t)dt ≥

uˆ

0

F−1
0 (t)dt for all u ∈ [0,1]

and the inequality holds strictly for some u ∈ (0,1).

As is well known, all inequality averse social planners rank distribution functions consistently
with second-degree dominance. But in many applications, weaker criteria than second-degree
dominance are required to obtain an ordering of distributions.

Rank-dependent social welfare functions

As in the literature on choice under uncertainty, ranking criteria can be derived from indepen-
dence axioms imposed on the ordering � defined on F . The preference relation � of the
social planner is assumed to be continuous, transitive and complete and to rank F1 � F0 if
F−1

1 (t) ≥ F−1
0 (t) for all t ∈ [0,1]. To give the preferences of the planner an empirical content,

Yaari (1988; 1987) imposes the so-called dual independence axiom on �, defined by

Axiom 1. (Dual Independence). Let F0, F1 and F2 be members of F and let α ∈ [0,1]. Then

F1 � F0 implies
(
αF−1

1 +(1−α)F−1
2
)−1 �

(
αF−1

0 +(1−α)F−1
2
)−1

.

Armed with this axiom, Yaari (1987; 1988) proved that the preference relation � can be repre-
sented by the following rank-dependent family of social welfare functions

WP(F) =

ˆ 1

0
P′(t)F−1(t)dt, (2.1)

where P′ is the derivative of a preference function from the following set.

P =
{

P : P′(t)> 0 and P′′(t)< 0 f or all t ∈ (0,1), P′(1) = P(0) = 0, P(1) = 1
}
.

The dual independence axiom requires that the ordering � is invariant with respect to identi-
cal mixing of the inverses of the distribution functions being compared; that is, mixing of in-
come levels given population shares. By comparison, the independence axiom used in Atkinson

10 Since second-degree inverse stochastic dominance is equivalent to second-degree stochastic dominance, we
will simply refer to this criterion as second-degree dominance.
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(1970) requires that the ordering of distribution functions is invariant with respect to identical
mixing of the distributions being compared; that is, mixing of population shares given income
levels. For further discussion, see Yaari (1988) and Aaberge (2001).

Relation between second-degree dominance and rank-dependent welfare functions

As demonstrated by Yaari (1988), the social welfare functions WP are consistent with the con-
dition of second-degree stochastic dominance if and only if P′(t)> 0 and P′′(t)< 0. It follows
by straightforward calculations that 0≤WP ≤ µF for strictly concave P and that WP = µF if and
only if F is the egalitarian distribution. Thus, WP can be interpreted as the equally distributed
equivalent income (see Atkinson, 1970). With equal means, the condition of second-degree
stochastic dominance is identical to the Pigou-Dalton transfer principle, which states that an
income transfer from a richer to a poorer individual reduces income inequality, provided that
their ranks in the income distribution are unchanged.

The general family of social welfare functions WP represents a preference relation defined
on the set of distribution functions. The preference function P assigns weights to the incomes
of the individuals in accordance with their rank in the income distribution. Therefore, the
functional form of P reveals the attitude towards inequality of a social planner who employs
WP to judge between distribution functions. Figure 2.1 draws two examples of P, and marks
the associated weights at ranks u = .2 and u = .6. The weight assigned to individuals at rank u

equals the derivative of P at u. Note that the preference function must be concave and lie above
the diagonal to ensure that WP satisfies second-degree dominance.

Interpretation

A normative interpretation of the social welfare function defined by (2.1) can be made in terms
of a theory for ranking distribution functions, as above, or as a value judgement of the trade-
off between the mean and (in)equality in the distributions. By defining the ordering relation
� on the set of Lorenz curves rather than on the set of distribution functions, Aaberge (2001)
demonstrated that� can be represented by the following family of rank-dependent measures of
inequality:

JP(F) = 1− 1
µF

ˆ 1

0
P′(u)F−1(u)du. (2.2)

Following Ebert (1987), the social welfare function defined by (2.1) can then be expressed as

WP(F) = µF(1− JP(F)). (2.3)

Equation (2.1) defines WP as a weighted average of individual incomes where the weights de-
crease as a function of the individual’s rank in the income distribution, while equation (2.3)
shows directly how WP reflects the trade-off between the mean and (in)equality in the distribu-

6



Figure 2.1: Examples of the preference function P(·) that preserves 3rd (dotted) and 4th degree
(dashed) upward inverse stochastic dominance.
Note: The weight assigned to individuals at rank u equals the derivative of P at u.

tion of income. The product µFJP(F) is a measure of the loss in social welfare due to inequality
in the distribution of income. An inequality neutral planner would choose P(t)= t, which means
that WP(F) = µF .

Parametric subfamilies

To quantify social welfare, it is necessary to work with parametric social welfare functions. The
best known member of WP is obtained by inserting for P(t) = 2t− t2 in (2.2) and (2.3), in which
case JP(F) is equal to the Gini coefficient and WP(F) is equal to the much used Gini social
welfare function (see Sen, 1974). More generally, by choosing a parametric specification of P

we can derive alternative parametric subfamilies of WP.
If the preference function is defined by

P1k(t) = 1− (1− t)k−1, k > 2 (2.4)

then JP becomes equal to the extended Gini family of inequality measures (Donaldson and
Weymark, 1980) defined by

Gk(F) = 1− k−1
µF

ˆ 1

0
(1− t)k−2 F−1(t)dt (2.5)

=
1

µF

ˆ
∞

0
[1−F(y)]

[
1− (1−F(y))k−2

]
dx, k > 2
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where G3(F) is the Gini coefficient.11 Inserting (2.5) in (2.3), WP becomes equal to the extended
Gini family of social welfare functions, defined by

WGk(F) =

ˆ
∞

0
(1−F(y))k−1 dy = µF [1−Gk(F)] , k > 2 (2.6)

If the preference function is instead defined by

P2k(t) =
(k−1) t− tk−1

k−2
, k > 2 (2.7)

then JP becomes equal to the Lorenz family of inequality measures (Aaberge, 2000), defined by

Dk(F) = 1− k−1
(k−2)µF

ˆ 1

0
(1− tk−2)F−1(t)dt

=
1

µF (k−2)

ˆ
∞

0
F(x)

(
1−Fk−2(x)

)
dx, k > 2 (2.8)

where D3(F) is the Gini coefficient. Inserting (2.8) for JP (F) in (2.3), WP becomes equal to the
Lorenz family of social welfare functions

WDk(F) = k−1
k−2 µF − 1

k−2

´
∞

0

(
1−Fk−1(x)

)
dx = µF [1−Dk(F)] , k > 2 (2.9)

Since
{

µF ,WGk(F) : k = 3,4, ...
}

and {µF ,WDk(F) : k = 3,4, ...} uniquely determine the
distribution function F (Aaberge, 2000), no information is lost by working directly with either
of these parametric subfamilies and the mean.

2.2 Third-degree dominance and social welfare

When distribution functions intersect and second-degree dominance does not provide an unam-
biguous ranking of distribution functions, weaker criteria are required. This subsection con-
siders third-degree inverse stochastic dominance and characterizes its relationship to WP. We
consider first the criterion of third-degree upward dominance, after which we introduce and
analyze the criterion of third-degree downward dominance.

2.2.1 Upward dominance and social welfare

Let the function associated with second-degree inverse stochastic dominance be defined by

Λ
2
F(u) =

ˆ u

0
F−1(t)dt, u ∈ [0,1] (2.10)

11See Aaberge (2001) for an axiomatic justification for this family of inequality measures.
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where the superscript 2 refers to inverse stochastic dominance of second-degree. To define
third-degree upward inverse stochastic dominance, we use the notation

Λ
3
F(u) =

ˆ u

0
Λ

2
F(t)dt =

ˆ u

0
(u− t)F−1(t)dt, u ∈ [0,1] (2.11)

where the second equality follows by inserting (2.10) in (2.11) and interchanging the order of
integration.

Definition 2.2. A distribution F1 is said to third-degree upward inverse stochastic dominate a
distribution F0 if and only if Λ3

F1
(u)≥ Λ3

F0
(u) for all u ∈ [0,1], and the inequality holds strictly

for some u ∈ (0,1).

From equation (2.11), it is clear that the criterion of third-degree upward dominance compares
weighted sums of incomes, where the weights decrease linearly with the rank in the income
distribution.

Interpretation

Equation (2.3) shows how WP can be interpreted as reflecting the trade-off between the mean and
(in)equality in the distribution of income. We now show that third-degree upward dominance
has an analogous interpretation.

Let H be the conditional distribution function defined by H(y) = Pr(Y ≤ y |Y ≤ F−1(u)) =

F(y)/u, for any y≤ F−1(u). The quantile-specific lower tail mean is defined by

µF(u) = µH =

ˆ F−1(u)

0
ydH(y) =

´ u
0 F−1(t)dt

u
(2.12)

and the quantile-specific lower tail Gini coefficient is defined by

G3(u; F) =
1

µH

ˆ 1

0
(2t−1)H−1(t)dt =

1
u2µF(u)

ˆ u

0
(2t−u)F−1(t)dt. (2.13)

The quantile-specific lower tail Gini social welfare function is then given by µF(u)(1−G3(u; F)).
The following proposition shows that the criterion of third-degree upward dominance is

equivalent to employing the Gini social welfare function to compare the welfare of individuals
located in the lower tail of each quantile of the distributions.

Proposition 2.1. Let F1 and F0 be members of F . Then the following statements are equivalent:

(i) F1 third-degree upward inverse stochastic dominates F0

(ii) µF1(u)(1−G3(u; F1)) ≥ µF0(u)(1−G3(u; F0)) for all u ∈ [0,1], and the inequality holds

strictly for some u ∈ (0,1).

9



Proof. This result follows by noting that

Λ
3
F(u) =

u2

2
µF(u)(1−G3(u; F)) , (2.14)

which is obtained by inserting (2.12) and (2.13) in (2.11).

