
D
I

S
C

U
S

S
I

O
N

 
P

A
P

E
R

 
S

E
R

I
E

S

Forschungsinstitut 
zur Zukunft der Arbeit
Institute for the Study 
of Labor 

A Simple Approach to Treatment Effects on Durations 
When the Treatment Timing is Chosen

IZA DP No. 7249

February 2013

Myoung-jae Lee
Per Johansson



 
A Simple Approach to Treatment 
Effects on Durations When the 
Treatment Timing is Chosen 

 
 

Myoung-jae Lee 
Korea University 

 
Per Johansson 

IFAU, Uppsala University 
and IZA 

 
 
 

Discussion Paper No. 7249 
February 2013 

 
 
 

IZA 
 

P.O. Box 7240 
53072 Bonn 

Germany 
 

Phone: +49-228-3894-0 
Fax: +49-228-3894-180 

E-mail: iza@iza.org 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
The IZA research network is committed to the IZA Guiding Principles of Research Integrity. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post Foundation. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 7249 
February 2013 

 
 
 
 
 
 

ABSTRACT 
 

A Simple Approach to Treatment Effects on Durations 
When the Treatment Timing is Chosen 
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gamma-mixed proportional-hazard approach with three durations: the waiting time until 
treatment, the untreated duration from the baseline, and the treated duration from the 
treatment timing. To implement the proposal, we use semiparametric piecewise-constant 
hazards as well as Weibull hazards with a multiplicative gamma unobserved heterogeneity 
affecting all three durations. Despite the three durations interwoven in complex ways, 
surprisingly simple closed-form likelihoods are obtained whose maximization converges well. 
The estimators are applied to the same data as used by Fredriksson and Johansson (2008) 
for employment subsidy effects on unemployment duration to find about 11.1 month 
reduction. 
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1 Introduction

In the treatment effect literature (see Rosenbaum 2002, Lee 2005, Pearl 2009 and

Imbens and Wooldridge 2009, among many others), typically there is a treatment

unambiguously defining the treatment and control groups at a given time point, and

its effect on a response variable is usually found by comparing the two groups’ mean

responses. But there are many cases where the treatment timing is chosen (by the

individuals), and the conventional approach fails in such cases.

For instance, in a job training for the unemployed, the unemployed search for new

jobs initially, and then enrol for the training later; here, when to take the training

is a choice variable. The conventional approach (motivated by statistical experiments

where a treatment is administered at a fixed time) would classify the unemployed

as a treated or a control, depending on whether they enrol for the program or not

over a time interval determined by the researcher. But choosing the time interval is

inherently arbitrary, because the more unemployed persons fall in the treatment group

as the interval gets larger. Another example is the effect of having a child on the marital

duration (Lillard 1993), where the timing of the treatment (having a child) matters

much for the marital duration. Similar problems appear in medical treatments; e.g., a

medical treatment is taken by the diseased, but when to take it is up to the diseased

or the treatment administrator. Ignoring the treatment timing issue in these cases will

lead to false inferences.

When treatment timing is chosen, there appears a waiting durationW until treat-

ment. With the response variable of interest being a survival duration, there arise

three durations: W , the untreated response duration Y o∗ starting at the baseline, and

the treated response duration Y w∗ starting after the treatment at W = w ; there are

many potential treated durations Y w∗ for w ∈ (0,∞). With W in, the usual “static”

definition of treatment effect, say Y treated − Y untreated, does not work because the un-

treated (i.e., never treated) group (W > Y o∗) has a relatively short Y o∗. Even if we

use the group not treated until a fixed time w > 0, there still occurs the same problem

of short Y o∗ due to w > Y o∗.
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The goal of this paper is two-fold. First, we set up an “ideal” causal framework for

the complex cases involving three durations. Our approach is ideal in the sense that we

compare Y o∗ to the ‘counter-factual Y w∗ with w = 0’ as if there were no waiting, which

removes the complicating treatment timing out of the picture altogether. Second, to

implement the causal framework, we proposes a ‘gamma-mixed proportional-hazard’

approach. The gamma-distributed unobserved factor leads to a closed-form likelihood

function despite the three durations interwoven in complex ways so that maximum

likelihood estimator (MLE) can be applied straightforwardly. With hazard functions

specified as a piecewise-constant baseline hazard multiplied by an exponential function,

the only substantial assumption in the MLE is the gamma assumption.

The rest of this paper is organized as follows. Section 2 provides the details of our

causal approach, which is then compared with related studies in the literature. Section

3 sets up our basic framework and notation. Section 4 presents the general forms of

the likelihood components with no unobserved heterogeneity, and then those under

Weibull and piecewise-constant hazards. Section 5 introduces a gamma unobserved

heterogeneity to obtain the aforementioned closed-form likelihoods. Section 6 presents

our empirical analysis. Finally, Section 7 concludes. Lengthy derivations can be found

in the appendix.

2 Causality at Baseline and Related Studies

When the treatment timing W is chosen, our “causality at-baseline” is using

Y +∗ − Y o∗

as the basis for treatment effects, where Y +∗ is the treated duration with no (“or 0+”)

waiting; the smallest value for W in our data is one day that amounts to 0+. That is,

Y +∗ − Y o∗ is the difference between the treated and untreated durations starting at the

baseline.

This causal framework is ideal because it removes the complicating treatment

timing aspect as if the treatment were taken at the baseline to compare Y o∗ to Y +∗;
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essentially, this restores the static Y treated − Y untreated. For a medical treatment and

a patient regretting not having taken the medicine sooner, this answers the question

“what if I had taken the medicine immediately”. The control group at the baseline

(i.e., the entire study population, as nobody gets treated at the baseline) is opposite

to the never-treated group (W > Y o∗) that is the control group found only at the end

of the study; the latter has the aforementioned problem of a relatively short Y o∗ that

the former does not have.

To implement the approach, we first adopt a Weibull proportional hazard model

with a gamma-distributed unobserved heterogeneity (a “factor”). Then we relax the

Weibull specification with a semiparametric piecewise-constant hazard. So long as the

gamma factor is maintained, both specifications lead to closed-form likelihood functions

whose maximization converges well. The proposed method is then applied to the same

data set as used in Fredriksson and Johansson (2008) and De Luna and Johansson

(2010).

Having closed-form likelihoods saves the computation time enormously when the

data at hand is as huge as ours: 631,358 observations covering the entire Swedish popu-

lation. Without closed-form likelihoods, one can use a simulated MLE, which however

takes many times longer, resulting in a difference of several weeks in computation

time, if not months. With three durations entangled, it is unlikely to find closed-

form likelihoods without gamma distribution in a mixed proportional hazard set-up.

Thus our estimators provide simple–perhaps the simplest possible–approaches to the

complicated treatment-timing issue with three durations.

Differently from our approach, Fredriksson and Johansson (2008) proposed a non-

parametric matching estimator, whose distribution was found by De Luna and Johans-

son (2010): the treated and the untreated are compared on a given W = w, resulting

in the mean effect on the treated for the given w via hazard and survival functions.

Since P (W = 0) = 0, the nonparametric approach in Fredriksson and Johansson (2008)

could not find Y +∗, whereas we parametrize the dependence of Y w∗ on w to find Y +∗

by “interpolating Y w∗” back to w = 0. Although such a parametrization is restrictive,

it makes the causal analysis possible with Y +∗− Y o∗. Also Fredriksson and Johansson
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(2008) could not allow unobserved factors.

Eberwein et al. (1997) modeled treatment-timing choice in discrete time: each

period’s survival is modeled as logit, and the total survival probability is the logit

products. Eberwein et al. (1997) used discrete unobserved factors with two or three

support points, but our experience with discrete factors was not good with convergence

problems–the literature is fairly mute on this problem though. In view of the fact that

only a slope parameter can be identified for an observed covariate, the root cause of

this convergence problem with discrete factors would be trying to identify too many

parameters associated with them.

