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1 Introduction

Radical innovation can have a dramatic and significant impact on firms and so-
cieties (Lipsey et al., 2005). Despite this, it has been less frequently studied or
formalized than for instance incremental innovation (Schoenmakers and Duys-
ters, 2010). The existing literature has focused on descriptive and empirical
studies of radical innovation, and has been more concerned about commercial-
ization post-invention, rather than on the determinants of radical innovation on
a firm level (Ferriani et al., 2008; Golder et al., 2009). Although the growing
literature on innovation (see e.g. Sena, 2004) has made important advances
to model the innovation process it still neglects the impact of major stochastic
shocks on investment in radical innovation, particularly on the decision to bring
an invention to market or to continue with R&D efforts. This is a significant
omission because radical innovation, unlike incremental innovation, is more sen-
sitive to the impact of major stochastic shocks. In this paper we contribute
to addressing this shortcoming by proposing a novel method for modeling the
decision to invest in radical innovation. To be specific, we propose a real op-
tions model to determine the optimal duration of R&D for radical innovation.
Although real options models have been used to study innovation our model
introduces a novel method for analyzing the effect of major stochastic shocks.
The essence of our model is that we use dynamic programming to identify a
trigger threshold level of profits that against the backdrop of possible major
stochastic shocks can fix the timing of market entry and hence the expected
duration of the R&D period and the total volume of investment.
The paper is structured as follows. In section 2 we discuss the relevant

literature and argue for the appropriateness of using the real options approach
to study radical innovation. In section 3 we present our model. The model’s
analytics are described in section 4. Section 5 concludes.

2 Radical Innovation and Real Option Theory

2.1 The Neglect of Radical Innovation

Innovation is the ‘putting into practice of inventions’(Fagerberg et al., 2005).
Such inventions have often, though not exclusively, been in the form of new
technologies. 1 Technological innovation is an iterative process initiated by
the perception of a new market and/or service opportunity for a technology-
based invention which leads to development, production, and marketing for the
commercial success of the invention (Garcia and Calantone, 2002: 112).
As Schumpeter (1911; 1942) famously stressed, innovation is important for

economic growth and development. Modern growth theory accords technolog-
ical progress a major role in productivity growth (Aghion and Howitt, 1998).
Innovation is vital for firm performance, for instance in providing entrepreneurs

1More generally innovation can include the exploitation of new markets and the develop-
ment of new ways to organize business.
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with new products with monopoly rents or ensuring firm survival (Chandy and
Tellis, 1998; Tellis et al. 2009; Bessant, 2003). Entrepreneurs play an essential
role in undertaking risky innovation (Audretsch and Aldridge, 2007; Marvel and
Lumpkin, 2007).
There is a substantial scientific literature on innovation, covering amongst

others the theories of innovation (Freeman, 1994; Nooteboom, 2000), how to
measure innovation (Freeman and Soete, 2009; Lanjouw and Schankerman,
2004), the nature of innovation (Shavinina and Seeratan, 2003; Schoenmak-
ers and Duysters, 2010), the patterns of (technological) innovation such as the
technological S-curve (Sood and Tellis, 2005); the process of innovation (Pavitt,
2005); the determinants of innovation (Tellis et al., 2009) including innovation
persistence (Clausen et al., 2012); national and regional innovation systems and
policies (Patel and Pavitt, 1994; Lundvall, 2007); and the impact of innovation
on performance and on economies, including spillovers (Sena, 2004) and the dif-
fusion and adoption of innovations and absorption capabilities (Fagerberg and
Verspagen, 2007; Soete and Turner, 1984; Soete, 1985; Szirmai, Naudé, and
Goedhuys, 2011).
Within this literature a relatively neglected topic is that of radical innovation

- as distinct from most ‘incremental’2 forms of innovation (Schoenmakers and
Duysters, 2010). ‘Radical’innovation is also described as breakthrough’, disrup-
tive, discontinuous, game-changing or revolutionary" innovation (O’Connor and
McDermott, 2004). It is often identified ex post and typical lists of radical inno-
vations include for example the microwave oven, transistors, laser printers, the
laptop computer, cellular telephone, digital camera, gyrocompass, penicillin,
and oral contraceptives (Audretsch and Aldridge, 2007; Slocum and Rubin,
2008).
Investing in R&D for incremental innovations aims at the continuous (step-

wise) improvement of a product, and is subject only to marginal uncertainty.
By contrast, investing in R&D for radical innovation involves more fundamental
uncertainty. It requires that the entrepreneurial firm undertaking these invest-
ments be willing to spend large investment flows in R&D over a long period,
even if this fail to generate results, in the hope that this will lead to major
research steps or even a breakthrough at some unpredictable future point in
time. Hence, investing in R&D for radical innovations is characterized by major
events (or jumps) which can be either positive or negative. While a sudden leap
forward or breakthrough in research is a positive event, negative events such
as a competitor announcing a launch of a substitute may substantially reduce
the market value of a firm’s existing research. The firm may also find that its
current research has come to a dead-end. The uphot is that both positive and
negative major events may cause major jumps in the expected value of R&D

2According to Chandy and Tallis (1998:476) incremental innovations “involve relatively mi-
nor changes in technology and provide relatively low incremental customer benefits per dollar”;
in contrast radical innovations “involve substantially new technology and [provide substan-
tially greater customer benefits”. Radical innovations are thus innovations that “could not
have evolved through improvements to, and modifications of, the existing technology’(Slocum
and Rubin, 2008:11).
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projects aimed at radical innovations. These non-marginal stochastic jumps
occur in the context of the general high risks involved in radical innovation.

