Titelaufnahme

Titel
Estimating labor force joiners and leavers using a heterogeneity augmented two-tier stochastic frontier / Tirthatanmoy Das (University of Central Florida and IZA), Solomon W. Polachek (State University of New York at Binghamton and IZA) ; IZA, Institute of Labor Economics
VerfasserDas, Tirthatanmoy In der Gemeinsamen Normdatei der DNB nachschlagen In Wikipedia suchen nach Tirthatanmoy Das ; Polachek, Solomon W. In der Gemeinsamen Normdatei der DNB nachschlagen In Wikipedia suchen nach Solomon W. Polachek
KörperschaftForschungsinstitut zur Zukunft der Arbeit In der Gemeinsamen Normdatei der DNB nachschlagen In Wikipedia suchen nach Forschungsinstitut zur Zukunft der Arbeit
ErschienenBonn, Germany : IZA Institute of Labor Economics, January 2017
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (43 Seiten) : Diagramme
SerieDiscussion paper ; no. 10534
URNurn:nbn:de:hbz:5:2-110831 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Dokument ist frei verfügbar.
Volltexte
Estimating labor force joiners and leavers using a heterogeneity augmented two-tier stochastic frontier [0.95 mb]
Links
Nachweis
Verfügbarkeit In meiner Bibliothek
Zusammenfassung

We derive a non-standard unit root serial correlation formulation for intertemporal adjustments in the labor force participation rate. This leads to a tractable three-error component model, which in contrast to other models embeds heterogeneity into the error structure. Unlike in the typical iid three-error component two-tier stochastic frontier model, our equations error components are independent but not identically distributed. This leads to a complex nonlinear likelihood function requiring identification through a two-step estimation procedure, which we estimate using Current Population Survey (CPS) data. By transforming the basic equation linking labor force participation to the working age population, this paper devises a new method which can be used to identify labor market joiners and leavers. The methods advantage is its parsimonious data requirements, especially alleviating the need for survey based longitudinal data.