Transfer principle

To provide a normative justification for dominance criterion of third degree, more powerful
principles than the Pigou-Dalton transfer principle are needed. To this end, Kolm (1976) intro-
duced the principle of diminishing transfers, which for a fixed difference in income considers
a transfer from a richer to a poorer person to be more equalizing the further down in the in-
come distribution it takes place. As indicated by Shorrocks and Foster (1987) and Muliere and
Scarsini (1989), the principle of diminishing transfers is, however, not consistent with third-
degree upward inverse stochastic dominance. We will instead use an alternative version of
the principle of diminishing transfers introduced by Mehran (1976) – and called the principle
of positional transfer sensitivity by Zoli (1999) – to characterize third-degree upward inverse
stochastic dominance.

In order to provide a formal definition of the principle of positional transfer sensitivity it
will be useful to introduce the notation ∆sWP(δ ,h), which denotes the change in WP of a fixed
progressive transfer δ from an individual with rank s+h to an individual with rank s. Further,
let

∆
1
stWP(δ ,h)≡ ∆sWP(δ ,h)−∆tWP(δ ,h).

We can then define the principle of first-degree downside positional transfer sensitivity.

Definition 2.3. WP satisfies the principle of first-degree downside positional transfer sensitivity
(DPTS) if and only if ∆1

stWP(δ ,h)> 0, for all s < t.

To better understand first-degree DPTS and how it relates to the Pigou-Dalton transfer prin-
ciple, consider Figure 2.2 where we draw the probability density of a right-skewed income
distribution, denoted f (x). We have also drawn two alternative transfers from richer to poorer,
one from an individual at rank t+h to an individual at rank t, and another from rank s+h to rank
s; the equal difference in rank h is reflected in the equal size of the shaded areas. Consider first
the two transfers in isolation. According to the Pigou-Dalton transfer principle, both transfers
should decrease inequality and hence increase welfare. According to first-degree DPTS, given
that a fixed transfer takes place between two people with equal difference in ranks, the transfer
at lower ranks has a stronger equalizing effect – and thus increases social welfare more – than
the transfer at higher ranks. An inequality averse social planner who supports the principle of
first-degree DPTS is said to exhibit downside positional inequality aversion of first-degree.

10



Figure 2.2: Income transfers and the principles of positional transfer sensitivity
Note: This figure draws the probability density of a right-skewed income distribution, denoted f (x). We
have also drawn two alternative transfers from richer to poorer, one from an individual at rank t +h to an
individual at rank t, and another from rank s+ h to rank s; the equal difference in rank h is reflected in
the equal size of the shaded areas.

Equivalence result

Let P3 be the family of preference functions defined by

P3 =
{

P ∈P : P
′′′
(t)> 0, for all t ∈ (0,1)and P

′′
(1)≤ 0

}
(2.15)

The following result provides a characterization of the relationship between third-degree up-
ward inverse stochastic dominance and the general family of welfare functions.

Theorem 2.1. Let F1 and F0 be members of F . Then the following statements are equivalent,

(i) F1 third-degree upward inverse stochastic dominates F0

(ii) WP(F1)>WP(F0) for all P ∈P3

(iii) WP(F1)>WP(F0) for all P ∈P where WP satisfies first-degree DPTS

Proof. In the appendix.

The equivalence between (i) and (ii) in Theorem 2.1 reveals the least-restrictive set of social
welfare functions that allows an unambiguous ranking of distribution functions in accordance
with third-degree upward inverse stochastic dominance. This is ensured by imposing the re-
quirement of a positive third-derivative on the preference function P. Further, the equivalence
with (iii) provides a normative justification for ranking distribution functions according to third-
degree upward dominance.12

12Mehran (1976) shows that JP defined by (2.2) satisfies first-degree DPTS if and only if P
′′′
(t) > 0, which is

restated in the equivalence of (ii) and (iii) in Theorem 2.1. Aaberge (2000) demonstrates that JP defined by (2.2)
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2.2.2 Downward dominance and social welfare

Section 2.2.1 demonstrated that a social planner who supports the criterion of third-degree up-
ward inverse stochastic dominance exhibits aversion to downside inequality. In some cases,
however, the researcher may want ranking criteria that are more sensitive to income differences
in the upper part of the distribution. One example is the growing literature on the long-run
evolution of income distributions which devotes much attention to changes in top incomes (see
e.g. Atkinson and Piketty, 2007; 2010).

To focus attention on differences in the upper part of the distribution, we introduce the
criterion of third-degree downward inverse stochastic dominance. This criterion is obtained by
aggregating the integrated inverse distribution function from above, rather than from below as
in upward dominance. To define third-degree downward dominance, we use the notation

Λ̃
3
F(u) =

ˆ 1

u
Λ

2
F(t)dt = (1−u)µ−

ˆ 1

u
(t−u)F−1(t)dt, u ∈ [0,1] (2.16)

where the second equality follows from inserting (2.10) for Λ2
F and by interchanging the order

of integration.

Definition 2.4. A distribution F1 is said to third-degree downward inverse stochastic dominate

a distribution F0 if and only if Λ̃3
F1
(u)≥ Λ̃3

F0
(u), for all u∈ [0,1], and the inequality holds strictly

for some u ∈ (0,1).

From equation (2.16), it is clear that the criterion of third-degree downward dominance com-
pares the weighted sums of incomes, where the weights decrease linearly with the rank in the
income distribution.

Interpretation

Equation (2.3) shows how WP can be interpreted as reflecting the trade-off between the mean and
(in)equality in the distribution of income. We now show that third-degree downward dominance
has an analogous interpretation.

Let H̃ be the conditional distribution function defined by H̃(y) = Pr(Y ≤ y |Y ≥ F−1(u)) =

(F(y)−u)/(1−u), for any y≥ F−1(u). The quantile-specific upper tail mean is defined by

µ̃F(u) = µH̃ =

ˆ 1

F−1(u)
ydH̃(y) =

´ 1
u F−1(t)dt

1−u
(2.17)

satisfies the principle of diminishing transfers under conditions that depend on both the functional form of the
preference function P and the shape of the income distribution F .
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and the quantile-specific upper tail Gini coefficient is defined by

D3(u; F) =
1

µH̃

ˆ 1

0
(2t−1)H̃−1(t)dt =

´ 1
u (2t−u−1)F−1(t)dt

(1−u)2µ̃F(u)
. (2.18)

The quantile-specific upper tail Gini social welfare function is then given by µ̃F(u)(1−D3(u; F)).
The following proposition shows that the criterion of third-degree downward dominance is

a sequential comparison of a weighted sum of the mean income of the poorest u percent, and
the Gini social welfare of the richest (1−u) percent of the population.

Proposition 2.2. Let F1 and F0 be members of F . Then the following statements are equivalent:

(i) F1 third-degree downward inverse stochastic dominates F0

(ii) uµF1(u)+
(1−u)

2
µ̃F1(u)(1−D3(u; F1)) ≥ uµF0(u)+

(1−u)
2

µ̃F0(u)(1−D3(u; F0)) for all
u ∈ [0,1] and the inequality holds strictly for some u ∈ (0,1).

Proof. This result is obtained by noting that

Λ̃
3
F(u) = u(1−u)µF(u)+

(1−u)2

2
µ̃F(u)(1−D3(u; F)) , (2.19)

which follows by inserting (2.17) and (2.18) in (2.16).

Transfer principle

To provide a normative justification for downward dominance of third degree, more powerful
principles than the Pigou-Dalton transfer principle are needed. We will employ the principle
of upside positional transfer sensitivity – introduced by Aaberge (2009) for analyzing Lorenz
dominance – to characterize third-degree downward inverse stochastic dominance.

As above, let ∆sWP(δ ,h) denote the change in WP of a fixed progressive transfer δ from an
individual with rank s+h to an individual with rank s, and let

∆
1
stWP(δ ,h)≡ ∆sWP(δ ,h)−∆tWP(δ ,h).

We can then define the principle of first-degree upside positional transfer sensitivity.

Definition 2.5. WP satisfies the principle of first-degree upside positional transfer sensitivity
(UPTS) if and only if ∆1

stWP(δ ,h)< 0, for all s < t.

To better understand first-degree UPTS and how it relates to the Pigou-Dalton transfer principle
and first-degree DPTS, revisit Figure 2.2. We have drawn two alternative transfers from richer
to poorer: One from an individual at rank t +h to an individual at rank t, and another from rank
s+h to rank s; the equal difference in rank h is reflected in the equal size of the shaded areas.
This implies that the number of people between the donor and the receiver is the same.

13



Consider first the two transfers in isolation. According to the Pigou-Dalton transfer princi-
ple, both transfers should decrease inequality and hence increase welfare. According to first-
degree UPTS, given that a fixed transfer takes place between two persons with equal difference
in ranks, the transfer at lower ranks has a weaker equalizing effect – and thus increases social
welfare less – than the transfer at higher ranks. An inequality averse social planner that sup-
ports the principle of first-degree UPTS is therefore said to exhibit upside positional inequality
aversion of first-degree. The choice between DPTS and UPTS clarifies, therefore, whether
equalizing transfers between poorer individuals should be considered more or less important
for social welfare as compared to equalizing transfers between richer individuals.

Equivalence result

Let P̃3 be the family of preference functions defined by

P̃3 =
{

P ∈P : P
′′′
(t)< 0 f or all t ∈ (0,1)and P

′′
(0)≤ 0

}
. (2.20)

The following result provides a characterization of the relationship between third-degree down-
ward inverse stochastic dominance and the general family of welfare functions.

Theorem 2.2. Let F1 and F0 be members of F . Then the following statements are equivalent,

(i) F1 third-degree downward inverse stochastic dominates F0

(ii) WP(F1)>WP(F0) for all P ∈ P̃3

(iii) WP(F1)>WP(F0) for all P ∈P where WP satisfies first-degree UPTS

Proof. In the appendix.