2.2 The Risks of Radical Innovation

Radical innovation is costly and complex and hence a very risky business strat-
egy (see also Treacy, 2004). It is costly because it requires large investment
flows. According to Lynn et al. (1996) it can cost more than US$ 100 million to
bring a radical innovation to market. These costs are high because radical in-
novations need new factories or markets before they can be exploited (Freeman,
1994:474). This is a major reason why most radical innovations are performed
by large incumbent firms rather than small start-ups (Hill and Rothaermel,
2003; Ahuja and Lampert, 2001). Radical innovation is also expensive because
it requires long time-spans and a long-term focus. Golder et al. (2009) studied
29 radical innovations, whose average gestation period or incubation time for
radical innovations was 50 years. According to Bessant and Venables (2008: 3),
"lead times between initial knowledge production and later commercialization
in sectors such as these routinely exceed 10 to 15 years".
Radical innovation is complex because such R&D projects are diffi cult to

manage. High levels of managerial, engineering, and entrepreneurial skills are
required (Marvel and Lumpkin, 2007). There is often considerable internal resis-
tance against radical innovation attempts. One reason is that a new innovation
can cannibalize a firm’s existing sales (Chandy and Tellis, 1998). Investors may
also be locked in to earlier investment decisions on which they first want to earn
a return before these are threatened by newer technologies or products.
The costs and complexity give rise to high technical uncertainty in that a

breakthrough invention is not guaranteed. As Freeman (1994) notes, radical
innovation requires the long accumulation of scientific knowledge. Furthermore,
there is high market or commercial uncertainty since even if a breakthrough in-
vention is made, it may not be successful commercially. Treacy (2004:2) writes
that radical business models are often too radical for their markets. Whether or
not an invention will be adopted by others, either consumers or other firms, de-
pends on a number of factors, as a substantial body of literature has identified.
For instance, Bhide (2008) argues that one needs consumers who are willing
to experiment with buying and using new products or services. Often, a new
product is dependent on the acceptance and uptake of complementary prod-
ucts, services or technologies that are already available; this causes uncertainty
for the innovating firm because quite suddenly a complementary product can
appear that will make the commercialization of its under-developed new prod-
uct possible. Conversely, there is a risk that other firms will bring to market
a substitute that may make a firm’s own formerly radical innovation suddenly
obsolete or unmarketable (e.g. Belenzon, 2012).
As a result of innovation being subject to such high risks, but also potentially

lucrative if successful, many innovating firms adopt a mixed strategy where they
follow a radical innovation with a series of more incremental innovations. Apple
is a firm that has followed such a mixed innovation strategy. Since the radical
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innovation of the iPhone, most of Apple’s innovations have been incremental
innovations.

2.3 Relevance of Real Option Theory for Radical Innova-
tion

The fact that a radical innovation project is characterized by high costs, com-
plexity, and uncertainty, as discussed, suggests that a real options approach to
investment may be useful to understand and derive rules of optimal decision-
making. In contrast to the now-or-never decision the real option approach allows
for deferring the decision about an irreversible action to a later date (Dixit and
Pindyck 1994) and leads to inter-temporal optimization. Previous investigations
of uncertainty in investment decisions show that real option models deliver a
number of additional insights into its effect. For instance, Sakar (2000) argues
that an increase in uncertainty leads a firm to invest more within a specific pe-
riod while Wong (2007) shows that the investment threshold has an U-shaped
pattern depending on the volatility modeled. That is, greater uncertainty may
lead to a shorter waiting period and earlier investment.
Only recently have scholars started to propose R&D models that explicitly

apply analytical methods based on real options theory. For instance, Frazin
et al. (1998) and Doraszelski (2001) apply real options theory3 to discuss the
optimal timing of investment in technology adoption. They determine that
uncertainty has an significant effect on timing. In particular, Doraszelski (2001)
finds that higher uncertainty about the speed of arrival and degree of technology
improvement will defer the adoption of new technology. This result changes with
the introduction of technical uncertainty where the firm invests in an uncertain
stock. Sakar (2000), for instance, shows that an increase in uncertainty in such
a case leads the firm to invest more within a specific period. Further results
for R&D investments and innovations are provided by Jørgensen et al. (2006)
and Whalley (2011). Both argue that investments in intellectual capital of a
firm may drive innovations, while Whalley (2011) uses utility-based valuation to
determine the certainty-equivalent value of the R&D project to the entrepreneur.
While the literature discussed in this section has made important advances

in modelling innovation they do not take into consideration the possible impact
of non-marginal stochastic shocks or jumps on the decision to invest in R&D.
Possible non-marginal stochastic jumps include sudden scientific breakthroughs
or abrupt backlashes to innovations. As far as we can discern, there has not
yet been an attempt in the literature to address the question of how long and
how much an entrepreneur can expect to invest in R&D in order to develop a
radical invention before entering the market, particularly when the entrepreneur
faces non-marginal stochastic jumps. Hence, an important question about the
theory of radical innovation and in particular on modeling the timing, gestation,
and duration of research and development (R&D) investment is not considered.
Sudden non-marginal stochastic jumps have, however, been studied in financial

3See Dixit (1989), Dixit (1993) and Dixit and Pindyck (1994).
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economics and more recently in business cycle theory. Beginning with Merton
(1975) jump processes were introduced to model rare events that cause non-
marginal movements in financial values. The impact of disasters has also been
modeled as simple downward jumps (e.g., Cox et al., 2000, 2004). As an exten-
sion, Yang and Zhang (2005) and Jang (2007) use a jump diffusion processes
to model the randomness of disasters, that is, their unknown frequency and
impact. More general jump diffusion models are presented by Pham (1997)
and Kou (2002), while Kou and Wang (2003) and Cai and Kou (2011) analyze
various characteristics of jump processes.