Abbring and Van den Berg (2003b) examined nonparametric identification (but

not estimation) of treatment effect when the treatment timing is chosen: they adopted

mixed proportional hazard models in continuous time to define the treatment effect as a

‘hazard shifter’. In contrast to our causal approach with three durations, Abbring and

Van den Berg (2003b) used only two durations:W and the potential response duration

when treated at W = w. Two durations are not enough to lead to our Y +∗ − Y o∗,

which might be why Abbring and Van den Berg (2003b) defined the treatment effect as

a hazard shifter, not Y +∗−Y o∗. But the following close examination of their two-stage

identification reveals that there appear, in fact, three durations.

The identification in Abbring and Van den Berg (2003b) is done in two stages. In

the first stage (Proposition 2 in p.1506), they identify the untreated hazard using the

competing risk framework in Abbring and Van den Berg (2003a) where min(W,Y o∗) is

observed. In the second stage, the treated hazard is modelled (p.1503) as ‘the untreated

hazard found in the first-stage’ times a ‘multiplicative hazard shifter’ to capture the

shift in the hazard due to the treatment at W = w; the second-stage identifies this

multiplicative shifter. Hence only the untreated duration appears in the first stage and

only the treated duration appears in the second stage to result in three durations in

total, although the distinction between Y o∗ and Y w∗ is not explicitly made in Abbring

and Van den Berg (2003b).

The lack of distinction between Y o∗ and Y w∗ seems to have caused some problems

later on, when the identification result of Abbring and Van den Berg (2003b) was
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implemented in a single-stage nonparametric MLE with simulated data by Gaure et al.

(2007): they used only models under no treatment effect (i.e., Y o∗ = Y w∗). We suspect

that the single-stage nonparametric MLE would not work if the treatment effect is not

zero (i.e., if Y o∗ �= Y w∗). Intuitively, by using a single stage instead of two stages, some

“mix-up” would occur when W < Y o∗ so that the treated duration Y w∗ is observed

along with W ; in contrast, in the first competing-risk stage of Abbring and Van den

Berg (2003b), onlyW (but not Y w∗) is used ifW < Y o∗. When we implement our MLE

later, we will also adopt a two-stage procedure using only W and Y o∗ first and then

(W,Y o∗, Y w∗) later. The single-stage MLE did not work well in our experience, which

seems closely related to the fact that the nonparametric identification of Abbring and

Van den Berg (2003b) was done also in analogous two stages.

Before proceeding further, we note three shortcomings of our method. The first

is not allowing time-varying covariates; although some modifications of our MLE may

allow time-varying covariates, such modifications will no longer yield a simple easy-

to-use MLE. The second is that no future treatment should affect the past; if it did,

we would have Y w∗ starting well before w. The third is that the treatment should be

administered instantly at w (to stay on); if the treatment itself takes a long time to

administer, then we would need yet another duration–four in total.

3 Durations and Random Right Censoring

3.1 Notation and Underlying Durations

With X being time-constant covariates including 1 as its first element, suppose

that the waiting timeWi|Xi of person i until treatment has a distribution function (df)

P (W ≤ w|Xi) = FW |Xi
(w;α) where α is parameters. The untreated duration Y o∗

i |Xi

has a df P (Y o∗ ≤ y|Xi) = FY o∗|Xi
(y; β) where β is parameters. For the control group

(Wi > Y
o∗
i ), Y o∗

i is observed but Wi is not. For the treatment group (Wi ≤ Y
o∗
i ), Wi is

observed but Y o∗
i is not, and the duration starting from Wi = w (i.e., the ‘net treated

duration’) Y w∗
i |Xi has a df P (Y w∗ ≤ y|Xi) = FY w∗|Xi

(y;w, τ ) where τ is parameters.
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Assume that the distribution functions are twice continuously differentiable for the

usual MLE regularity conditions.

It would be more precise to write, e.g., P (W ≤ w|Xi = x) = FW |X(w|x;α) to make

Xi = x explicit. But, since Xi will be always conditioned on at its observed value, we

will simply write FW |X(w;α) to omit “|x” before α unless this causes confusion. Often

“|α”, “|β” and “|τ” will be omitted as well to simplify notation. In the following,

the subscript i will be suppressed unless otherwise necessary, as ‘iid (independent and

identically distributed)’ will be maintained throughout. Also, df’s, survival functions

(i.e., one minus the distribution function) and densities will be denoted by F , S and

f , respectively, with the appropriate subscripts.

Whereas the net treated duration starting from W = w is Y w∗, the gross treated

duration starting from 0 and its “random version” are

w + Y w∗ and W + Y W∗.

We will assume for a while that

W,Y o∗, Y w∗ are independent of one another given X for any value of w. (3.1)

This is a ‘selection-on-observable’ assumption, as W plays the role of the treatment

indicator.

A restrictive feature of (3.1) is that Y o∗ is independent of Y w∗ given X, which will

be relaxed later when Y o∗ and Y w∗ (as well asW ) are allowed to be related by sharing

an unobserved heterogeneity δ. Other than this, relaxing (3.1) would be possible only at

the cost of getting non-closed-form likelihood functions that are far more complicated

than those to appear below. Notice that (3.1) is not conditioned on W = w; e.g.,

(W,Y o∗, Y 1.2∗) are independent (with w = 1.2) of one another as well as (W,Y o∗, Y 7.7∗)

are so (with w = 7.7).

3.2 Random Right Censoring and Observed Durations

Typically, there exists a right censoring problem in duration data, which requires

modifying the preceding basic setup. Consider a censoring duration C from FC|X where
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no α, β and τ parameters appear. With ‘X∐Y |Z’ denoting the independence between

X and Y given Z, assume the usual non-informative censoring: for any value of w,

C ∐ (W,Y o∗, Y w∗)|X. (3.2)

With (W,Y o∗, Y w∗)|X being independent of one another, our main assumption

combining the selection-on-observables (3.1) and the non-informative censoring (3.2)

is

C,W,Y o∗, Y w∗ are independent of one another given X for any value of w. (Ao)

No relation ‘Y o∗ ∐ Y w∗|X’ in Ao needs some discussion as in the next paragraph,

because it is opposite to the perfect relation Y o∗ = Y w∗ or its intercept-shifted version

Y w∗ = Y o∗ + ωw for a constant ω that are often used. Note that the relationship

between Y o∗ and Y w∗ cannot be nonparametrically identified as only one of them is

observed for a given individual, which is why the two polar (perfect and zero relation)

cases are considered.

The strongest definition of no treatment effect is Y o∗ = Y w∗, and a weaker version

is the exchangeability of Y o∗ and Y w∗ as exchangeability means “indistinguishability”

between Y o∗ and Y w∗; exchangeability implies the same marginal distribution for Y o∗

and Y w∗, but it is mute on the relation between Y o∗ and Y w∗. Under perfect relation,

no effect is Y o∗ = Y w∗, while some effect can be modeled by specifying Y w∗ as a

deterministic function of Y o∗ and w as in Y w∗ = Y o∗+ωw. Under Y o∗∐Y w∗|X, no effect

is the same marginal distribution of Y o∗ and Y w∗ (as this implies the exchangeability

of Y o∗ and Y w∗), while some effect can be modeled by any distribution of Y w∗ different

from that of Y o∗. If we proceed under perfect relation, our task becomes simpler as

one fewer duration appears. But if W is long, Y o∗ = Y w∗ would be implausible as

“the world has changed” after the long W , whereas Y o∗ ∐ Y w∗|X may become more

plausible as, indeed, the world has changed.

Under right random censoring, define the observed untreated duration Y 0 and the

observed gross treated duration Y 1:

Y 0 ≡ min(Y o∗, C) and Y 1 ≡ min(W + Y W∗, C).
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Let 1[A] = 1 if A holds and 0 otherwise. Then the treatment dummy is

D ≡ 1[W ≤ Y 0] = 1[W ≤ min(Y o∗, C)].

Note D �= 1[W ≤ Y o∗] because a control individual may have W ≤ Y o∗ as well: a

censored control (C < min(Y o∗,W )) may get treated between C and Y o∗ if C < W <

Y o∗, but this will never be known and what is observed is only that the individual is

untreated up to C.

