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ABSTRACT 
 

Household Behavior and the Marriage Market* 
 
There is some controversy in the field of household economics regarding the efficiency of 
household decisions. We make the point that a flexible specification of spousal preferences 
and the household production technology precludes the possibility of using revealed 
preference data on household time allocations to determine the manner in which spouses 
interact: efficiently or inefficiently. Under strong, but standard, assumptions regarding 
marriage market equilibria, marital sorting patterns can be used essentially as “out of sample” 
information that allows us to assess whether household behavior is efficient or not. We 
develop a new likelihood-based metric to compare marriage market fits under the two 
alternative behavioral assumptions. We use a sample of households drawn from a recent 
wave of the Panel Study of Income Dynamics, and find strong evidence supporting the view 
that household behavior is (constrained) efficient. 
 
 
JEL Classification: D13, J12, J22 
 
Keywords: bilateral matching, household time allocation, efficient outcomes, 

likelihood analysis 
 
 
Corresponding author: 
 
Daniela Del Boca 
Department of Economics 
University of Turin 
Via Po 53 
Torino 10124 
Italy 
E-mail: dani.delboca@unito.it  

                                                 
* This paper was previously circulated under the title “Household Time Allocation and Modes of 
Behavior: A Theory of Sorts.” This research was partially supported by the C.V. Starr Center for 
Applied Economics at New York University and Collegio Carlo Alberto. Flinn thanks the National 
Science Foundation for additional support. The editor, an anonymous referee, and an anonymous 
associate editor provided constructive comments and suggestions that led to a substantially improved 
paper. We are grateful to Olivier Bargain, Cristian Bartolucci, Xiaohong Chen, Olivier Donni, Bryan 
Graham, James Mabli, Tom MaCurdy, Al Roth, and Yoram Weiss for helpful discussions and 
suggestions, as well as to participants in the August 2005 SITE workshop on “The Nexus Between 
Household Economics and the Macroeconomy,” the conference “Interactions within the Family” held at 
the Universita di Torino in 2005, the conference “The Labour Market Behaviour of Couples” held in 
Nice in 2008, and workshop participants at ASU, Yale, and UCL. We remain responsible for all errors 
and omissions. 

mailto:dani.delboca@unito.it


1 Introduction

Most analyses of household behavior conducted at the microeconomic level posit coopera-

tive behavior by spouses (for some exceptions, see Chen and Woolley (2001) and Del Boca

and Flinn (2012)). In fact, Chiappori and his coauthors (e.g., Chiappori (1992), Browning

and Chiappori (1998)) have argued that all such models should posit efficiency as an iden-

tifying assumption when attempting to estimate individualistic preferences using data on

household allocations. Such an assumption, however, leads to other difficult identification

issues since the dependent variables, which are household allocations, are not uniquely de-

termined without further auxiliary assumptions regarding how the household selects one

particular efficient allocation from the continuum of such choices that typically exist.

Chiappori and his collaborators (e.g., Chiappori (1988,1992), Browning et al. (1994),

Browning and Chiappori (1998), Bourguignon et al. (2009)) have proposed a data-based

strategy to estimate the household utility function ()1() + (1 − ())2() where

() is the Pareto weight attached to the individualistic utility of agent 1,  is a vector of

consumption choices, and  is a vector of personal, household, and environmental charac-

teristics. The solution to this problem lies on the Pareto frontier for () ∈ [0 1] Model
identification is achieved through restrictions regarding the arguments of the weighting

and individualistic utility functions and/or functional form assumptions. Identification is

achieved without resort to a specific axiomatic solution, with the data ( and ) given the

power to solve the multiple equilibria problem within the particular model structure.

In Del Boca and Flinn (2012), we showed that when allowing unrestricted individual

heterogeneity in wages, preferences, and household productivity, models of noncoopera-

tive and cooperative behavior were nonparametrically identified (i.e., from information on

wages, nonlabor incomes, and time allocation decisions of households) and that they were

all simply different mappings of the data into the parameter space.1 In an empirical sense,

then, all of these models were equivalent. We then constructed a model based on Folk

Theorem results that allowed households to choose their mode of behavior (cooperative or

noncooperative). We showed that this model was not nonparametrically identified, and

proceeded to estimate all of the models under parametric assumptions on the distributions

of preferences and productivities. The “endogenous household interaction” model, as we

called the model in which households choose to act cooperatively or not, was found to

fit the data the best. The estimated parameters indicated that one-fourth of households

behave in a noncooperative way with the rest using a cooperative decision rule.

In this paper we further explore the issue of the “mode” of household behavior, and

for simplicity focus on only two alternatives, noncooperative Nash equilibrium (NE) and

“constrained” Pareto optimal (CPO) behavior, to be defined below. We first show, as

in our earlier paper, that after allowing for general forms of population heterogeneity in

1The models are all saturated models in which the number of parameters (fixed preference and pro-

ductivity draws) is equal to the number of data points. They amount to different parameterizations of a

saturated model.
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preferences and household productive ability, it is not possible to distinguish between 

and  solely on the basis of household time allocation data. To do so requires imposing

homogeneity restrictions that may not be justifiable and are essentially untestable. We

then show how patterns of marital sorting observed in the data potentially contain valuable

information on the manner in which household members interact. We are by no means the

first to point this out. Following the view of Becker (1991) that marriage is a partnership for

joint production and consumption, several authors have analyzed aspects of the marriage

market to explore marital behavior and the gains to marriage (e.g., Choo and Siow (2006),

Dagsvik et al. (2001), Pollack (1990)). Other research has explored the effects of the

marriage market on household behavior. While Aiyagari, Greenwood and Guner (2000)

and Greenwood, Guner and Knowles (2003) have focused on the link between the marriage

market and parental investments in children and patterns of intergenerational mobility,

Fernandez et al. (2005) have studied the implication of marital sorting for household

income inequality.

Microeconomic analyses such as Browning et al. (2003), Seitz (1999), and Igiyun and

Walsh (2007) have explored aspects of household formation that precede marriage to merge

household models with marital sorting in order to explore the implications of spousal

matching for intrahousehold allocations. While the objective of these papers is mainly to

identify sharing rules and to consider whether household allocations are efficient, we use

marital sorting to investigate which type of interaction is most consistent with observed

outcomes.2

The basic idea of our approach can be summarized as follows. We begin by assuming

that spouses make household allocation decisions using some rule  and then use the ob-

served household time allocations, along with the observed wages and nonlabor incomes, to

“back out” the parameters characterizing the preferences and (household) productivities of

both spouses within each household in the sample. Using these individual-specific parame-

ters, we can then construct preference orderings for each male over all possible females in a

particular marriage market assuming that the household allocations are chosen according

to  and we can construct the preference orderings for the females in a similar manner.

Armed with these -specific preference orderings, we then apply the Gale and Shapley

(1962) - henceforth GS - bilateral matching algorithm to determine the predicted stable

pairings under We compare the correspondence between the predicted matches and the

observed ones for  using a likelihood-based metric. The likelihood function we propose is

defined over a parameter space of household allocation rules, < On a conceptual level, the
likelihood function defines a metric over which we can compare any potential allocation

rules 0 ∈ < and, in principle, allows us to choose a rule which maximizes the likelihood
2A paper by Iyigun (2007) considers the choices of couples of whether to implement efficient outcomes

within a marriage market context. His objective is to examine whether there exist equilibria in which

some households behave efficient while others do not. This paper uses household behavior and marriage

market outcomes to infer whether all households are behaving efficiently or all households are not. Thus

our framework is less general in that sense, but this is due to the empirical focus of this paper.
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of the spousal matches observed in the data. Due to identification problems associated with

the first stage of the estimation problem, that in which the preferences and productivities

of spouses are determined, we limit our empirical work to a comparison of the allocation

rules associated with  and .

Before we begin, a few words concerning some of the modeling choices that have been

made. Since the allocation rules utilized within households have been derived within a static

framework, we chose only to consider a static marriage market equilibrium as well. The

most appealing alternative to us was a dynamic model of the search for partners. While the

most basic search framework is capable of producing stationary equilibrium distributions

of match types that are uniquely determined (and hence avoids the possibility of multiple

equilibria which typically exist using the GS algorithm), this comes only under common

yet extreme assumptions on the matching technology (e.g., non-directed search). Since the

relationship between household outcomes and sorting in the marriage market is relatively

immediate under a static behavioral model and the GS matching algorithm, we opted for

this pairing. It is by no means the only choice that could have been made.

In terms of functional form assumptions, we have utilized Cobb-Douglas utility func-

tions for the spouses and a Cobb-Douglas production technology for producing the house-

hold (public) good. The simple forms of the first order conditions associated with these

functions make the econometric identification arguments relatively straightforward. In

terms of links to the empirical literature on household allocation decisions, Cobb-Douglas

functional form assumptions are among the most commonly utilized (in addition to the

more general CES or CRRA).

Using a sample of married couples drawn from the Panel Study of Income Dynamics

(PSID) in 2007, we conduct a test between the cooperative and noncooperative models

based on what is essentially a likelihood ratio statistic. The test is repeated for regional

marriage markets and for different sizes of marriage choice sets, which are defined below.

In virtually all of the tests, the cooperative model () outperforms the noncooperative

one () in the sense of correctly predicting marital sorting patterns. Thus the results of

this analysis are largely consistent with those of Del Boca and Flinn (2012), even though

the tests are based on very different features of the data.

The plan of the paper is as follows. Section 2 contains the description of the model and

the bilateral matching algorithm. In Section 3 we explore econometric issues, including

the nonparametric estimation of the distribution of state variables and the formation of

a likelihood function for the spousal pairings observed in the data given the first stage

estimates of the distribution of state variables. Empirical results are presented in Section

4, and Section 5 contains a brief conclusion.
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2 Model

The focus of our attention will be household formation. Without loss of empirical generality

(as we shall see below), we will assume that spouse  has the following simple determination

of his or her utility in a static context. We assume a Cobb-Douglas utility function for

individual  of the form

() =  ln() + (1− ) ln()  = 1 2

where  is the leisure of individual   is a public good that is produced within the

household, and  is the preference weight attached to leisure, which is the only private

consumption good in the model. The household good  is produced according to the

constant returns to scale Cobb-Douglas technology

 =  11 
2
2 

1−1−2 

where   is the time input of spouse  in household production,  is the elasticity of 

with respect to time input   and  is total income of the household, or

 = 11 + 22 + 1 + 2

where  is the wage rate of spouse   is their hours of work, and  is the nonlabor

income of spouse  The “physical” time endowment of each spouse is  and

 =  +  +    = 1 2

Each individual has their own value of market productivity, with the value of their time

in the market given by  Moreover, each individual has a nonlabor income level of 

Both of these quantities are determined outside of the model.