3 The Model

3.1 Intuitive Description

We start by providing an intuitive description of our model. When an (entre-
preneurial) firm decides to spend on R&D in the hope to generate a radical
innovation it faces two challenges: first to have a successful R&D outcome, i.e.
an innovation; and second to successfuly commercialization of the invention, i.e.
achieve a high earning period after the R&D phase. The period before market
entry is characterized by pure investments in technological innovation. It is
costly and long, as explained in section 2. Moreover, the costs of developing
and launching a radically new product accumulate over time.
The firm needs to decide at each moment whether, and if so when, a radi-

cal innovation can be generated and successfully commercialized. That is, the
present state of technical innovation and the firm’s expectations could (i) trigger
an immediate market entry, (ii) lead the firm to expect market entry to become
profitable after a certain time, or (iii) lead the firm to expect that a market en-
try is no longer profitable at all. Instead of entering the market straight away,
the entrepreneurial firm can defer, invest more in R&D, and improve the tech-
nology, while still retaining the value of waiting. This may allow the market to
mature and complementary technologies to be developed. Upon market entry
the technical innovation process is terminated, the invention is launched, and
the earning period starts. The profit flow in this period will depend on the
timing of the entry, as our model shows. This is an important aspect most often
neglected when considering the risks of radical innovation.
Having described the decision problem as a timing decision to enter the

market, in the sections below we apply real options theory in a dynamic pro-
gramming model. The decision is determined by the sequential comparison of
the net present value of profits of a potential market entry with the value of
postponing market entry to a possible later date. Identifying the triggering
threshold, we can determine two further major characteristic elements of a con-
tinuous and long-term investment into an innovation, that is the expected time
of market entry, and hence the expected duration of the research period, and
the expected total volume of investment needed to succeed upon market en-
try. However, even if our sequential process accounts for these expectations the
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model illustrates that a stochastic shock will have a significant impact on the
decision to bring an invention to market.

In the formalization of the model in the sub-sections below we describe
four key decision elements: (i) the accumulated investment flow for radical
innovation; (ii) the potential market entry profit; (iii) the profit flow after market
entry; and the (iv) option value of attached to continue with R&D efforts.

3.2 Total Investment in Radical Innovation

The time at which an entrepreneur perceives an opportunity to start spending
on R&D for radical innovation is denoted as t = 0. The R&D phase is unknown
duration and will involve costs that will accumulate until market entry. Let
Crepresent these costs, which may differ amongst firms depending on their level
of innovative capacity and knowledge-creation efforts. For simplicity, these costs
are constant.
Total investment in radical innovation I(T ) is the sum of costs of each period

during the R&D phase. Denoting the end of the research period and the market
entry by T , the current value of total investment in radical innovation at the
moment of market can be denoted as follows:

I(T ) =

∫ T

0

Cer(T−t)dt, (1)

where r is the risk-free interest rate.

3.3 Potential Market Entry Profit

At each moment the state of technological sophistication reached in the R&D
phase is associated with a specific level of profit if the invention should be
marketed. However, this profit, even if positive, may not be adequate. Hence
the firm may prefer to continue with R&D. With each additional period of
not entering the market, the firm waits for another major step forward or a
technical breakthrough. Hence, postponing market entry is a more profitable
strategy - but not always. R&D could produce a breakthrough, but it could also
produce a failure or encounter an insurmountable technological obstacle. While
the first event would lead to an upward jump in the economic value of R&D,
the latter would cause a downward adjustment. 4 By using jump processes we
are able to model a sudden success or disaster in the R&D process that may
lead to strong non-marginal changes in the value of radical innovation. Large
upward or downward jumps in the potential market entry profit are regarded as
a stochastic shock because they represent both fundamental threats and major
opportunities. We describe the development of potential market entry profits

4We neglect marginal fluctuations and consider a model of jump accumulation that focuses
on major effects only. Hence this model is a variation of a model used in financial economics.
For instance, Pham (1997) uses Jump-Diffusion processes to analyze options.



7

during the R&D period before the new product is launched as an compound
Poisson Process:

dỸ = Ỹ

∫
U1

uN1(t, du) for 0 < t < T. (2)

The jump part of the stochastic process is represented by the integral
∫
U1

zN1(t, dz)

where N1(t, dz)a Poisson Process with intensity λ1. As far as we are aware, this
model is the first to focus on such large uncertainties in the time path of R&D.
The model enables an accumulation of non-marginal jumps which occur at ran-
dom points in time with an uncertain step height out of U1, which is a Borel Set
whose closure does not contain 0. That is, the occurrence of a major positive
or negative event is unpredictable.

3.4 Profit Flow after Market Entry

Once a firm decides to commercialize its invention its profits are determined
by market conditions. Accordingly these profits are highly uncertain since they
are subject to unforeseen events as discussed in section 2. On the one hand,
sudden opportunities may open up - for instance competing entrepreneurs may
exit the market or completely new markets may open up. On the other hand,
negative events may dramatically worsen the market value of the innovation
after market entry for instance as a result of product imitation or an apparent
substitute offered by competitors. Alternatively, the market could suffer an
overall economic crisis that affects aggregate demand. Hence we model profits
after market entrey as a second compound Poisson Process:

dY = Y

∫
U2

zN2(t, dz) for T < t. (3)

This process allows for an accumulation of opportunities and threats through
the integral

∫
U2

zN2(t, dz). N2(t, dz) denotes a Poisson Process with intensity λ2.

Jumps with an uncertain step height out of U2, which is a Borel Set whose
closure does not contain 0, occur randomly and can be downward as well as
upward.

After market entry the profit stream evolves within the limits of a random
process. The economic value of innovation consists solely of its future profit
stream. For a risk neutral entrepreneur the market value of research results
V gross is determined by the expected present value of the profit stream:
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V gross =
Y (T )(

r −
∫

f−1(U2)

zυ2(dz)−
∫
U2

[ln(1 + z)− z] υ2(dz)

) ; (4)

r >

∫
f−1(U2)

zυ2(dz) +

∫
U2

[ln(1 + z)− z] υ2(dz),

with r being the risk-free interest rate. f denotes the function f(z) = ln(1+
z) and υ2 refers to the Lévy Measure of the Poisson Process N2. For simplicity
the entrepreneur lives forever.
In order to determine the expected net value of the new technology the

expected gross value (4) has to be adjusted for the costs of innovation I(T ).
Hence, the expected net value of innovation is the gross stream V gross minus
investment costs:

V = V gross − I(T ).