The equivalence between (i) and (ii) in Theorem 2.2 reveals the least-restrictive set of social
welfare functions that allows an unambiguous ranking of distribution functions in accordance
with third-degree downward inverse stochastic dominance. This is ensured by imposing the
requirement of a negative third-derivative on the preference function P. Further, the equiva-
lence with (iii) provides a normative justification for ranking distribution functions according
to third-degree downward dominance. By comparing (iii) in Theorems 2.1 and 2.2, it is clear
that the choice between third-degree upward dominance and third-degree downward dominance
depends on whether income differences between poorer individuals are viewed as more or less
important for social welfare as compared to income differences between richer individuals.

2.3 Dominance of ith-degree and social welfare

In some cases, neither upward nor downward dominance of third-degree allows an unambiguous
ranking of the distribution functions under comparison. This subsection therefore introduces the
full hierarchical sequences of nested inverse stochastic dominance criteria, allowing ranking
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of any set of distribution functions. We further characterize the relationship between Wp and
upward or downward dominance of any degree.

To define upward inverse stochastic dominance of degree i, we use the notation

Λ
i
F(u) =

ˆ u

0
Λ

i−1
F (t)dt =

1
(i−3)!

ˆ u

0
(u− t)i−3

Λ
2
F(t)dt

=
1

(i−2)!

ˆ u

0
(u− t)i−2F−1(t)dt, i = 3,4, ... (2.21)

To define downward inverse stochastic dominance of degree i, we use the notation

Λ̃
i
F(u) =

ˆ 1

u
Λ̃

i−1
F (t)dt =

1
(i−3)!

ˆ 1

u
(t−u)i−3

Λ
2
F(t)dt

=
1

(i−2)!

[
(1−u)i−2

µF −
ˆ 1

u
(t−u)i−2F−1(t)dt

]
i = 3,4, ... (2.22)

Definition 2.6. A distribution F1 is said to ith-degree upward inverse stochastic dominate F0

if and only if Λi
F1
(u) ≥ Λi

F0
(u), for all u ∈ [0,1], and the inequality holds strictly for some

u ∈ (0,1).

Definition 2.7. A distribution F1 is said to ith-degree downward inverse stochastic dominate
F0 if and only if Λ̃i

F1
(u) ≥ Λ̃i

F0
(u), for all u ∈ [0,1], and the inequality holds strictly for some

u ∈ (0,1).

From equation (2.21) and (2.22), it is clear that the criteria of both ith degree upward and
downward dominance compare the weighted sums of incomes, where the weights decrease
with the rank in the income distribution.13 As will be demonstrated below, however, the choice
between higher degree of upward and downward dominance clarifies whether preferences of
the social planner gives priority to reduction of inequality in the lower or the upper part of the
income distribution.

Interpretation

We now show that upward and downward dominance of degree i can be interpreted as reflecting
trade-offs between the mean and (in)equality in the distribution of income. To this end, we
employ the two parametric subfamilies of Wp presented above: The first is the extended Gini
family of social welfare functions WGk(F), defined by equation (2.6); the second is the Lorenz
family of social welfare functions WDk(F), defined by equation (2.9).

13Note that Definitions 2.6 and 2.7 do not require any restrictions on the distribution functions and thus are less
restrictive than the definitions of stochastic dominance proposed by Whitmore (1970) and Chew (1983).
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The quantile-specific lower tail extended Gini family of inequality measures is defined by

Gi(u; F) = 1− i−1
µH

1ˆ

0

(1− t)i−2H−1(t)dt = 1− i−1
ui−1µF(u)

uˆ

0

(u− t)i−2F−1(t)dt, (2.23)

and the associated quantile-specific lower tail extended Gini family of social welfare functions
can then be expressed as µF(u)(1−Gi(u; F)).

Similarly, the quantile-specific upper tail Lorenz family of inequality measures is defined
by

Di(u; F) = 1− i−1
(i−2)µH̃

1ˆ

0

(1− t i−2)H̃−1(t)dt (2.24)

= 1− i−1
(i−2)(1−u)i−1µ̃F(u)

1ˆ

u

[
(1−u)i−2− (t−u)i−2]F−1(t)dt,

and the associated quantile-specific upper tail Lorenz family of social welfare functions can
then be expressed as µ̃F(u)(1−Di(u; F)).

Proposition 2.3 shows that the criterion of ith-degree upward dominance is equivalent to
employing the Gini social welfare function of order i to compare welfare among individuals
located at the lower tail of each quantile of the distributions. Proposition 2.4 shows that the
criterion of third degree downward dominance corresponds to a sequential comparison of a
weighted sum of the mean income of the poorest u percent, and the social welfare of the richest
(1−u) percent of the population according to the Lorenz social welfare function of order i.

Proposition 2.3. Let F0 and F1 be members of F . Then the following statements are equivalent:

(i) F1 ith-degree upward inverse stochastic dominates F0

(ii) µF1(u)(1−Gi(u; F1)) ≥ µF0(u)(1−Gi(u; F0)) for all u ∈ [0,1], and the inequality holds

strictly for some u ∈ (0,1).

Proof. This result is obtained by noting that

Λ
i
F(u) =

ui−1

(i−1)!
µF(u)(1−Gi(u; F)) , (2.25)

which follows by inserting (2.12) and (2.23) in (2.21).

Proposition 2.4. Let F0 and F1 be members of F . Then the following statements are equivalent:

(i) F1 ith-degree downward inverse stochastic dominates F0

(ii) uµF1(u)+
(i−2)
(i−1)

(1−u)µ̃F1(u)(1−Di(u; F1))≥ uµF0(u)−
(i−2)
(i−1)

(1−u)µ̃F0(u)(1−Di(u; F0))

for all u ∈ [0,1], and the inequality holds strictly for some u ∈ (0,1).
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Proof. This result is obtained by noting that

Λ̃
i
F(u) =

u(1−u)i−2

(i−2)!
µF(u)+

(i−2)(1−u)i−1

(i−1)!
µ̃F(u)(1−Di(u; F)) , (2.26)

which follows by inserting (2.17) and (2.24) in (2.22).

Transfer principles

To provide a normative justification for upward (downward) dominance of degree i, we employ
generalizations of the principle of downside (upside) positional transfer sensitivity. As above,
let ∆sWP(δ ,h) denote the change in WP of a fixed progressive transfer δ from an individual with
rank s+h to an individual with rank s, and let ∆1

stWP(δ ,h) = ∆sWP(δ ,h)−∆tWP(δ ,h). Further,
let

∆
i
stWP (δ ,h1,h2, . . . ,hi)≡ ∆

i−1
st WP (δ ,h1,h2, . . . ,hi−1)−∆

i−1
s+hi,t+hi

WP (δ ,h1,h2, . . . ,hi−1) , (2.27)

for i = 2,3, . . ., denote the difference in the change in social welfare from a series of progressive
transfers at lower ranks (s) compared to higher ranks (t) in the income distribution. We can then
define the principles of downside and upside positional transfer sensitivity of degree i.

Definition 2.8. WP satisfies the principle of downside positional transfer sensitivity (DPTS) of
degree i if and only if, for all k = 1,2, . . . , i

(−1)k
∆

k
stWP(δ ,h)> 0, when s < t.

Definition 2.9. WP satisfies the principle of upside positional transfer sensitivity (UPTS) of
degree i if and only if, for all k = 1,2, . . . , i

∆
k
stWP(δ ,h)> 0, when s < t.

Given two alternative sequences of fixed transfers which take place between people with equal
difference in ranks, ith degree UPTS (DPTS) states that the sequence of transfers at lower
ranks have a stronger (weaker) equalizing effect – and thus increase social welfare more (less)
– than the sequence of transfers at higher ranks. Further, a social planner that supports the
principle of ith degree UPTS (DPTS) exhibits relatively higher inequality aversion in the lower
(upper) parts of the distribution, as compared to a social planner that supports the principle of
(i−1)th-degree UPTS (DPTS). An inequality averse social planner that supports the principle
of ith-degree UPTS (DPTS) is therefore said to exhibit downside (upside) positional inequality
aversion of degree i.14 Since UPTS (DPTS) of degree i are stronger criteria than UPTS (DPTS)

14Note that ith-degree UPTS can be considered as an alternative to the ith-degree transfer principle introduced
by Fishburn and Willig (1984) as an extension of Kolm’s principle of diminishing transfers.
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of degree i− 1, it seems natural that a social planner who supports the latter will also support
the former.

Equivalence result

Let P( j) denote the jth-degree derivative of P. The family of preference functions Pi is defined
by

Pi =
{

P ∈P : (−1)i−1P(i)(t)> 0 (2.28)

and (−1) j−1 P( j)(1)≥ 0 for all j = 2,3, . . . , i−1
}

while the family of preference functions P̃i is defined by

P̃i =
{

P ∈P : P(i)(t)< 0 (2.29)

and P( j)(0)≤ 0 for all j = 2,3, . . . , i−1
}

The following theorems provide a characterization of the relationship between ith-degree up-
ward and downward inverse stochastic dominance and the general family of welfare functions.

Theorem 2.3. Let F1 and F0 be members of F . Then for i = 3,4, ... the following statements

are equivalent,

(i) F1 ith-degree upward inverse stochastic dominates F0

(ii) WP(F1)>WP(F0) for all P ∈Pi

(iii) WP(F1)>WP(F0) for all P ∈P where WP satisfies DPTS of degree i−2

Proof. In the appendix.

Theorem 2.4. Let F1 and F0 be members of F . Then for i = 3,4, . . . the following statements

are equivalent

(i) F1 ith-degree downward inverse stochastic dominates F0

(ii) WP(F1)>WP(F0) for all P ∈ P̃i

(iii) WP(F1)>WP(F0) for all P ∈P where WP satisfies UPTS of degree i−2

Proof. In the appendix.