The population is characterized by heterogeneity in all of the parameters that appear

in the functions defined above The population consists of two types of agents, males

(potential husbands) and females (potential wives). Each subpopulation (defined with

respect to gender) is characterized by a distribution of characteristics particular to that

type. The cumulative distribution function of characteristics of individuals of gender  is

(   )

Then a household is defined by the vector of state variables

 = (1 1 1 1) ∪ (2 2 2 2)

Given a value of  the household determines equilibrium time allocations and the

resultant welfare distribution in the household according to some rule  Thus  is a
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mapping from  into a vector of observable household choices, in our case given by the

vector

 = (1 2 1 2)

Thus

 = () (1)

We will discuss specific properties of the mapping  below, but for now we assume that 

assigns a unique value  to any vector  ∈ Ω where we will think of Ω as the space of
household characteristics.

2.1 Noncooperative Behavior

We begin our investigation of the time allocation decision of the household with the case

of Nash equilibrium. Later we will turn our attention to cooperative models of household

behavior.

The reaction function for spouse 1 in a household characterized by  is given by

(∗1 
∗
1)(2 2;) = argmax

11
1 ln( − 1 − 1)

+(1− 1)[1 ln 1 + 2 ln 2 + (1− 1 − 2) ln( + 11 + 22)]

where  = 1+ 2 Assuming an interior solution for 
3 the solutions are given by contin-

uously differentiable functions

∗1 = ∗1(2 2;)
∗1 = ∗1(2 2;)

An analogous pair of reaction functions exists for the second individual. Under our specifi-

cation of preferences and the production technology, there exists a unique Nash equilibrium

∗∗1 = ∗1(
∗∗
2 ; 

∗∗
2 ;)

∗∗1 = ∗1(
∗∗
2  ∗∗2 ;)

∗∗2 = ∗2(
∗∗
1  ∗∗1 ;)

∗∗2 = ∗2(
∗∗
1  ∗∗1 ;)

Insuring that ∗∗1 and ∗∗2 are both greater than zero requires restricting the parameter

space Ω  We will provide further discussion of this point in the following section.

Associated with the Nash equilibrium is a welfare pair ( 
1   

2 )() These values will

be used as outside options in the constrained Pareto efficient allocation we discuss next.

After considering the marital sorting process, we will justify the use of these values as

forming a participation constraint for any efficient allocation.

3Whenever 1  0 and 1  0 an interior solution for 1 is assured by the Inada condition.
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2.1.1 Pareto Optimal Decisions

We write the Benthamite social welfare function for the household as

(1 2) = 1(1 2) + (1− )2(1 2)

where  ∈ (0 1) is the “notional” Pareto weight associated with spouse 1. Given the state
vector  which contains elements that describe the individual preferences and constraint

set of the household, maximizing the value of (1 2) with respect to the actions of the

two spouses as we vary  from 0 to 1 traces out the Pareto frontier. In particular,

(̂1 ̂2 )(;) = arg max
(12)

(1 2)

Assumption 2 The Pareto optimal actions (̂1 ̂2 )(;) are unique.

The Pareto frontier is defined by the set of points

 () ≡
{1(̂1 (;) ̂2 (;)) 2(̂1 (;) ̂2 (;))}

 ∈ [0 1]

It follows that 1 is nondecreasing in  and 2 is nonincreasing in  along  Assuming

differentiability along the Pareto frontier with respect to 

2

1

¯̄̄̄
{21}∈

 0

Our analysis is based on the existence of externalities within the household. It follows

that the pair of Nash equilibrium utility levels, { 
1   

2 } is not a point on the Pareto
frontier.

2.1.2 Constrained Pareto Outcomes

Pareto efficient outcomes have the desirable feature that one spouse’s utility cannot be

improved without decreasing the other’s, but may or may not meet certain reasonable

fairness criteria. We singled out Nash equilibrium play as a natural focal point for the

behavior of spouses since it involves no coordination or monitoring of actions due to the

fact that strategies are best responses, at least in static games. This gives the Nash

equilibrium a type of stability not possessed by efficient outcomes, at least in a problem

for which Folk Theorem results cannot be brought to bear.

At a minimum, then, it seems reasonable to restrict attention to efficient outcomes that

yield each spouse at least the level of welfare they can attain under the Nash equilibrium

actions. We think of this as a “short-run” participation constraint, where short-run refers

6



to the fact that it ensures that each party is at least as well-off under the efficient allo-

cation as they would be under Nash equilibrium in the current period.4 5 The following

proposition follows directly from the relatively weak assumptions made to this point. To

reduce notational clutter, we drop the explicit conditioning on the state vector 

Proposition 1 There exists a nonempty interval ( 
1   

2 ) ≡ [( 
1 ) (


2 )] ⊂ (0 1)

with ( 
1 )  ( 

2 ), such that

1(̂

1 () ̂


2 ()) ≥  

1

2(̂

1 () ̂


2 ()) ≥  

2

if and only if  ∈ ( 
1   

2 )

Proof. The points on the Pareto frontier are monotone and continuous functions of 

By Assumption 2, the Nash equilibrium payoffs are dominated by a set of points on the

Pareto frontier. Define the unique value ( 
1 ) by

1(̂

1 ((


1 ) ̂


2 ((


1 ))) =  

1 

and, similarly, define (  ) by

2(̂

1 ((


2 )) ̂


2 ((


2 ))) =  

2 

Define the set of all  values that yield an efficient payoff at least as large as  
1 for spouse

1 as

1 (

1 )

the minimum element of which is ( 
1 ) Define the set of all values of  that yield an

efficient payoff at least as large as  
2 to spouse 2 as

2 (

2 )

the maximum element of which is ( 
2 ) Then

( 
1   

2 ) = 1 (

1 ) ∩ 2 ( 

2 )

= [( 
1 ) (


2 )]

6= ∅

4 In Del Boca and Flinn (2012), we also consider “long-run” participation constraints, which are those

that satisfy the implementation conditions associated with Folk Theorem arguments.
5 In his dynamic contracting view of household behavior, Mazzocco (2007) investigates the nature of

the period by period participation constraints of the household. Under commitment, the household may

commit to supplying each member with an average amount of utility over time rather than within each

period. In such a case, the type of within period constraint we propose may not hold. However, in our

static model of household allocation and marital sorting, this distinction does not arise.
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Given problems associated with the identification of the welfare weight  which are

discussed in detail below and in Del Boca and Flinn (2012), we will assume that there

exists one “notional” value of  common to all marriages, which could be thought of as

being culturally determined. The constrained Pareto optimal allocation is obtained by first

determining whether  ∈ ( 
1   

2 ) If so, each spouse’s utility level using the Pareto

weight of  exceeds their static Nash equilibrium utility level, and the constraint is not

binding. Instead, if   ( 
1 ) the Pareto efficient solution yields less utility to spouse 1

than the Nash equilibrium solution. To get this spouse to participate in the Pareto efficient

solution, it is necessary to provide them with at least as much utility as they would obtain

in the static Nash equilibrium, which means adjusting the Pareto weight up to the value

( 
1 ) Conversely, if   ( 

2 ) then the Pareto weight has to be adjusted downward

to ( 
2 ) to provide the incentive for the second spouse to participate in the household

efficient allocation. The formal statement of the actions in this environment is as follows.

If  ∈   then

(̂1 ̂2 )() = (̂

1 ̂2 )()  ∈   (2)

since the “participation constraint” is not binding. If   ( 
1 ) so that spouse 1 would

have a higher payoff in Nash equilibrium, the  must be “adjusted” up so that he has the

same welfare in either regime. In this case,

(̂1 ̂2 )() = (̂

1 ̂2 )((


1 ))   ( 

1 ) (3)

Conversely, if spouse 2 suffers utility-wise in the efficient allocation associated with  the

 must be adjusted downward, and we have

(̂1 ̂2 )() = (̂

1 ̂2 )((


2 ))   ( 

2 ) (4)

Note that under this behavioral rule, there is still, in general, a continuum of possible

solutions, associated with all values of  belonging to  

2.2 Marital Sorting

The gender-specific distributions of state variables, 1 and 2 are assumed to exogenously

determined. In our analysis we only consider the case of balanced populations of males

and females (i.e., 1 = 2) and we assume that marriage dominates remaining single for

all males and females.6 Then let 1 and 2 denote the marginal distributions of males

and females, respectively. Male  is defined by his vector of characteristics

 = (1 1 1 1)

6To construct the welfare of an individual in the single state, we set the productivity of his or her

“missing” spouse to 0 so that the production function  = 

 ( + )

1− for single individual 
In the empirical application we find that the value of being married to any individual of the opposite sex

dominates the value of being single for any agent in the sample. In the sequel we seldom discuss the option

of remaining single since it is not relevant empirically.
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while female  is defined by her characteristics vector

 = (2  2  2  2)

Following GS, we consider the simple case in which their exists a marriage market in

which individuals from the different subpopulations are matched one-to-one, all individual

characteristics are perfectly observable, and the market clears instantaneously. Each male

has preferences over possible mates, with the preference ordering of male  given by

 ()

Similarly, the preference ordering of woman  is given by  () In each case, the

preference ordering amounts to a sequence of potential mates ranked in descending order,

and may include ties. In addition, remaining single may dominate being married to certain

individuals of the opposite sex, though in our application we will assume that the value of

marriage to any partner of the opposite sex exceeds the value of remaining single (see the

discussion in footnote 6). We will assume that this is also the case in this example. When

 = 5 the preference ordering of male 4 may be given by

 (4) = 3 1 2 5 4

That is, male 4’s first choice as a mate is female 3 followed by 1 2 5 and 4 The preferences

of female 2 might be represented by

 (2) = 41325

In this case, she prefers male 4, followed by males 1, 3, 2, and 5.