3.5 Option Value of Innovation

Even if market entry is profitable for the entrepreneur, postponing it and
conducting further R&D may be valuable. Accounting for the option value F
for the compound Poisson Process (2), the Hamilton-Jacobi-Bellman equation
holds:

rFdt = E(dF ). (5)

This equation indicates that for a time interval dt, the total expected return on
the investment opportunity is equal to the expected rate of capital appreciation.

4 Model Analytics: Determining the Entry De-
cision and Expected Time of Market Entry

4.1 Expected Time of Market Entry

An entrepreneu r taking the route of radical innovation need to constantly eval-
uate the market value of the current state of R&D V and compare it with the
option value F of further R&D that can lead to a technical breakthrough. The
option value F of postponing market entry and conducting further R&D can be
determined by applying dynamic programming and solving for

max {V gross(T )− I(T ), F (T )} . (6)

This indicates that solving for the expected time of market entry involves
two steps. First, for each waiting period we need to determine the value of the
required current profit level of R&D results (threshold Y ∗) that would make
market entry desirable. When this threshold is reached the value of current
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research exceeds the option value of more research, and potentially an even
more valuable innovation. Hence, market entry becomes preferable. Second,
while each moment the threshold marks the required value for market entry
the entrepreneur verifies if the current pre-market entry value Ỹ reaches this
threshold
Determining this threshold is the first part of a solution to the expected

timing of market entry.

Proposition 1 For the costs of innovation I, a pre-market entry value of cur-
rent profits while being innovative (2), and future profit streams after market
entry following (3) , we can determine the threshold Y ∗ that would trigger com-
mercialization of the innovation

Y ∗ =
β

β − 1

r − ∫
f−1(U2)

zυ2(dz)−
∫
U2

[ln(1 + z)− z] υ2(dz)

 I(T ) (7)

with r >

∫
f−1(U2)

zυ2(dz) +

∫
U2

[ln(1 + z)− z] υ2(dz)

β is an implicit function resulting from the differential equation rFdt = E(dF )

with solution F = B
˜

Y
β

.

Proof. see Appendix 1.
The expected time at which the pre-market entry value (Ỹ ) ) is expected

to reach the threshold (7) and triggers market entry is referred to as the first
passage time. However, since we consider compound Poisson Processes, there is
overshooting that has to be taken into account. The existence of an analytical
solution for the first passage time can therefore only be ensured for a small num-
ber of jump size distributions. Accordingly, we utilize the double exponential
distribution as an example for which an analytical solution exists. As in Kou
and Wang (2003) the double exponential distribution is given by

h(z) = pη1e
−η1z1{z≥0} + qη2e

η2z1{z<0},

where p is the probability of a positive jump and q of a negative jump, respec-
tively, with p + q = 1. 1

η1
and 1

η2
denoting the means of the two exponential

distributions. These exponential distribution can be interpreted as distributions
of the waiting period until a positive or negative jump occurs. In other words, in
this innovation period the occurrence of fundamental opportunities and threats
affects the decision to enter the market.
In order to analytically determine the first passage time, in the next section

we first suggest an instrument that allows for a non-linear development of the
threshold. We call this instrument the expected first-time realization of market
entry profit. That is for the random process (Ỹ see (2)) we derive the expected
time of first realizing or overshooting a certain market entry profit Ỹi (given
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today’s value Ỹ0). By using the Girsanov Theorem we can derive the proba-
bility density function of T̃i 5 , which is sometimes referred to as the Inverse
Gaussian Distribution.6 As we can determine the expected time of first realiz-
ing or overshooting of each value of the strictly monotonic increasing sequence

Ỹi ∈
{
Ỹ1, Ỹ2, ..., Ỹn

}
with 0 = Ỹ1 ≤ Ỹ2 ≤ . . . ≤ Ỹn and Ỹ1 > Ỹ0 we can write

the expected first realization or overshooting time as a function of Ỹi and of the

overall drift of the jump process ū = λ1

(
p
η1
− q

η2

)
.

Proposition 2 Using the compound Poisson Process (2) we can derive the ex-
pected time of first realization or overshooting ET̃ of each market profit Ỹi ∈{
Ỹ1, Ỹ2, ..., Ỹn

}
with 0 = Ỹ1 ≤ Ỹ2 ≤ . . . ≤ Ỹn and Ỹ1 > Ỹ0 as a function of

Ỹi, and hence determine the expected time until any market entry profit Ỹ is
reached for the first time as:

E(T̃ ) =
1

ū

[
Ỹi +

µ∗2 − η1

η1µ
∗
2

(1− e−Y
∗µ∗2 )

]
. (8)

ū refers to the overall drift ū = λ1

(
p
η1
− q

η2

)
of the jump process and µ∗2 is a

constant derived in the technical note, for which 0 < η1 < µ∗2 <∞ holds.

Proof. see Appendix 1.
Hence, to determine the first passage time T ∗ we have to compare all points

(Ỹi, E(T̃ , Ỹi)) and (Yi, T ) from the sets of the threshold as well as from the
ETi curve and choose the point that is included in both sets. The resulting
T ∗ determines the first passage time. As the image set of ETi is a sequence
there may be no exact match with the threshold curve. In this case we choose
the first point in time for which the threshold curve lies above the ETi curve,
that is T (Y ) > E(T̃ , Ỹi).