Define the non-censoring dummy variables

Q0 ≡ 1[Y
o∗ ≤ C], Q1 ≡ 1[W + Y W∗ ≤ C] and Q ≡ (1−D)Q0 +DQ1.

Finally, define the observed response

Y = (1−D)Y 0 +DY 1

= 1[min(Y o∗, C) < W ] ·min(Y o∗, C) + 1[W ≤ min(Y o∗, C)] ·min(W + Y W∗, C).

4 Likelihood Functions for Four Groups

4.1 General Likelihood Functions

Under random right censoring, there are four groups, depending on the treatment

status D = 0, 1 and non-censoring indicator Q = 0, 1 (the following four diagrams help

understanding what is observed in each group). We present the X-conditional likeli-

hood function for each group, whose detailed derivation can be found in the appendix.

D = 0, Q = 0

W −→ −→

Y o∗ −→ −→

Y w∗

C −→

C = y observed

D = 0, Q = 1

W −→ ���

Y o∗ −→

Y w∗

C −→ −→

Y o∗ = y obs

D = 1, Q = 0

W −→

Y o∗ −→ ���

Y w∗ −→ −→

C −→ −→

W = w,C = y obs

D = 1, Q = 1

W −→

Y o∗ −→ ���

Y w∗ −→

C −→ −→ −→

W = w,w + Y w∗ = y
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For the censored control group, the observed duration is the censoring duration y,

and

D = 0, Q = 0 ⇐⇒ min(Y o∗, C) < W, C < Y o∗ ⇐⇒ C < W, C < Y o∗.

Recalling the independence among (W,Y o∗, C)|X, the likelihood function for C = y is

SW |X(y)SY o∗|X(y) · fC|X(y). (4.1)

For the uncensored control group, the observed duration y is the untreated dura-

tion, and

D = 0, Q = 1 ⇐⇒ min(Y o∗, C) < W, Y o∗ < C ⇐⇒ Y o∗ < W, Y o∗ < C.

The likelihood function for Y o∗ = y is

SW |X(y)SC|X(y) · fY o∗|X(y). (4.2)

For the censored treated group, the observed durations are w and the censoring

duration y, and

D = 1, Q = 0 ⇐⇒ W < min(Y o∗, C), C < W+Y W∗ ⇐⇒ W < min(Y o∗, C), C−W < Y W∗.

Since ‘W = w ≥ C = y’ cannot happen to the treatment group, the likelihood function

for W = w and C = y with w < y is

SY o∗|X(w)SY w∗|X(y − w)1[w < y] · fW |X(w)fC|X(y). (4.3)

For the uncensored treated group, the observed durations are w and the gross

treated duration y, and

D = 1, Q = 1 ⇐⇒ W < min(Y o∗, C), W+Y W∗ < C ⇐⇒ W < Y o∗, W+Y W∗ < C.

Since ‘W = w ≥ W + Y W∗ = y’ cannot happen to the uncensored treated group, the

likelihood function for (W = w,W + Y W∗ = y)⇐⇒ (W = w, Y w∗ = y − w) is

SY o∗|X(w)SC|X(y)1[w < y] · fW |X(w)fY w∗|X(y − w). (4.4)
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4.2 Likelihood Function with Weibull Hazards

For a Weibull specification for W , assume

W |X ∼Weibull{α0, α(X)} where α0 > 0 and α(X) = exp(X
′αx);

hence SW |X(w) = exp{−w
α0 exp(X ′αx)} and

fW |X(w) = α0w
α0−1 exp(X ′αx)·SW |X(w) = α0w

α0−1 exp(X ′αx)·exp{−w
α0 exp(X ′αx)}.

As for the untreated duration Y o∗, assume

Y o∗|X ∼Weibull{β0, β(X)} where β0 > 0 and β(X) = exp(X
′βx);

SY o∗|X(y) = exp{−y
β0 exp(X ′βx)} and thus

fY o∗|X(y) = β0y
β0−1 exp(X ′βx) · SY o∗|X(y) = β0y

β0−1 exp(X ′βx) · exp{−y
β0 exp(X ′βx)}.

For Y w∗, with a random vector H consisting of functions of (X,W ), assume

Y w∗|X = x ∼Weibull{τ0, τ (x, w)}, τ0 > 0, τ (x, w) = exp(h
′τh) with τ(x, 0) = exp(x

′τx).

Although we used X instead of ‘X = x’ for W and Y o∗ to simplify presentation, we

use ‘X = x’ for Y w∗ to prevent confusion because Y w∗ �= Y W∗; using w and X would

not work for H, notation-wise. With a random vector M being the components of X

interacting with W , an example of h′τh is

h′τh = x
′τx +m

′wτmw + τw1w + τw2w
2 + τw3w

3.

We have SY w∗|X=x(y) = exp{−y
τ0 exp(h′τh)} and

fY w∗|X=x(y) = τ0y
τ0−1 exp(h′τh) ·SY w∗|X=x(y) = τ0y

τ0−1 exp(h′τh) · exp{−y
τ0 exp(h′τh)}.

An important point for Y w∗ is that w = 0 gives, as all terms with w drop out of

τ(x, w),

Y +∗|X = x ∼Weibull{τ0, τ(x, 0)} where τ (x, 0) = exp(x′τx).
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This is the (counter-factual) treated duration when treated at the baseline. Notice that

τ0 may be specified to depend on w, although we did not allow this for simplification. If

the treatment is a drug for an illness, the waiting time before taking the drug may affect

the treated duration negatively or positively; if τ (x, 0) = τ(x, w) ∀w, then waiting does

not affect the treated duration at all.

Putting the four likelihood components under Weibull with the censored duration

parts dropped under the ignorability condition (3.2), we have

D = 0, Q = 0 : SW |X(y) · SY o∗|X(y) = exp{−y
α0 exp(X ′αx)} · exp{−y

β0 exp(X ′βx)};

D = 0, Q = 1 : SW |X(y) · fY o∗|X(y) = exp{−y
α0 exp(X ′αx)}

β0y
β0−1 exp(X ′βx) exp{−y

β0 exp(X ′βx)};

D = 1, Q = 0 : SY o∗|X=x(w)SY w∗|X=x(y − w) · 1[w < y]fW |X=x(w) (4.5)

= exp{−wβ0 exp(x′βx)} exp{−(y − w)
τ0 exp(h′τh)} · 1[w < y]

· α0w
α0−1 exp(x′αx) exp{−w

α0 exp(x′αx)};

D = 1, Q = 1 : SY o∗|X=x(w) · 1[w < y]fW |X=x(w)fY w∗|X=x(y − w) (4.6)

= exp{−wβ0 exp(x′βx)} · 1[w < y] · α0w
α0−1 exp(x′αx) exp{−w

α0 exp(x′αx)}

· τ0(y − w)
τ0−1 exp(h′τh) · exp{−(y − w)

τ0 exp(h′τh)}.

Treatment effect can be assessed by comparing

E(Y +∗|X) = Γ(1 + τ−10 ){exp(X
′τx)}

−1/τ0 and E(Y o∗|X) = Γ(1 + β−10 ){exp(X
′βx)}

−1/β0

where Γ(η) ≡

∫ ∞

0

zη−1e−zdz for η > 0 is the Gamma function.

To implement this, first, obtain these expected durations for each Xi. Then the dif-

ference between the two sample averages with X integrated out using the empirical

distribution can be taken as the mean effect: with ‘^’ denoting estimators,

∆̂w ≡ Γ(1 + τ̂
−1
0 )

1

N

∑

i

exp(−X ′
i τ̂x/τ̂0) − Γ(1 + β̂−10 )

1

N

∑

i

exp(−X ′
iβ̂x/β̂0).
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4.3 Likelihood Function with Piecewise-Constant Hazards

To relax the Weibull baseline hazard assumption α0w
α0−1 for W , consider a

piecewise-constant baseline hazard λ(w;α1J): for a specified J and boundary points

ζ1 <, ..., < ζJ , and unknown parameters α1J ≡ (α1, α2..., αJ)
′ along with α0 = 1,

λ(w;α1J) ≡ α01[w ≤ ζ1] +
J∑

j=2

αj−11[ζj−1 < w ≤ ζj] + αJw
αJ−11[ζJ < w]

where all components of α1J are positive; for this, exp(αj) may be used instead of

αj. There are J + 1 time segments with the specified ζj’s, and J hazards to estimate:

α0 = 1 is a normalization as α0 is absorbed by the intercept in X ′αx. The last hazard

is not a constant but of Weibull form, which is to avoid the constant hazard in the last

open-ended segment going to ∞.