A marriage market is defined by ( ; ) where

 = { (1)   (); (1)  ()}

is the collection of preferences in the population,  = {1 } and  = {1  }.
Then we have the following:

Definition 2 A matching  is a one-to-one correspondence from the set  ∪ onto itself

of order 2 (that is 2() = ) such that () ∈  and () ∈ We refer to () as the

mate of 

The notation 2() =  is read as (()) and just means that the mate of individual

0 mate is individual 

Definition 3 The matching  is individually rational if each agent is acceptable to his or

her mate. That is, a matching is individually rational if it is not blocked by any (individual)

agent.
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This is a weak concept, for it only requires that any spouse is better than the outside

option of remaining single, which is the case in our application. A stronger notion is that of

stability. Say that a matching  has resulted in () =  and () =  but that male

 strictly prefers  to  and female  strictly prefers  to  Then the pair ( )

can deviate from the matching assignment  and improve their welfare. Such a match is

unstable in the terminology of GS.

Definition 4 A matching  is stable if it is not blocked by any individual or any pair or

agents.

The main achievement of GS was to set out an algorithm for finding an equilibrium of

the marriage game that was decentralized and constructive in the sense of establishing that

at least one stable matching equilibrium exists. They assumed that preferences of agents

was public information and the existence of a convention regarding the meeting and offering

technology. Roth and Sotomayer (1990) devote considerable attention to the design of

mechanisms that elicit truthful revelation of preference orderings when preferences are not

public information, and also explore alternative meeting and proposal technologies. These

important issues will be of less importance to us here given the nature of the application

and the econometric and empirical focus of our analysis.

In our application a male individual  is characterized by the vector  His induced

preference ordering over the females 1  is determined by  in the following manner.

If  and  are matched, then the household is characterized by

 =  ∪  
Then equilibrium time allocations in the household are given by

() = ()

Given our assumptions regarding the form of the “payoff” functions to  and  we can

define the value to  of being matched with  under  as

(;) = 1 ln(
∗
1( ;)) + (1− 1){1 ln ∗1( ;) + 2 ln 

∗
2( ;)

+(1− 1 − 2) ln(1
∗
1( ;) + 2

∗
2( ;) + 1 + 2)}

Given behavioral mode  the preference ordering of  is given by

 (|) =  (1)() 

(2)()  


()()

where

(

(1)();)  (


(2)();)    (


()();)

the preference orderings of all of the females in the marriage market are determined in

an analogous manner. Given knowledge of    and  the preference ordering of all

population members is determined. This implies the following.
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Definition 5 A marriage market is defined by ( ;)

An equilibrium assignment is a function of marriage market characteristics. Then

the set of stable matchings is determined by the characteristics vectors  and  and

the behavioral model , or Θ( ;) Now there may exist, and generally do exist,

multiple stable assignment equilibria. Among this set of equilibria, attention has focused

on the two “extreme” stable matchings, the one that is most beneficial to men and the

one most beneficial to women.7 The GS matching algorithm, which they termed “deferred

acceptance,” enables one to determine at least these two, of the many possible, equilibria in

a straightforward manner. We describe the computation of the male-preferred equilibrium.

In a given round,

1. Each male not tentatively matched with a female makes a marriage proposal to the

woman he most prefers among the set of women who have not rejected a previous

proposal of his. If he prefers the state of being single to any of the women in his

choice set, he makes no offer.

2. Each woman (tentatively) accepts the proposal that yields the maximum payoff to

her from the set of offers made to her during the round plus and value of the match

she carries over from the previous round, if she has one. Any man whose offer is

refused in the period cannot make another marriage proposal to the woman rejecting

him in future rounds.

3. The process is repeated until no man makes a new marriage proposal to any woman.

The female preferred stable matching equilibrium is found in the identical way after

reversing the roles of two sexes as proposers and responders.

There may well exist other stable matchings besides these two. Given the generality of

the preference structure, the size of the individual characteristic space, and the number of

individuals in the marriage market in our empirical analysis, it is not possible to attempt

to enumerate all possible stable matchings. We have computed the predicted marriage

assignments using estimates of the state vectors  and  under the two  that we

consider. We found that the same pairs were matched in over 98 percent of the cases in

the male-preferred and female-preferred matchings. As a result, we use pairings from the

male-preferred equilibria only in all of the empirical work that follows. The reader should

bear in mind that other equilibria exist, even if they are not so different in the likelihood-

based metric we use to assess the ability of the models to fit the actual marriage sorting

patterns that we observe.

7When there is a unique equilibrium these stable matchings are identical, of course. A sufficient condition

for this to be the case is if the preference orderings of all males and all females are identical.
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2.3 Adding Match Heterogeneity

For econometric purposes, and also so as to more generally model marriage market be-

havior, we extend the previous formulation of the payoffs associated with a given couple

marrying to include random match-specific heterogeneity. In particular, we write the utility

of male  in a match with female  as

̃(   ) = ( ) +  

while the utility for female  is given by

̃(   ) = ( ) +  

where  is considered the “psychic” component of the match valuation to each member

of the couple, and the state variables  have been omitted for notational simplicity.

We assume that the random match value for potential couple ( ) is independently and

identically distributed according to the absolutely continuous distribution  . The following

result is relatively obvious, but given its importance for the econometric procedures we

implement it is stated formally.

Proposition 6 The valuation of a potential match between male  and female  under

behavioral rule   ∈ {} is given by
̃ 
 () =  

 +  (5)

̃ 
 () =  

 + 

Proof. In terms of the reaction functions that define the Nash equilibrium outcome, since

̂() = argmax
|

̃( ) = argmax
|

( )

̂() = argmax
 |

̃( ) = argmax
 |

( )

then the reaction functions are invariant with respect to   and thus the Nash equilibrium

actions are invariant with respect to the  draw. It follows that the total valuation of a

match between  and  under Nash equilibrium is given by

{̃ 
  ̃ 

 } = { 
 +   


 + }

For the  case, first note that the side constraint that any permissible surplus

decision provide each spouse with at least the welfare associated with the Nash equilibrium

allocation can be written

(̂

 () ̂


 ()) +  ≥ ̃ 



⇒ (̂

 () ̂()) +  ≥  

 + 

⇒ (̂

 () ̂


 ()) ≥  

 
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for male  which is the same constraint as in the case of  = 0 ∀( ) The constraint for
the welfare of female  is written symmetrically. The solution to the constrained Pareto

optimal problem can be written as

(̂ () ̂

 ()) = argmax


( ) + (1− )( ) +  + (1− )

= argmax


( ) + (1− )( )

for all  that satisfy the participation constraint. Since the actions chosen are invariant to

  then so is (̂

 () ̂


 ()),  =   so that the participation constraints are invariant

with respect to   Then the optimization problem is invariant with respect to   and

{̃ 
  ̃ 

 } = { 
 +   


 + }

While the value of  will have no impact on the actions taken by the spouses under

either or marital sorting is not invariant with respect to the match-specific draws

of  The presence of i.i.d. match heterogeneity enables us to provide a more continuous

measure of the ability to predict observed marriage patterns for the two behavioral rules

we consider, in addition to representing a somewhat more romantic view of the marriage

market

2.4 An Example

To fix ideas and provide some motivation for the econometric methods that follow, we

consider the following simple example. Let the marriage market consist of three males and

three females, who have the characteristics:

Characteristics

State Variables

Individual    

1 0.20 0.30 10.00 140.00

2 0.05 0.25 9.00 100.00

3 0.10 0.60 10.00 50.00

1 0.30 0.15 18.00 20.00

2 0.15 0.10 12.00 150.00

3 0.40 0.30 20.00 150.00


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Assuming that marriage dominates the single state for all individuals, there are six

possible marriage patterns. The baseline payoffs, that is, the deterministic portion of the

match values, for the females are:

Female Payoffs

NE CPO

Male 1 2 3 1 2 3
1 5.166 5.579 4.603 5.270 5.668 4.693

2 5.358 5.823 4.828 5.376 5.885 4.874

3 4.672 4.972 4.186 4.800 5.078 4.290



while for the males the payoffs are:

Male Payoffs

NE CPO

Male 1 2 3 1 2 3
1 4.992 5.195 4.586 4.994 5.195 4.586

2 5.371 5.618 4.840 5.434 5.618 4.856

3 4.584 4.748 4.333 4.585 4.749 4.334



In this example, in general the payoff for man  associated with marrying woman  varies

little whether the household behaves efficiently or not. This is due to the fact that, given the

state variables and notional bargaining power parameter value  = 05 in most potential

marriages the participation constraint is binding for the male. In such a situation, the

value of the marriage to the male is the same under  and . As a result, the

women are receiving most or all of the surplus generated by efficient household behavior,

and consequently their payoffs from any marriage are larger under  than under 

In the example, and in the empirical work which follows, we will assume that the

common distribution of match draws,  is a mean 0 normal with standard deviation 

In the case where  = 0 there are no match-specific shocks, since the distribution of

 is degenerate with all of its mass concentrated at 0. Any strictly positive value of 
produces a nondegenerate continuous distribution of the match-specific preference shock.

In performing the computations reported below, we simply report the proportion of draws

for which the given marriage pattern was observed out of 100,000 draws of the {}33=1=1
required for the computation of the payoff matrices under  and  behavior.

There are six possible marriage patterns that are possible with three males and three

females, assuming that everyone is matched, and they are listed in the first column of Table

1. The second and third column of the table correspond to the case for which there is no

random component of match quality. We see that in this case both and  imply
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the same marriage pattern. In columns 3 and 4, we see that by adding random match

quality the situation changes markedly. In particular, the marriage pattern that existed

with probability 1 with no match heterogeneity now occurs with probability 0.927 under

 and with probability 0.862 under  The second most probable pattern occurs

with likelihood 0.071 under  and with likelihood 0.136 under  Thus, even when

switching modes of behavior does not change the marriage market prediction when there

is no match heterogeneity, it does in the presence of a random match component. This is

due to the fact that switching modes of behavior changes the sizes of the differences in the

“deterministic” component of payoffs, which results in changes in marriage patterns under

the two 

The last two columns of the table report the marriage matching results when after we

further increase the spread in the distribution of the random component. Such increases

give the random match component a more important role in determining the final payoffs.

Since that the random match values are i.i.d. draws, this will lead to more dispersion in

the marriage pattern distribution. When we double the size of the standard deviation 

we see that the proportion of times that the modal marriage pattern is observed declines

to 0.640 under  and 0.587 under  The second most frequently observed marriage

pattern has increased in likelihood to 0.275 under  and 0328 under  Now every

type of marital pattern has a probability of being observed of at least 0.001.

This example has served to illustrate how differences in marital sorting patterns can

potentially be utilized to understand how spouses coordinate their decisions within existing

marriages. We now turn to a consideration of how more formal statistical procedures can

be constructed to examine this question.