7 The next proposition provides conditions for the
existence of the first passage time.

Proposition 3 With the threshold Y ∗(T ) (see (9)), the expected first-time re-
alization of initial market profit ET̃ (see (8)), and condition (10) and (11) there
exists an expected time to enter the market T ∗ = E(T ) > 0. T ∗ is the first time
point for which the following conditions hold:

T ∗(Y ) ≥ E(T̃ , Ỹi). (9)

5An extensive discussion is offered by Karatzas and Shreve (1991, p.196) and Karlin and
Taylor (1975, p.363).

6The term ”Inverse Gaussian Distribution” stems from the inverse relationship between
the cumulant generating functions of these distributions and those of the Gaussian distribu-
tions. For a detailed discussion of the inverse Gaussian distribution see Johnson, Kotz, and
Balakrishnan (1995) or Dixit (1993).

7As in Dixit and Pindyck ((1994), page 160) the curves F,V-I have an upward slope.
However, under certain conditions they can also decrease because in this model costs are
accumulated. For details see technical Note 3.
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1

r
ln
Ỹ1 +KC

KC
<

1

ū

[
Ỹ1 +

µ∗2 − η1

η1µ
∗
2

(1− e−Ỹ1µ
∗
2 )

]
, (10)

1

r
ln

(
Ỹt +KC

)(
Ỹi +KC

)
(
Ỹs +KC

)(
Ỹj +KC

) <
1

ū

 Ỹt + Ỹi − Ỹs − Ỹj
+
µ∗2−η1
η1µ

∗
2

(e−Ỹsµ
∗
2 + e−Ỹjµ

∗
2

−e−Ỹtµ∗2 − e−Ỹiµ∗2 )

 (11)

with K = β
β−1 (r −

∫
f−1(U2)

zυ2(dz)−
∫
U2

[ln(1 + z)− z] υ2(dz)− α).

Proof. See Appendix 1.

The existence of the expected time of market entry T ∗ indicates that from
today’s perspective the entrepreneur can expect to realize a later market entry
and hence it is beneficial to invest in the project. A threshold that is higher
than the expected initial market profit reflects that innovation costs during the
research phase (before T ∗) and the value of irreversibly enter the market are not
yet suffi ciently compensated by the current value of R&D. In addition, condition
(10) is important to understand the logic of the decision problem.8 The decision
in favor of initiating a research process for a certain time will only be positive
if the minimum profit is suffi ciently small compared to the R&D costs at the
beginning, and that the time path of the research value can be expected to hit
the profit threshold as the result of the research activity.9

Further, T ∗ indicates the expected duration of research under present condi-
tions. T ∗ is the answer to the question of how long an entrepreneur can expect
to invest in R&D. Second, with T ∗ the entrepreneur can also determine their
expected total investment volume I(T ∗).

4.2 Determinants of Expected Time of Market Entry

In the previous sections we showed that high uncertainty or stochastic shocks,
and irreversibility, are important ingredients of radical innovation. In this sec-
tion we provide a closer examination of the effects of such stochastic shocks on
radical innovation. In particular, we consder the frequency of jumps and the ef-
fect of the jump-size during the innovation period where we can already identify
a market entry but when the entrepreneur has not yet decided to commercialize.

Proposition 4 An increase in the frequency of sudden breakthroughs or back-
lashes during the R&D period is generally ambiguous. However, an increase in
λ1 may lead to an earlier market entry ET ∗ if

p
η1
− q

η2
> 0, 1 <

µ∗2−η1
η1

e−Y
∗µ∗2

and the sum of upward jumps is suffi ciently large to outweigh of the sum of

8Both conditions are required for the existence of a solution to the problem.
9This condition is required for the time path of the threshold curve which is below the time

path of the market entry profit curve.
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negative jumps so that ∂β
∂λ1

< 0.

∂E(T∗)
∂λ1

= −
(
p
η1
− q
η2

)
[
λ1
(
p
η1
− q
η2

)]2 [Y ∗ +
µ∗2−η1
η1µ

∗
2

(1− e−Y ∗µ∗2 )
]

+ 1

λ1
(
p
η1
− q
η2

)
 −

∂β
∂λ1

(β−1)2
(r −

∫
f−1(U2)

zυ(dz)

−
∫
U2

[ln(1 + z)] υ2(dz))


·(1− µ∗2−η1

η1
e−Y

∗µ∗2 ) < 0.

Proof. see Appendix 2.
The conditions p

η1
− q
η2
> 0 and 1 <

µ∗2−η1
η1

e−Y
∗µ∗2 are connected to the prob-

abilities of sudden breakthroughs or backlashes and the mean waiting times until
an event occurs. The decision whether to enter the market if the frequency of
jumps increases strongly depends on the direction of those jumps and there-
fore whether a sudden breakthrough or a backlash happens. In general, an
increase in λ1 in implies that more fundamental events are occurring that imply
non-marginal changes in the expected path of technical findings and the associ-
ated profits. Hence, sudden positive discoveries become more frequent and the
increase in the value of research results accelerates.

Proposition 5 An increase in the magnitude of breakthroughs or backlashes
during the R&D period is generally ambiguous. However, an increase in u leads
to an earlier market entry if p

η1
− q

η2
> 0, 1 <

µ∗2−η1
η1

e−Y
∗µ∗2 and the sum of

upward jumps is suffi ciently large to outweigh of the sum of downward jumps so
that ∂β∂u < 0.

∂E(T ∗)

∂u
=

(1− µ∗2−η1
η1

e−Y
∗µ∗2 )

λ1

(
p
η1
− q

η2

)
 −∂β∂u

(β − 1)
2

 r −
∫

f−1(U2)

zυ(dz)

−
∫
U2

[ln(1 + z)− z] υ2(dz)

 I(T )

 < 0.