Integrate λ(w;α1J) to obtain the integrated baseline hazard: with ζ0 = 0,

Λ(w,α1J) ≡ w1[w ≤ ζ1] +
J∑

j=2

{

j−1∑

j′=1

αj′−1(ζj′ − ζj′−1) + αj−1(w − ζj−1)} · 1[ζj−1 < w ≤ ζj ]

+ {
J∑

j′=1

αj′−1(ζj′ − ζj′−1) + (w
αJ − ζαJJ )} · 1[ζJ < w]

= w if w ≤ ζ1 (w in the first segment)

= ζ1 + α1(w − ζ1) if ζ1 < w ≤ ζ2 (w in the second segment with j = 2)

..............................................................................

= ζ1 + α1(ζ2 − ζ1)+, ...,+αJ−2(ζJ−1 − ζJ−2) + αJ−1(w − ζJ−1) if ζJ−1 < w ≤ ζJ

= ζ1 + α1(ζ2 − ζ1)+, ...,+αJ−2(ζJ−1 − ζJ−2) + αJ−1(ζJ − ζJ−1) + (w
αJ − ζαJJ ) if ζJ < w.

The hazard function with X is then λ(w;α1J) exp(X
′αx), and

SW |X(w) = exp{−Λ(w;α1J) exp(X
′αx)} and fW |X(w) = λ(w;α1J) exp(X

′αx)·SW |X(w).

Doing analogously for Y o∗ and Y w∗, the baseline hazards are λ(y;β1J) and λ(y; τ1J).

A more general model would allow different boundary points for the three durations,

say, (Jα, ζαj) for W , (Jβ, ζβj) for Y
o∗ and (Jτ , ζτj) for Y

w∗, but we use the common

13



known boundary points ζj’s for all three durations for simplification. The four likeli-

hood components are the same as in the Weibull case except

replacing γ0t
γ0−1 and tγ0 with λ(t;α1J) and Λ(t;α1J), respectively,

where γ0 can be any of α0, β0 or τ0, and t can be any of w, y or y − w.

Once all parameters are estimated, the treatment effect can be assessed using the

average durations. But differently from the Weibull case, no simple formulas exist for

E(Y +∗|X) and E(Y o∗|X). Instead, we use

E(Y +∗|X) =

∫ ∞

0

SY +∗|X(y)dy =

∫ ∞

0

exp{−Λ(y; τ1J) exp(X
′τx)}dy;

E(Y o∗|X) =

∫ ∞

0

SY o∗|X(y)dy =

∫ ∞

0

exp{−Λ(y;β1J) exp(X
′βx)}dy.

The mean effect for an individual with X is

E(Y +∗|X)− E(Y o∗|X) =

∫ ∞

0

SY +∗|X(y)dy −

∫ ∞

0

SY o∗|X(y)dy

which is the difference between the area below SY +∗|X and the area below SY o∗|X over

(0,∞). The mean effect with X integrated out by its empirical distribution is then

∆p ≡
1

N

∑

i

∫ ∞

0

[ exp{−Λ(y; τ1J) exp(X
′
iτx)}− exp{−Λ(y;β1J) exp(X

′
iβx)} ]dy. (4.7)

To find an estimator for ∆p, observe that integration by parts gives, for a contin-

uously differentiable survival function S(y),

−

∫ ̟

0

yf(y)dy = yS(y)|̟0 −

∫ ̟

0

S(y)dy =⇒

∫ ̟

0

yf(y)dy =

∫ ̟

0

S(y)dy if ̟S(̟) = 0.

Hence, so long as ̟SY o∗|X(̟) = 0 = ̟SY +∗|X(̟) for some maximum duration ̟,

we can draw uniform random numbers over (0, ̟) to use a Monte-Carlo-integration

estimator for ∆p:

∆̂p ≡
1

N

N∑

i=1

1

n

n∑

ν=1

[ exp{−Λ(uν; τ̂1J) exp(X
′
i τ̂x)}−exp{−Λ(uν ; β̂1J) exp(X

′
iβ̂x)} ] (4.8)

where uν, ν = 1, ..., n, are uniform random numbers over (0,̟).
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5 Gamma Unobserved Heterogeneity

The main restriction so far has been the independence (3.1) of (W,Y o∗, Y w∗) given

X. To relax this, this section introduces an unobserved factor δ through which the three

durations are allowed to be related. Eberwein et al. (1997) did essentially the same

task, but in a discrete time framework with a discrete unobserved factor. Estimating

the support points of a discrete factor is, however, problematic for the MLE asymptotic

distribution. For instance, with two support points s1 < s2, the parameter space for

s1 becomes (−∞, s2) whose upper bound depends on s2; this goes against the usual

regularity conditions of MLE.

In the following, firstly, useful facts about gamma distribution and integrations

involving exponential functions of unit-mean gamma are provided to be used later.

Secondly, δ is introduced into the Weibull model for only (W,Y o∗) to show that α and

β are identified regardless of Y w∗. This is necessary for estimating α and β first and

then τ later; this two-stage estimation is reminiscent of the two-stage identification of

Abbring and Van den Berg (2003b) as was already mentioned. Thirdly, δ is considered

for all of (W,Y o∗, Y w∗) under the Weibull hazard. Fourthly, δ in (W,Y o∗, Y w∗) is

examined for the piecewise-constant hazards.

5.1 Integration Involving Unit-Mean Gamma Distribution

In gamma distribution denoted Gamma(η, θ), η > 0 is the ‘shape parameter’ and

θ > 0 is the ‘scale parameter’. With Z ∼ Gamma(η, θ), the density is

f(z) =
1

Γ(η)θ
(
z

θ
)η−1e−(z/θ) (Γ(η) is the normalizing factor)

=⇒ E(Z) = ηθ, V (Z) = ηθ2 and µZ ∼ Gamma(η, µθ) for any positive constant µ.

If θ−1 = η in Z ∼ Gamma(η, θ), then E(Z) = 1 and V (Z) = η−1 with the density

f(z) =
ηη

Γ(η)
zη−1e−ηz.

Gamma(η, η−1) will appear for a multiplicative unobserved heterogeneity becauseE(Z) =

1 is needed for a normalization.
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Three useful facts about Z ∼ Gamma(η, η−1) are that, for any constant p,

E{exp(−pZ)} = (η−1p+ 1)−η; (5.1)

E{Z exp(−pZ)} = (η−1p+ 1)−η−1; (5.2)

E{Z2 exp(−pZ)} = (1 + η−1) · (η−1p + 1)−η−2; (5.3)

the proofs are in the appendix. These equations are crucial for closed-form likelihoods

when a gamma factor δ gets integrated out. Gamma δ’s can be seen in Lancaster

(1979), Heckman and Singer (1984) and Han and Hausman (1990). The convenience of

a gamma δ was shown by Lancaster (1979), which was only for a single duration using

(5.1), whereas out set-up involves three durations using all of (5.1), (5.2) and (5.3).

A theoretical support for multiplicative gamma δ’s was provided by Abbring and Van

den Berg (2007).

5.2 Unobserved Heterogeneity for Weibull (W,Y o∗)

Define

G ≡ (1−D)Y +DW = (1−D)Y 0 +DW = (1−D)min(Y o∗, C) +DW

= (1−D)(1−Q)C + (1−D)QY o∗ +DW. (5.4)

Using the three cases (1 −D)(1−Q), (1 −D)Q and D, the α and β parameters can

be estimated without involving the τ parameters.