3 Econometrics

We consider the estimation of the marriage market equilibrium in a sequential fashion. We

begin with the issue of the estimation of (1 2) the distribution of gender types, with 1
being the population cumulative distribution function of male characteristics and 2 the

analogous c.d.f of female characteristics. In this paper we do not treat the difficult censoring

issues that arise when not all household members supply time to the labor market or in

household production. In such a situation, nonparametric point identification of household

members’ characteristics will be impossible and the particular identification and estimation

strategy we employ will not be available. Given that there are no corner solutions in the

time allocation decisions within the household, we are able to posit that the entire vector

 = (1 2 1 2 1 2 1 2)  = 1  

is observable by the analyst. For the present, we have constructed the male and female

indexing so that in the data male  is married to female   = 1   though in the

following subsection on marital sorting we will not impose this indexing convention. It will
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be useful to partition this vector into two subvectors,

1 = (1 2 1 2)

2 = (1 2 1 2)

with 1 representing the (endogenous) time allocations of household  and 
2
 the observ-

able (to the analyst) state variables. The unobservable state variables in household  are

(1 2 1 2) Then denote the remaining unobserved household characteristics by

3 = (1 2 1 2)

The data used in the empirical work discussed below are drawn from the Panel Study

of Income Dynamics (PSID). In keeping with the static setting of the model, we use data

pertaining to household characteristics and time allocation decisions in one year, 2006. We

chose this year because information on the time spent in household tasks is widely available

for both spouses in that year and is relatively recent.

We assume that the PSID is randomly drawn from the population distribution of mar-

ried households in this year (which is an unlikely situation, admittedly). Since we have a

random sample of households, we also have a random sample of household members given

the marriage assignment rule.

Using a random sample of households from the population, the first task is to estimate

the distribution functions 1 and 2 For household  we can restate (1) as

1 = (2 ∪3)

Proposition 7 Assume all households in the population behave according to  and that

 is invertible in the sense that there is a unique value of 3 such that

3 = −1(1 ∪2) (6)

for all values of 1∪2. Then the distributions 1 and 2 are nonparametrically identified
and can be consistently estimated.

Proof: Given knowledge and invertibility of  then −1 is a known function. If 1
and 2 are observed without error, then the vector 

3
 is observable as well. Since the

vectors 1 and 2 are observed for a random sample of households, then 3 is as well.

Define the vectors

 = (3 1 2 1 2)

1
 = (1 1 1 1)

2
 = (2 2 2 2)
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The vector 1
 is an i.i.d. draw from 1 and 2

 is an i.i.d. draw from 2 Then define

̂
1 () = −1 P

=1

(1
 ≤ )

̂
2 () = −1 P

=1

(2
 ≤ )

Since {1
1  

1
} and {2

1  
2
} are both random samples from their respective popu-

lations, we know that

plim
→∞

̂
 () = ()  = 1 2

by the Glivenko-Cantelli Theorem¥
We emphasize the important point that the mapping from the observed subset of state

variables and household decisions to the unobserved state variables is independent of any

random match values. This follows from Proposition 6, which established that the actions

taken under rule  were only a function of the state variables 1 and 2 and not the

match-specific heterogeneity draw. The inverse function inherits this property.

The following important implication follows.

Proposition 8 Let < be the set of rules that determine time allocations in the household
and that are invertible in the sense of (6). Then all  ∈ < are equivalent descriptions of
sample information.

Proof: Consider a household  in the sample. We observe four household choices 1 =

(1 2,1,2) and we have four unobservable characteristics of the spouses. Thus given

any 2 = (1,2,1 2) and any  ∈ < there exists a unique vector of characteristics
(1 2 1 2) that generate 

1
 or

1 = Γ(1() 2() 1() 2()|2 )
Then for any two 0 ∈ <  6= 0

Γ(1() 2() 1() 2()|2 )
= Γ(1(

0) 2(0) 1(0) 2(0)|2 0)
which describes a correspondence between (1 2 1 2)() and (1 2 1 2)(

0).
Consider any distance function

Q(1 ̂
1
(1 2 1 2|2 ))

where ̂1 is the predicted value of the household time allocations given the characteristics

(1 2 1 2) 
2
, and  Given invertibility

(1() 2() 1() 2()|2 )
= arg min

1212
Q(1 ̂

1
(1 2 1 2|2 ))
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and

Q(1 ̂
1
((1() 2() 1() 2()|2 )|2 )) = 0

∀  ∈ <
¥

Because of the flexible parameterization of spouses in terms of their types, if < contains
more than one element there are multiple ways to “reparameterize” the data, in essence.

There are four pieces of data for each household (where data are considered to consist

of observations on endogenous variables only) and there are four unknown parameters

for each household. Thus model fit must be perfect. In the language of statistics, such

a model is termed saturated, and it is well-known that there are typically a number of

equivalent ways in which such a model can be parameterized, with all parameterizations

being equivalent in the sense of being perfectly consistent with the data. We have made

this point by defining a set of behavioral rules, < that the household can follow but that
produce identical (observed) choices given the subset of state variables that are observable.

The cardinality of < depends on assumptions made regarding the functional form of the
utility and household production functions and the features of the data. In a companion

paper (Del Boca and Flinn, 2012) we prove the following.

Proposition 9 For the Cobb-Douglas specification of individual preferences and household

production technology and assuming no corner solutions, the Nash Equilibrium (NE) and

Constrained Pareto Optimal (CPO) models of household decision-making are elements of

<
This proposition carries the important implication that it is not possible to determine

whether household decisions are made according to Nash Equilibrium or in the Constrained

Pareto Optimal setting by observing only within-household behavior. This “impossibility”

result is due to the flexible specification of population heterogeneity utilized. By restricting

the variability of these underlying parameters in the population, it will be possible to

develop tests pitting the two allocation rules against one another. However, the outcome

of such a test will be heavily dependent upon the parametric restrictions adopted.

We note that the allocation mechanism consistent with efficient household behavior,

 is actually underidentified in the sense that the notional, or ex ante, Pareto weight

 is not identified. We consider this behavioral model as belonging to < for a predetermined
value of  The reader should bear in mind that there are actually a continuum of allocation

mechanisms associated with  for all of the notional values of  ∈ (0 1) In the empirical
analysis conducted below we focus on the “symmetric” case of  = 05

3.1 Marital Sorting

Flexible specifications of population heterogeneity reduce the analyst’s ability to derive

distinguishable empirical implications from elements of a class of modes of behavior. How-
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ever, they do provide possibilities for developing tests (of some form) based on marital

sorting patterns.8 We explore the construction of such a test in this subsection.

The main problem to be faced in examining marriage sorting patterns is the definition of

the spousal choice set for each individual in the population being studied. When individuals

make marriage decisions, their choices often may be limited to a small set of individuals

(pop stars and professional athletes being notable exceptions). The analyst will typically

have no information regarding the individual marriage markets of husbands and wives

interviewed in national surveys such as the PSID, making it difficult to assess the likelihood

that this pair of individuals would have chosen one another under the household allocation

rule  We have decided to make the nonobservability of the marriage market and its

random nature a key component of the measure of goodness of fit we propose below.

We recognize that the random marriage market assumption, which is somewhat akin

to the assumption of a random arrival time of marriage candidates in a search-based model

of marriage, sidesteps the important issue of endogenous marriage market formation. For

example, by attending a college away from their parental home, young adults potentially

enter into a much larger marriage market with a different composition of possible partners

than would be the case if they were to not attend college and not move away from their

hometown. In the empirical analysis discussed below, we will ignore these endogeneity

issues, though they are potentially extremely important for explaining marital sorting

patterns.

Given the nature of the marriage equilibrium concept we are using, and ignoring the

issue of uniqueness (we only consider the male-proposer stable matching), we have assumed

that the households in our  household sample from the PSID are a representative sample

from the population of all married couples. We order the married males and females within

the sample in an arbitrary manner 1 through  denoting the males and 1   for

the females. The function Γ associates the index of a wife in the data with the index of

her husband as Γ() where  is the husband’s index. Thus 66 = Γ(1) indicates that

female 66 in the sample is married to male number 1. Without loss of generality, we index

the spousal pairing  to be consistent with the index of husband. Thus, in the data,  =

{ Γ())}  = 1  

In our view it is problematic to think of all individuals in the PSID subsample with

which we work as belonging to the same marriage market. Instead, we think of marriage

markets as being comprised of individuals selected from a population of potential marriage

partners. For purposes of the empirical analysis we have to impose some strong restrictions

on the manner in which these marriage markets are formed. A marriage market will be

denoted by  and includes an equal number of males and females. A marriage market of

size  is given by

 = {(1)(2) (); (1 ) (2 )  ( )}
8Marital sorting is but one phenomenon that could be used to distinguish between modes of intrahouse-

hold behavior. Others include divorce decisions and investments in marriage-specific capital.
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with () indicating the index of the male or female with the 
 smallest index among

their gender  in the marriage market. We will denote the marital partner of male () in

marriage market  by ( ) = Γ(())  = 1  

We will assume that any marriage market  is comprised of a closed set of married

individuals, where “closed” is used in the following sense.

Definition 10 A marriage market  is closed if all  ∈  have the same potential marital

partners  ∈  and no others and if all  ∈  have the same potential marital partners

 ∈  and no others.

Example 11 A marriage market with three members of each sex is given by

 = {1725109; 7 76 99}

Each male has the females 7, 76, and 99 in their personal marriage market and no others.

Each female has only the males 17, 25, and 109 in their personal marriage market. If

under rule  the male-proposer stable matching has male 17 married to female 99, male 25

married to female 7, and male 109 married to female 76, then Γ(17) = 99 Γ(25) = 7 and

Γ(109) = 76 The spousal pairs are 17 = {17 99} 25 = {25 7} and 109 = {109

76}

Thus in the example above, (1) = 17 (2) = 25, (3) = 109 and (1 ) = 7 (2 ) = 76

and (3 ) = 99 Even within our very stylized conceptualization of the marriage market,

there is no reason to expect that all closed marriage markets are of the same size. We

will repeat our empirical analysis assuming different-sized marriage markets, ranging from

 = 2  7 but we will be assuming that in each case all marriage markets are of the same

size. Since we will are not able to observe any actual marriage market, we thought it would

be gratuitous to allow for a world consisting of a mixture of marriage market sizes, though

clearly this is a potentially interesting avenue to pursue.