Proof. See Appendix 2.
An increase in u means that breakthroughs become more beneficial and

threats less disastrous. Larger upward jumps suggest that research steps are
larger up to a sudden immediate breakthrough and hence a successful market
entry can be expected earlier. Hence, discoveries become more important and
have a larger impact, with just one new research result potentially producing
the final invention needed to successfully enter the market.
While the above two effects consider large uncertain events during the phase

of research, the following two effects look at large uncertain events after market
entry and show reflect the impact of these high market uncertainties on the
investment decision. An example of such highly uncertain events could be a
sudden emergence of close technical substitutes, a negative shock. An example
of a positive shock after market entry is the transferability of the new technology
to an additional and previously unconsidered market.
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Proposition 6 An increase in the frequency of sudden breakthroughs or back-
lashes after the market entry is generally ambiguous. However, an increase in
λ2 may lead to an earlier market entry ET ∗ if

p
η1
− q

η2
> 0,

µ∗2−η1
η1

e−Y
∗µ∗2 > 1

and the sum of upward jumps is suffi ciently large to outweigh the sum of negative
jumps.

∂E(T ∗)

∂λ2
=

1

λ1

(
p
η1
− q

η2

)
 β

β − 1

 −
∫

f−1(U2)

zh(dz)

−
∫
U2

[ln(1 + z)− z]h(dz)

 I(T )

(1− µ∗2 − η1

η1

e−Y
∗µ∗2

)
> 0.

Proof. See Appendix 2.
As discussed in the Appendix the sign of the derivative according to λ2 is

ambiguous. However, we assume that breakthroughs are frequent and large
enough to outweigh the sum of backlashes such that a fast market entry will be
preferred. More positive jumps indicate that more breakthroughs than threats
and losses can be expected after market entry. Having invented a new product
and launched it on the market, new information may show up additional and
unexpected applications for this product. Upon market entry, information about
the new product will spread, potentially enabling the entrepreneur to enter
markets in fields he never thought of before. An increasing frequency of such
opportunities makes market entry more attractive, so the entrepreneur would
try to enter the market with the first viable prototype.

Proposition 7 An increase in the magnitude of breakthroughs and backlashes
after the market entry is ambiguous. However, an increase in z leads to an
earlier market entry if p

η1
− q

η2
> 0,

µ∗2−η1
η1

e−Y
∗µ∗2 > 1 and the sum of upward

jumps is suffi ciently large to outweigh the sum of downward jumps.

∂E(T ∗)

∂z
=

1

λ
(
p
η1
− q

η2

)


− β

β − 1︸ ︷︷ ︸
>0

(
∫

f−1(U2)

1υ2(dz)

+
∫
U2

[
1

(1+z) − 1
]
υ2(dz))I(T )︸︷︷︸

>0

 (1−µ
∗
2 − η1

η1

e−Y
∗µ∗2 ) < 0

Proof. See Appendix 2.
An increase in z indicates that opportunities become more beneficial and

threats less disastrous. Larger upward jumps imply that the benefits from
opportunities provided by market entry increase. At the same time, smaller
downward jumps reduce the loss in profits generated by threats. Hence, oppor-
tunities are more beneficial than threats so that market entry is expected to
have a greater payoff. We observe that further R&D becomes less attractive be-
cause the existing prototype, even if not perfect, promises such comercialization
success that an earlier market entry is preferred.
From the model analytics described in this section we can conclude that sto-

chastic shocks have a determining impact on the radical innovation investment
decision. The extent of R&D may be prolonged or terminated depending on
such stochastic events.
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5 Concluding Remarks

Entrepreneurial firms need to take strategic decisions with respect to radical
innovations that take into account their sequential nature, their magniture, and
their fundamental uncertainty. In particular, what makes radical innovation
different from incremental innovation is that its success is much more depen-
dent on the occurrence (or not) of certain stochastic events, which can be both
positive and negative, but in essence unpredictable. Hence, the key strategic
decisions for an entrepreneurial firm that wishes to be a successful radical inno-
vator will be a) how much to invest in R&D and b) when to bring the innovation
to market, i.e., when to enter the market.
In this paper we presented a real options model to derive the optimal entry

timing and show that stochastic jumps - especially the direction and intensity
of jumps - affect both adical innovation investment behavior and market entry.
Our contribution lies in extending the real options theory with respect to en-
trepreneurial innovation decisions by introducing non-marginal stochastic jump
processes to discuss the effects of such large uncertain events on these decisions.
From the model analytics we determine that the average magnitude of these
sudden events as well as the direction (up or down) and frequency of the associ-
ated jumps are the most important parameters in this highly uncertain decision
process.
However, as we can also endogenously determine the expected investment

time and the underlying value of investment flows into the research program for
radical innovations, total value and time horizon do matter. These stochastic
shocks imply that investment in radical innovation may very often be too time
consuming and/or expensive to remain attractive for private entrepreneurs.
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Appendix 1: Expected Time of Market Entry

Proof of Proposition 1. Apply the boundary conditions

F (0) = 0

F (Y ∗) = V gross(Y ∗)− I value matching condition,
dF (Y ∗)

dY
=

d(V gross (Y ∗)− I)

dY
smooth pasting condition.

and solve the equation system for Y ∗.
Proof of Proposition 2. For a jump process the first passage problem can
be solved analytically if we assume an explicit distribution of the jump sizes.
Following Kou and Wang (2003)we assume the double exponential distribution

h(z) = pη1e
−η1z1{z≥0} + qη2e

η2z1{z<0},

where p is the probability of a positive jump and q for a negative, respectively.
1
η1
and 1

η2
are the means of the two exponential distributions. The moment

generating function for Ỹ (t) with θ ∈ (−η2, η1) is

φ(θ, t) := E(eθỸ (t)) = exp(G(θ)t)

where the function G is defined as

G(x) := λ1

(
pη1

η1 − x
+

pη2

η2 + x
− 1

)
.