Suppose δ ∼ Gamma(η, η−1) and

W |(X, δ) ∼Weibull{α0, α(X, δ)} where α0 > 0 and α(X, δ) = δ exp(X
′αx); (5.5)

SW |X,δ(w) = exp{−w
α0δ exp(X ′αx)}, fW |X,δ(w) = α0w

α0−1δ exp(X ′αx) exp{−w
α0δ exp(X ′αx)}.

Using δ ∼ Gamma(η, η−1) is a normalization because, if δ̄ exp(X ′αx) holds for δ̄ ∼

Gamma(η, θ), then we can rewrite always

δ̄ exp(X ′αx) =
δ̄

E(δ̄)
exp{X ′αx + lnE(δ̄)} = δ exp(X

′αx)

with lnE(δ̄) absorbed into the intercept in X ′αx.
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Assume C∐δ|X andW∐Y o∗|(X, δ) ((W,Y o∗)|X are allowed to be related through

δ)–a stronger version of this assumption to be used mainly will appear in Au below.

Suppose

Y o∗|(X, δ) ∼Weibull{β0, β(X, δ)} where β0 > 0 and β(X, δ) = δ exp(X
′βx). (5.6)

It is more general to set β(X, δ) = µδ exp(X ′βx) for a parameter µ. But, with the

normalization µδ/E(µδ), µ drops out, i.e., lnE(µδ) is absorbed by the intercept in

X ′βx. Hence

SY o∗|X,δ(y) = exp{−y
β0δ exp(X ′βx)}, fY o∗|X,δ(y) = β0y

β0−1δ exp(X ′βx) exp{−y
β0δ exp(X ′βx)}.

The (X, δ)-conditioned likelihood functions for G = g are

D = 0, Q = 0 with C = g : SW |X,δ(g)SY o∗|X,δ(g)fC|X(g);

D = 0, Q = 1 with Y o∗ = g : SW |X,δ(g)SC|X(g)fY o∗|X,δ(g); (5.7)

D = 1 with W = g : SY o∗|X,δ(g)SC|X(g)fW |X,δ(g).

For D = 0 and Q = 0, we have from (5.5) and (5.6)

SW |X,δ(g)SY o∗|X,δ(g) = exp[−{g
α0 exp(X ′αx) + g

β0 exp(X ′βx)}δ].

Its δ-free version is, using (5.1) with p = gα0 exp(X ′αx) + g
β0 exp(X ′βx),

E{SW |X,δ(g)SY o∗|X,δ(g) |X} = {η
−1gα0 exp(X ′αx) + η

−1gβ0 exp(X ′βx) + 1}
−η. (5.8)

As for D = 0 and Q = 1, observe

SW |X,δ(g)fY o∗|X,δ(g) = β0g
β0−1 exp(X ′βx) · δ exp[−{g

α0 exp(X ′αx) + g
β0 exp(X ′βx)}δ].

Its δ-free version is, using (5.2) with p = gα0 exp(X ′αx) + g
β0 exp(X ′βx),

E{SW |X,δ(g)fY o∗|X,δ(g) |X}

= β0g
β0−1 exp(X ′βx) · {η

−1gα0 exp(X ′αx) + η
−1gβ0 exp(X ′βx) + 1}

−η−1. (5.9)

For D = 1, observe

SY o∗|X,δ(g)fW |X,δ(g) = α0g
α0−1 exp(X ′αx) · δ exp[−{g

α0 exp(X ′αx) + g
β0 exp(X ′βx)}δ].
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Its δ-free version is, using (5.2) with p = gα0 exp(X ′αx) + g
β0 exp(X ′βx),

E{SY o∗|X,δ(g)fW |X,δ(g) |X}

= α0g
α0−1 exp(X ′αx) · {η

−1gα0 exp(X ′αx) + η
−1gβ0 exp(X ′βx) + 1}

−η−1.

5.3 Unobserved Heterogeneity for Weibull (W,Y o∗, Y w∗)

With Y w∗ considered along with (W,Y o∗), assume (compare to Ao)

C ∐ δ|X and (C,W, Y o∗, Y w∗)|(X, δ) are independent of one another for any w

(Au)

which is a ‘selection-on-unobservable’ assumption combined with non-informative cen-

soring. This allows (W,Y o∗, Y w∗) to be related through δ as well as X, whereas C can

be related to (W,Y o∗, Y w∗) only through X.

Suppose, making X = x explicit along with W = w,

Y w∗|(X = x, δ) ∼Weibull{τ0, τ (x, w, δ)} where τ0 > 0 and τ(x,w, δ) = δ exp(h
′τh);

SY w∗|X=x,δ(y) = exp{−y
τ0δ exp(h′τh)}, fY w∗|X=x,δ(y) = τ0y

τ0−1δ exp(h′τh) exp{−y
τ0δ exp(h′τh)}.

For the control group, the δ-free likelihoods are the same as (5.8) and (5.9) except

the notation change from g to y:

D = 0, Q = 0 (C = y) : {η−1yα0 exp(X ′αx) + η
−1yβ0 exp(X ′βx) + 1}

−η;

D = 0, Q = 1 (Y o∗ = y) : β0y
β0−1 exp(X ′βx){η

−1yα0 exp(X ′αx) + η
−1yβ0 exp(X ′βx) + 1}

−η−1.

The appendix shows that, for (D = 1, Q = 0), the δ-free likelihood for (W = w,C = y)

is

1[w < y]α0w
(α0−1) exp(x′αx) (5.10)

· {η−1wα0 exp(x′αx) + η
−1wβ0 exp(x′βx) + η

−1(y − w)τ0 exp(h′τh) + 1}
−η−1

and that, for (D = 1, Q = 1), the δ-free likelihood for (W = w,W + Y W∗ = y) is

α0w
(α0−1) exp(x′αx) · τ0(y − w)

τ0−1 exp(h′τh) · 1[w < y] (5.11)

· (1 + η−1){η−1wα0 exp(x′αx) + η
−1wβ0 exp(x′βx) + η

−1(y − w)τ0 exp(h′τh) + 1}
−η−2.
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Turning to treatment effects, we present two options. One comes from integrating

out δ:

E(Y +∗|X) = E{ E(Y +∗|δ,X) |X} =

∫ ∞

0

∫ ∞

0

SY +∗|δ,X(y)dy
ηη

Γ(η)
δη−1e−ηδdδ

=

∫ ∞

0

E[exp{−yτ0δ exp(X ′τx)}|X]dy =

∫ ∞

0

{η−1yτ0 exp(X ′τx) + 1}
−ηdy;

E(Y o∗|X) = E{ E(Y o∗|δ,X) |X} =

∫ ∞

0

{η−1yβ0 exp(X ′βx) + 1}
−ηdy.

The mean effect ∆wδ with X integrated out by its empirical distribution and an esti-

mator ∆̂wδ using uν ∼ U [0,̟], ν = 1, ..., n, are (recall (4.7) and (4.8))

∆wδ ≡
1

N

∑

i

∫ ∞

0

{η−1yτ0 exp(X ′
iτx) + 1}

−ηdy −
1

N

∑

i

{η−1yβ0 exp(X ′
iβx) + 1}

−ηdy,

∆̂wδ ≡
1

N

N∑

i=1

1

n

n∑

ν=1

[ {η̂−1uτ̂0ν exp(X
′
i τ̂x) + 1}

−η̂ − {η̂−1uβ̂0ν exp(X
′
iβ̂x) + 1}

−η̂ ]. (5.12)

The other is based on the proportional hazard-change relative to the untreated

hazard :

∆wh(t) ≡
τ0t

τ0−1δ exp(X ′τx)− β0t
β0−1δ exp(X ′βx)

β0tβ0−1δ exp(X ′βx)
=
τ0
β0
tτ0−β0 exp{X ′(τx − βx)} − 1

that is particularly attractive as it is free of δ. The X-integrated sample version is

∆̂wh(t) ≡
τ̂0

β̂0
tτ̂0−β̂0

1

N

∑

i

exp{X ′
i(τ̂x − β̂x)} − 1; (5.13)

since this is a function of time t, it would be informative to plot this against t. As

∆wh(t) shows the hazard shift due to the treatment, ∆wh(t) is essentially the same as

the treatment effect definition in Abbring and Van den Berg (2003b).