Definition 12 A size  closed marriage market  is constructed by taking  draws with-

out replacement from the populations ̃1 and ̃2, where ̃ is the augmented type distrib-

ution associated with gender 

The “augmented” type distribution is important to the bootstrapping procedure we

implement. This distribution is defined with respect to not only the state variables that

determine household behavior in the event of a marriage, but also the draws of match

values associated with each potential marriage partner in the global marriage market. This

allows for the presence of identical males and/or females in terms of the state variables

that determine household actions in the same marriage market (i.e., ), while requiring

that all potential matches differ in their idiosyncratic match values. For example, say that

male 13 and 21 have the same characteristics in terms of    and  They are
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considered distinct marriage partners as long as their idiosyncratic match draws with all

potential females in the marriage market are different. While the “economic” payoff is the

same for any female in the marriage market (under either rule ) the total payoff is not

as long as the psychic payoff associated with being in a marriage with either is different

for each female in the market. Since the psychic payoff is continuously distributed, this is

the case with probability 1.

This assumption regarding the construction of labor markets implies that marriage

markets  of any size  are defined in a purely exogenous manner with respect to the

behavioral rule  assumed to govern within-household interactions. This strict exogeneity

assumption is important for the construction of our comparisons of the fit among the

behavioral rules we evaluate.

It is important to emphasize that we do not view “local” marriage markets as being

(random) partitions of some fixed set of individuals in search of mates at given point in

time. Instead, marriage markets are constructed from random draws from distributions

̃1 and ̃2 up to the size of the market,  When there are a continuum of males and

females in the population of potential marriage market members and when the type c.d.f.s

are absolutely continuous, then the assumption that sampling be without replacement is

unnecessary since the probability of the same individual type being drawn more than once

in any finite marriage market  is zero. For the case in which the male and female type

distributions are discrete and there is one realization of the match-specific draws,9 then

there is a strictly positive probability that a given type male will simultaneously be a

member of several marriage markets of size  Our assumption that in any given marriage

market  no more than one of any type of male or female is present is substantive. The

purpose of the assumption is to rule out ties when implementing the GS algorithm. This

issue will come up again when we discuss bootstrapping our metric of sample fit.

3.2 Choosing Between 

Our objective is to compare the relative consistency of the marriage patterns implied under

 and  with those observed in the PSID subsample with which we work. We begin

by discussing some of the problems one must face in constructing a reasonable metric

and the case against some which are implementable but very much ad hoc. We will then

derive a measure that we will employ in the empirical analysis and which has a more solid

foundation and interpretation from a statistical point of view.

The data set with which we work contains 282 married individuals. If we assume that

there is no measurement error in the data, then under rule  we can “back out” all of the

9The discrete case is the relevant one empirically, since our estimators of the type distributions  are

empirical distribution functions with a mass of−1 at each of the values of the gender-specific state variables
directly observed or inferred under rule  Even for the augmented distributions, those that include match-

specific heterogeneity, the draws are assigned at the population level (the population from which the size 

marriage markets are constructed), so that there exists a finite number of types in this case as well.
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state variables for the males and females in the sample. Under the assumption that they

comprised one unified marriage market (i.e., a closed marriage market of size  = 282)

we can apply the GS algorithm and compare the marriage patterns under  =  and

 =  It will come as no surprise that the spousal pairings predicted under either

rule will be inconsistent with those observed in the set of 282 matches. Since everything is

deterministic (given the rule ) there is no scope for comparing the  and  rules -

both are simply incorrect - meaning, the actual sorts are probability zero under the model.

One can begin to attempt to add randomness to the stable matchings, as was done

in a previous draft of this paper, by assuming measurement error in some of the state

variables. We had assumed that wages were measured with error and used estimates of the

measurement error process for wages in the PSID taken from the validation study of Bound

et al. (1994). Even with measurement error in wages, the likelihood of drawing a “true”

wage vector for males and females that would imply the 282 observed marriages under

either rule is for all practical purposes equal to zero. Thus if the goal is to utilize such

a sharp prediction metric, which records a success only when all marriages are correctly

predicted, it is essential to limit the size of marriage markets. This is one element of the

metric designed below.

Of course, there are other “softer” prediction metrics that could be used. One that

was employed by us earlier was one version of an assortative mating metric which included

only the correlation of the wages of husbands and wives (recall that a wage measure was

available for everyone due to our selection criterion that all sample members be working).

By assuming measurement error in wages, given a draw of the measurement error vector,

one can compute the stable matching and the correlation in the wages of spouses under

a behavioral rule  This correlation can be compared with the correlation found in the

data. Because the true wage is assumed to be a random variable, the wage correlation

implied under rule  is also a random variable, and bootstrap methods can be used to

assess whether or not the observed correlation of wages in the sample is unsurprising from

the point of view of the distribution of the implied correlation under a given  This metric

has the advantage of being easily computable under any size marriage market, though, as

is true for any model of marital sorting, its validity will crucially depend on the correctly

specifying the participants in the marriage market. Moreover, a behavioral rule may fare

poorly using a hard prediction metric (such as the proportion of matches successfully

predicted) but may do well in terms of the wage correlation metric.10

We develop a metric of fit that can also be used as a basis for the estimation of parame-

10The case for using a wage correlation metric, for example, is strongest when considering marriage

patterns in a transferable utility framework. Say that male and female types (e.g., wages) are givern by 

and  and that the productivity of the marriage is a superadditive function of spousal types. In this case

the female matched to male  ∗() will be a strictly increasing function of  which means that there is
perfect (positive) assortative mating. In our case, the value of the marriage to each individual is a function

of a number of state variables, not solely wages, so that examining association on one dimension, such as

wages, yields only a partial reading on the sorting process.
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ters or other objects that are not identified purely from within household time allocation

data; we will discuss some of these possibilities below. We consider a spousal pair  from

the PSID, where  = 1  For a given marriage market of size  what is the probability

that we would have found  married to female Γ()? Clearly it is zero unless both male

 ∈  and female Γ() ∈  so for the probability to be positive both of these individuals

must belong to this closed market of size . Let −() denote the set of individuals in
the marriage market of size  other than male  and female Γ() These individuals are

drawn randomly (without replacement) from the augmented type distribution of males and

females, ̃1 and ̃2 respectively (the without replacement restriction also applies to the

included spouses  and Γ() in that another male of type  cannot be included in  and

neither can another female of type Γ())With the randomly constituted marriage market

(conditional on the inclusion of male  and female Γ()) the GS algorithm is applied given

the preference orderings generated by (  ) where  denotes the characteristics

of the males included in market  and  the characteristics of the females in that market.

These characteristics include the random match-specific heterogeneity draws that are rel-

evant for all the potential pairings in the marriage market. We are interested in the event

in which Γ() = Γ() i.e., the event in which the spouse observed in the data is the same

as the spouse observed in marriage market 11

Now in any given marriage market of size  that includes  and Γ() we will either

have Γ() = Γ() or not. Then we will define a conditional probability function

 (Γ() = Γ()|( + Γ() Γ()+Γ() −( )) ) =
½
1 if Γ() = Γ()

0 if Γ() 6= Γ()

which is in fact just an indicator function assuming the value 0 or 1 since we have condi-

tioned on marriage market composition. Let ̃−(−() ) denote the probability distri-
bution over marriage market members (males and females) other than male  and female

Γ() for a given realization of match-specific shocks  Then the marginal probability of

observing male  married to female Γ() is

 ( |) =

Z Z
 (Γ() = Γ()|( + Γ() Γ() + Γ() ̂−( )) )

×̃−(−( ))() (7)

where  () is an  -variate distribution (which under our independence assumption is

the product of  univariate distributions  ). In general, for a fixed  and a given 

11This procedure is similar in spirit to and partially inspired by the choice-set sampling procedure devel-

oped by McFadden (1978) for the estimation of a model of residential location choices. In his case, their

was no two-sided matching feature of the model (locations could accommodate any resident who desired

to live there) and the logit structure implied an IIA property. In that case, the choice made would be the

same no matter which subset of alternatives was available. The same is not true regarding stable matches.

We thank Al Roth for clarifying our thinking on this point.
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 ( |) ∈ (0 1) This probability is simply the measure of potential marriage markets
of size  that contain male  and female Γ() and that would have produced a marriage

between them under rule 

3.3 Sample Likelihood Construction

Consider the sequence of terms  ( |)  = 1   These are all conditional proba-

bilities, and under our interpretation of the way in which marriage markets are formed,

 ( |) is independent of any other spousal pairing    = 1  ;  6=  Thus, the

probability of the set of spousal pairings (1   

 ) is the product of probabilities of each

of the pairings, or

 (1  

 |) =

Y
=1

 ( |)

This of course is just the likelihood of observing the pairings   = 1   or

() =

Y
=1

 ( |)

with the log likelihood given by

ln() =

X
=1

ln ( |)

The most noteworthy feature of this as a likelihood function is that no parameters

appear explicitly. Instead, the likelihood is solely a function of the distribution of male

and female characteristics, ̃1 and ̃2 which have been assumed known to this point

(conditional on a realization of ), and the behavioral rule 

In constructing the partial log likelihood function, we have assumed that the probability

of any given spousal matching is independent of the others in the sample. This followed

from the assumption that ̃1 and ̃2 used to construct the distribution ̃(−( )) for
each  were known in addition to the characteristics of the given spousal pair . In terms

of the empirical application, they are not in fact, and are instead estimated based on the

state variables observed and inferred from the within-household time allocations under the

assumption of a given rule . In addition, in order to form an estimate of ̃ we need to

know the distribution of match-specific heterogeneity,  As in the extended example in

Section 2.4, we assume that  is a mean 0 normal distribution with standard deviation

 While in theory it is possible to estimate  in terms of computational time it is

not practical to do so.12 As a result, we have simply assumed that  = 0113 Then we

12For a given value of  it takes approximately one week to compute the log likelihood ratios for the four

regions and the total sample for marriage market sizes  = 2  7 using three workstations and exploiting

time savings from parallel processing. Thus iterating over values of  is not a practical alternative.
13We calculated some log likelihood ratios using a few alternative values of  and found that the inferences
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use ̂1() and ̂2() which are the first-stage estimates of the distributions of the state

variables (    ) for men and women using the mapping associated with rule  to

determine the estimated conditional (on ) distribution ̂−(̃−( )|) so that

̂ ( |) =

Z
 (Γ() = Γ()|(̂() + Γ() ̂Γ()() + Γ(),̃−( )) )

×̂−(̃−( )|)Φ (;2)
where Φ is an  -variate multinormal distribution with mean vector 0 and covariance

matrix 2 and where ̂() and ̂Γ()() signify that a subset of the characteristics of

the spouses in the  couple are estimated using the mapping associated with behavioral

rule . Then the estimated sample log likelihood is given by

ln ̂() =

X
=1

ln ̂ ( |)

There is what we would characterize as “weak” dependence between probabilities of differ-

ent spousal matchings that is transferred through the estimated distributions of state vari-

ables. That is, the estimated conditional (on ) probability distribution of marriage markets

in which couple (Γ()) is potentially embedded is determined by the sample composi-

tion of households. As the size of the potential marriage market population,  increases,

the dependence in these probabilities becomes weaker as plim→∞ ̃−(̃−( )|) =
−(−( )) at all points of continuity of  for a given rule  and for all draws  In the

construction of this log likelihood function we ignore this dependence.