For jump processes the study of first passage times has to consider the exact hit
of a constant boundary as well as an overshoot. Accordingly, two cases have to
be distinguished. The Laplace transformation of the first hitting time, which is
when Ỹ (t) hits the boundary Y ∗ exactly,10 is :

E(e−εT̃i1{Ỹ (T̃i)=Y ∗}) =
η1 − β1,ε

β2,ε − β1,ε

e−Y
∗β1,ε +

β2,ε − η1

β2,ε − β1,ε

e−Y
∗β2,ε

with µ1,ε and µ2,ε being the only positive roots of G(β) = ε and 0 < β1,ε <

η1 < β2,ε <∞. For every overshoot Ỹ (T̃ )− Y ∗ the Laplace transformation is

E(e−εT̃ 1{Ỹ (T̃i)−Y ∗>y}) = e−η1y
(
η1 − µ1,ε

) (
µ2,ε − η1

)
η1

(
µ2,ε − µ1,ε

) (
e−Y

∗µ1,ε − e−Y
∗µ2,ε

)
for all y ≥ 0.

The expectation of the first passage time is finite, i.e. E(T ∗) < ∞, if and only
if the overall drift of the jump process is positive. Hence,

E(T ∗) <∞⇔ ū = λ1

(
p

η1

− q

η2

)
> 0.

10See Kou and Wang (2003), Theorem 3.1.
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Now for ū > 0 we determine the first passage time as

E(T ∗) =
1

ū

[
Y ∗ +

µ∗2 − η1

η1µ
∗
2

(1− e−Y
∗µ∗2 )

]
(12)

where µ∗2 is defined as the unique root of G(µ∗2) = 0 with 0 < η1 < µ∗2 <∞.
Proof of Proposition 3. For each Ỹi we can determine the corresponding ex-
pected time E(T̃i) when this market entry profit Ỹi is reached for the first time.
In order to find the expected time of market entry we have to consider all com-
binations of profit levels Ỹi (and, Yi respectively) and the required time to reach
this level E(T̃i) (Ti, respectively) from the first passage time and the threshold
function. That is, we compare the image sets of those functions and choose the
point in time which refers to the exact hit or overshoot of the threshold as the
expected time of market entry. Now we provide a sketch of the proof for the
existence of this point. However, assume that Ỹi is an element of the strictly

monotonic increasing sequence
{
Ỹ0, Ỹ1, ..., Ỹn

}
with 0 = Ỹ0 ≤ Ỹ1 ≤ . . . ≤ Ỹn, so

that E(T̃ ) can be written as a function of any Ỹi. In this case E(T̃ , Ỹi) is a strictly
monotonic increasing sequence as well, and all pairs of values (Ỹi, E(T̃ , Ỹi)) form
its image set. In order to derive the expected time before market entry, which
is the time at which Ỹ reaches the time-dependent threshold Y ∗ for the first
time, we have to prove that there exists a point (Ỹi, E(T̃ , Ỹi)) which is also in
the image set of the function T (Y ). T (Y ) is determined by the threshold curve

Y ∗(T ) =
β

β − 1
(r −

∫
f−1(U2)

zυ2(dz)−
∫
U2

[ln(1 + z)− z] υ2(dz)− α)

︸ ︷︷ ︸
=:K

C
(
erT − 1

)

= KC
(
erT − 1

)
= KCerT −KC

⇒ T ∗(Y ) =
1

r
ln
Y +KC

KC
.

The proof is as follows. We analyze the functions E(T̃ , Ỹi) and T (Y ) near the
origin and show that one function lies above the other. Next we can show that
although both curves increase, the increasing rate of one function decreases
faster, leading to a image point which may be in both image sets. Hence, we
consider the two functions in 0.

T (0) =
1

r
ln

0 +KC

KC
= 0

and

E(T̃ , 0) =
1

ū

[
0 +

µ∗2 − η1

η1µ
∗
2

(1− e−0µ∗2 )

]
= 0.

As both functions start in 0 we consider their increment of growth between 0
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and Ỹ1.

1
r ln Ỹ1+KC

KC − 1
r ln 0+KC

KC

Ỹ1

=
1
r ln Ỹ1+KC

KC

Ỹ1

1
ū

[
Ỹ1 +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹ1µ∗2 )
]
− 1

ū

[
Ỹ1 +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹ1µ∗2 )
]

Ỹ1

=

1
ū

[
Ỹ1 +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹ1µ∗2 )
]

Ỹ1

.

The increment of growth of T (Y ) is smaller than the increment of growth of
E(T̃ , Y ) for

1

r
ln
Ỹ1 +KC

KC
<

1

ū

[
Ỹ1 +

µ∗2 − η1

η1µ
∗
2

(1− e−Ỹ1µ
∗
2 )

]
.

Furthermore, we analyze the change in the increments of growth with the second
difference quotient. For any Ỹi, Ỹj , Ỹs, Ỹt with Ỹi < Ỹj < Ỹs < Ỹt and Ỹi 6= 0
the second difference quotient is

1
r ln Ỹt+KC

KC − 1
r ln Ỹs+KC

KC − 1
r ln

Ỹj+KC
KC + 1

r ln Ỹi+KC
KC

Ỹt − Ỹi

=

1
r ln Ỹt+KC

Ỹs+KC
− 1

r ln
Ỹj+KC

Ỹi+KC

Ỹt − Ỹi

=

1
r ln

(Ỹt+KC)(Ỹi+KC)
(Ỹs+KC)(Ỹj+KC)

Ỹt − Ỹi

and

1
ū

[
Ỹt +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹtµ∗2 )
]
− 1

ū

[
Ỹs +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹsµ∗2 )
]

− 1
ū

[
Ỹj +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹjµ∗2 )
]
− 1

ū

[
Ỹi +

µ∗2−η1
η1µ

∗
2

(1− e−Ỹiµ∗2 )
]

Ỹt − Ỹi

=

1
ū

[
Ỹt − Ỹs +

µ∗2−η1
η1µ

∗
2

(e−Ỹsµ
∗
2 − e−Ỹtµ∗2 )