The equivalence between (i) and (ii) in Theorems 2.3 and 2.4 reveals the least-restrictive set
of social welfare functions that allows an unambiguous ranking of distribution functions in
accordance with ith degree upward or downward inverse stochastic dominance.

Upward dominance of degree i is ensured by imposing positive (negative) ith-degree deriva-
tive if i is odd (even) on the preference function P. Together with the boundary condition, this
makes sure that the implied set of weights becomes more progressive as i increases. This means
that a social planner who employs the criterion of ith-degree upward dominance pays more at-
tention to inequality in the lower than in the upper part of the income distribution as compared
to a social planner who employs the criterion of (i−1)th-degree upward dominance.
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Downward dominance of degree i is ensured by imposing negative ith-degree derivative
on the preference function P. Together with the boundary condition, this makes sure that the
implied set of weights becomes more progressive as i increases. This means that a social planner
who employs the criterion of ith-degree downward dominance pays more attention to inequality
in the upper than in the lower part of the income distribution as compared to a social planner
who employs the criterion of (i−1)th-degree downward dominance.

The equivalence between (i) and (iii) in Theorems 2.3 and 2.4 provides normative justifi-
cation for ranking distribution functions according to ith-degree upward and downward domi-
nance. By comparing (iii) in these two theorems, it is clear that the choice between ith-degree
upward dominance and ith-degree downward dominance depends on whether income differ-
ences between poorer individuals are viewed as more or less important for social welfare as
compared to income differences between richer individuals.

Remark. The dominance relations are transitive. To see this, assume
(i) F1 ith-degree upward (downward) dominates F2

(ii) F2 (i− k)th degree upward (downward) dominates F3.
For k = 0, it follows from Definitions 2.6 and 2.7 that (i) and (ii) imply that F1 ith-degree upward
(downward) inverse stochastic dominates F3.
From Equations (2.21) and (2.22), it follows that Λ

i−1
F1

(u)≥ Λ
i−1
F2

(u) for all u implies Λi
F1
(u)≥

Λi
F2
(u) for all u. For k = 0,1, . . ., (i) and (ii) therefore imply that F1 (i− k)th-degree upward

(downward) inverse stochastic dominates F3.

2.4 The limits of the dominance criteria

The proposed sequences of dominance criteria along with Theorems 2.3 and 2.4 suggest two
complementary strategies for successively narrowing the general family of social welfare func-
tions in order to unambiguously rank any set of distribution functions. Though the theorems
are only valid for finite i, to understand their normative implications it is helpful to consider the
limits of the sequences of dominance criteria.

As i→ ∞ we get from equations (2.21) and (2.22)

(i−1)!Λi(u) →

0, 0≤ u < 1

F−1(0+), u = 1
(2.30)

(i−2)!Λ̃i(u) →

µF , u = 0

0, 0 < u≤ 1
(2.31)

where F−1(0+) denotes the lowest income in F . In the limit, upward and downward inverse
stochastic dominance therefore depend only on the income of the worst-off income recipient
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and the average income, respectively.
The highest degree of downside inequality aversion is achieved when focus is exclusively

turned to the situation of the poorest in the population. In this case the social welfare function
corresponds to the Rawlsian maximin criterion. By contrast, the highest degree of upside in-
equality aversion is achieved when focus is exclusively turned to the mean income. In this case,
the social welfare function corresponds to the utilitarian criterion. The utilitarian criterion is
“dual” to the Rawlsian maximin criterion in the sense that it is compatible with the limiting case
of downward inverse stochastic dominance. When the comparison of distribution functions is
based on the utilitarian criterion, the distribution function for which the mean income is largest
is preferred, regardless of all other differences.

3 Inverse stochastic dominance and parametric families of
social welfare functions

Until now, the results and discussion have centered on characterizing the relationship between
inverse stochastic dominance criteria and WP in the ranking of intersecting distribution func-
tions. This section extends our framework to not only rank distributions, but also quantify the
social welfare level of a dominating distribution as compared to a dominated distribution. To
this end, we employ the two parametric subfamilies of Wp presented above: The first is the
extended Gini family of social welfare functions WGk(F), defined by equation (2.6); the second
is the extended Lorenz family of social welfare functions WDk(F), defined by equation (2.9).
Since {µF ,WGi(F) : i = 3,4, ...} and {µF ,WDi(F) : i = 3,4, ...} uniquely determine the distri-
bution function F (Aaberge, 2000), no information is lost by working directly with either of
these parametric subfamilies and the mean.

Upward dominance and the extended Gini family

Corollary 3.1 sorts the members of the Gini family of social welfare functions into subfamilies
according to their relationship to upward inverse stochastic dominance. This allows us to iden-
tify the largest subfamily of WGi(F) that ranks consistently with upward dominance of a given
degree, and quantify the social welfare level of the dominating distribution as compared to the
dominated distribution. From Theorem 2.3, we get the following result.

Corollary 3.1. Let F1 and F0 be members of F . Then for i = 2,3 . . .
(i) F1 ith degree upward inverse stochastic dominates F0

implies

(ii) WGk(F1)>WGk(F0) for k > i

Remark. The extended Gini family of social welfare functions has the following properties,
(i) WGi obeys the Pigou-Dalton principle of transfers for i > 2.
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Figure 3.1: Examples of the preference function P that preserves 2nd, 3rd and 10th degree
inverse stochastic dominance, upwards (left panel) and downwards (right panel).
Note: The weight assigned to individuals at rank u equal the derivative of P at u. The parametric forms
of P are defined in Section 2.1.

(ii) WGi obeys the principles of DPTS up to and including (i−2)th-degree for i = 3,4, . . ..
(iii) The sequence {WGi}approaches µF when i→ 2
(iv) The sequence {WGi} approaches the Rawlsian maxi-min criterion when i→ ∞.

The left panel of Figure 3.1 displays the preference function P1k(t) defined by (2.4) when k = 3,
k = 4 and k = 10. As we increase the degree of upward dominance preserved by WGk , we see
how the preference function becomes more sensitive to income differences in the lower part of
the distribution. This is also illustrated in Panel (a) of Table 3.1. This table shows how P1k(t)

assigns weights to incomes at selected quantiles relative to the weight assigned to the median
income, both when k = 3,4,5,6 and in the limits as k→ 2 and k→ ∞. The highest degree of
downside inequality aversion occurs as k→ ∞, which corresponds to the Rawlsian maximin
criterion. At the other extreme, k→ 2 and WGk equals the mean income.

Downward dominance and the extended Lorenz family

Corollary 3.2 sorts the members of the Lorenz family of social welfare functions into subfami-
lies according to their relationship to downward inverse stochastic dominance. This allows us to
identify the largest subfamily of WDi(F) that ranks consistently with downwards dominance of
a given degree, and quantify the social welfare level of the dominating distribution as compared
to the dominated distribution. From Theorem 2.4, we get the following result.

Corollary 3.2. Let F1 and F0 be members of F . Then for i = 2,3, . . .
(i) F1 ith degree downward inverse stochastic dominates F0

implies

(ii) WDk(F1)>WDk(F0) for k > i
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Table 3.1: Weights in WGk and WDk at selected quantiles relative to the weight at the median

Quantile
.01 .05 .30 .70 .95 .99

Panel (a): Gini social welfare function (upward)

k = 2 1.00 1.00 1.00 1.00 1.00 1.00

k = 3 2.00 1.90 1.40 0.60 0.10 0+
k = 4 4.00 3.61 1.96 0.36 0.01 0+
k = 5 8.00 6.86 2.74 0.22 0.00 0+
k = 6 16.00 13.03 3.84 0.13 0.00 0+
k→ ∞ ∞ 0 0 0 0 0

Panel (b): Lorenz social welfare function (downward)

k = 3 2.00 1.90 1.40 0.60 0.10 0+
k = 4 1.33 1.33 1.21 0.68 0.13 0+
k = 5 1.14 1.14 1.11 0.75 0.16 0+
k = 6 1.07 1.07 1.06 0.81 0.20 0+
k→ ∞ 1 1 1 1 1 1-
Note: The parametric forms of the weighting function P are defined in Section 2.1.

Remark. The extended Lorenz family of social welfare functions has the following properties,
(i) WDi obeys the Pigou-Dalton principle of transfers for i > 2.
(ii) WDi obeys the principles of UPTS up to and including (i−2)th-degree for i = 3,4, . . ..
(iii) The sequence {WDi} approaches the Bonferroni welfare function

´
[1−F(x)(1− logF(x))]dx

when i→ 2
(iv) The sequence {WDi} approaches µF as i→ ∞

(v) The sequence {i(WDi−µF)} approaches −F−1(1−) as i→ ∞, which means that the distri-
bution with the lowest maximum income is considered preferable provided that the distributions
in question have equal mean income.

The right panel of Figure 3.1 displays the preference function P2k(t) when k = 3, k = 4 and
k = 10. As we increase the degree of downward dominance preserved by WDi , we see how
the preference function becomes more sensitive to income differences in the upper part of the
distribution. This is also illustrated in Panel (b) of Table 3.1. This table shows how P2k(t)

assigns weights to incomes at selected quantiles relative to the weight assigned to the median
income, both when k = 3,4,5,6 and at the limit when k→ ∞. The highest degree of upside
inequality aversion occurs as k→ ∞, which corresponds to the utilitarian criterion.

4 Asymptotic theory

This section develops distribution theory to test for upward and downward inverse stochastic
dominance of any degree.
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Let X be an income variable with cumulative distribution function F and mean µ . Let [a,b]
be the domain of F where F−1 is the left inverse of F and F−1 (0) ≡ a ≥ 0. Let X1,X2, . . . ,Xn

be independent random variables with common distribution function F and let Fn be the corre-
sponding empirical distribution function.