5.4 Unobserved Heterogeneity with Piecewise-Constant Haz-

ards

For the piecewise-constant hazard with δ ∼ Gamma(η, η−1), we just need to re-

place the Weibull baseline and integrated hazards with λ and Λ, respectively, as follows

to obtain the δ-free likelihoods:

D = 0, Q = 0 : {η−1Λ(y;α1J) exp(X
′αx) + η

−1Λ(y; β1J) exp(X
′βx) + 1}

−η; (5.14)

D = 0, Q = 1 : λ(y; β1J) exp(X
′βx) · {η

−1Λ(t;α1J) exp(X
′αx) + η

−1Λ(y;β1J) exp(X
′βx) + 1}

−η−1.
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For the censored treated (D = 1, Q = 0),

1[w < y]λ(w;α1J) exp(x
′αx) · {η

−1Λ(w;α1J) exp(x
′αx)+

η−1Λ(w; β1J) exp(x
′βx) + η

−1Λ(y − w; τ1J) exp(h
′τh) + 1}

−η−1. (5.15)

For the uncensored treated (D = 1, Q = 1),

λ(w;α1J) exp(x
′αx) · λ(y − w; τ1J) exp(h

′τx) · 1[w < y] · (1 + η
−1){η−1Λ(w;α1J) exp(x

′αx)

+ η−1Λ(w; β1J) exp(x
′βx) + η

−1Λ(y − w; τ1J) exp(h
′τh) + 1}

−η−2. (5.16)

Turning to treatment effects, we present two options (recall (5.12) and (5.13)).

The first has to do with integrating out δ:

E(Y +∗|X) = E{ E(Y +∗|δ,X) |X} =

∫ ∞

0

{η−1Λ(y; τ1J) exp(X
′τx) + 1}

−ηdy

E(Y o∗|X) = E{ E(Y o∗|δ,X) |X} =

∫ ∞

0

{η−1Λ(y;β1J) exp(X
′βx) + 1}

−ηdy.

Hence, the mean effect ∆pδ with X integrated out and an estimator ∆̂pδ for ∆pδ are

∆pδ ≡
1

N

∑

i

∫ ∞

0

{η−1Λ(y; τ1J) exp(X
′
iτx) + 1}

−ηdy −
1

N

∑

i

{η−1Λ(y; β1J) exp(X
′
iβx) + 1}

−ηdy,

∆̂pδ ≡
1

N

N∑

i=1

1

n

n∑

ν=1

[{η̂−1Λ(uν; τ̂1J) exp(X
′
i τ̂x) + 1}

−η̂ − {η̂−1Λ(uν ; β̂1J) exp(X
′
iβ̂x) + 1}

−η̂]

where uν ∼ U [0, ̟], ν = 1, ..., n, are uniform random numbers with ̟ being the

maximum duration in the data.

The other is based on the proportional hazard-change relative to the untreated

hazard :

∆ph(t) ≡
λ(t; τ1J)δ exp(X

′τx)− λ(t; β1J)δ exp(X
′βx)

λ(t; β1J)δ exp(X ′βx)
=
λ(t; τ1J)

λ(t; β1J)
exp{X ′(τx−βx)} − 1

that is free of δ. The X-integrated sample version to be plotted against t is

∆̂ph(t) ≡
λ(t; τ̂1J)

λ(t; β̂1J)

1

N

∑

i

exp{X ′
i(τ̂x − β̂x)} − 1. (5.17)
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6 Empirical Analysis

6.1 Program Background and Selection into the Program

In this section we apply our estimators to find the effects of an employment subsidy

(ES) program administered by the Swedish Public Employment Service (PES). The ES

program was introduced on January 1, 1998. The subsidy was targeted at the long-

term unemployed, i.e., individuals registered as unemployed at PES for at least 12

months. The subsidy amounted to 50 percent of the total wage and was paid for 6

months at maximum.

In order to receive unemployment insurance (UI) or cash assistance (CA), the

unemployed need to register at PES. Thus all long-term unemployed are registered at

PES. Whereas the primary objective of PES is to help the long-term unemployed with

job search, a secondary objective is to provide training and subsidized employment.

Officials at PES may require the unemployed to take a (subsidized) employment or to

take part in a training program, and refusal may lead to losing the UI or CA.

The selection-on-observables Ao would hold if the information in X is detailed;

in case Ao does not hold, Au allows the violation of Ao through the single unobserved

heterogeneity factor δ. We discuss in the following whether it is reasonable to assume

that selection into treatment (more precisely, the waiting duration W ) is independent

of the potential durations Y o∗ and Y w∗ after conditioning on X (and δ).

Using stated-preference experimental data, Eriksson (1997) found that the het-

erogeneity of the PES case-workers is more important for determining the program

participation than the heterogeneity of the individuals. Carling and Richardson (2004)

also reported evidence in the same vein using observational data: they compared the

effects of eight different programs on the probability of finding a job to show that pro-

gram placement depended more on the employment service office than on the observed

characteristics of the unemployed. There is also survey evidence on the selection process

(Lundin, 2000) with the survey directed to the case-workers at PES: only 6 percent of

the case-workers maintained that the initiative for ES came from the unemployed.

The above evidence suggests that individual self-selection to ES is not a big prob-
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lem, and that PES office characteristics matter much. Ideally, we would like to control

for the PES offices in our analysis. This is not possible, however, in our data; instead,

we control for local labor market conditions. The local labor market and the PES

offices overlap to some extent; there were about 300 PES offices and 100 local labor

markets defined on the basis of commuting patterns. Overall, given that our data have

detailed information on the labor market history of the individuals and that we can

control for the local labor market where the individual is registered, the assumption

Ao (or Au at minium) looks plausible.

6.2 Data

We use register data from the National Labor Market Board. This unemploy-

ment register contains information on all individuals registered at PES in Sweden since

August 1991. The database includes detailed information on, e.g., age, educational

attainment, sex, registration date, job training activities, and starting dates of partic-

ipation in various labor market programs.

For each individual registered at PES, we observe the event history including the

number of spells and days of unemployment. Anyone who left the register before

the introduction of the ES program or whose first spell of unemployment occurred

before January 1992 was removed, because the previous labor market history that is

an important determinant for unemployment durations and program participation is

not available for those individuals. Also, all individuals with the register spells shorter

than 365 days were excluded, because the main eligibility criterion for the program is

continuous unemployment for at least 365 days.

We focus on individuals of age 25-63 at the time of registration. A spell of unem-

ployment is defined as an uninterrupted period of time when an unemployed person is

registered at PES. The spell ends “with employment” if the person finds a job for at

least 30 days, and “with censoring” if he/she leaves the register for at least 30 days for

any other reason or if the spell goes over the sampling end point (October 1, 2002).

We aggregate the daily data to monthly intervals. The reason for this is that

there are measurement errors in the starting day of a job spell. This happened due to
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the strategy used by the PES offices to obtain the information on when the job spell

began: if the unemployed individual has not been in contact with the PES office for

some specific time period, the person is asked over the phone whether employed or not.

Table 1: Treated (ES) Mean & Control (No ES) Mean

Variable Description ES (3%) No ES (97%)

W Duration to treatment 23.3 ........

Y Duration 34.38 23.37

Q =1 if not censored 0.64 0.39

Male =1 if male 0.61 0.41

Nordic =1 if Nordic citizen 0.79 0.86

UI =1 if unemployment insurance 0.84 0.82

Disabled =1 if disabled 0.06 0.10

Gymnasium =1 if upper secondary degree 0.43 0.35

University =1 if university degree 0.12 0.12

Age20 =1 if age ≤ 30 0.26 0.22

Age30 =1 if 30 < age ≤ 40 0.32 0.31

Age40 =1 if 40 < age ≤ 50 0.27 0.24

TD1
=1 if days in register during

previous spell (TD) is 0
0.41 0.38

TD2 =1 if 0 < TD ≤ 100 0.05 0.05

TD3 =1 if 100 < TD ≤ 500 0.22 0.20

TD4 =1 if 500 < TD ≤ 1000 0.18 0.18

TP1 =1 if past # programs (TP) is 0 0.41 0.38

TP2 =1 if 0 < TP ≤ 5 0.42 0.39

TP3 =1 if 5 < TP ≤ 15 0.17 0.22

The total number of persons aged 25-63 who were eligible for the ES program

during January 1 1998 to October 1 2002 was 631,358, and they are described in Table

1 in two groups: those who started the ES program, and those who did not. Only

3.2% of the eligible spells ended up with ES, and thus the control group is more than
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30 times greater than the treatment group, which means that the descriptive statistics

for the two groups pooled is almost the same as that of the control group.