]
− 1

ū

[
Ỹj − Ỹi +

µ∗2−η1
η1µ

∗
2

(e−Ỹiµ
∗
2 − e−Ỹjµ∗2 )

]
Ỹt − Ỹi

=

1
ū

[
Ỹt + Ỹi − Ỹs − Ỹj +

µ∗2−η1
η1µ

∗
2

(e−Ỹsµ
∗
2 + e−Ỹjµ

∗
2 − e−Ỹtµ∗2 − e−Ỹiµ∗2 )

]
Ỹt − Ỹi

.
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The function T increases more slowly than the sequence of E(T) for

1

r
ln

(
Ỹt +KC

)(
Ỹi +KC

)
(
Ỹs +KC

)(
Ỹj +KC

) < 1

ū

[
Ỹt + Ỹi − Ỹs − Ỹj +

µ∗2 − η1

η1µ
∗
2

(e−Ỹsµ
∗
2 + e−Ỹjµ

∗
2 − e−Ỹtµ

∗
2 − e−Ỹiµ

∗
2 )

]
.

Appendix 2: Derivatives of the Expected First Time Real-
ization of Market Entry Profit Level:

Proof of Proposition 4.

∂E(T ∗)

∂λ1
= −

(
p
η1
− q

η2

)
[
λ1

(
p
η1
− q

η2

)]2
︸ ︷︷ ︸

(1)

[
Y ∗ +

µ∗2 − η1

η1µ
∗
2

(1− e−Y
∗µ∗2 )

]
︸ ︷︷ ︸

(2)

+
1

λ1

(
p
η1
− q

η2

)
︸ ︷︷ ︸

(3)

 −
∂β
∂λ1

(β−1)2
(r −

∫
f−1(U2)

zυ(dz)

−
∫
U2

[ln(1 + z)− z] υ2(dz))I(T )


︸ ︷︷ ︸

(4)

(1− µ∗2 − η1

η1

e−Y
∗µ∗2 )︸ ︷︷ ︸

(5)

For the first term (1) we obtain(
p
η1
− q

η2

)
[
δ + λ1

(
p
η1
− q

η2

)]2 > 0⇔ p

η1

− q

η2

> 0 with q = 1− p.

With the same condition, we obtain a positive sign also for term (3)

1

δ + λ1

(
p
η1
− q

η2

) > 0.

For the second term (2) it holds that

Y ∗︸︷︷︸
>0

+
µ∗2 − η1

η1µ
∗
2︸ ︷︷ ︸

>0

(1− e−Y
∗µ∗2 )︸ ︷︷ ︸

≥0

> 0.

The sign of the fourth term (4) depends on whether ∂β
∂λ1

is positive or negative.

Assuming ∂β
∂λ1

< 0, then term (4) becomes

−
∂β
∂λ1

(β − 1)
2 (r −

∫
f−1(U2)

zυ(dz)−
∫
U2

[ln(1 + z)− z] υ2(dz))

︸ ︷︷ ︸
>0

I(T )︸︷︷︸
>0

> 0
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The last term (5)

1− µ∗2 − η1

η1

e−Y
∗µ∗2

is negative if

1 <
µ∗2 − η1

η1

e−Y
∗µ∗2 .

Summarizing all conditions leads to ∂E(T∗)
∂λ1

< 0.
Proof of Proposition 5.

∂E(T ∗)

∂u
=

1

λ
(
p
η1
− q

η2

)
︸ ︷︷ ︸

(1)

 −
∂β
∂u

(β−1)2
(r −

∫
f−1(U2)

zυ(dz)

−
∫
U2

[ln(1 + z)− z] υ2(dz))I(T )


︸ ︷︷ ︸

(2)

(1− µ∗2 − η1

η1

e−Y
∗µ∗2 )︸ ︷︷ ︸

(3)

.

As before, the term (1) is positive. Accordingly, the last component (3) is nega-

tive for 1 <
µ∗2−η1
η1

e−Y
∗µ∗2 . The sign of (2) depends on whether ∂β∂u ≷ 0. Assuming

that ∂β∂u < 0, it follows that ∂E(T̃ )
∂u < 0.

Proof of Proposition 6.

∂E(T ∗)

∂λ2
=

1

λ1

(
p
η1
− q

η2

)
︸ ︷︷ ︸

(1)

 β

β − 1︸ ︷︷ ︸
>0

 −
∫

f−1(U2)

zh(dz)

−
∫
U2

[ln(1 + z)− z]h(dz)

 I(T )︸︷︷︸
>0


︸ ︷︷ ︸

(2)

(
1− µ∗2 − η1

η1

e−Y
∗µ∗2

)
︸ ︷︷ ︸ .

(3)

From the conditions above (1) is positive and (3) is negative. Hence, the
sign of ∂E(T∗)

∂λ2
depends on the second term and especially on the sign of

−
∫

f−1(U2)

zh(dz) −
∫
U2

[ln(1 + z)− z]h(dz). Assuming more negative than posi-

tive jumps lead to a positive sign.
Proof of Proposition 7.

∂E(T ∗)

∂z
=

1

λ
(
p
η1
− q

η2

)
︸ ︷︷ ︸

(>0)


− β

β − 1︸ ︷︷ ︸
>0

(
∫

f−1(U2)

1υ2(dz)

+
∫
U2

[
1

(1+z) − 1
]
υ2(dz))I(T )︸︷︷︸

>0


︸ ︷︷ ︸

(2)

(1− µ∗2 − η1

η1

e−Y
∗µ∗2 )︸ ︷︷ ︸

(<0)

According to the above assumptions (1) is positive and (3) is negative. The
second term again depends on the jump part. However, even if there are more
negative than positive jumps the effect on the jump part is not so large as to
result in a negative sign. Therefore the sign of the overall derivative is negative.