Estimation of dominance functions

Since the parametric form of F is not known, it is natural to use the empirical distribution
function Fn to estimate F and to use

Λ
i
Fn
(u) =

1
(i−2)!

ˆ u

0
(u− t)i−2 F−1

n (t)dt, 0≤ u≤ 1, i = 2,3, . . .

to estimate Λi
F (u), where F−1

n is the left inverse of Fn, and to use

Λ̃
i
Fn
(u)=

1
(i−2)!

[
(1−u)i−2

ˆ 1

0
F−1

n (t)dt−
ˆ 1

u
(t−u)i−2 F−1

n (t)dt
]
, 0≤ u≤ 1, i= 3,4, . . .

to estimate Λ̃i
F (u).

To obtain explicit expressions for Λi
Fn
(u) and Λ̃i

Fn
(u), let X(1) ≤ X(2) ≤ ·· · ≤ X(n) denote the

ordered X1,X2, . . . ,Xn and X̄ = 1
n ∑

n
k=1 Xk. For u = k/n, we have

Λ
i
Fn

(
k
n

)
=

1
(i−2)!

1
n

k

∑
j=1

(
k− j

n

)i−2

X( j), k = 1,2, . . . ,n

and

Λ̃
i
Fn

(
k
n

)
=

1
(i−2)!

[(
1− k

n

)i−2

X̄− 1
n

n

∑
j=k

(
j− k

n

)i−2

X( j)

]
, k = 1,2, . . . ,n.

Since Fn is a consistent estimator of F , Λi
Fn
(u) and Λ̃i

Fn
(u) are consistent estimators of Λi

F (u)

and Λ̃i
F (u).

Asymptotic distribution theory

Let the empirical process Qn (u) be defined by

Qn (u) =
√

n
(
F−1

n (u)−F−1 (u)
)

(4.1)

Approximations to the variances of Λi
Fn
(u) and Λ̃i

Fn
(u) and the asymptotic properties of Λi

Fn
(u)

and Λ̃i
Fn
(u) can be obtained by considering the limiting distribution of the empirical processes
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Y i
n (u) and Ỹ i

n (u) defined by

Y i
n (u) =

√
n
[
Λ

i
Fn
(u)−Λ

i
F (u)

]
=

1
(i−2)!

ˆ u

0
(u− t)i−2 Qn (t)dt (4.2)

and

Ỹ i
n (u) =

√
n
[
Λ̃

i
Fn
(u)− Λ̃

i
F (u)

]
=

1
(i−2)!

[
(1−u)i−2

ˆ 1

0
Qn (t)dt−

ˆ 1

u
(t−u)i−2 Qn (t)dt

]
(4.3)

Let w(u, t) be a function of u and t such that 0≤ w(u, t)≤ 1 for all u, t ∈ [0,1] and let a(u) and
b(u) be functions of u such that 0≤ a(u)< b(u)≤ 1. In order to study the asymptotic behavior
of (4.2) and (4.3) it is convenient to consider the empirical process

Vn (u) =
ˆ b(u)

a(u)
w(u, t)Qn (t)dt (4.4)

which suggests that it will be useful to start with the process Qn (u) defined in (4.1).
The processes Qn (u) and Vn (u) are members of the space D of functions on [0,1] which are

right-continuous and have left-hand limits. On this space, we use the Skorokhod topology and
the associated σ -field (e.g. Billingsley, 1968, p. 111). We let W0 (t) denote a Brownian bridge
on [0,1], that is, a Gaussian process with mean zero and covariance function s(1− t), where
0≤ s≤ t ≤ 1.

Theorem 4.1. Suppose that F has a continuous nonzero derivative f on [a,b]. Then Vn (u)

converges in distribution to the process

V (u) =
ˆ b(u)

a(u)
w(u, t)

W0 (t)
f (F−1 (t))

dt

Proof. It follows directly from Theorem 4.1 of Doksum (1974) that the empirical process Qn (t)

converges in distribution to the Gaussian Process W0 (t)/ f
(
F−1 (t)

)
. Using the arguments of

Durbin (1973, Section 4.4), it follows that Vn (u) as function of
(
W0 (t)/ f

(
F−1 (t)

))
is contin-

uous in the Skorokhod topology. The results then follow from Billingsley (1968, Th. 5.1).

The following result states that V (u) is a Gaussian process and thus that Vn (u) is asymptot-
ically normally distributed, both when considered as a process, and for fixed u.

Theorem 4.2. Suppose the conditions of Theorem 4.1 are satisfied. Then the process V (u) has

the same probability distribution as the Gaussian process

∞

∑
j=1

d j (u)Z j
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where d j (u) is given by

d j (u) =

√
2

jπ

ˆ b(u)

a(u)
w(u, t)

sin( jπt)
f (F−1 (t))

dt

and Z1, Z2, . . . are independent N (0,1)-variables.

Proof. In the appendix.

The following result is obtained from Theorems 4.1 and 4.2 by inserting a(u) = 0, b(u) = u

and w(u, t) = (u− t)i−2 /(i−2)! in expression (4.4).

Corollary 4.1. Suppose that F has a continuous nonzero derivative f on [a,b]. Then Y i
n (u)

converges in distribution to the process

Y i (u) =
1

(i−2)!

ˆ u

0
(u− t)i−2 W0 (t)

f (F−1 (t))
dt

which has the same probability distribution as the Gaussian process

∞

∑
j=1

hi
j (u)Z j

where hi
j (u) is given by

hi
j (u) =

1
(i−2)!

[√
2

jπ

ˆ u

0
(u− t)i−2 sin( jπt)

f (F−1 (t))
dt

]

and Z1,Z2, . . . are independent N (0,1)-variables.

The following result states that Ỹ i
n (u) converges to a Gaussian process and thus that Ỹ i

n (u)

is asymptotically normally distributed.

Corollary 4.2. Suppose that F has a continuous nonzero derivative f on [a,b]. Then Ỹ i
n (u)

converges in distribution to the process

Ỹ i (u) =
1

(i−2)!

[
(1−u)i−2

ˆ 1

0

W0 (t)
f (F−1 (t))

dt−
ˆ 1

u
(t−u)i−2 W0 (t)

f (F−1 (t))
dt
]

which has the same probability distribution as the Gaussian process

∞

∑
j=1

h̃i
j (u)Z j

where h̃i
j (u) is given by

h̃i
j (u) =

1
(i−2)!

√
2

jπ

[
(1−u)i−2

ˆ 1

0

sin( jπt)
f (F−1 (t))

dt−
ˆ 1

u
(t−u)i−2 sin( jπt)

f (F−1 (t))
dt
]
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and Z1,Z2, . . . are independent N (0,1)-variables.

Proof. In the appendix.

By applying Fubini’s theorem (e.g. Royden, 1963) and the identity

2
∞

∑
j=1

sin( jπs)sin( jπt)

( jπ)2 = s(1− t) , 0≤ s≤ t ≤ 1, (4.5)

we get as an immediate consequence of Corollary 4.1 the following result.

Corollary 4.3. Under the conditions of Theorem 4.1, Y i
n (u) has asymptotic covariance function

given by

v2
i (u,v) =

∞

∑
j=1

hi
j (u)hi

j (v) (4.6)

=
1

[(i−2)!]2

{
2
ˆ F−1(u)

F−1(0)

ˆ y

F−1(0)
[(u−F(x))(v−F (y))]i−2 F (x)(1−F (y))dxdy

+

ˆ F−1(v)

F−1(u)

ˆ F−1(u)

F−1(0)
[(u−F(x))(v−F (y))]i−2 F (x)(1−F (y))dxdy

}

In order to derive the asymptotic covariance function of Ỹ i
n (u) it proves convenient to intro-

duce the following notation.

λikr (u,v) =
1

[(i−2)!]2

ˆ F−1(1)

F−1(v)

ˆ y

F−1(v)
(F (x)−u)k−2 (F (y)− v)r−2 F (x)(1−F (y))dxdy,

γikr (u,v) =
1

[(i−2)!]2

ˆ F−1(1)

F−1(v)

ˆ F−1(v)

F−1(u)
(F (x)−u)k−2 (F (y)− v)r−2 F (x)(1−F (y))dxdy

and

λ̃ikr(u,v) =
1

[(i−2)!]2

ˆ F−1(1)

F−1(v)

ˆ y

F−1(v)
(F (x)− v)k−2 (F (y)−u)r−2 F (x)(1−F (y))dxdy.

Now, similarly as for Corollary 4.3, we get the following result from Corollary 4.2 by applying
Fubini’s theorem (e.g. Royden, 1963) and the identity (4.5).

Corollary 4.4. Under the conditions of Theorem 4.1, Ỹ i
n (u) has asymptotic covariance function

given by

η
2
i (u,v) =

∞

∑
j=1

h̃i
j (u) h̃i

j (v) (4.7)

= 2 [(1−u)(1− v)]i−2
λi22 (0,0)− (1−u)i−2 [λi2i (u,v)+λii2(u,v)+ γi2i (0,v)]

−(1− v)i−2 [λi2i(u,u)+λii2 (u,u)+ γi2i (0,u)]+
[
λiii (u,v)+ λ̃iii(u,v)+ γiii (u,v)

]
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In order to construct confidence intervals for Λi
F (u) and Λ̃i

F (u) at fixed points, we apply the
results of Theorem 4.1 and Corollary 4.2, which imply that the distribution of

√
n

Λi
Fn
(u)−Λi

F (u)
vi (u,u)

tends to the N (0,1)-distribution for fixed u, where v2
i (u,u) is given by (4.6), and the distribution

of
√

n
Λ̃i

Fn
(u)− Λ̃i

F (u)
ηi (u,u)

tends to the N (0,1)-distribution for fixed u, where η2
i (u,u) is given by (4.7).