We note that the log likelihood function ln ̂() depends on no unknown parameters

in the conventional sense of the term “parameter,” at least when we consider the distribu-

tion  to be known. However, one can think of posing the problem of determining the rule

most consistent with the GS male-proposer stable matching within the class of all feasible

allocation rules, which we denote by Ω14 Then the maximum likelihood estimator of

̂() = arg sup
∈Ω

ln ̂()

The manner in which one could define the set Ω in order to make this estimator operational

is not immediately obvious, but is a potentially interesting exercise.

drawn were not affected.
14When we know the distribution of individual types in the population of potential marriage market

members it is not necessary to estimate the type distribution in the first stage, and when we consider the

set of all possible decision rules it is not necessary to limit consideration to those that deliver consistent first

stage estimates of the type distributions. Note that < ⊂ Ω since the class < are feasible allocation rules
that are also invertible in the sense of (6) and we know that there exist feasible allocation rules that are

not invertible in this sense (an example of one can be found in Del Boca and Flinn (2012)). Feasibility here

and in the text simply means that the allocation rule must deliver outcomes that lie within the household’s

choice set.
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On a more practical level, ln ̂() could in principle be used to estimate more conven-

tional parameters, such as  or the notational Pareto weight  from the  behavioral

rule for a given rule . A moment’s reflection reveals that  cannot be estimated in any

meaningful sense since setting  = 1 (implying that only one’s spouse was in the choice

set) yields the maximum value of the log likelihood value of 0 independently of the rule 

or of the characteristics of sample members.15

Estimation of the notational Pareto weight is a different matter, however. We have

performed the empirical analysis involving the  rule under the assumption that  =

05 Using only data on intrahousehold time allocation we showed that  was not identified

when 1 and 2 were estimated (and identified) nonparametrically. However, using the

marital sorting information this is no longer the case. In particular, we can define the log

likelihood function ln ̂(  ) and define a maximum likelihood estimator of  as

̂( ) = arg sup∈(01) ln ̃(  ) This is an interesting approach to identifying
the Pareto weight, but we have not pursued it here given our interest in comparing these

rules on more equal terms.16

Our focus is on evaluating ln ̂() at two different rules,  and  (with  =

05) for a sequence of values of  As this discussion hopefully has made clear, comparing

 and  is not a hypothesis testing exercise, it is merely a question of fit. We think of

< as representing a relatively abstractly-defined set of allocation rules, with  and 

representing two members of that set. The rule that is superior for a given marriage market

size  is simply the point associated with the largest value of ln ̃() The difference in

log likelihood values between the two rules is

ln ̂()− ln ̂() =

X
=1

ln ̂ ( |)−
X
=1

ln ̂ ( |)

Given a value of  and the sample,  is to be preferred to  when the value of this

expression is positive, for when this is the case the sample matches are more likely under



15 In other words, the partial log likelihood function is monotone in the parameter  implying maximization

on the boundary of the parameter space.
16There is potentially another problem with the estimation of  in the manner proposed here. As → 1

from below or → 0 from above, all households are constrained to adjust the notional, or ex ante, weight

 to be able to guarantee a welfare level at least as high as that attained under  to both household

members. In such a case the notational weight  can not be point-identified and instead can only be

set-identified.

A more practical problem, as was pointed out when we discussed the possibility of estimating  is the

computational time required in maximizing such a complex log likelihood function.
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3.4 Bootstrapping

In order to gain an idea of the sampling distribution of our comparative measure of fit,

the log likelihood ratio, we utilize bootstrapping methods. The presence of the random

match-specific shocks is critical for our being able to employ these methods. Consider the

entire marriage market from which our actual size  marriage markets are drawn. Since

our sample consists of married couples, the bootstrap estimate of the sampling distribution

of the log likelihood ratio is based on drawing husband and wife pairs from the PSID. In

any bootstrap sample that is different from the actual PSID sample, some pairs will be

represented more than once. This means that in some size  marriage markets there is a

nonzero probability that the same male or the same female will appear, which will result

in ties in the preference orderings leading to indeterminacies in the set of stable matches

resulting from the application of the Gale-Shapley algorithm. Tie-breaking conventions are

inherently arbitrary, and using them would introduce a degree of indeterminacy into the

log likelihood values we compute.

In a bootstrap sample of size  from the original sample of size  the presence of

repeated observations of couples in the bootstrap sample is essentially assured. Random

match-specific heterogeneity serves to make the payoffs associated with marrying a po-

tential partner distinct even if there exist other potential partners who possess the same

values of the state variables (   ) For example, say that in a marriage market male 

can potential match with female  or female 0 who are observationally equivalent. Under
any given rule  male  will prefer female  if and only if   0  Since the  are i.i.d.

draws from an absolutely continuous distribution, the probability of indifference is zero.

There is a large computational burden associated with this empirical work. After se-

lecting a market of size  from the larger marriage market, all “deterministic” payoffs

associated with each potential pairing are computed, with the random draws  then in-

cluded to determine the total gender-specific payoffs associated with the each pairing then

utilized to determine the GS outcomes for the marriage market. This process is repeated

for each individual in the sample, across draws of the  across the two rules  and then

across the number of bootstrap replications,  This is a time-consuming process, even

though we are not estimating any parameters.

We give a brief description of the process to provide some clarity. The number of

bootstrap replications,  was set at 20 This is sufficient to give us some idea of the

distribution of the log likelihood across random samples in the population. For a given

bootstrap sample, we then drew a vector of random match-specific shocks  from the i.i.d.

mean 0 normal with standard deviation  = 01 for all potential matches between males

and females in the bootstrap sample. For each bootstrap sample, we drew 10 values of the

vector . From these, we were able to compute the payoff matrices for all males and females

in the bootstrap sample of size  under behavioral rule  Then for each sample married

couple, we drew 20 marriage markets of size  and computed the proportion of times the

sample couple were married to each other in the 200 (20 marriage markets of size  × 10
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different  draws) potential marriage markets in which they found themselves.17 18 The log

likelihood in bootstrap sample  and under rule  was then the sum of these log likelihoods

over the  couples in the sample. We have 20 values of the log likelihood computed under

 and , and examine the distributions of the log likelihood ratios.

3.5 Sample Information and Test Power

The test we have defined above only works if the marriage predictions under the two

competing (simple) hypotheses are actually different. In this subsection, we provide some

evidence that the sample information is sufficient to conduct a meaningful test to determine

which of the behavioral models is more consistent with the observed marital sorts.

Our discussion proceeds via an example that is closely related to a small set of the

results reported below. In this example, we assume the absence of random match-specific

heterogeneity, so that  = 0 We only consider marriage markets of size two. In terms of

evaluating alternative matches, for each of the (married) couples in our sample (described

below), we utilize only other married couples. Since there are 282 married couples in

the sample, we determine the proportion of times each couple would have been married

to each other if in a two-male and two-female marriage market with each of the other

281 couples serving as the alternative male and female. We compute the proportion of

times they would have been correctly matched under  and the proportion of times

they would have been correctly matched under  If these proportions are identical, the

couple provides no information on the household behavioral rule.19 If the difference in

these proportions is “large,” then this couple provides a significant amount of information

regarding the underlying behavioral rule.

Figure 1 contains the histogram of the difference between the proportion of correct

marriage predictions under  and under  for the 282 couples in the sample. The

first thing to note is that there is considerable dispersion in this distribution. For only

10 couples out of the 282 are the proportion of correct predictions under  and 

17The marriage markets of size  for couple  are constructed by sampling without replacement from the

other  − 1 males and  − 1 females in the marriage market, not including themselves. An alternative
male  6=  could not be included more than once in the alternative −1 males for female  since this would
lead to ties in the GS algorithm. Note that by not being the same, we mean that they can not be the same

both in terms of the (    ) and the  draw; If two members of the population have the same values of

the vector (    ) then it must be the case that their respective  draws are different..
18For the case in which the couple were never married to one another under rule  in any of the 200

marriage markets we constructed, we assigned a correct match proportion of 0.001, since the proportion

must be greater than 0 for the log likelihood to be defined. Clearly, by increasing the number of  draws

and the number of marriage market draws we would be able insure that this proportion is strictly greater

than 0 for all couples in the sample for either rule  but computational costs restricted our ability to do

so.
19Note that by considering cases in which   0 every case will be informative for distinguishing between

the two behavioral rules. Our choice of  = 0 is made to make the differences in the information content

of the sample cases more stark, as well as to simplify computation.
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exactly the same (3.5 percent). The vast majority of couples are more correctly matched

under  (85.5 percent) than under  (11.0 percent). We will find similar types of

patterns in the complete econometric analysis reported below across different marriage

market sizes both in the total U.S. sample and by geographic region and in which match-

specific heterogeneity is included.

We now briefly explore another question: what is it about household pairs that make

them more likely to be correctly matched under one of the two behavioral regimes? This

is a more subtle question than it may first appear to be.

In our framework, the observed state variables are (1 2  ) and given these values

and the observed choice variables, we impute the parameters (1 2 1 2) under the two

different behavioral regimes. This is done for every couple in the sample, so that the

likelihood of a couple being correctly matched under a given regime will not only depend

on the observed state values (1 2  ) and the imputed values of the preference and

production parameters for that couple, but on the set of observed state variables and

imputed values of preference and production parameters for all of the other couples in the

sample. It is the joint distribution of all of the state variables across all households that

determines the likelihood that a given couple in the sample is successfully predicted to be

matched. When we assume that any household is behaving under  rather than 

we know that only the imputed values of preferences, 1 and 2 are affected (since the 1
and 2 imputations are identical given our functional form assumptions). It follows that for

each household in the sample, the implied values of both 1 and 2 are larger under 

than under  How this affects the differentially affects the relative attraction (under

 and ) of a given household is difficult to determine, since the entire distribution

of (1 2) changes under the two regimes.