A significantly higher fraction (64% v. 39%) of the ES participants ended up in

employment. This, however, does not necessarily indicate a good treatment effect,

as it may be due to the participants getting registered earlier to spend a longer time

looking for a job. The ES participants have higher proportions of males and non-

Nordic individuals, and a lower proportion of the disabled. The education level is

higher among the ES participants, and the ES participants spent less time registered

during the last unemployment period.

6.3 Estimation Results

In specifying the baseline hazards, our main concern is the ‘lock-in effect’ (an initial

decline in hazard while the ES lasts) for the treated duration Y w∗; for job trainings,

lock-in effects can occur during the training period which hinders job search activity.

Since Y w∗ appears in the likelihood functions only in the form yw ≡ y − w, we specify

the baseline hazard φ(·) for Y w∗ as

φ(yw) ≡ 1[yw ≤ 3] + τ11[3 < yw ≤ 6] + τ21[6 < yw ≤ 12] + τ3y
τ3−1
w 1[12 < yw].

This specification is primarily due to the time profile of ES lasting 6 months. We set

the first threshold at 3, not at 6, to check for the specification, and the last threshold

12 is an admittedly arbitrary choice for the timing of the tail Weibull hazard. SinceW

and Y o∗ are not subject to the ES-kind of institutional constraints, we use the Weibull

hazard for W and Y o∗, which is also to keep the number of parameters small.

The estimated parameters (t-values) are in Table 2; although the region dummies

were used, their results are not shown. Due to the huge sample size, most estimates

are statistically significant; thus the ‘economic significance’ reflected in the estimate

magnitude may be given more importance. Columns (1)-(3) show the hazard parameter

estimates forW , Y o∗ and Y w∗. Column (4) for Y w∗ presents the estimates for the terms

interacting with w as well as the estimates for w, w2 and w3. The last row shows η = 45

for δ, from which we obtain SD(δ) =
√
1/45 ≃ 0.15, giving a 99% confidence interval
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1 ± 2.58 × 0.15 ≃ 1 ± 0.4 for δ. This means that the unobserved heterogeneity can

make the hazard as much as 40% lower/higher than the average for some people.

Table 2: Estimates (excluding region dummies) and t-value

(1): α for W (2): β for Y o∗ (3): τx for Y w∗ (4): τmw for Y w∗

τ1 2.74 (30.3)

τ2 3.42 (35.0)

α0, β0, τ3 1.08 (614) 1.10 (1524) 1.44 (115)

1 -7.24 (-193) -4.00 (-446) -4.26 (-46)

Male 0.81 (55.6) -0.09 (-26.6) 0.02 (0.66) -0.02 (-1.46)

Nordic -0.61 (-31.2) -0.21 (-41.2) -0.06 (-1.27) 0.00 (-0.12)

UI 0.05 (2.24) -0.54 (-120) -0.28 (-4.91) -0.03 (-1.43)

Disabled -0.85 (-28.9) -0.06 (-12.4) 0.08 (1.24) 0.01 (0.40)

Gymnasium 0.47 (29.7) -0.13 (-31.7) -0.27 (-6.10) 0.05 (3.62)

University 0.34 (14.2) -0.08 (-13.4) -0.40 (-5.58) 0.09 (3.47)

AGE20 0.06 (3.03) 0.06 (12.0) -0.03 (-0.54) -0.03 (-1.70)

AGE30 0.07 (3.51) -0.07 (-13.4) -0.13 (-2.33) -0.02 (-1.31)

AGE40 -0.37 (-15.3) 0.25 (48.0) -0.11 (-1.92) 0.02 (1.13)

TD1 -0.64 (-7.76) 0.51 (30.0) -0.67 (-2.17) -0.01 (-0.15)

TD2 -0.49 (-6.30) 0.67 (41.9) -0.79 (-2.70) 0.06 (0.67)

TD3 -0.43 (-5.46) 0.86 (52.9) -1.00 (-3.36) 0.14 (1.47)

TD4 -0.51 (-6.34) 1.31 (80.0) -0.97 (-3.26) 0.18 (1.87)

TP1 0.87 (11.2) -0.44 (-27.9) 0.68 (2.32) 0.02 (0.17)

TP2 1.04 (13.1) -0.03 (-2.05) 0.83 (2.80) 0.09 (0.92)

TP3 1.36 (9.93) 0.45 (17.1) 1.59 (4.19) 1.15 (6.07)

w -0.21 (4.21)

w2/100 0.013 (1.14)

w3/10000 0.030 (3.41)

η for δ 44.9 (24.0)

For Column (1), α0 shows a small increasing hazard to ES. Male, non-Nordic origin,

no disability, high education, and ‘age higher than 50 relative to age 40-50’ raise the
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hazard to ES. Relative to the base category of more than 1000 days in register during

the previous spell, fewer days in register decrease the hazard to ES, which is shown

by TDj, j = 1, 2, 3, 4. Compared with the base category of the previous number of

programs being greater than 15, fewer numbers increase the hazard to ES.

As for Column (2), β0 shows a small increasing hazard to employment without

getting treated. Nordic origin, UI and high education decrease the hazard. Relative to

the base category of age 50+, individuals aged 40-50 have a higher hazard. Compared

with the base category of more than 1000 days in register during the previous spell,

fewer days in register increase the hazard.

Regarding Column (3), judging from τ1 and τ2, the hazard over (3, 6] increases

the hazard over (0, 3] by almost 3 times whereas the hazard increases by only 25%

from 2.74 to 3.42 when ES runs out at t = 6. As was the case for Y o∗, UI and high

education decreases the hazard to employment with the treatment. But differently

from Y o∗, compared with the base category of more than 1000 days in register during

the previous spell, fewer days in register decrease the hazard. Relative to the base

category of the previous number of programs being greater than 15, fewer numbers

increase the hazard.

Column (4) shows that only education and TP3 dummies interacting with w are

significant with positive estimates. As for the cubic function of w, the linear and cubic

terms are significant. Although w has a negative slope while the other two terms have

positive slopes, w dominates the other terms so that the entire w function is negative;

i.e., the waiting time to ES decreases the hazard (i.e., increases the treated duration)

to result in Y w∗ > Y +∗. In fact, the cubic function is almost the same as −0.16w for

w ∈ [0, 100].

Recalling (5.17) and its preceding equations, we obtain the average effect estimator

∆̂pδ using ̟ = 57 that is the sample maximum duration for the treatment group. We

also obtain ∆̂ph(t) for the proportional hazard difference. For both estimators, the

standard deviations are calculated by the delta method:

SD{∆̂z(θz)} = {c(θ̂z)
′ · V̂z · c(θ̂z)}

1/2 where c(θ̂z) ≡
∂∆̂z(θz)

∂θz
|θz=θ̂z

for z = ph, pδ
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where θph ≡ (β0, β
′
x, τ1, τ2, τ3, τ

′
x)
′, θpδ ≡ (θ′ph, η)

′ and V̂z is the asymptotic variance

matrix estimator for θ̂z.

The result for ∆̂pδ with ̟ = 57 is

∆̂pδ = −11.1 with SD{∆̂pδ(θpδ)} = 1.37 and t-value − 8.09 :

ES reduces unemployment duration by 11.1 months on average. This estimate is close

to the estimates in Fredriksson and Johansson (2008). Incidentally, −11.1 is also close

to (Y 1− W̄ )−Y 0 = (34.4− 23.3)− 23.4 = −12.3 from Table 1 as if there were neither

censoring nor covariate.