Confidence intervals and bands

To get an idea of how reliable Λi
Fn
(u) and Λ̃i

Fn
(u) are as estimates of Λi

F (u) and Λ̃i
F (u), we

have to construct confidence bands based on Λi
Fn
(u) and Λ̃i

Fn
(u), respectively. Such confidence

bands can be obtained from statistics of the type

Kn =
√

nsup
|Vn (u)−V (u)|

ψ (Vn (u))

where ψ is a continuous nonnegative weight function. By applying Theorems 4.1 and 4.2 and
Billingsley (1968, Th. 5.1), we find that Kn converges in distribution to

K = sup
0≤u≤1

∣∣∣∣∣ ∞

∑
j=1

d j (u)
ψ (V (u))

Z j

∣∣∣∣∣
We use the following notation.

Tm (u) =
m

∑
j=1

d j (u)
ψ (V (u))

Z j

T (u) =
∞

∑
j=1

d j (u)
ψ (V (u))

Z j

K∗m = sup
0≤u≤1

|Tm (u)|

Since Tm converges in distribution to T , we find by applying Billingsley (1968, Th. 5.1) that
K∗m converges in distribution to K. Hence, for a suitable choice of m and ψ , for instance ψ = 1,
simulation methods may be used to obtain the distribution of K∗m and thus an approximation for
the distribution of K.
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Implementation

In the empirical analysis, we apply the distribution theory to test for upward and downward
inverse stochastic dominance. We start by estimating the degree of dominance of the two em-
pirical distributions under consideration, say F1n and F0n, and calculate the dominance functions
Λi

Fn
(u) and Λ̃i

Fn
(u) for each. Under the null hypothesis of F−1

1 (u) = F−1
0 (u) for all u ∈ [0,1],

we can estimate h j (u) and h̃ j (u) by mixing the distributions and use a kernel estimate of the
density function with an epanechnikov kernel. To calculate Tm (u) we take 1000 random normal
draws, set ψ = 1, and then calculate K∗m taking the maximum of |Tm (u)|. Finally, we repeat this
procedure 1000 times, and calculate the critical value at confidence level p as the p percentile
of the simulated distribution of K∗m.

5 Empirical applications

5.1 Distribution of household income in booms and busts

A large body of evidence suggests that inequality growth in the UK over the past few decades
has been episodic and strongly related to the business cycle (see e.g. Blundell and Etheridge,
2010). From 1993 onwards, the economy moved out of a recession and into a period of stable
and moderate income growth across most of the income distribution. Then, from the late 1990s,
a further rise in income occurred, largely concentrated at the upper part of the income distribu-
tion. The recession that followed the financial crisis in 2007/2008 led to sharp falls in incomes,
especially at the upper part of the income distribution.

Our framework can be used to make unambiguous statements about the social welfare im-
plications of these changes in the household income distribution. Our data come from the
European Community Household Panel (ECHP) for 1995–2001, and from the European Union
Statistics on Income and Living Conditions (EU-SILC) for 2005–2010.15 In each year, we
restrict the sample to households with a male aged 25-64. We focus on the distribution of in-
dividual equivalent income, after adjusting for inflation and differences in household size and
composition.16 Using our data, Panel (a) of Figure 5.1 displays the evolution at different parts
of the equivalent income distribution.

To assess the changes in the distribution of individual equivalent income, we make pairwise
yearly comparisons of all the distributions. Table 5.1 shows the ranking on the basis of second-
degree dominance, denoting by ">" if the earlier year dominates, and by "<" if the later year
dominates. We can see that 45 of a possible 91 pairwise yearly comparisons can be ranked
on the basis of second-degree dominance. Furthermore, all but eight of these rankings are
statistically significant at conventional levels. This still leaves us a long way short of a complete

15Unfortunately, these datasets do not provide information on income for the years 2002–2004.
16To adjust for differences in household size and composition, we use the OECD equivalence scale.
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Figure 5.1: Time trends in the UK distribution of income and social welfare
Note: The data come from ECHP (1994–2001) and EU-SILC (2005–2010). We use the population
weights supplied by EU-Stat. In Panel (a), we show the evolution of the means and selected quantiles of
the distributions of individual equivalent income, after adjusting for inflation and differences in house-
hold size and composition. In Panel (b), we display the evolution of social welfare per capita based on
the Gini social welfare function.

ranking, but is nonetheless a useful first step.17 One insight from Table 5.1 is that any inequality
averse social planner would conclude that social welfare is higher in 2007 than in the previous
years. Another finding is that social welfare remains higher after the crisis as compared to 1994,
our first year of observation.

In Table 5.2, we examine whether third-degree upward dominance raises the ranking suc-
cess rate. We find that the use of this refinement matters little, if anything, for the ability to rank
income distributions. By contrast, third-degree downward dominance provides an almost com-
plete ranking of the income distributions. As shown in Table 5.3, this ranking criterion resolves
all except one of the comparisons that were ambiguous under second-degree dominance. We
can also see that these rankings are statistically significant at conventional levels.

Taken together, the findings in Tables 5.2 and 5.3 point to the importance of whether income
differences between poorer individuals are viewed as more or less important for social welfare
as compared to income differences between richer individuals. If the social planner is more
concerned with income differences in the lower part of distributions, weaker criteria than third
degree upward dominance are required to make unambigouous conclusions about the changes
in the distribution of income over the business cycle.18 However, if the social planner focuses
attention on income differences in the upper part of the distribution, as in the recent studies of
the evolution of top incomes, a nearly complete ranking of income distributions can be achieved.

17The high rate of success in ranking income distributions by second-degree dominance contrasts with the
findings in some other datasets (see Atkinson, 2008).

18Appendix Table A.1 shows the necessary degree of upward and downward dominance to achieve a complete
ranking. The results show that the degree of upward dominance has to be quite high to raise the ranking success
rate substantially.
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Table 5.1: Ranking of income distributions by 2nd-degree dominance

YEAR 1995 1996 1997 1998 1999 2000 2001 2005 2006 2007 2008 2009 2010

1994 <a < < < < <a <

1995 <a < < < < < <a

1996 <

1997 <

1998 < < < < <

1999 < < < < <

2000 < < < <a

2001 < <a < <a

2005 <a >

2006 < >

2007 > > >

2008 >

2009

Note: The table makes pairwise yearly comparisons of the income distributions over the period 1994–
2010. We report the succesful rankings based on 2nd-degree dominance. We denote by “<” when the
later year dominates the earlier year, and with “>” when the earlier year dominates the later year. a p >
0.10. b p > 0.05.

In particular, it is then clear that social welfare steadily increased until 2007, and that the reces-
sion caused a reversion in social welfare to the level of year 2000. This can be seen clearly in
Panel (b) of Figure 5.1, which shows the estimated social welfare in each year as evaluated by
the least restrictive social welfare function that ranks consistently with third-degree downward
dominance (i.e. the Gini social welfare function). At its peak in 2007, the equally distributed
equivalent income is above C 24,000 per capita and the welfare loss due to inequality is about
C 11,400 per capita.

5.2 Evaluating the distributional effects of policy

To illustrate the usefulness of our framework for policy evaluations, we now apply it to Con-
necticut’s Jobs First experiment.19 This randomized controlled trial assigned 2,396 welfare
recipients to Jobs First, while 4,803 recipients were assigned to Aid for Dependent Children
(AFDC). Compared to the high implicit tax rates and no time limit of the AFDC program, Jobs
First expanded the earnings disregard and imposed a strict 21-month time limit on welfare par-
ticipation. Under AFDC, the monthly earnings disregard was $120 in the first year and $90
thereafter, while statutory benefit reduction was 66 % in the first four months, and 100 % there-
after.20 In contrast, Jobs First entailed no benefit reduction below the federal poverty line and a

19For detailed information about the program and for descriptive statistics, we refer to Bloom, Scrivener,
Michalopoulos, Morris, Hendra, Adams-Ciardullo, and Walter (2002) or Bitler, Gelbach, and Hoynes (2006).

20Due to several expense disregards, lags in enforcement and the implicit wage subsidy from the Earned Income
Tax Credit, Bitler, Gelbach, and Hoynes (2006) estimate the effective benefit reduction at about 33 %.
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Table 5.2: Ranking of income distributions by 3rd-degree upward dominance

YEAR 1995 1996 1997 1998 1999 2000 2001 2005 2006 2007 2008 2009 2010

1994 <a <a < < < < < < <

1995 < < < < < < <

1996 <

1997 <

1998 >a < < < < <

1999 < < < < <

2000 < < < <

2001 < < < <

2005 < >

2006 < >

2007 > > >

2008 >

2009

Note: The table makes pairwise yearly comparisons of the income distributions over the period 1994–
2010. We report the succesful rankings based on 3rd-degree upward inverse stochastic dominance. We
denote by “<” when the later year dominates the earlier year, and with “>” when the earlier year domi-
nates the later year. a p > 0.10. b p > 0.05.

Table 5.3: Ranking of income distributions by 3rd-degree downward dominance

YEAR 1995 1996 1997 1998 1999 2000 2001 2005 2006 2007 2008 2009 2010

1994 > < < < < < < < < < < <

1995 < < < < < < < < < < < <

1996 < < < < < < < < < < <

1997 < < < < < < < < < <

1998 <b < < < < < < < <

1999 < < < < < < < <

2000 < < < < < > >

2001 < < < < > >

2005 > < > > >

2006 < > > >

2007 > > >

2008 > >

2009 <

Note: The table makes pairwise yearly comparisons of the income distributions over the period 1994–
2010. We report the succesful rankings based on 3rd-degree downward inverse stochastic dominance.
We denote by “<” when the later year dominates the earlier year, and with “>” when the earlier year
dominates the later year. a p > 0.10. b p > 0.05.
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100 % reduction beyond this.21

Bitler, Gelbach, and Hoynes (2006) evaluated how the Jobs First-program affected the dis-
tribution of earnings, transfers and total income among participants. In line with the predictions
from economic theory, the estimated quantile treatment effects reveal considerable heterogene-
ity in the impact of the program. To evaluate whether this program was an overall success, we
extend on their analysis by using our framework to rank the actual and counterfactual income
distributions and to quantify the difference in social welfare between the two distributions.