The difficulty of identifying exactly what makes a couple more likely to be matched

under  than  is illustrated in the regression results reported in Table 2. The

dependent variable in the regression is the log odds ratio for each couple of being cor-

rectly matched under the the two regimes, i.e., ln ( | 2)− ln ( | 2) In the

panel labeled Specification 1, the dependent variable is regressed on each of the three

state variables and the four endogenous time allocation values one at a time. Thus these

coefficient estimates are from seven different bivariate regression specifications, and the

heteroskedasticity-corrected standard errors are reported in the middle column, after the

point estimates. We see from the regression results that only the time devoted to house-

work measures, particularly that of the males (1) display any evidence that they help

predict the difference in the logs of the ability to successfully match couples between 

and  Couples with high levels of these time allocation measures are more likely to be

better matched under the  regime.

In Specification 2 we estimate the multiple regression model which includes the three

observed state variables and the four time allocation measures simultaneously. The findings

are similar to those from the bivariate regressions, in that only the 1 variable has a

coefficient estimate more than twice its standard error in absolute value. Thus linear
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regressions in which this dependent variables is considered to be an additive function of

the seven observed characteristics of households have little predictive power.

One reason for the low predictive power is that the likelihood a couple being correctly

matched is a function not only of their state variables, but also the entire distribution of

state variables they face, as was pointed out previously. But it is also the case that the

imputed values of preferences and productivities are a highly nonlinear function of wages,

income, and time allocation decisions. It is likely that additive linear functions of these

characteristics may do a poor job of prediction. Given the small number of observations,

282, we decided to limit attention to the three state variables that are observed, 1 2

and  and estimated a quadratic function of these three characteristics. The results

are reported under Specification 3. There are the same number of regression coefficients

estimated as in Specification 2, but here we see that five of the seven coefficients have

ratios of the point estimate to the standard error that are greater than 2 in absolute value.

Thus taking a nonlinear function of a subset of all of the observed variables has far more

ability to predict the value of the dependent variable than does a regression in which these

state variables only enter linearly. Our conclusion from this exercise is that the difference

in the likelihood of being correctly matched under  and  may be “predictable”

given couple characteristics, but only when using fairly complex transformations of those

characteristics that don’t lend themselves to simple interpretations.

4 Data and Empirical Results

The empirical work is performed using a sample of married couples taken from the Panel

Study of Income Dynamics in the survey year 2007 that contains information on household

characteristics and choices in the years 2006 and 2007. To be included in the sample,

the household must have been headed by a married couple, at least one of whom was

between the ages of 25 through 49, inclusive. In an effort to include individuals who had

(relatively) recently been in the marriage market, we excluded all married couples who

had been married for more than five years. All information on time allocations within the

household must have been available for both spouses; this consists of the average amount of

time spent in the labor market per week in 2006 as well as average hours spent in housework

per week (reported at the time of the interview in 2007). Because household production

activities change so markedly when young children are present, we excluded all households

in which there was a child less than six years of age.

We also excluded any household in which one of the spouses made more than $150 an

hour or reported more than 80 hours of market work per week. We also required that the

household not receive more than $1000 per week in nonlabor income. A few households

reported negative total income for the year, and these were excluded as well.

The (almost) final selection criterion imposed was that both spouses spend time both

in the labor market and in home production. This, of course, is a substantive restriction
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that is imposed so that we can invert four first order conditions for each household to

obtain four values of the unobserved characteristics of the spouses (two for each spouse).20

Approximately 18 percent of the sample was eliminated (after imposing all other selection

criteria) by insisting that both spouses report supplying time to the market in the previous

year. Some spouses were reported to have supplied zero time to household production; for

these individuals we assumed that the actual amount of time spent in housework was 1

hour per week.21 During the process of estimation we found that data from 9 households in

our “final” sample produced problematic values when attempting to perform the inversion

required to back out unobserved preference and productivity characteristics. These sample

observations were eliminated as well. The final sample included 282 married households.

It is important to point out that after imposing all of the sample restrictions, what

we have is most definitely not a random sample of U.S. married households (even the full

sample of the PSID cannot be considered a national random sample at this point in time).

However, it is extremely difficult to say whether these restrictions tend to favor a particular

test result. This is because under the two behavioral regimes, two different sets of estimates

of the spouses’ preference parameter are produced, and this is true for all sample members.

The sorting patterns are predicted as a function of the entire joint distribution of state

variables in the population under both behavioral regimes, as we discussed in Section 3.5.

Because of this it is difficult to determine how sample selection affects the test results which

are computed from the model of marriage market equilibrium.

The descriptive statistics and a partial summary of the first stage estimates are pre-

sented in Table 3. The descriptive sample statistics are found in the last four rows of the

table. We see that husbands supply more time to the labor market than do their wives

(recall that only households with both spouses working were selected), with the difference

in means being about 6 hours per week. The standard deviation of market hours is larger

for wives than husbands however, since a much larger proportion of women work part-time.

In terms of housework,   average housework time was over 4 hours per week greater for

20 If we included a household in which one member worked (say the husband) and one did not, we lose

point identification of the husband- and wife-specific preferences and household productivites. In such a

case, we do not observe the wage of the wife. For any possible wage that she could have received, there

are a set of values of her preference parameter 2 which are consistent with her not working. Building

a likelihood function to estimate the distribution of the state variables would involve the incorporation

of conditional probabilities of sets of values of (2 2|1 1 1 2  ) in this particular example, and
would be a daunting challenge in practice. If we were willing to make parametric assumptions on the joint

distribution of the state variables, the problem becomes much more tractable. However, even in this case,

recall that these distributions are required to assess the likelihood that a marriage is correctly predicted.

When the choice set contains individuals with unknown values of state variables, the prediction probability

requires “integrating out” the conditional distribution of the unknown state variables given the observed

ones. This complication is avoided by requiring both spouses to work
21 It would be interesting to look at the distribution of responses to these housework questions as a

function of the identity of the respondent. We hazard the conjecture that, conditional on observable

characteristics, respondents are likely to over-emphasize their contributions to the household workload

while under-emphasizing the spouse’s.
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wives (10.9 versus 6.7). As has been often found, the total time spent in the labor market

work and housework are quite similar for husbands and wives. We also see a substantial

amount of heterogeneity in the housework time of the wives (and the husbands, though

less so) as reflected in the sizeable standard deviation.

The average hourly wage paid to husbands is about 16 percent greater than the average

hourly wage earned by the wives. The standard deviation of the wage distribution of the

husbands is only slightly larger than the corresponding standard deviation for the wives.

The similarity of the wage distributions in this case is partially attributable to the relatively

few women working part-time (since a sample selection criterion was the absence of young

children) and the restriction that the couple had to be married within the previous 5 years

at the time of the interview. Prior to the current marriage, it is reasonable to assume that

most women were working at full-time jobs, and hence may have accumulated more market

human capital, resulting in higher wage offers. This rationale seems particularly germane

to us, since in earlier versions of this paper with samples of couples selected without the

“recent marriage” criterion, the wage distributions of the wives were decidedly less similar

to the wage distributions of the husbands.

Before commenting on the nonlabor income variable we must discuss the manner in

which it was constructed. For many of the components of nonlabor income, there is no

way to make an attribution to a particular spouse. The fact that  cannot be attributed

uniquely to a spouse causes no problems whatsoever for the first stage estimates (where we

back out the spouse-specific preference and productivity parameters) because household

behavior depends solely on the sum 1+2 However, for the marriage market analysis it is

necessary to have access to person-specific measures of nonlabor income. To obtain these

measures, we proceeded in an admittedly arbitrary manner. We simply assumed that the

each spouse’s generation of nonlabor income was proportionate to their wage. Thus we had

 = ((1 + 2))  = 1 2 where  is total household nonlabor income (per week).

If  = 0 then both spouses had no nonlabor income, but if   0 then both spouses

had positive amounts of nonlabor income since 1  0 and 2  0 for all of our sample

members. While this procedure is completely ad hoc, we don’t believe our second-stage

results are extremely sensitive to the imputation method. This is so because we limited

all sample households to have  ≤ 1000 with most households having far less than this
amount. Labor market earnings dwarf nonlabor income levels for the vast majority of

sample members, so that the wage of a potential spouse is likely to be far more important

to a potential mate than is their nonlabor income level.

The distributions of the constructed nonlabor income variables are relatively similar

for husbands and wives, in large part due to the way in which they have been constructed.

Husbands have higher nonlabor income, though the difference in the average amount is

fairly insignificant (37.9 versus 32.9 dollars on a weekly basis). The standard deviation of

the husbands’ distribution was about 25 percent greater than the standard deviation of

the wives’ distribution.

The top first four columns of the table report the mean and standard deviations of the
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marginal distributions of the unobserved preference and household productivity parameters

derived under the two distributional assumptions. Before discussing these estimates, note

that the utility and household production function specifications deliver the implication

that the first order conditions determining time spent in household production are the

same under  and  and that these levels are independent of preferences. As a

result, the implied values of the productivity parameters 1 and 2 are the same under 

and  for each household. The estimates imply that wives are more productive than

husbands in housework, with the average value of 2 about 35 percent greater than the

average value of 1 The amount of variation in the distributions, as summarized by the

standard deviation, is approximately the same.

There is a large difference in the distributions of the preference weight on leisure for

husbands and wives between the two allocation rules. Within a given regime,  or 

there is not a huge difference between husbands’ and wives’ preferences for the private good

leisure, though on average husbands value leisure more than wives. The rationale for the

large differences in the preference distributions across rules is fairly intuitive. Since more

of the public good is produced under the efficient allocation, two households identical in

all other characteristics except preferences and mode of behavior would make the same

time allocation decisions only if the efficient household valued the public good sufficiently

less than did the inefficient one. This is true for every household in the sample, so that

in each case the estimate of 1 and 2 must be greater under  than under  The

differences are large. On average, the husbands’ parameter 1 is 50 percent greater under

 than under  For the wives, the difference is even greater, with the mean value

of 2 under  being about 56 percent greater than under 

We now turn to describing the main focus of the empirical analysis, the likelihood-based

comparisons of the predictive abilities of the two forms of household behavior in terms of

marital sorting. In the results reported in Table 4, we have considered the entire U.S. as

the potential marriage market for each couple in the sample (a couple from the total sample

is denoted   = 1  282). As described in the previous section, we looked at potential

marriage markets of size  where  = 2  7 Computational limitations dictated our

choice of the maximum size of marriage market be seven males and seven females.