0 10 20 30 40 50
D uration

0

1

2

3

∆(τ)
95 %  confidence in terva l

Figure 1: Proportional Hazard Difference

The results for ∆̂ph(t) is in Figure 1 along with the 95% point-wise asymptotic

confidence interval. Figure 1 shows a lock-in effect for the first three months in the ES

program as the graph shows negative values, and thereafter, we find a higher hazard

of leaving unemployment due to ES. Had we used piecewise constant hazards for all

durations, the graph would be step-shaped; since a piecewise constant hazard was used

only for Y w∗ while aWeibull hazard was used for Y o∗, the graph shows slightly declining

patterns on each “step”.
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7 Conclusions

In observational data, a treatment/program is chosen at some time point by the

subject involved, and when it is chosen at that particular time point, it must be chosen

for a good reason. Despite this, the treatment timing choice is usually ignored, and the

data set at hand is divided into treatment and control groups based on a time interval;

with a longer interval, however, many control subjects become treated, leading to

possibly much different findings.

In this paper, we set up an “ideal” causal framework for finding treatment effects on

durations, taking into account the treatment-timing choice–ideal in the sense that the

causal framework takes the treatment-timing aspect out of the picture. We envisioned

three durations (waiting time to treatment, untreated duration from the baseline, and

treated duration from the treatment timing), and the main causal effect was defined

as the difference between the counter-factual treated duration at the baseline and the

untreated duration at the baseline.

Initially we assumed that the three durations are independent of one another

given the observed covariates, which is a selection-on-observable approach. We then

introduced a multiplicative unobserved heterogeneity term (“factor”) so that the three

durations are allowed to be related through the common factor, which is a selection-

on-unobservable approach. Although restrictive, by assuming that the factor follows

gamma distribution, we were able to obtain a close-form likelihood function despite

the three durations entangled in complex ways. To avoid parametric assumptions, we

used piecewise-constant hazards as well as Weibull hazards.

With the unobserved factor and piecewise-constant hazards in, a two-stage version

of the MLE estimating the waiting and untreated duration parameters first and then the

treated duration parameters later converged well; this MLE is our simple answer to the

complicated treatment timing problem. We applied our methods to Swedish employment

subsidy data to find effects similar to those found by purely nonparametric methods

in the literature.
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APPENDIX

Derivation of Four Likelihood Components (4.1)-(4.4)

(4.1) to (4.4) follow from, respectively,

P (D = 0, Q = 0|C = y,X)fC|X(y) = P (C < W,C < Y
o∗|C = y,X)fC|X(y)

= P (y < W |C = y,X) · P (y < Y o∗|C = y,X) · fC|X(y) = P (y < W |X)P (y < Y
o∗|X)fC|X(y);

P (D = 0, Q = 1|Y o∗ = y,X)fY o∗|X(y) = P (Y
o∗ < W,Y o∗ < C|Y o∗ = y,X)fY o∗|X(y)

= P (y < W |Y o∗ = y,X) · P (y < C|Y o∗ = y,X) · fY o∗|X(y) = P (y < W |X)P (y < C|X)fY o∗|X(y);

P (D = 1, Q = 0|W = w,C = y,X)1[w < y] · fW |X(w)fC|X(y)

= P (W < Y o∗, C −W < Y w∗|W = w,C = y,X)1[w < y] · fW |X(w)fC|X(y)

= P (w < Y o∗|W = w,C = y,X) · P (y − w < Y w∗|W = w,C = y,X)1[w < y]fW |X(w)fC|X(y)

= P (w < Y o∗|X) · P (y − w < Y w∗|X)1[w < y] · fW |X(w)fC|X(y);

P (D = 1, Q = 1|W = w, Y w∗ = y − w,X) · 1[w < y]fW |X(w)fY w∗|X(y − w)

= P (W < Y o∗, W + Y W∗ < C|W = w, Y w∗ = y − w,X) · 1[w < y]fW |X(w)fY w∗|X(y − w)

= P (w < Y o∗|W = w, Y w∗ = y − w,X) · P (y < C|W = w, Y w∗ = y − w,X)

· 1[w < y]fW |X(w)fY w∗|X(y − w) = P (w < Y
o∗|X)P (y ≤ C|X)1[w < y]fW |X(w)fY w∗|X(y − w).

Three integrals (5.1), (5.2) and (5.3)

E{exp(−pZ)} =

∫
exp(−pz)

ηη

Γ(η)
zη−1e−ηzdz =

ηη

Γ(η)

∫
exp{−(p+ η)z}zη−1dz

=
ηη

Γ(η)

∫
e−c(

c

p+ η
)η−1

1

p+ η
dc (setting c = (p+ η)z =⇒ dz =

1

p+ η
dc)

=
1

Γ(η)
(
η

p+ η
)η
∫
e−ccη−1dc =

1

Γ(η)
(
η

p+ η
)ηΓ(η) = (

1

η−1p+ 1
)η = (η−1p+ 1)−η;
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E{Z exp(−pZ)} =

∫
z exp(−pz)

ηη

Γ(η)
zη−1e−ηzdz =

ηη

Γ(η)

∫
exp{−(p+ η)z}zηdz

=
ηη

Γ(η)

∫
e−c(

c

p+ η
)η

1

p+ η
dc =

1

Γ(η)

ηη

(p+ η)η+1

∫
e−ccηdc

=
1

Γ(η)

ηη · Γ(η + 1)

(p+ η)η+1
=

1

Γ(η)

ηη · ηΓ(η)

(p+ η)η+1
= (

η

p+ η
)η+1 = (η−1p+ 1)−η−1;

E{Z2 exp(−pZ)} =

∫
z2 exp(−pz)

ηη

Γ(η)
zη−1e−ηzdz =

ηη

Γ(η)

∫
exp{−(p+ η)z}zη+1dz

=
ηη

Γ(η)

∫
e−c(

c

p+ η
)η+1

1

p+ η
dc =

1

Γ(η)

ηη

(p+ η)η+2

∫
e−ccη+1dc =

1

Γ(η)

ηη · Γ(η + 2)

(p+ η)η+2

=
1

Γ(η)

ηη · (η + 1)ηΓ(η)

(p+ η)η+2
=
η + 1

η
(
η

p+ η
)η+2 = (1 + η−1) · (η−1p+ 1)−η−2.

Derivation for the δ-free likelihoods (5.10) and (5.11)

For (D = 1, Q = 0), recalling (4.5), the δ-conditional likelihood for (W = w,C =

y) is

SY o∗|X=x,δ(w)SY w∗|X=x,δ(y − w) · 1[w < y]fW |X=x,δ(w)

= exp{−wβ0δ exp(x′βx)− (y − w)
τ0δ exp(h′τh)} · 1[w < y]

· α0w
(α0−1)δ exp(x′αx) exp{−w

α0δ exp(x′αx)}

= 1[w < y]α0w
(α0−1) exp(x′αx)δ exp[−{w

α0 exp(x′αx) + w
β0 exp(x′βx) + (y − w)

τ0 exp(h′τh)}δ].

Use (5.2) with p = wα0 exp(x′αx)+w
β0 exp(x′βx)+(y−w)

τ0 exp(h′τh) to obtain (5.10).

For (D = 1, Q = 1), recalling (4.6), the δ-conditional likelihood for (W = w,W +

Y W∗ = y) is

SY o∗|X=x,δ(w) · 1[w < y]fW |X=x,δ(w)fY w∗|X=x,δ(y − w)

= exp{−wβ0δ exp(x′βx)} · 1[w < y] · α0w
(α0−1)δ exp(x′αx) exp{−w

α0δ exp(x′αx)}

· τ0(y − w)
τ0−1δ exp(h′τh) exp{−(y − w)

τ0δ exp(h′τh)}

= α0w
(α0−1) exp(x′αx) · τ0(y − w)

τ0−1 exp(h′τx) · 1[w < y]

· δ2 exp[−{wα0 exp(x′αx) + w
β0 exp(x′βx) + (y − w)

τ0 exp(h′τh)}δ].

Using (5.3), integrate δ out to obtain (5.11).
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