Table 5.4 displays the results. In panel A, we report the degree of upward and downward
dominance necessary to rank the distributions of total income under Jobs First and AFDC.22

By identifying the least restrictive member of the parametric social welfare functions that rank
consistently with the estimated degree of dominance, we can also compute the social welfare
level of the dominating distribution as compared to the dominated distribution. Panel B reports
the percentage increase in social welfare in the dominating distribution. To ease the interpreta-
tion of the social preferences underlying the dominance results, panel C illustrates the weight
functions of the least restricive members of the parametric social welfare functions. For brevity,
we report the ratios of the weights of the median individual compared to the the 5% poorest, the
30% poorest, the 30% richest, and the 5% richest.

We can see that a refinement of second-degree dominance is necessary to rank the income
distributions under Jobs First and AFDC. The first column shows that we need a high degree of
upward dominance to reach an unambiguous ranking. If the social planner is sufficiently averse
to income differences in the lower part of the distributions, AFDC unambiguously provides
higher social welfare than Jobs First. For instance, the least restrictive member of the parametric
welfare functions that rank consistently with 9th-degree upward dominance assigns about ten
times as much weight to the 30th percentile compared to the median income. With such social
preferences, Jobs First is estimated to reduce social welfare by 14.4 percent.

The second column confirms the ability of third-degree downward dominance to resolve
comparisons that were ambiguous under second-degree dominance. If the social planner sup-
ports the principle of first-degree UPTS, the Jobs First distribution dominates the AFDC dis-
tribution. This implies that an unambiguous conclusion can be drawn with quite unrestrictive
social preferences; for example, it is sufficient to assign 1.4 times as much weight to the 30
percentile compared to the median income. By applying the least restrictive member of the
parametric welfare functions that ranks consistently with third degree downward dominance,
we estimate that Jobs First increases social welfare by almost 11 percent.

21Compared to AFDC, Jobs First also expanded the work requirement, the asset limit and transitional Medicaid,
while enforcing stricter sanctions for violations (see Bloom, Scrivener, Michalopoulos, Morris, Hendra, Adams-
Ciardullo, and Walter, 2002).

22Total income includes transfers and earnings. Because we do not have access to the micro data, our ranking is
based on the estimated quantile treatment effects from Bitler, Gelbach, and Hoynes (2006). As a consequence, we
are not able to draw statistical inference about the degree of dominance.
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Table 5.4: Comparing income distributions under Jobs First and AFDC

Upward dominance Downward dominance

A. Ranking
Degree of dominance 9 3
Dominating distribution AFDC Jobs First

B. Social welfare gains
∆WP 14.41% 10.94%

C. Weights at quantiles
p(.05) 89.39 1.90
p(.30) 10.54 1.40
p(.70) 0.03 0.60
p(.95) 0.00 0.10
Note: The results are based on the estimated quantile treatment effects reported in Bitler, Gelbach,
and Hoynes (2006). Income is defined as the sum of earnings and transfers, averaged over quarters
1–16. Panel A shows the degree of upward and downward dominance necessary to rank the income
distributions under Jobs First and AFDC. Panel B shows the gains in social welfare (in percent) in the
dominating distribution. We report the change in social welfare for the least restrictive member of the
parametric social welfare functions that rank consistently with the estimated degree of dominance. Panel
C displays the weights at selected quantiles relative to the weight at the median income for the least
restrictive member of the parametric social welfare functions.

6 Conclusion

Since the seminal contributions of Kolm (1969) and Atkinson (1970), second-degree domi-
nance has become a widely accepted criterion for ranking distribution functions. But in many
applications where the distribution functions intersect, a reasonable refinement of this crite-
rion is necessary to attain an unambiguous ranking. Although the theoretical literature offers
dominance criteria of an arbitrary order, they are rarely used; the reason is that higher degree
dominance criteria are generally viewed as difficult to interpret and hard to justify because they
rely on assumptions about higher order derivatives (see e.g. Atkinson, 2003; Atkinson, 2008).
To address these concerns, a large and growing literature has explored third degree dominance
as a criterion for ranking distributions.

Our paper contributes by providing a general framework to unambiguously rank any set of
distribution functions and quantify the social welfare level of a dominating distribution as com-
pared to a dominated distribution. Our framework is based on two complementary sequences
of nested inverse stochastic dominance criteria. The first sequence includes the traditional in-
verse dominance criteria of third and higher degrees; it is called upward dominance because it
aggregates the integrated inverse distribution function from below, and therefore places more
emphasis on differences that occur in the lower part of the distributions. The second sequence
is novel and complements the traditional criteria by placing more emphasis on differences that
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occur in the upper part of the distribution; we call it downward dominance because it aggregates
the integrated inverse distribution function from above. Since the sequences are hierarchical, the
sensitivity to differences in the lower (upper) part of the distribution increases with the degree
of upward (downward) dominance. The two sequences coincide at second-degree dominance,
and thus both satisfy the Pigou-Dalton transfer principle.

For each sequence, we show equivalence in the ranking of distributions according to the
dominance criteria and a general family of rank-dependent social welfare functions. Because
the sequences of dominance criteria are nested, our equivalence results allow us to uniquely
identify the largest subfamily of welfare functions – and thus the least restrictive social prefer-
ences – that give an unambiguous ranking of any set of distribution functions. We also provide
a characterization of the largest subfamily of social welfare functions that rank consistently
with dominance of any given degree. Because of the equivalence result, this characterization
provides intepretation and justification not only for the social welfare functions, but also for
the use of higher degree dominance criteria in comparison of distribution functions. We further
show that the members of two alternative parametric families of social welfare functions can be
divided into subfamilies according to their relationship with the nested inverse stochastic domi-
nance criteria. The parametric families are well known, easily implementable and the estimated
social welfare can be given a money metric interpretation.

We show the usefulness of our framework with two empirical applications. The first uses
data from the UK to study how the distribution of household income evolved over a boom and a
bust era in the British economy. We show how our framework can be used to make unambigu-
ous statements about the social welfare implications of the changes in the household income
distribution over the business cycle. The second uses random-assignment data to evaluate the
distributional effects of Connecticut’s Jobs First program, which involved generous earnings
disregard and strict time limits. We use our framework to infer the least restrictive social pref-
erences that allow an unambiguous conclusion of whether this program was an overall success.
In both applications, we find that third-degree downward dominance is a particularly powerful
refinement of second-degree dominance, providing an almost complete ranking of the distri-
bution functions. By comparison, the traditional criterion of third-degree upward dominance
resolves few of the comparisons that were ambiguous under second-degree dominance.
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A Appendix: Proofs and supplementary tables

Lemma A.1. Let H be the family of bounded, continuous and non-negative functions on [0,1]
which are positive on (0,1) and let g be an arbitrary bounded and continuous function on [0,1].
Then ˆ

g(t)h(t)dt > 0 for all h ∈ H

implies

g(t)≥ 0 for all t ∈ [0,1]

and the inequality holds strictly for at least one t ∈ (0,1).

Proof. The proof of Lemma A.1 is known from mathematical text books.

Proof of Theorem 2.1.23 Using integration by parts and inserting Λ2
F(u) and Λ3

F(u) from
Equations (2.10) and (2.11), we get that

WP (F1)−WP (F0) = −P
′′
(1)
ˆ 1

0

(
Λ

2
F1
(t)−Λ

2
F0
(t)
)

dt +
ˆ 1

0
P
′′′
(u)
ˆ u

0

(
Λ

2
F1
(t)−Λ

2
F0
(t)
)

dtdu

= −P
′′
(1)
(
Λ

3
F1
(1)−Λ

3
F0
(1)
)
+

ˆ 1

0
P
′′′
(u)
(
Λ

3
F1
(u)−Λ

3
F0
(u)
)

du

To prove the equivalence between (i) and (ii), note that if (i) holds then WP (F1) > WP (F0) for
all P ∈P3. To prove the converse statement, we restrict to preference functions P ∈P3, for

23The proof of the equivalence between (i) and (ii) in Theorem 2.1 is analogous to the proof for stochastic
dominance in Hadar and Russell (1969) but is included for the sake of completeness.
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which P
′′
(1) = 0. Hence,

WP (F1)−WP (F0) =

ˆ 1

0
P
′′′
(u)
(
Λ

3
F1
(u)−Λ

3
F0
(u)
)

du > 0

and the desired result is obtained by applying Lemma A.1.
To prove the equivalence between (ii) and (iii), consider a case where we transfer a small

amount γ from persons with incomes F−1 (s+h1) and F−1 (t +h1) to persons with incomes
F−1 (s) and F−1 (t), respectively, where t > s. Then WP obeys first-degree DPTS if and only if
P′ (s)−P′ (s+h1) > P′ (t)−P′ (t +h1) which for small h1 is equivalent to P

′′
(t)−P

′′
(s) > 0.

Next, we find that, for t− s small, this is equivalent to P
′′′
(s)> 0.

Proof of Theorem 2.2. The proof is analogous to the proof of Theorem 2.1, and is based on the
expression

WP (F1)−WP (F0) = −P
′′
(0)
ˆ 1

0

(
Λ

2
F1
(t)−Λ

2
F0
(t)
)

dt +
ˆ 1

0
P
′′′
(u)
ˆ 1

u

(
Λ

2
F1
(t)−Λ

2
F0
(t)
)

dtdu

= −P
′′
(0)
(
Λ̃

3
F1
(0)− Λ̃

3
F0
(0)
)
−
ˆ 1

0
P
′′′
(u)
(
Λ̃

3
F1
(u)− Λ̃

3
F0
(u)
)

du

which is obtained by using integration by parts and inserting Λ̃3
F (u) defined by Equation (2.16).