From inspection of Table 4, we see that the likelihood of correctly predicting the mar-

riage matches is a decreasing function of the marriage market size under both rules. This

makes sense, since the choice sets are larger. We see that the log likelihood reductions are

not as large at larger values of  Not much should be read into this, since it is mainly an

artifact of our assignment of a fixed value for the proportion correctly predicted for any

given couple when no correct prediction occurred in any of the marriage market environ-

ments (200) in which they were embedded. As  grows large, the number of cases assigned

this value increases, and the log likelihood will converge to a fixed value.22 Our belief is

22Given the relatively small number of environments we are able to consider for each match, this is

another reason for limiting the size of the marriage markets to be no more than seven.
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that this problem should impact the log likelihood contributions under the two rules in

a fairly symmetric fashion, so that we don’t believe that the log likelihood ratios will be

strongly affected.

We now focus attention on the last column in Table 3, which contains the log likelihood

ratios for the sample. The  rule outperforms the  rule for every marriage market

size we have considered. In fact, the differences are increasing in the size of the labor

market until we reach  = 7 From our discussion in the last paragraph, there is reason

to believe that as  grows large the difference between the rules in predictive performance

will be obscured by the inability of either to successfully predict an observed match even

once over the 200 we consider. This phenomenon may well be at work in this case.

While the differences in the log likelihood ratios seem “large,” we can say nothing re-

garding whether these are significant differences without appealing to the bootstrap results.

As noted above, we drew 20 bootstrap samples for each marriage market size and computed

the log likelihood ratios for each sample. Figure 2 contains the plots of the log likelihood

ratios for each of the  considered. We see that for all of the statistics computed, the

log likelihood ratios are positive for all  thus indicating that the  intrahousehold

allocation rule outperforms the  rule in every case. Are the differences “significant?”

Since  = 20 our nonparametric estimator of the sampling distribution of the log likeli-

hood ratio places 0.05 mass on each value of the log likelihood ratio obtained. Thus the

estimated cumulative distribution of at the minimum value of the log likelihood ratio for

each  is 0.05, and since this minimum value is always positive, we can claim that these

differences are “significant” at the 0.05 level. Of course, by increasing  it seems very

likely that the differences could be “significant” at substantially lower levels.

We have found what we consider to be very strong evidence that intrahousehold behav-

ior is constrained efficient. But are potential marriage markets really national? They may

be for many singles, particularly those attending college or working in a large firm, who

could draw potential marriage partners from around the country of even the world. We

were interested in repeating the analysis on a regional level to see how the results differed

from the case of one national marriage market. We grouped couples by region of residence

at the time of the 2007 PSID interview, and assumed that they lived in that region when

they were in the marriage market (which was no more than 5 years prior to the interview

date). For reasons of sample size, we could only use four regions: East, Midwest, South,

and West. The numbers of sample households varied greatly across regions due to the

cluster sampling plan of the PSID and our particular sample inclusion criteria. We have

43 sample couples from the East, 73 from the Midwest, 111 from the South, and 55 from

the West.

Figure 3 contains the plots of the log likelihood ratios by marriage market size for each

region. There are a total of 480 log likelihood ratios plotted in Figure 3 (20 bootstrap

replications by 6 sizes by 4 regions), and we see that all but 5 are positive. Moreover, the

two regions for which negative values appear are the two smallest. The largest region in

terms of sample size, the South, exhibits differences that are all positive for each sample
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size, and the same is true of the second largest region by sample size, the Midwest. In the

fourth largest sample, the East, only one negative value is observed, which was associated

with  = 6 We could claim, in this case, that the likelihood that the true rule is 

is 0.10 for a marriage market size of 6 in households in the East. The West exhibits 4

negative values of the log likelihood ratio, one at  = 7 two at  = 4 and one at  = 2

Thus we might say that the likelihood that the true rule is  is 0.10 for  = 7 015 for

 = 4 and 010 for  = 2 For all other cases in the Figure, the likelihood that  is the

rule utilized by households is no more than 005.

We have found what we consider to be overwhelming evidence in favor of the proposition

that households behave in a constrained efficient manner. The fact that a few log likelihood

ratios were found to be negative is good news in that it indicate that such a result was not

preordained by the methods used to compute estimated log likelihoods. In all, including

the national marriage market, we found a total of 5 negative values of the log likelihood

ratio out of the 600 computed. Since we have no idea of what the actual marriage market

sizes are (even given our stylized construction of them), it is reassuring to find that our

inferences are essentially the same across all marriage market sizes and all regions.

5 Conclusion

In this paper we have made the point that there is no general nonparametric test avail-

able that allows one to distinguish between modes of household behavior when individual

heterogeneity in unobservable and observable characteristics is not introduced in severely

restrictive ways. Using a flexible specification means that within-household variation in

decisions is not useful for distinguishing between competing modes of behavior, which is

the negative conclusion we draw. The good news is that this heterogeneity does produce

interesting implications regarding the assignments of husbands to wives in equilibrium, and

that these can be exploited in investigating the mode of behavior followed by population

members. Using the Gale-Shapley bilateral concept of stable matchings, we developed a

new likelihood-based metric which can be used to compare the competing hypotheses of

inefficient Nash equilibrium in reaction functions () and efficient household behavior

based on a constrained Pareto weight objective ().

The methodological point we stress is reminiscent of the general problem of model over-

fitting. We adopted a modeling framework that was capable of perfectly fitting the data

(i.e., the mapping from the data space to the parameter space was 1 to 1, otherwise known

as a saturated model) under an entire class of behavioral rules < In order to “test” one
specification against another, some restrictions have to be imposed on the parameterization

to make the mapping no longer 1 to 1, and to raise the possibility that one of the elements of

< “fits” better than another. Of course, the test results we obtain in the end are a function
of sample realizations and the restrictions we have placed on the parametric specification

of individual utilities and the household production technology. It is seldom possible to
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claim that one parameterization should be preferred over another on theoretical grounds

alone.

Given this inherent arbitrariness, we have moved the test to a different playing field -

one that is “out of sample,” so to speak. The richness of the specification of individual

heterogeneity leads to zero power in testing one element of < against another using only
time allocation data, but has the potential to produce the implication of different marital

matching patterns - an empirical phenomenon that is not used in backing out the individual

characteristics. Through an extended example, we show that the test we develop is useful

for determining the mode of household behavior using the data at our disposal. Our results

provide strong evidence that households do behave in a constrained efficient manner. Those

advocating the “sharing rule” approach to the analysis of household allocation decisions

posit efficient allocations as a fundamental identification condition. We have provided

some evidence to support this assumption, though of course it remains to be shown that

the constrained efficient model we utilize,  actually is the best in the sense of model

fit. The log likelihood function we define could, in principle, be used to consider the model

fit associated with other elements of < in addition to those to which we have limited our
attention,  and 

A restrictive feature of our analysis has been the strong assumption that all (potential)

marriages utilize the same rule  ∈ < in making allocation decisions. In a companion paper
(Del Boca and Flinn, 2012) we develop a model which allows spouses to choose between

efficient and inefficient behavior, with the choice depending on all of the state variables

examined here as well as a discount factor (the model is based on Folk Theorem types

of arguments). It would be of great interest to allow the endogenous choice of household

behavior in a marriage market context such as this, a topic we leave for future research.23

23 Iyigun (2007) considers exactly this type of problem but in a strictly theoretical manner.
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Table 1

Marriage Sorts from Example

 = 00  = 01  = 02

Marriages      

1 1

2 2

3 3

1.000 1.000 0.927 0.862 0.640 0.587

1 1

2 3

3 2

0.000 0.000 0.000 0.000 0.001 0.001

1 2

2 1

3 3

0.000 0.000 0.071 0.136 0.275 0.328

1 2

2 3

3 1

0.000 0.000 0.000 0.000 0.007 0.008

1 3

2 1

3 2

0.000 0.000 0.000 0.000 0.005 0.007

1 3

2 2

3 1

0.000 0.000 0.002 0.002 0.072 0.068
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Table 2

Regression Results

Dependent Variable is ln − ln

(s.e. estimates are heteroskedasticity-consistent)

Specification 1 Specification 2

Variable coefficient s.e. ratio coefficient s.e. ratio

1 6.838e-6 7.111e-4 0.010 -4.334e-4 8.110e-4 -0.534

2 1.163e-3 1.643e-3 0.708 1.637e-3 1.687e-3 0.970

 2.469e-5 1.110e-4 0.223 2.688e-5 9.640e-5 0.279

1 1.084e-3 8.085e-4 1.341 9.267e-4 8.492e-4 1.091

2 -5.463e-4 1.195e-3 -0.457 -6.821e-4 9.835e-4 -0.694

1 5.633e-3 1.640e-3 3.435 5.647e-3 1.804e-3 3.131

2 2.353e-3 1.550e-3 1.518 8.418e-4 1.622e-3 0.519

Specification 3

1 1.165e-3 1.600e-3 -0.728

2 -2.736e-3 1.354e-3 -2.020

 -1.159e-3 3.213e-4 -3.608

1 ∗ 2 8.695e-5 5.728e-5 1.518

1 ∗  2.653e-5 1.211e-5 2.190

2 ∗  6.847e-5 1.781e-5 3.845

1 ∗ 2 ∗  -1.684e-6 6.365e-7 -2.645
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Table 3

Means and (Standard Deviations) of Individual Characteristics

N = 282

Husband Wife

Characteristic NE CPO NE CPO

 0.401 0.603 0.372 0.579

(0.112) (0.103) (0.121) (0.124)

 0.070 0.070 0.095 0.095

(0.064) (0.064) (0.062) (0.062)

 42.414 36.800

(10.979) (11.620)

 6.688 10.979

(6.215) (8.183)

 21.063 18.097

(13.185) (12.096)

 37.893 32.895

(89.609) (71.031)
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Table 4

Log Likelihood Values

U.S.

( = 282)

Marriage Market Size NE CPO Difference

(CPO-NE)

2 -175.448 -164.691 10.757

3 -279.686 -260.192 19.494

4 -369.825 -343.993 25.832

5 -432.488 -399.996 34.492

6 -485.183 -445.058 40.125

7 -529.887 -492.423 37.646
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