Titelaufnahme

Titel
Have econometric analyses of happiness data been futile? A simple truth about happiness scales / Le-Yu Chen (Academia Sinica), Ekaterina Oparina (University of Surrey), Nattavudh Powdthavee (Warwick Business School and IZA), Sorawoot Srisuma (University of Surrey) ; IZA Institute of Labor Economics
VerfasserChen, Le-Yu ; Oparina, Ekaterina ; Powdthavee, Nattavudh ; Srisuma, Sorawoot
KörperschaftForschungsinstitut zur Zukunft der Arbeit
ErschienenBonn, Germany : IZA Institute of Labor Economics, February 2019
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (23 Seiten) : Diagramme
SerieDiscussion paper ; no. 12152
URNurn:nbn:de:hbz:5:2-181640 
Zugriffsbeschränkung
 Das Dokument ist öffentlich zugänglich im Rahmen des deutschen Urheberrechts.
Volltexte
Have econometric analyses of happiness data been futile? A simple truth about happiness scales [0.52 mb]
Links
Nachweis
Verfügbarkeit In meiner Bibliothek
Zusammenfassung (Englisch)

Econometric analyses in the happiness literature typically use subjective well-being (SWB) data to compare the mean of observed or latent happiness across samples. Recent critiques show that com-paring the mean of ordinal data is only valid under strong assumptions that are usually rejected by SWB data. This leads to an open question whether much of the empirical studies in the economics of happiness literature have been futile. In order to salvage some of the prior results and avoid future issues, we suggest regression analysis of SWB (and other ordinal data) should focus on the median rather than the mean. Median comparisons using parametric models such as the ordered probit and logit can be readily carried out using familiar statistical softwares like STATA. We also show a previously assumed impractical task of estimating a semiparametric median ordered-response model is also possible by using a novel constrained mixed integer optimization technique. We use GSS data to show the famous Easterlin Paradox from the happiness literature holds for the US independent of any paramet-ric assumption.