Thus, by arguments like those in the proof of Theorem 2.1 the results of Theorem 2.2 are
obtained.

Proof of Equivalence between (i) and (ii) in Theorem 2.3. To examine the case of ith-degree
upward inverse stochastic dominance, we integrate WP (F1)−WP (F0) by parts i times,

WP (F1)−WP (F0) =
i−1

∑
j=2

(−1) j−1 P( j) (1)
[
Λ

j+1
F1

(1)−Λ
j+1
F0

(1)
]

(A.1)

+(−1)i−1
ˆ 1

0
P(i) (u)

[
Λ

i
F1
(u)−Λ

i
F0
(u)
]

du

and use this expression in constructing the proof of the equivalence between (i) and (ii).
Assume first that (i) in Theorem 2.3 is true, i.e. Λi

F1
(u)−Λi

F0
(u)≥ 0 for all u ∈ [0,1] and >

holds for at least one u ∈ (0,1). Then WP (F1)>WP (F0) for all P ∈Pi.
Conversely, assume that WP (F1)>WP (F0) for all P ∈Pi. For this family of social welfare

functions, we have that

WP (F1)−WP (F0) = (−1)i−1
ˆ 1

0
P(i) (u)

(
Λ

i
F1
(u)−Λ

i
F0
(u)
)

du > 0

Then, as demonstrated by Lemma A.1, the desired result can be obtained by a suitable choice
of P ∈Pi.

Proof of Equivalence between (ii) and (iii) in Theorem 2.3. We prove the equivalence be-
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tween (ii) and (iii) in Theorem 2.3 by using mathematical induction. To this end it is convenient
to introduce the following notation. Let H1, H2 and H j+1 be defined by

H1 (v,h1) = P′ (v)−P′ (v+h1) (A.2)

H2 (s, t,h1) = H1 (s,h1)−H1 (t,h1) (A.3)

H j+1
(
s, t,h1,h2, . . . ,h j

)
= H j

(
s, t,h1,h2, . . . ,h j−1

)
(A.4)

−H j
(
s+h j, t +h j,h1,h2, . . . ,h j−1

)
for j = 2,3, . . . (A.5)

Moreover, let
H(1)

2 (s, t) = lim
h1→0

1
h1

H2 (s, t,h1) (A.6)

and

H( j)
j+1 (s, t) = lim

h j→0
· · · lim

h1→0

1

∏
j
k=1 hk

H j+1
(
s, t,h1,h2, . . . ,h j

)
for j = 2,3, . . . . (A.7)

It follows from Theorem 2.1 and the properties of the admissible weigthing functions P∈P

that WP obeys the Pigou-Dalton principle of transfers and first-degree DPTS if and only if
P
′′
(t) < 0 and P

′′′
(t) > 0. From Equations (2.27), (2.1) and (A.2)–(A.7), we then get that WP

obeys second-degree DPTS if and only if

H(2)
3 (s, t)> 0 for s < t. (A.8)

Inserting (A.4), (A.3) and (A.2) for j = 2 yields

H(2)
3 (s, t) = lim

h2→0
lim

h1→0

1
h1h2

H3 (s, t,h1,h2)

= lim
h2→0

lim
h1→0

1
h1h2

[H2 (s, t,h1)−H2 (s+h2, t +h2,h1)]

= lim
h2→0

1
h2

(
H(1)

2 (s, t)−H(1)
2 (s+h2, t +h2)

)
= lim

h2→0

1
h2

lim
h1→0

1
h1

{
P′ (s)−P′ (s+h1)−

(
P′ (t)−P′ (t +h1)

)
−
[
P′ (s+h2)−P′ (s+h1 +h2)−

(
P′ (t +h2)−P′ (t +h1 +h2)

)]}
= lim

h2→0

1
h2

[
−P

′′
(s)+P

′′
(s+h2)−

(
P
′′
(t)+P

′′
(t +h2)

)]
= P(3) (s)−P(3) (t) .

Inserting t = s+h, we find, for small h, that this is equivalent to P(4) (s)< 0.
Next, assume that

H( j−1)
j (s, t) = (−1) j−1

(
P( j) (s)−P( j) (t)

)
. (A.9)

It follows from Theorem (2.1) and the above that (A.9) is true for j = 2 and j = 3. Inserting
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(A.4) in (A.7), we get

H( j)
j+1 (s, t) = lim

h j→0
· · · lim

h1→0

1

∏
j
k=1 hk

(
H j
(
s, t,h1,h2, . . . ,h j−1

)
−H j

(
s+h j, t +h j,h1,h2, . . . ,h j−1

))
= lim

h j→0
· · · lim

h2→0

1

∏
j
k=2 hk

(
H(1)

j
(
s, t,h1,h2, . . . ,h j−1

)
−H(1)

j
(
s+h j, t +h j,h1,h2, . . . ,h j−1

))
= lim

h j→0

1
h j

(
H( j−1)

j (s, t)−H( j−1)
j

(
s+h j, t +h j

))
,

which by inserting (A.9) yields

H( j)
j+1 (s, t) = (−1) j

(
P( j+1) (s)−P( j+1) (t)

)
.

Thus, (A.9) is proved to be true by induction.
Since WP defined by Equation (2.1) obeys the (i−1)th-degree DPTS if and only if H(i−1)

i (s, t)>

0 for s < t, we get from (A.9) that this condition is equivalent to (−1)P(i+1) (s)> 0.

Proof of Theorem 2.4. The proof follows exactly the reasoning used in the proof of Theorem
2.3, using the following expression,

WP (F1)−WP (F0) = −
i−1

∑
j=2

P( j) (0)
[
Λ̃

j+1
F1

(0)− Λ̃
j+1
F0

(0)
]

−
ˆ 1

0
P(i) (u)

[
Λ̃

i
F1
(u)− Λ̃

i
F0
(u)
]

du

which is obtained by using integration by parts i times.

Proof of Theorem 4.2. Let

Q∗N (t) =

√
2

f (F−1 (t))

N

∑
j=1

sin( jπt)
jπ

Z j

and note that

2
N

∑
j=1

sin( jπs)sin( jπt)

( jπ)2 = s(1− t) (A.10)

Thus, the process Q∗N (t) is Gaussian with mean zero and covariance function

cov(Q∗N (s) ,Q∗N (t)) =
2

f (F−1 (s)) f (F−1 (t))

N

∑
j=1

sin( jπs)sin( jπt)

( jπ)2 −→
N→∞

cov(Q(s) ,Q(t))

where
Q(t) =

W0 (t)
f (F−1 (t))

In order to prove that Q∗N converges in distribution to the Gaussian process Q(t), it is, according
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to Hájek and Šidák (1967, Ths. 3.1.a, 3.1.b and 3.2), enough to show that

E [Q∗N (t)−Q∗N (s)]4 ≤M (t− s)2 , 0≤ s, t,≤ 1

where the constant M is independent of N.
Since for normally distributed random variables with mean 0,

EX4 = 3
[
EX2]2

we have

E [Q∗N (t)−Q∗N (s)]4 = 3 [var(Q∗N (t)−Q∗N (s))]2

= 3

{
2 ·var

[
N

∑
j=1

1
jπ

(
sin( jπt)

f (F−1 (t))
− sin( jπs)

f (F−1 (s))

)
Z j

]}2

= 3

{
2 ·

N

∑
j=1

[
1
jπ

(
sin( jπt)

f (F−1 (t))
− sin( jπs)

f (F−1 (s))

)
Z j

]2
}2

≤ 3

{
2 ·

∞

∑
j=1

[
1
jπ

(
sin( jπt)

f (F−1 (t))
− sin( jπs)

f (F−1 (s))

)
Z j

]2
}2

= 3
{

t (1− t)
f 2 (F−1 (t))

+
s(1− s)

f 2 (F−1 (s))
−2

cov(W0 (s) ,W0 (t))
f (F−1 (s)) f (F−1 (t))

}2

.

Since 0 < f (x)< ∞ on [a,b], there exists a constant M ≥ 0 such that

f
(
F−1 (t)

)
≥M−

1
4 for all t ∈ [0,1]

Hence, Q∗N (t) converges in distribution to the process Q(t). Thus, since w(u, t) is bounded it
follows according to Billingsley (1968, Th. 5.1) that

ˆ b(u)

a(u)
w(u, t)Q∗N (t)dt =

N

∑
j=1

d j (u)Z j

converges in distribution to the process

ˆ b(u)

a(u)
w(u, t)P(t)dt =

ˆ b(u)

a(u)
w(u, t)

W0 (t)
f (F−1 (t))

dt = Z (u)

Proof of Corollary 4.2. Theorem 4.1 implies that the process Ỹ i
n (u) converges in distribu-

tion to the process Ỹ i (u). By inserting for respectively a(u) = 0, b(u) = 1 and w(u, t) =

(1−u)i−2 /(i−2)!, and for a(u) = u, b(u) = 1 and w(u, t) = (t−u)i−2 /(i−2)! in expression
(4.4), it follows from Theorem 4.2 that the first term (1−u)i−2 ´ 1

0 Qn (t)dt of expression (4.3)
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converges to a process that has the same distribution as ∑
∞
j=1

√
2

jπ

[
(1−u)i−2 ´ 1

0
sin( jπt)

f(F−1(t))
dt
]

Z j,

while the second term
[´ 1

u (t−u)i−2 Qn (t)dt
]

of expression (4.3) converges to a process that

has the same distribution as ∑
∞
j=1

√
2

jπ

[´ 1
u (t−u)i−2 sin( jπt)

f(F−1(t))
dt
]

Z j.
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