Titelaufnahme

Titel
A multinomial probit model with latent factors: identification and interpretation without a measurement system / Rémi Piatek (University of Copenhagen), Miriam Gensowski (University of Copenhagen and IZA) ; IZA Institute of Labor Economics
VerfasserPiatek, Rémi In der Gemeinsamen Normdatei der DNB nachschlagen ; Gensowski, Miriam In der Gemeinsamen Normdatei der DNB nachschlagen
KörperschaftForschungsinstitut zur Zukunft der Arbeit In der Gemeinsamen Normdatei der DNB nachschlagen
ErschienenBonn, Germany : IZA Institute of Labor Economics, September 2017
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (46 Seiten) : Diagramme
SerieDiscussion paper ; no. 11042
URNurn:nbn:de:hbz:5:2-139411 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Dokument ist frei verfügbar.
Volltexte
A multinomial probit model with latent factors: identification and interpretation without a measurement system [2.5 mb]
Links
Nachweis
Verfügbarkeit In meiner Bibliothek
Zusammenfassung

We develop a parametrization of the multinomial probit model that yields greater insight into the underlying decision-making process, by decomposing the error terms of the utilities into latent factors and noise. The latent factors are identified without a measurement system, and they can be meaningfully linked to an economic model. We provide sufficient conditions that make this structure identified and interpretable. For inference, we design a Markov chain Monte Carlo sampler based on marginal data augmentation. A simulation exercise shows the good numerical performance of our sampler and reveals the practical importance of alternative identification restrictions. Our approach can generally be applied to any setting where researchers can specify an a priori structure on a few drivers of unobserved heterogeneity. One such example is the choice of combinations of two options, which we explore with real data on education and occupation pairs.